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Modeling the spread of infectious diseases is central to the field of computational epidemiology. Two prominent
approaches to modeling the contagion process include (i) simulating the spread in contact networks through
Monte-Carlo processes and (ii) tracking the disease dynamics using meta-population models. In both cases, the
individuals are explicitly (contact networks) or implicitly (meta-population) assumed to belong to exactly one
disease state (e.g., susceptible, infected, etc.).

In reality, the disease states of individuals are rarely so cleanly compartmentalized. A particular agent can
exist in multiple disease states (such as infected and exposed) concurrently with varying probability. To model
this stochasticity, we present a new method, that we term as the Probabilistic Infection Model (PIM). Unlike
traditional models that assign exactly one state to each agent at each time step, the PIM computes the probability
of each agent being in each of the infectious states.

Our proposed PIM provides a more layered understanding of the dynamics of the outbreak at individual levels,
by allowing the users to (i) estimate the value of Ry at individual vertices and (ii) instead of an all or none value,
provides the probability of each infected state of an agent. Additionally, using our probabilistic approach the
overall trajectories of the outbreaks can be computed in one simulation, as opposed to the numerous (order of
hundreds) repeated simulations required for the Monte Carlo process.

We demonstrate the efficacy of PIM by comparing the results of the PIM simulations with those obtained by
simulating stochastic SEIR models, as well as the time required for the simulations. We present results at the
system and at the individual levels for three diseases; measles and two strains of influenza. We demonstrate how
the PIM can be used to study the effect of varying the transimissibility of COVID-19 on its outbreak.

This paper is an extended version of a manuscript published in the proceedings of the 2020 International
Conference on Computational Science (ICCS)[30]. These extensions are primarily within Sections 4 (Relationship
between graph structure and probability of infection) and 5 (Effect of varying COVID-19 transmissibility on
outbreak dynamics).

1. Introduction

A primary component of computational epidemics is modeling and
simulating how infections spread in a population. Two main approaches
to simulating the spread of disease are (i) stochastic agent-based
modelling; and (ii) deterministic meta-population models [1,14].

Both models assume that the individuals are in exactly one disease
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state. For example, the SEIR model, which we simulate in this paper, the
states are Susceptible, Exposed, Infected, and Recovered. This frame-
work is ! is depicted in Fig. 1. S, E, I, and R represent the number of
individuals in Susceptible, Exposed, Infected, and Recovered states
respectively. The total population is then given by N=S +E + 1+ R.
Parameter f is the proportion of contacts between members of S and
members of E that lead to disease transmission. Parameter o is the rate at
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which the exposed become infected. Parameter y is the recovery rate at
which the infected transition to the recovered state.

In stochastic agent-based models each individual (or group of in-
dividuals) in a population is represented as agents. Dyadic interactions
between agents are governed by functions of the agents’ characteristics,
or their environment. These interactions can be used to form a contact
network. The infection spreads through the connections in this network.
Meta-population models use a system of differential equations to
approximate the rate of change of the number of individuals in each
disease state (e.g., susceptible, infected, etc.). Here the specific con-
nections between the individuals is not modeled.

Both these models exhibit competing benefits and drawbacks. The
advantage of the stochastic agent-based approach is that it can model
population heterogeneity including variations in the numbers of con-
tacts of each individual, as well as by varying the infection parameters,
such as y, o, per individual. The disadvantage is that due to the reliance
on stochastic processes, a single run of an outbreak simulation is not
representative of an expected outcome. Hundreds of repeated executions
per unique set of parameters are needed in order to adequately estimate
trends in the data.

In an almost exact reverse, meta-population disease models are
computationally efficient due to their deterministic nature. Further,
closed form approximations of significant epidemiological parameters
such as the basic reproduction number R (i.e. the expected number of
secondary cases resulting from a single infectious individual in a
completely susceptible population) can be derived analytically using
meta-population models. But these models do not represent the diversity
of the individuals, and assume a homogeneous mixing rate within a
homogeneous population. Motivated by these trade-offs, our goal is to
combine the advantages of these two popular epidemiological models.
We introduce the Probabilistic Infection Model (PIM), which combines
the heterogeneity of the stochastic models with the computational effi-
ciency and deterministic nature of the meta-population models. The key
idea of PIM is to calculate the probabilities of the four SEIR states associ-
ated with that vertex for each vertex in a contact network.

To compute the probability function, we leverage the research con-
ducted in escape probabilities by Thomas and Weber [32]. The proba-
bilities for each state and each vertex are compounded over windows of
time corresponding to the latent and infectious periods of the given
disease. This allows for probabilistic values of different states over time
at the individual levels and also provides the expected values of the sizes
of the SEIR sub-populations corresponding to each state. As an added
advantage, our proposed PIM allows us to compute an expression for
Ro(vo), which yields the value of Ry for specific single infectious in-
dividuals in an otherwise susceptible contact network. In Table 1 we
provide a comparison between the stochastic model, the
meta-population model and our proposed PIM.

We applied our model to a contact network created from class
enrollment data from the University of North Texas, as well as on two
other contact networks that are available online; (i) on a network of
friendship of students in high school and (ii) a network of students living
in a residential hall. We conducted our experiments by simulating the
following epidemics; two varieties of influenza, measles, and Covid-19.
We compared simulation results as well as the timing of the PIM with
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those produced by the stochastic models. Our results demonstrate that
the PIM simulations are similar to those produced by averaging trials
from Monte Carlo models. This similarity is most notable when simu-
lating diseases that are highly infectious, such as measles.

2. The Probabilistic Infection Model

In this section we describe our novel Probabilistic Infection Model
(PIM). In Table 2, we provide a list of the terms that we use in our
computations, along with their definitions. The input to both the sto-
chastic model (SM) and the PIM is a contact network among individuals.
In the SM model, a contact event is simulated by a vertex selecting a
single neighbor with a given probability. Due to this inherent stochasticity
of the model, the simulation must be executed multiple times to estimate
how population sizes for each SEIR state change over simulated time.

In our Probabilistic Infection Model, all neighbors of a specific vertex
have a probability to make a contact. For any given contact event, we set
the contact probability per pair of vertices to be proportional to the
weight of their corresponding edge. The probability that vertex v will be

contacted by vertex u as a result of a single contact expended by u is ¥(u,
w(uy)

V) = w(u.x);

w(u,v) is the weight of the edge (u, v) and N(v) is the set

xEN(u)
of neighbors of vertex v. This function is not commutative. The proba-
bility of a contact from vertex u to vertex v, will differ from the proba-
bility of a contact from vertex v to vertex u, depending on each vertex’s
number of neighbors and weights of the adjacent edges.

Each time v is contacted by an infectious individual u, there is a
transmission probability T(u,v). The probability that vertex v is infected
by u on day t as a result of a single contact made by u is then given by

&(u,v) = ¥(u,v)-I,(u)-T(u,v) (@D)]

i.e. the product of the probability of contact between u and v, the
probability the u is infected on day t, and the transmission probability
between u and v.

Lemma 1. Given that a vertex v is in the exposed state, i.e. Ex(v) > 0 and
L(v) = 0 onday x, vwill have I(v) > 0, i.e. be in an infectious state on day t
for some t > x, only if it was contacted by an infectious vertex within the
critical infection window [t — (y, + oy) + 1, t— 0,

Proof. We note that since each partial infection received by v has a
latent period 6,, the infection probability of v, for a day r prior to day ¢,
will remain unchanged for t— ¢, + 1 <r <t. Moreover, because the
infectious period is y,, any infections that arose from interactions made
by v on or before day t — (y, + 0,) would have expired by day t. Thus,
taking these together, the time betweent — (y, + 6,) + 1 and t — o, is the
critical infection window where an infectious contact will take v to an
infectious state on day t. []

Fig. 2 depicts how this critical window affects the state of the vertex.
For ease of explanation, we consider the probabilities in this example to
be 0 or 1. Consider the vertex v to be in an exposed state (Ex(v) =1). In
case 1, if an infectious contact occurs within the critical infection win-
dow, then v will be in an infected state (I;(v) = 1) on day t. If, case 2, the
infectious contact occurs after the critical infection window then v will

das _gsi
dt~ N

dE
L
B o Y dt N
—l —l L —— dl
a2 oE V1
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at 7

Fig. 1. A pictoral representation of the SEIR model, along with the modeling equations.
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Table 1
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Comparison of the properties of the meta population model, the stochastic model and our proposed Probabilistic Infection Model.

Property Meta population model

Stochastic model

Probabilistic Infection Model

Diversity of
interactions
Execution time

Does not model diversity of interactions
Deterministic. Requires only one execution
Provides cumulative number of individuals

per state of infection
Can be computed

Measuring spread of
infection
Ro computation

Can model diversity of interactions
Stochastic. Requires Multiple executions
Provides state of infection of each individual

Needs multiple simulations to be computed or

Can model diversity of interactions

Captures probability of infection. Requires
only one execution

Provides state of infection of each
individual

Can be computed

approximated based on degree distribution

Table 2
Notation used in equations.
Notation  Definition
Se(v) Probability that a vertex v is susceptible on day t
E(v) Probability that a vertex v is exposed on day t
L(v) Probability that a vertex v is infectious on day ¢
Re(v) Probability that a vertex v is recovered on day t
N(v) Set of neighbors of vertex v
oy The incubation period, time between exposed to infected state, for
vertex v
7y The infectious period, time between infected to recovered state, for
vertex v
Q(v) The number of contacts that vertex v makes on day t
W(u,v) Probability that vertex u contacts vertex v as a result of a single contact
expended by u
Se(w,v) Probability that vertex v is infected by u on day t as a result of a single
contact expended by u
T(u,v) Probability that an infectious vertex u infects vertex v upon contact

remain in exposed state (E;(v) = 1) on day t. If, case 3, the infectious
contact occurs before the critical infection window then v will be in
recovered state (R;(v) = 1) on day t.

2.1. Computing the probability for each state

We now derive the expressions for computing the probability of each
state for a given vertex v and a day t. We assume at the beginning of the
simulation, i.e. at day 0, all vertices are either completely (with 100%
probability) in the susceptible state or in the infected state.

Let Q/(u) denote the number of contacts that u makes on day t. The
probability of v not being infected due to one contact made by u on day t
is 1 — &:(u, v). Taking all neighbors of v, the probability that v is not

infected by any of the neighborsis [] (1 -6 (u, )%™ where we make
ueN(v)

Infection in this critical time window
will make v infected at time t

the approximation that each event where vertex v is not infected by
some contact is independent.

Susceptible state: The probability that the vertex is in a susceptible
state is the probability that v is not infected by any of the neighbors since
day O to current day t. Thus;

t

s =TT IT (@ = 8, v)) ™ 2

n=0 ueN(v)

Exposed state: Any susceptible vertex that was infected o, (the incu-
bation period) days earlier will be exposed. Thus the probability of the
exposed state is the probability of being in the susceptible state on day
max(0,t — o,) minus the current probability of the susceptible state on
day t.

E (V) = Smax(04-0,) (V) — Si(v) 3)

Infectious state: Any susceptible vertex that was infected o, + y, (the
incubation period + infectious period) days earlier will be in an infec-
tious state. The probability of the exposed state is the probability of
being in the susceptible state on day max(0,t — ¢,) minus the current
probability of the exposed state on day t.

- Smax(O,[—a‘.) (V) (4)

Recovered state: Any susceptible vertex that was infected before the
critical infection window t — (o, + y,) will have recovered by day t. The
probability of the recovered state is 1 minus the probability that the
vertex was still susceptible y, + o, days prior.

Rr(V) =1- Smax(OJ—y‘ —J‘-)(V) (5)

The total number of individuals ever infected at the end of an
outbreak can be computed by several methods. One method is to take
the expected number of recovered individuals by summing over Ry (v)
for all v, where L is the last day of the simulation. Another way to
approximate this quantity is to integrate the expected number of
infected individuals 3 I;(v) over time and divide the result by the

Iz(v) = Smax(O.l*(yvﬁﬂ'p)) (V)

veV(G)

Case 1: Infectious contact within critical window
leads to infected state at time t

Case 2: Infectious contact after critical window
leads to exposed state at time t

Case 3: Infectious contact before critical window
leads to recovered state at time t

t-(0,+yp)+1 t-o,

Fig. 2. A pictoral representation of the duration of infections with respect to the critical infection window.
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disease’s infectious period to account for over-counting. Since time is
counted in discrete steps, this integral can be reduced to a sum.
Thus, given an outbreak of length L in days;

ISP o ©

veV(G) n=0 »eV(G

This is satisfied in standard Monte Carlo models as well as in our PIM
model.

Moreover, using PIM, we can calculate the value of the basic
reproduction rate, R, for a specific single infectious individual v, in a
contact network where all other vertices are susceptible, as follows:

Tog—1

Ro(vo) = 37 (1= T (1 = T v)¥(v0, )™ @

VveN(vo) n=0

Here the §() is replaced by the product of transmission and contact
probabilities, as I(vo) =1 for 0 <n < y,,.

2.2. Infection redundancy correction

One critical issue in using the PIM model is the effect of infection
redundancy. This problem is illustrated in Fig. 3. Consider on day ¢,
vertex v is exposed to the infection &;(u, v) through contact with vertex u.
Once v reaches an infected state on day t + oy, it will expose vertex u to
the infection &, (v, u). However, note that some of the infections
contributing to the value of I;.,, (v) have originated from u. This will
result in u compounding its own probability of being infected, by
incurring these redundant infections.

In order to correct this effect, we modify the infection from vertex u
to vertex v by correcting each 5;(u, v) to only factor in u’s probability of
being infectious as a result of contacts from vertices other than v. This
ensures that infections originating from u will not be returned to u by
any of u’s direct neighbors. Making this correction will improve the
accuracy provided by PIM at the expense of computation time.

To calculate this, consider

max(0,t—oy)
X= II TT (1= 6u(s, )™
n=max(0,t—(y,—0,—1)) seN(u)
and
max(0,/—0y)

Y = 11 (1= 8,(v,u))™"

n=max(0— (r,~u—1))

Here, X represents the probability that u was not infected in the
critical infectious window by any of its neighbors (using the same logic
as calculating for S,(v) earlier). Y represents the probability that u was
not infected in the critical infectious window by vertex v. Since the
values are given as products, the ratio of £ approximates the probability
that u was not infected in the critical infectious window by any of its
neighbors and also discards the effect of infections from v. The proba-
bility that u is infected as a result of contacts with vertices other than v is
then given by 1 — . We thus modify the probability that v is infected by u
on day t as a result of a single contact made by u to obtain

O ©
d o (3) ®

Fig. 3. An illustration of the infection redundancy problem.

0t (u,v)

day t

6t+‘7v (U’ u)
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T oo TLoewi (1= (5,0
51(“7 V) = T(“? V)‘T(u! V)' (1 - max(t(),tyjrr,,) 1-5 Qu(v)
Hn:mux(OJ—y“—m,+l)( - ,,(V, M))
(8)

where the factor representing the probability that u was infectious on
day t has been modified to prevent infection redundancy. We note that
this is an approximate correction, as it is still possible for an infection to
return to its source after passing through multiple vertices. Since an
infection moving down a path of vertices gets exponentially smaller in
magnitude as the length of the path increases, it is expected that the
effect would be increasingly negligible for higher order corrections.

Variance in results: The probability of vertices in each state, as
computed by the PIM model can vary due to randomness of trans-
mission, randomness of infectious period, etc. We provide an analytical
formulation of the variance on the number of infected individuals as
follows;

Let X; be the random variable denoting the number of individuals in
the infectious state on day t, and let X} be an indicator random variable
for whether vertex v is in the infectious state on day t.

FromX; =3 cyeX7, Var(Xe) =3 ,cyq Var(X}) + 30, Cov(X},X7).
Var(X}) can be determined exactly as Var(X,” ) =L(v)(1 — I(v)), whereas
the covariance terms can be bounded by  Cov(X},

) < y/Var(X])Var(X]). From these relations, we obtain an upper
2
bound SD on the variance of the number of infectious individuals on

day t given by

STDZ:ZI(V1—1 )+ > V(= L{u

veV(G) u#v

@)L ()1 = L(v)) ©)

3. Empirical results

In this section we present our experimental results of comparing the
simulation of PIM with the stochastic Monte-Carlo simulations.

Datasets used. Creating a reliable contact network is challenging in
computational epidemiology [9]. This is because such as traditional
methods of determining contacts such as surveys or sensor based
tracking cannot scale. Surveys are also affected by recall bias, because
participants may not remember all of their contacts.

As a solution to this problem, we observe that many of the daily
routines of individuals are based on scheduled activities, such as going
to meetings, going to appointments, attending classes etc. Available
information of scheduled activities allows us to create a reliable network
of most of the frequently occurring contacts. Based on this assumption,
we created a contact network of students based on the class-enrollment
data for the Fall 2016 semester at the Discovery Park campus of the
University of North Texas.

We created a contact network of students based on the class-
enrollment data for the Fall 2016 semester at the Discovery Park
campus of the University of North Texas (this network will henceforth be
referred to as UNT). The dataset contained randomly generated student
ids and the classes in which each student was enrolled. Online classes
and classes without regular meeting times were excluded. From these
data, we constructed a graph where each student was a vertex, and two
vertices (students) were connected by an edge if the corresponding
students shared a class. The weight of an edge was the average duration
of shared class time between the students. This was an undirected
weighted network with 3700 vertices and 195073 edges.

3.1. Experiment parameters

We simulated two types of influenza and measles on this contact
networks with the disease-specific parameters given in Table 3. The
incubation and infection rates, measles-specific parameters were
adapted from [28,10], whereas influenza-specific parameters were
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Table 3
The parameters used in simulations.

Disease parameters

Disease Incubation Infectious Transmission Contacts per
Period (o) in Period (y) in probability (T) hour (;(v))/
days days (class time)

Measles 8 5 .9 3

Influenza 2 5 .1 3

1
Influenza 1 3 .1 3
2

adapted from [3,6,8]. Two sets of parameters were chosen for influenza
that varied in length of incubation and infectious periods. We used the
same values of o, y and T for all vertices and edges.

In PIM simulations, a single vertex v, was selected to be infected,
with I,(vo) =1 for 0 < n <y, and R,(vo) = 1 for n > y. The remaining
vertices were initially completely susceptible. The probability values of
the states of each vertex were obtained by computing the functions given
in Equations (2-5) over the time period. The number of infected in-
dividuals at time t in days was determined by summing over I;(v) for all
v € V(G). We terminated each simulation after day t if the outbreak
activity was sufficiently small, i.e. the total number of vertices with high
probability of exposed and infected states was small. We quantitatively
measured this using the following conditions:

> EW) +1L(v) <05

veV(G)

Y EW) +L0) = Y (Ea() +1()] <05
veV(G) veV(G)

The simulations were terminated if both these conditions were satisfied.
In addition, simulations were not terminated before day 20. These
bounds were selected to ensure that simulations do not end prematurely.
Fig. 4 shows the state of the vertices in the UNT network as per the PIM
model, on day 35. As can be seen, the measles epidemic spreads faster
and takes longer time to recover (more red and less green nodes) than
the influenza models.

In simulations using the stochastic model, the same graph, seed
vertex of infection and parameters were used. 100 trials were run with a
seeded random number generator for each of the three disease param-
eters. Contacts between vertices occurred randomly, with the proba-
bility of contact between vertices u and v for any given contact event
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proportional to w(u,v). Disease transmission occurred with probability T
at the time of a successful contact between a susceptible and infectious
individual.

3.2. Results

Our experiments demonstrate that PIM produces results most similar
to those produced by stochastic Monte Carlo models for diseases that are
more highly infectious. As seen in Table 3, the Monte Carlo model and
PIM produced similar values for the total number of infected individuals
in an outbreak. Additionally, while the peak number of infected in-
dividuals and day of peak infection produced by PIM tended to be within
one standard deviation of the mean values produced by the Monte Carlo
trials, for all disease parameters, PIM outbreaks peaked slightly earlier
and higher than the average Monte Carlo trial (shown in Table 4). This
becomes more apparent when the parameters for less infectious diseases
are used.

We believe that earlier peaks are observed partially due to an artifact
of the stochastic method. In stochastic trials with low parameters, no
outbreak of the disease is likely to be observed until multiple days have
passed. Outbreak trials with peaks that are lower, occur later and show
greater variance in the peak day of infection are observed as a result.
This contrasts with PIM, which allows the seed of infection to partially
contact multiple neighbors concurrently, possibly causing slightly
earlier and higher peaks of infection. In addition, the approximation that
events are independent may propel the initial spread of infection at a

Table 4

A comparison of outbreak attributes between PIM and the averaged values of
100 stochastic simulations. The standard deviation is shown for each averaged
value.

Probabilistic Infection Model

Disease Total infected Peak infected Day of peak
Measles 3644.21 1059.10 38
Influenza 1 2930.08 787.61 31
Influenza 2 2077.31 454.38 22-23
Monte Carlo model
Disease Total infected Peak infected Day of peak
Measles 3647.95 + 0.22 1021.35 + 132.12 38.58 + 2.39
Influenza 1 3011.49 + 38.04 755.90 + 72.12 34.03 + 4.21
Influenza 2 2094.01 + 109.01 394.72 + 47.80 27.01 + 4.60

Fig. 4. States of the vertices in the contact network based on the PIM model on day 35. Yellow vertices are fully susceptible, whereas dark red vertices have a higher
probability of being infected at a given time. Green vertices have a probability of 95 % or greater of being recovered. From left to right, the values are for Measles

(left), Influenza 1 (middle) and Influenza 2 (right).
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slightly greater rate, an effect that would be most noticeable for less
infectious diseases.

Fig. 5 demonstrates that the attributes of the SEIR curves produced
by PIM are similar to those of the average outbreak curves obtained from
100 stochastic trials. This similarity is most notable in simulations of
highly infectious diseases, such as when using the parameters for mea-
sles; in Fig. 6 left, we show the simulation time series using measles
parameters for all four states, showing that the PIM model closely fol-
lows the averaged curves of 100 trials of the stochastic model. In addi-
tion, we compare the infectious state probability curves of individual
vertices produced by the PIM model: Fig. 6 right shows the I;(v) curves
produced by PIM for the seed infected node as well as for 100 vertices
that were randomly sampled from the set of initially susceptible vertices
for the measles simulation. Most vertices reached their peak probability
of being infected around day 38, which is consistent with the peak day of
infection given in Fig. 5.

We also tested the performance of our model on two other contact
networks obtained from the network repository Netzschleuder [26].
These networks are;

The adolescent health network (ADH) [23] which is a directed and
weighted network of friendships of high school students. The connec-
tions were obtained through a social survey of the students. The network
is partitioned into communities. We selected the largest community
(community 50 in the repository) with 2587 vertices and 12,969 edges.
Edge weights are a measure of frequency of interaction on a 1 to 5 scale.

The residence hall network of Australian National University (ANU)
[12]. This is a directed weighted network, where resident a is connected
to resident b if a indicated that b is a friend. Edge weights are a measure
of perceived friendliness on a 1 to 5 scale. This network has 217 vertices
and 2672 edges.

For both of these networks, for each pair of vertices a and b, directed
edges (a, b) and (b, a) were collapsed into undirected edges {a, b} with
an edge weight that was the average of the edge weights in both
directions.

Fig. 7 shows the comparison between the Monte Carlo based simu-
lation and the PIM model. Once again, curve of the number of infected
individuals using the PIM model closely follows that of the Monte Carlo
simulation.

3.3. Execution time

To assess how PIM compares with Monte Carlo simulations in terms
of executation time, we compare the computational efficiency of the PIM
method with respect to the Monte Carlo method ananlytically as well as
empirically. Note that both PIM and the Monte Carlo approaches we are
examining are time-driven, not event-driven simulations. The number of
timesteps required for a particular simulation run is not constant.
Rather, a particular simulation run continues until the number of
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infectious individuals falls beneath a specified threshold. As reflected in
the results of experiments, given a specific contact network and set of
simulation parameters, the total number of timesteps required by PIM
and Monte Carlo models are comparable. Thus, to compare the
complexity of PIM and Monte Carlo approaches, we have examined the
computational complexity of calculations required by each approach for
each time step.

Analytical time complexity. The complexity per timestep for PIM is O
(C(|V| + |E])), where C is the average number of contacts per vertex per
timestep/day. The model requires itereating through all neighbors of all
vertices, and perform an O(1) calculation at each step. With backflow
correction, the complexity becomes O(Cy(|V| + |E|)) (scales with in-
fectious period). It is also worth noting that outbreaks of diseases with
higher y tend to be shorter, which may somewhat offset this factor. The
computational time complexity for the Monte Carlo method is depen-
dent on the random sampling algorithm used for selecting random
contacts. It takes O(C log | V|(|V| + |E|)) per timestep, where the log | V|
comes from random sampling from a weighted set of choices, needed
when selecting a neighbor to contact. If the selection of neighbors can be
done in constant time O(1), then the complexity of Monte Carlo method
and the PIM method are asymptotically the same.

Empirical time complexity. In Table 5 we show the execution time of
running the PIM method over the three networks and the three diseases,
as well as the time to run 100 runs of the Monte Carlo simulation. As can
be seen from the results, the time taken by the PIM method is compa-
rable to the Monte Carlo method when backflow correction is not used.
The time difference increases (but is within 1000 milliseconds) for larger
and denser networks. For fair comparison the numbers reported are
averaged over 100 trials for both the Monte Carlo method and the PIM
method. Note that the Monte Carlo method requires multiple simula-
tions, whereas the PIM requires only one simulation. As per the results,
even ten runs of the Monte Carlo simulation will be slower than the PIM
model. Typically about order of 100 runs are required for the Monte
Carlo simulations. The difference is even larger when the backflow
correction is not used.

Improving the time efficiency of PIM. While asymptotically the time to
compute PIM is equivalent to the Monte Carlo method, the empirical
execution time can be improved through certain approximations. The
primary cost of PIM is due to contacting all neighbors of all vertices. For
high degree vertices with many neighbors this becomes an expensive
operation. The simulation can be made faster by processing high degree
vertices at certain intervals instead of at every time step.

Effect of backflow correction. Since the backflow correction increases
the simulation time, we now test by how much the correction due to
redundant infection (as discussed in Section 2.2) affects the simulations.
Fig. 8 shows a comparison between simulations with PIM when
correction of the probability of vertex v infecting vertex u uses the
modified version as in Equation (7), and one where the original Equation
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Fig. 5. A comparison between PIM and 100 simulations of the stochastic SEIR model with respect to the number of infectious individuals over the entire simulation.
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Table 5
Time in milliseconds for a single trial, averaged over 100 trials. These trials were
run with an Intel Core i7-10510U CPU at 3 GHz.

Probabilistic Infection Model

Disease Ad50 network ANU network UNT network
Measles 225.01 16.08 16755.81
Influenza 1 196.41 16.39 14895.05
Influenza 2 337.34 16.96 27229.71

Probabilistic Infection Model (No backflow correction)
Disease Ad50 network ANU network UNT network
Measles 186.39 11.38 2571.78
Influenza 1 157.18 11.67 3022.39
Influenza 2 190.82 14.95 4091.78

Monte Carlo model

Disease Ad50 network ANU network UNT network
Measles 210.47 10.12 3988.59
Influenza 1 160.69 7.5 2797.35
Influenza 2 203.69 10.55 3107.09

(1) is used. For each vy, the percent difference between the peak number
of infected individuals produced by PIM with and without correction
was less than 0.2%, suggesting that if needed the backflow correction
can be eliminated for efficiency.

4. Relationship between graph structure and probability of
infection

We examined the results from the Measles, Influenza 1, and Influenza
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Fig. 8. The percent difference between the peak number of infected individuals
is shown for simulations for measles produced by PIM with and without
backflow correction for every possible initially infectious vy.

2 experiments to identify potential associations between graph structure
and simulation outcomes. In each of these three experiments, a single
vertex served as the initial source of infection. As before, edge weights in
the graph were chosen to be proportional to pairwise contact proba-
bilities and were derived from the total duration in hours of shared class
time between a pair of vertices. For each vertex, the graph distance to
the source of infection was calculated. For analysis, graph edge weights
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were inverted before corresponding distances were calculated. In this
manner, although a longer duration of shared class time between two
vertices leads to a larger edge weight, a larger edge weight corresponds
to a smaller distance. Thus, vertices connected to the initial source of
infection via paths consisting of edges with larger weights are consid-
ered to be closer in distance to the source of infection.

First, for all three diseases, we examine the relationship between the
day of peak infection probability and the distance to the source of
infection for each vertex (Fig. 9). R values for these analyses are 0.835,
0.784, and 0.754 for Measles, Influenza 1, and Influenza 2, respectively.
Thus, the day of peak infection for each vertex appears to be heavily
influenced by the distance of that vertex to the initial source of infection.

Next, to determine whether proximity to the source of infection af-
fects a vertex’s infection risk, we examine the relationship between the
probability of ever becoming infected and the distance to the source of
infection for each vertex (Fig. 10). R? values for Influenza 1 and Influ-
enza 2 were 0.174 and 0.142, respectively. Considering these results, the
probability of a vertex ever becoming infected does not appear to be
heavily influenced by the vertex’s distance from the infection source.
Further, in the case of measles, there was no statistically significant
association between distance to the source of infection and infection
risk. Indeed, it is sensible that for a highly infectious disease such as
measles, distance to the source of infection has little bearing on the
probability of ever becoming infected.

Finally, in Fig. 11, we investigate whether a vertex’s degree is pre-
dictive of the probability of it becoming infected. Note that vertex de-
grees are shown on a logarithmic scale. R? values for Influenza 1 and
Influenza 2 were 0.639 and 0.642, respectively. Thus, a vertex’s degree
is a better predictor of whether it will ever be infected than the vertex’s
distance to the initial source of infection.

Based on these findings, in settings where contact networks can be
derived such that individuals are represented as vertices and edges
represent contact durations between pairs of individuals, outbreak
mitigation activities could be informed by distance to the initial source
of infection. If the index case in a disease outbreak is known, then the
network distance from each vertex to this index case can be used to
predict how the outbreak may unfold over time. Armed with this
knowledge, responders could target testing or other mitigation resources
to specific individuals at different points during the outbreak. Further,
responders could leverage the structure of the social network to inform
decisions regarding which individuals should be quarantined in order to
temporarily modify the social network to curtail the spread of the
disease.

5. Effect of varying COVID-19 transmissibility on outbreak
dynamics

The PIM was used to investigate the effects of non-pharmaceutical
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interventions on a simulated COVID-19 outbreak within the same uni-
versity population used for Measles and Influenza simulations earlier in
this manuscript. Social distancing was simulated by changing how
contacts were dervived from shared classtime; and mask wearing was
simulated by varying the transmissibility of the disease. Due to the
deterministic nature of PIM, only a single simulation run was required to
generate a result corresponding to a particular set of input parameters.
Multiple simulation runs were executed in order to investigate how
varying parameters representative of social distancing and mask wear-
ing impacted the outbreak. The same initial source of infection was
chosen for each of the simulation runs.

Disease specific parameters used in the COVID-19 simulations were
adapted from [29] and [31]. The base transmission probability Tpqs was
set to a value of 0.11. The incubation period ¢ was set to 6 days, and the
infectious period y was set to 7 days.

Social distancing was simulated by modifying the number of contacts
Q(v) for each vertex v resulting from each hour of classroom time. For
each simulation, the number of contacts per hour was applied uniformly
across all vertices. For instance, a particular simulation run may
generate 5 contacts for each hour of class time shared between a pair of
vertices. Contacts per hour were restricted to values in the range (0,10].

The effect of mask wearing was simulated by implementing a tran-
simissibility multiplier # to represent reduced potential for disease
transmission resulting from wearing a mask. Thus, the transmission
probability used in a given simulation was T = nTpqs. Values for  were
constrained to the range (0,1].

A total of 625 simulation runs were executed to analyze the effects of
nonpharmaceutical interventions for COVID-19. For the number of con-
tacts per hour of shared class time, simulation parameter values were
started at 0.4 and were increased to 10 by increments of 0.4. These
increasing values of contacts per hour were designed to simulate
increasing degrees of social distancing. For the transmissibility multi-
plier, simulation parameter values were started at 1 and were decreased
to 0.04 by increments of 0.04. The decreasing transmissibility multiplier
values were designed to simulate decreasing likelihoods of transmission
resulting from more effective mask wearing interventions. Results of
these simulation runs are depicted in Figs. 12-14. All three of these
figures indicate that either maximizing social distancing or maximizing
mask wearing effectiveness will impede COVID-19 transmission by a
degree sufficient to curtail the outbreak. Further, a combination of
slightly relaxed social distancing and slightly less effective mask wearing
are also sufficient to curtail the outbreak. However, as social distancing
and/or mask wearing effectiveness decrease, the outbreak spreads to a
larger population.

Plots focusing on the day of peak infectious depicted in Fig. 13 show
the most dramatic results for increased contacts per hour. For each
particular value of the transmissibility multiplier #, there appears to be a
threshold value of the number of contacts per hour, that, if not reached,
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prevents an outbreak from taking hold altogether. However, once this
contacts per hour threshold is reached, the day of peak infectious spikes
dramatically, indicating that at this threshold, an extremely prolonged
outbreak will take hold and run its course. As contacts per hour con-
tinues to increase above this threshold, the length of the outbreak de-
creases, indicating that more rapid outbreaks occur when contact rates
are high. Nonetheless, these results need to be taken in the context of the
total number of individuals ever infected. In this case, by considering the
results depicted in Figs. 13 and 14 together, it can be seen that a longer
outbreak does not necessarily imply a larger number of individual will
(at some point) become infected.

6. Related research

Computational epidemiology is an active area of research. Despite
the advances in modeling infection spread using networks several
challenges exist. As discussed in [27], including developing more ac-
curate network models from data, extending epidemic simulations to
dynamic and weighted networks, understanding how the structure of
the network relates to the spread of diseases and developing prevention
strategies. These challenges represent on-going problems and are being
addressed by several recent publications as discussed below.

The challenges of creating reliable contact networks are discussed in
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[9]. In 2008 [24], a cross-sectional survey on 7,290 participants con-
ducted by different public health institutes or commercial companies
was conducted to build a contact network. Another study [16], per-
formed through the 2009 H1N1 flu pandemic on a population of 36
people based on communication using sensors. Recent studies have also
looked into the dynamic contact networks [4] and the effect of misin-
formation in developing contact networks [15]. A survey on spread of
epidemics on temporal networks is discussed in [34] and [20].

A large number of epidemic studies are modeled on synthetic models
[19], such as the Erdos-Reyni model for random networks, the
Barabasi-Albert model for scale free networks, etc. A primary focus in on
leveraging the structure of the network to predict and/or to prevent the
spread of epidemics. Two important methods as discussed in [5] for
modeling the spread of epidemics in contact network are the
Reed-Foster which models the spread of epidemic in discrete time and
the Markovian model which looks at the epidemic spread in continuous
time. Based on the degree distribution of the network, specifically the
random network, it is possible to theoretically estimate the Ry, basic
reproductive number, and R, basic preventive number after v in-
dividuals have been vaccinated.

Epidemiology simulation using contact networks have gained further
prominence with the onset of covid as in for studying control strategies
[11], studying the spread of covid [33,21] and developing dynamic real
world models of covid outbreaks [18]. There has also been studies on
how asymptomatic cases can spread the diseases, which advocate con-
tact tracing in addition to quarantine of infected individuals [22].
Different strategies for creating contact networks [2,17] has also gained
prominence, including several tools for digital contact tracing.

Several software tools for simulating disease over a population have
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been developed including EpiSims [13] and DiSimS [7] that use high
performance computing, and Broadwick [25] which uses a sequential,
but modular framework that can be modified for various disease pa-
rameters. As discussed below, our PIM method can be modified to be
implemented to be parallel, and thus can be executed on large networks.
A common theme in these papers are the challenges in obtaining a
contact network, both in terms of accuracy, as well as in terms of pre-
serving the privacy of the participants. In this context our method of
creating contact networks from scheduled data has an advantage in that
it can be built from publicly available information (with appropriate
anonymization), and can potentailly scale to very large numbers.

7. Conclusion and future work

In this paper, we introduce a Probabilistic Infection Model for
simulating the spread of infectious diseases on contact networks. Our
model encapsulates the advantages of both deterministic meta-
population models as well as stochastic models on contact networks.
We further propose a method of obtaining contact networks based on the
scheduled activities of individuals in specific environments (e.g., busi-
nesses, schools, etc.), and simulate our model on a contact network built
from a university’s class enrollment data. Comparisons of the results
obtained from stochastic modelling and PIM on the contact network of
university students demonstrate that our approach produces similar
results to the stochastic model. In addition, our model gives a tractable
framework for probabilistic analysis of outbreak dynamics at the indi-
vidual level. It should be noted that the conclusions in Section 4 and 5 on
the effect of the graph structure and non pharmaceutical interventions
on the transmissibility of infection is on the scheduled activity data.
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While we anticipate that similar results will hold on other networks,
further experiments need to be conducted.

Although our proposed PIM method has a similar asymptotic
computational complexity to the stochastic method, the main compu-
tational cost in practical terms comes from applying backflow correction
on high degree vertices. This cost can be reduced by updating the
backflow correction of these vertices at frequent intervals but not at
every time step. Further, PIM removes the need for numerous repeated
trials that is often required when using Monte Carlo methods.

Our PIM model can also compute Ry (v), the basic reproduction
number based on the vertex in the contact network from which the
infection started. While an average R provides the reproduction num-
ber with respect to the network, vertex based R can help in identifying
vertices that are more critical to the spread of diseases.

One might argue that the stochastic agent-based approach can be
trivially parallelized, thereby giving it an additional computational
advantage. It is however unfortunately quite difficult to determine the
number of model executions necessary to obtain a reliable estimate of
the outbreak characteristics. The required number of executions is
generally not determined a priori. Instead, the model execution
sequence is terminated once the cumulative results fall within a pre-
determined confidence interval (e.g., 95%) and a specific level of pre-
cision (e.g., +1%), or the width of the confidence interval. Each of the
individual model executions can hence be viewed as a sample of the
outcome space, and depending on the sample standard deviation of the
specific measurements that define the outbreak characteristics, an
extensive number of executions may be required. In contrast, the PIM
model requires only one execution, and the states of vertices are being
computed based on the states of their neighbors only. This makes the
PIM model more amenable to parallelization, since each vertex can be
updated independently.

An important aspect of our PIM model is that we can model the
values of the infectious period and incubation period per individual. In
this paper, we are modeling individuals of about the same age group
(students in university or school), and therefore set the values to be
uniform.

As part of our future work, we will explore how we can factor in
information about individuals such as age, health conditions and other
demographic information to obtain more individualized latent periods
and infectious periods as well as transmission probabilities selected from
distributions rather than as static values. We also will develop approx-
imate algorithms to improve the execution time of PIM. Moreover, we
will pursue further studies of vaccine distribution and other individual-
level outbreak intervention strategies by applying PIM’s approximations
for individual SEIR state-probabilities.

The source code for the PIM model, along with the UNT class
enrollment network data, can be found at https://github.com/wqi
an0/Partial-Infection-Model.
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