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A B S T R A C T   

Modeling the spread of infectious diseases is central to the field of computational epidemiology. Two prominent 
approaches to modeling the contagion process include (i) simulating the spread in contact networks through 
Monte-Carlo processes and (ii) tracking the disease dynamics using meta-population models. In both cases, the 
individuals are explicitly (contact networks) or implicitly (meta-population) assumed to belong to exactly one 
disease state (e.g., susceptible, infected, etc.). 

In reality, the disease states of individuals are rarely so cleanly compartmentalized. A particular agent can 
exist in multiple disease states (such as infected and exposed) concurrently with varying probability. To model 
this stochasticity, we present a new method, that we term as the Probabilistic Infection Model (PIM). Unlike 
traditional models that assign exactly one state to each agent at each time step, the PIM computes the probability 
of each agent being in each of the infectious states. 

Our proposed PIM provides a more layered understanding of the dynamics of the outbreak at individual levels, 
by allowing the users to (i) estimate the value of R0 at individual vertices and (ii) instead of an all or none value, 
provides the probability of each infected state of an agent. Additionally, using our probabilistic approach the 
overall trajectories of the outbreaks can be computed in one simulation, as opposed to the numerous (order of 
hundreds) repeated simulations required for the Monte Carlo process. 

We demonstrate the efficacy of PIM by comparing the results of the PIM simulations with those obtained by 
simulating stochastic SEIR models, as well as the time required for the simulations. We present results at the 
system and at the individual levels for three diseases; measles and two strains of influenza. We demonstrate how 
the PIM can be used to study the effect of varying the transimissibility of COVID-19 on its outbreak. 

This paper is an extended version of a manuscript published in the proceedings of the 2020 International 
Conference on Computational Science (ICCS)[30]. These extensions are primarily within Sections 4 (Relationship 
between graph structure and probability of infection) and 5 (Effect of varying COVID-19 transmissibility on 
outbreak dynamics).   

1. Introduction 

A primary component of computational epidemics is modeling and 
simulating how infections spread in a population. Two main approaches 
to simulating the spread of disease are (i) stochastic agent-based 
modelling; and (ii) deterministic meta-population models [1,14]. 

Both models assume that the individuals are in exactly one disease 

state. For example, the SEIR model, which we simulate in this paper, the 
states are Susceptible, Exposed, Infected, and Recovered. This frame
work is 1 is depicted in Fig. 1. S, E, I, and R represent the number of 
individuals in Susceptible, Exposed, Infected, and Recovered states 
respectively. The total population is then given by N = S + E + I + R. 
Parameter β is the proportion of contacts between members of S and 
members of E that lead to disease transmission. Parameter σ is the rate at 
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which the exposed become infected. Parameter γ is the recovery rate at 
which the infected transition to the recovered state. 

In stochastic agent-based models each individual (or group of in
dividuals) in a population is represented as agents. Dyadic interactions 
between agents are governed by functions of the agents’ characteristics, 
or their environment. These interactions can be used to form a contact 
network. The infection spreads through the connections in this network. 
Meta-population models use a system of differential equations to 
approximate the rate of change of the number of individuals in each 
disease state (e.g., susceptible, infected, etc.). Here the specific con
nections between the individuals is not modeled. 

Both these models exhibit competing benefits and drawbacks. The 
advantage of the stochastic agent-based approach is that it can model 
population heterogeneity including variations in the numbers of con
tacts of each individual, as well as by varying the infection parameters, 
such as γ, σ, per individual. The disadvantage is that due to the reliance 
on stochastic processes, a single run of an outbreak simulation is not 
representative of an expected outcome. Hundreds of repeated executions 
per unique set of parameters are needed in order to adequately estimate 
trends in the data. 

In an almost exact reverse, meta-population disease models are 
computationally efficient due to their deterministic nature. Further, 
closed form approximations of significant epidemiological parameters 
such as the basic reproduction number R0 (i.e. the expected number of 
secondary cases resulting from a single infectious individual in a 
completely susceptible population) can be derived analytically using 
meta-population models. But these models do not represent the diversity 
of the individuals, and assume a homogeneous mixing rate within a 
homogeneous population. Motivated by these trade-offs, our goal is to 
combine the advantages of these two popular epidemiological models. 
We introduce the Probabilistic Infection Model (PIM), which combines 
the heterogeneity of the stochastic models with the computational effi
ciency and deterministic nature of the meta-population models. The key 
idea of PIM is to calculate the probabilities of the four SEIR states associ
ated with that vertex for each vertex in a contact network. 

To compute the probability function, we leverage the research con
ducted in escape probabilities by Thomas and Weber [32]. The proba
bilities for each state and each vertex are compounded over windows of 
time corresponding to the latent and infectious periods of the given 
disease. This allows for probabilistic values of different states over time 
at the individual levels and also provides the expected values of the sizes 
of the SEIR sub-populations corresponding to each state. As an added 
advantage, our proposed PIM allows us to compute an expression for 
R0(v0), which yields the value of R0 for specific single infectious in
dividuals in an otherwise susceptible contact network. In Table 1 we 
provide a comparison between the stochastic model, the 
meta-population model and our proposed PIM. 

We applied our model to a contact network created from class 
enrollment data from the University of North Texas, as well as on two 
other contact networks that are available online; (i) on a network of 
friendship of students in high school and (ii) a network of students living 
in a residential hall. We conducted our experiments by simulating the 
following epidemics; two varieties of influenza, measles, and Covid-19. 
We compared simulation results as well as the timing of the PIM with 

those produced by the stochastic models. Our results demonstrate that 
the PIM simulations are similar to those produced by averaging trials 
from Monte Carlo models. This similarity is most notable when simu
lating diseases that are highly infectious, such as measles. 

2. The Probabilistic Infection Model 

In this section we describe our novel Probabilistic Infection Model 
(PIM). In Table 2, we provide a list of the terms that we use in our 
computations, along with their definitions. The input to both the sto
chastic model (SM) and the PIM is a contact network among individuals. 
In the SM model, a contact event is simulated by a vertex selecting a 
single neighbor with a given probability. Due to this inherent stochasticity 
of the model, the simulation must be executed multiple times to estimate 
how population sizes for each SEIR state change over simulated time. 

In our Probabilistic Infection Model, all neighbors of a specific vertex 
have a probability to make a contact. For any given contact event, we set 
the contact probability per pair of vertices to be proportional to the 
weight of their corresponding edge. The probability that vertex v will be 
contacted by vertex u as a result of a single contact expended by u is Ψ(u,
v) =

w(u,v)∑
x∈N(u)

w(u,x)
; w(u, v) is the weight of the edge (u, v) and N(v) is the set 

of neighbors of vertex v. This function is not commutative. The proba
bility of a contact from vertex u to vertex v, will differ from the proba
bility of a contact from vertex v to vertex u, depending on each vertex’s 
number of neighbors and weights of the adjacent edges. 

Each time v is contacted by an infectious individual u, there is a 
transmission probability T(u,v). The probability that vertex v is infected 
by u on day t as a result of a single contact made by u is then given by 

δt(u, v) = Ψ(u, v)⋅It(u)⋅T(u, v) (1)  

i.e. the product of the probability of contact between u and v, the 
probability the u is infected on day t, and the transmission probability 
between u and v. 

Lemma 1. Given that a vertex v is in the exposed state, i.e. Ex(v) > 0 and 
Ix(v) = 0 on day x, v will have It(v) > 0, i.e. be in an infectious state on day t 
for some t > x, only if it was contacted by an infectious vertex within the 
critical infection window [t − (γv + σv) + 1, t− σv]. 

Proof. We note that since each partial infection received by v has a 
latent period σv, the infection probability of v, for a day r prior to day t, 
will remain unchanged for t− σv + 1 ≤ r ≤ t. Moreover, because the 
infectious period is γv, any infections that arose from interactions made 
by v on or before day t− (γv + σv) would have expired by day t. Thus, 
taking these together, the time between t − (γv + σv) + 1 and t − σv is the 
critical infection window where an infectious contact will take v to an 
infectious state on day t. □ 

Fig. 2 depicts how this critical window affects the state of the vertex. 
For ease of explanation, we consider the probabilities in this example to 
be 0 or 1. Consider the vertex v to be in an exposed state (Ex(v) = 1). In 
case 1, if an infectious contact occurs within the critical infection win
dow, then v will be in an infected state (It(v) = 1) on day t. If, case 2, the 
infectious contact occurs after the critical infection window then v will 

Fig. 1. A pictoral representation of the SEIR model, along with the modeling equations.  
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remain in exposed state (Et(v) = 1) on day t. If, case 3, the infectious 
contact occurs before the critical infection window then v will be in 
recovered state (Rt(v) = 1) on day t. 

2.1. Computing the probability for each state 

We now derive the expressions for computing the probability of each 
state for a given vertex v and a day t. We assume at the beginning of the 
simulation, i.e. at day 0, all vertices are either completely (with 100% 
probability) in the susceptible state or in the infected state. 

Let Ωt(u) denote the number of contacts that u makes on day t. The 
probability of v not being infected due to one contact made by u on day t 
is 1− δt(u, v). Taking all neighbors of v, the probability that v is not 
infected by any of the neighbors is 

∏

u∈N(v)
(1− δt(u, v))Ω(u), where we make 

the approximation that each event where vertex v is not infected by 
some contact is independent. 

Susceptible state: The probability that the vertex is in a susceptible 
state is the probability that v is not infected by any of the neighbors since 
day 0 to current day t. Thus; 

St(v) =
∏t

n=0

∏

u∈N(v)

(1 − δn(u, v))Ωn(u) (2) 

Exposed state: Any susceptible vertex that was infected σv (the incu
bation period) days earlier will be exposed. Thus the probability of the 
exposed state is the probability of being in the susceptible state on day 
max(0, t − σv) minus the current probability of the susceptible state on 
day t. 

Et(v) = Smax(0,t−σv)(v) − St(v) (3) 

Infectious state: Any susceptible vertex that was infected σv + γv (the 
incubation period + infectious period) days earlier will be in an infec
tious state. The probability of the exposed state is the probability of 
being in the susceptible state on day max(0, t − σv) minus the current 
probability of the exposed state on day t. 

It(v) = Smax(0,t−(γv+σv))(v) − Smax(0,t−σv)(v) (4) 

Recovered state: Any susceptible vertex that was infected before the 
critical infection window t − (σv + γv) will have recovered by day t. The 
probability of the recovered state is 1 minus the probability that the 
vertex was still susceptible γv + σv days prior. 

Rt(v) = 1 − Smax(0,t−γv−σv)(v) (5) 

The total number of individuals ever infected at the end of an 
outbreak can be computed by several methods. One method is to take 
the expected number of recovered individuals by summing over RL(v)
for all v, where L is the last day of the simulation. Another way to 
approximate this quantity is to integrate the expected number of 
infected individuals 

∑
v∈V(G)It(v) over time and divide the result by the 

Table 1 
Comparison of the properties of the meta population model, the stochastic model and our proposed Probabilistic Infection Model.  

Property Meta population model Stochastic model Probabilistic Infection Model 

Diversity of 
interactions 

Does not model diversity of interactions Can model diversity of interactions Can model diversity of interactions 

Execution time Deterministic. Requires only one execution Stochastic. Requires Multiple executions Captures probability of infection. Requires 
only one execution 

Measuring spread of 
infection 

Provides cumulative number of individuals 
per state of infection 

Provides state of infection of each individual Provides state of infection of each 
individual 

R0 computation Can be computed Needs multiple simulations to be computed or 
approximated based on degree distribution 

Can be computed  

Table 2 
Notation used in equations.  

Notation Definition 

St(v) Probability that a vertex v is susceptible on day t  
Et(v) Probability that a vertex v is exposed on day t  
It(v) Probability that a vertex v is infectious on day t  
Rt(v) Probability that a vertex v is recovered on day t  
N(v) Set of neighbors of vertex v  
σv  The incubation period, time between exposed to infected state, for 

vertex v  
γv  The infectious period, time between infected to recovered state, for 

vertex v  
Ωt(v) The number of contacts that vertex v makes on day t  
Ψ(u,v) Probability that vertex u contacts vertex v as a result of a single contact 

expended by u  
δt(u, v) Probability that vertex v is infected by u on day t as a result of a single 

contact expended by u  
T(u,v) Probability that an infectious vertex u infects vertex v upon contact   

Fig. 2. A pictoral representation of the duration of infections with respect to the critical infection window.  
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disease’s infectious period to account for over-counting. Since time is 
counted in discrete steps, this integral can be reduced to a sum. 

Thus, given an outbreak of length L in days; 

∑

v∈V(G)

RL(v) ≈
∑L

n=0

∑

v∈V(G)

1
γv

In(v) (6)  

This is satisfied in standard Monte Carlo models as well as in our PIM 
model. 

Moreover, using PIM, we can calculate the value of the basic 
reproduction rate, R0, for a specific single infectious individual v0 in a 
contact network where all other vertices are susceptible, as follows: 

R0(v0) =
∑

v∈N(v0)

(1 −
∏γv0 −1

n=0
(1 − T(v0, v)Ψ(v0, v)Ωn(v0)) (7)  

Here the δ() is replaced by the product of transmission and contact 
probabilities, as In(v0) = 1 for 0 ≤ n < γv0

. 

2.2. Infection redundancy correction 

One critical issue in using the PIM model is the effect of infection 
redundancy. This problem is illustrated in Fig. 3. Consider on day t, 
vertex v is exposed to the infection δt(u, v) through contact with vertex u. 
Once v reaches an infected state on day t+ σv, it will expose vertex u to 
the infection δt+σv (v, u). However, note that some of the infections 
contributing to the value of It+σv (v) have originated from u. This will 
result in u compounding its own probability of being infected, by 
incurring these redundant infections. 

In order to correct this effect, we modify the infection from vertex u 
to vertex v by correcting each δt(u, v) to only factor in u’s probability of 
being infectious as a result of contacts from vertices other than v. This 
ensures that infections originating from u will not be returned to u by 
any of u’s direct neighbors. Making this correction will improve the 
accuracy provided by PIM at the expense of computation time. 

To calculate this, consider 

X =
∏max(0,t−σu)

n=max(0,t−(γu−σu−1))

∏

s∈N(u)

(1 − δn(s, u))Ωn(s)

and 

Y =
∏max(0,t−σu)

n=max(0,t−(γu−σu−1))

(1 − δn(v, u))Ωn(v)

Here, X represents the probability that u was not infected in the 
critical infectious window by any of its neighbors (using the same logic 
as calculating for St(v) earlier). Y represents the probability that u was 
not infected in the critical infectious window by vertex v. Since the 
values are given as products, the ratio of XY approximates the probability 
that u was not infected in the critical infectious window by any of its 
neighbors and also discards the effect of infections from v. The proba
bility that u is infected as a result of contacts with vertices other than v is 
then given by 1− X

Y. We thus modify the probability that v is infected by u 
on day t as a result of a single contact made by u to obtain 

δt(u, v) = Ψ(u, v)⋅T(u, v)⋅

(

1 −

∏max(0,t−σu)
n=max(0,t−γu−σu+1)

∏
s∈N(u)(1 − δn(s, u))Ωn(s)

∏max(0,t−σu)
n=max(0,t−γu−σu+1)(1 − δn(v, u))Ωn(v)

)

(8)  

where the factor representing the probability that u was infectious on 
day t has been modified to prevent infection redundancy. We note that 
this is an approximate correction, as it is still possible for an infection to 
return to its source after passing through multiple vertices. Since an 
infection moving down a path of vertices gets exponentially smaller in 
magnitude as the length of the path increases, it is expected that the 
effect would be increasingly negligible for higher order corrections. 

Variance in results: The probability of vertices in each state, as 
computed by the PIM model can vary due to randomness of trans
mission, randomness of infectious period, etc. We provide an analytical 
formulation of the variance on the number of infected individuals as 
follows; 

Let Xt be the random variable denoting the number of individuals in 
the infectious state on day t, and let Xv

t be an indicator random variable 
for whether vertex v is in the infectious state on day t. 

From Xt =
∑

v∈V(G)X
v
t , Var(Xt) =

∑
v∈V(G)Var(Xv

t )+
∑

u∕=vCov(Xu
t ,X

v
t ). 

Var(Xv
t ) can be determined exactly as Var(Xv

t ) = It(v)(1− It(v)), whereas 
the covariance terms can be bounded by Cov(Xu

t ,

Xv
t ) ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Xv

t )Var(Xv
t )

√
. From these relations, we obtain an upper 

bound ŜD
2 

on the variance of the number of infectious individuals on 
day t given by 

ŜD
2
=
∑

v∈V(G)

It(v)(1 − It(v)) +
∑

u∕=v

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
It(u)(1 − It(u))It(v)(1 − It(v))

√
(9)  

3. Empirical results 

In this section we present our experimental results of comparing the 
simulation of PIM with the stochastic Monte-Carlo simulations. 

Datasets used. Creating a reliable contact network is challenging in 
computational epidemiology [9]. This is because such as traditional 
methods of determining contacts such as surveys or sensor based 
tracking cannot scale. Surveys are also affected by recall bias, because 
participants may not remember all of their contacts. 

As a solution to this problem, we observe that many of the daily 
routines of individuals are based on scheduled activities, such as going 
to meetings, going to appointments, attending classes etc. Available 
information of scheduled activities allows us to create a reliable network 
of most of the frequently occurring contacts. Based on this assumption, 
we created a contact network of students based on the class-enrollment 
data for the Fall 2016 semester at the Discovery Park campus of the 
University of North Texas. 

We created a contact network of students based on the class- 
enrollment data for the Fall 2016 semester at the Discovery Park 
campus of the University of North Texas (this network will henceforth be 
referred to as UNT). The dataset contained randomly generated student 
ids and the classes in which each student was enrolled. Online classes 
and classes without regular meeting times were excluded. From these 
data, we constructed a graph where each student was a vertex, and two 
vertices (students) were connected by an edge if the corresponding 
students shared a class. The weight of an edge was the average duration 
of shared class time between the students. This was an undirected 
weighted network with 3700 vertices and 195073 edges. 

3.1. Experiment parameters 

We simulated two types of influenza and measles on this contact 
networks with the disease-specific parameters given in Table 3. The 
incubation and infection rates, measles-specific parameters were 
adapted from [28,10], whereas influenza-specific parameters were Fig. 3. An illustration of the infection redundancy problem.  
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adapted from [3,6,8]. Two sets of parameters were chosen for influenza 
that varied in length of incubation and infectious periods. We used the 
same values of σ, γ and T for all vertices and edges. 

In PIM simulations, a single vertex v0 was selected to be infected, 
with In(v0) = 1 for 0 ≤ n < γ, and Rn(v0) = 1 for n ≥ γ. The remaining 
vertices were initially completely susceptible. The probability values of 
the states of each vertex were obtained by computing the functions given 
in Equations (2–5) over the time period. The number of infected in
dividuals at time t in days was determined by summing over It(v) for all 
v ∈ V(G). We terminated each simulation after day t if the outbreak 
activity was sufficiently small, i.e. the total number of vertices with high 
probability of exposed and infected states was small. We quantitatively 
measured this using the following conditions: 
∑

v∈V(G)

Et(v) + It(v)) ≤ 0.5

|
∑

v∈V(G)

(Et(v) + It(v)) −
∑

v∈V(G)

(Et−1(v) + It−1(v))| ≤ 0.5  

The simulations were terminated if both these conditions were satisfied. 
In addition, simulations were not terminated before day 20. These 
bounds were selected to ensure that simulations do not end prematurely. 
Fig. 4 shows the state of the vertices in the UNT network as per the PIM 
model, on day 35. As can be seen, the measles epidemic spreads faster 
and takes longer time to recover (more red and less green nodes) than 
the influenza models. 

In simulations using the stochastic model, the same graph, seed 
vertex of infection and parameters were used. 100 trials were run with a 
seeded random number generator for each of the three disease param
eters. Contacts between vertices occurred randomly, with the proba
bility of contact between vertices u and v for any given contact event 

proportional to w(u,v). Disease transmission occurred with probability T 
at the time of a successful contact between a susceptible and infectious 
individual. 

3.2. Results 

Our experiments demonstrate that PIM produces results most similar 
to those produced by stochastic Monte Carlo models for diseases that are 
more highly infectious. As seen in Table 3, the Monte Carlo model and 
PIM produced similar values for the total number of infected individuals 
in an outbreak. Additionally, while the peak number of infected in
dividuals and day of peak infection produced by PIM tended to be within 
one standard deviation of the mean values produced by the Monte Carlo 
trials, for all disease parameters, PIM outbreaks peaked slightly earlier 
and higher than the average Monte Carlo trial (shown in Table 4). This 
becomes more apparent when the parameters for less infectious diseases 
are used. 

We believe that earlier peaks are observed partially due to an artifact 
of the stochastic method. In stochastic trials with low parameters, no 
outbreak of the disease is likely to be observed until multiple days have 
passed. Outbreak trials with peaks that are lower, occur later and show 
greater variance in the peak day of infection are observed as a result. 
This contrasts with PIM, which allows the seed of infection to partially 
contact multiple neighbors concurrently, possibly causing slightly 
earlier and higher peaks of infection. In addition, the approximation that 
events are independent may propel the initial spread of infection at a 

Table 3 
The parameters used in simulations.  

Disease parameters 
Disease Incubation 

Period (σ) in 
days 

Infectious 
Period (γ) in 
days 

Transmission 
probability (T) 

Contacts per 
hour (Ωi(v))/ 
(class time)  

Measles 8 5 . 9 3 
Influenza 

1 
2 5 . 1 3 

Influenza 
2 

1 3 . 1 3  

Fig. 4. States of the vertices in the contact network based on the PIM model on day 35. Yellow vertices are fully susceptible, whereas dark red vertices have a higher 
probability of being infected at a given time. Green vertices have a probability of 95 % or greater of being recovered. From left to right, the values are for Measles 
(left), Influenza 1 (middle) and Influenza 2 (right). 

Table 4 
A comparison of outbreak attributes between PIM and the averaged values of 
100 stochastic simulations. The standard deviation is shown for each averaged 
value.   

Probabilistic Infection Model 
Disease Total infected Peak infected Day of peak 

Measles 3644.21 1059.10 38 
Influenza 1 2930.08 787.61 31 
Influenza 2 2077.31 454.38 22-23   

Monte Carlo model 
Disease Total infected Peak infected Day of peak 

Measles 3647.95 ± 0.22 1021.35 ± 132.12 38.58 ± 2.39 
Influenza 1 3011.49 ± 38.04 755.90 ± 72.12 34.03 ± 4.21 
Influenza 2 2094.01 ± 109.01 394.72 ± 47.80 27.01 ± 4.60  
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slightly greater rate, an effect that would be most noticeable for less 
infectious diseases. 

Fig. 5 demonstrates that the attributes of the SEIR curves produced 
by PIM are similar to those of the average outbreak curves obtained from 
100 stochastic trials. This similarity is most notable in simulations of 
highly infectious diseases, such as when using the parameters for mea
sles; in Fig. 6 left, we show the simulation time series using measles 
parameters for all four states, showing that the PIM model closely fol
lows the averaged curves of 100 trials of the stochastic model. In addi
tion, we compare the infectious state probability curves of individual 
vertices produced by the PIM model: Fig. 6 right shows the It(v) curves 
produced by PIM for the seed infected node as well as for 100 vertices 
that were randomly sampled from the set of initially susceptible vertices 
for the measles simulation. Most vertices reached their peak probability 
of being infected around day 38, which is consistent with the peak day of 
infection given in Fig. 5. 

We also tested the performance of our model on two other contact 
networks obtained from the network repository Netzschleuder [26]. 
These networks are; 

The adolescent health network (ADH) [23] which is a directed and 
weighted network of friendships of high school students. The connec
tions were obtained through a social survey of the students. The network 
is partitioned into communities. We selected the largest community 
(community 50 in the repository) with 2587 vertices and 12,969 edges. 
Edge weights are a measure of frequency of interaction on a 1 to 5 scale. 

The residence hall network of Australian National University (ANU) 
[12]. This is a directed weighted network, where resident a is connected 
to resident b if a indicated that b is a friend. Edge weights are a measure 
of perceived friendliness on a 1 to 5 scale. This network has 217 vertices 
and 2672 edges. 

For both of these networks, for each pair of vertices a and b, directed 
edges (a, b) and (b, a) were collapsed into undirected edges {a, b} with 
an edge weight that was the average of the edge weights in both 
directions. 

Fig. 7 shows the comparison between the Monte Carlo based simu
lation and the PIM model. Once again, curve of the number of infected 
individuals using the PIM model closely follows that of the Monte Carlo 
simulation. 

3.3. Execution time 

To assess how PIM compares with Monte Carlo simulations in terms 
of executation time, we compare the computational efficiency of the PIM 
method with respect to the Monte Carlo method ananlytically as well as 
empirically. Note that both PIM and the Monte Carlo approaches we are 
examining are time-driven, not event-driven simulations. The number of 
timesteps required for a particular simulation run is not constant. 
Rather, a particular simulation run continues until the number of 

infectious individuals falls beneath a specified threshold. As reflected in 
the results of experiments, given a specific contact network and set of 
simulation parameters, the total number of timesteps required by PIM 
and Monte Carlo models are comparable. Thus, to compare the 
complexity of PIM and Monte Carlo approaches, we have examined the 
computational complexity of calculations required by each approach for 
each time step. 

Analytical time complexity. The complexity per timestep for PIM is O 
(C(|V| + |E|)), where C is the average number of contacts per vertex per 
timestep/day. The model requires itereating through all neighbors of all 
vertices, and perform an O(1) calculation at each step. With backflow 
correction, the complexity becomes O(Cγ(|V| + |E|)) (scales with in
fectious period). It is also worth noting that outbreaks of diseases with 
higher γ tend to be shorter, which may somewhat offset this factor. The 
computational time complexity for the Monte Carlo method is depen
dent on the random sampling algorithm used for selecting random 
contacts. It takes O(C log |V|(|V| + |E|)) per timestep, where the log |V| 
comes from random sampling from a weighted set of choices, needed 
when selecting a neighbor to contact. If the selection of neighbors can be 
done in constant time O(1), then the complexity of Monte Carlo method 
and the PIM method are asymptotically the same. 

Empirical time complexity. In Table 5 we show the execution time of 
running the PIM method over the three networks and the three diseases, 
as well as the time to run 100 runs of the Monte Carlo simulation. As can 
be seen from the results, the time taken by the PIM method is compa
rable to the Monte Carlo method when backflow correction is not used. 
The time difference increases (but is within 1000 milliseconds) for larger 
and denser networks. For fair comparison the numbers reported are 
averaged over 100 trials for both the Monte Carlo method and the PIM 
method. Note that the Monte Carlo method requires multiple simula
tions, whereas the PIM requires only one simulation. As per the results, 
even ten runs of the Monte Carlo simulation will be slower than the PIM 
model. Typically about order of 100 runs are required for the Monte 
Carlo simulations. The difference is even larger when the backflow 
correction is not used. 

Improving the time efficiency of PIM. While asymptotically the time to 
compute PIM is equivalent to the Monte Carlo method, the empirical 
execution time can be improved through certain approximations. The 
primary cost of PIM is due to contacting all neighbors of all vertices. For 
high degree vertices with many neighbors this becomes an expensive 
operation. The simulation can be made faster by processing high degree 
vertices at certain intervals instead of at every time step. 

Effect of backflow correction. Since the backflow correction increases 
the simulation time, we now test by how much the correction due to 
redundant infection (as discussed in Section 2.2) affects the simulations. 
Fig. 8 shows a comparison between simulations with PIM when 
correction of the probability of vertex v infecting vertex u uses the 
modified version as in Equation (7), and one where the original Equation 

Fig. 5. A comparison between PIM and 100 simulations of the stochastic SEIR model with respect to the number of infectious individuals over the entire simulation. 
From left to right, the curves are for Measles (left), Influenza 1 (middle) and Influenza 2 (right). 
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(1) is used. For each v0, the percent difference between the peak number 
of infected individuals produced by PIM with and without correction 
was less than 0.2%, suggesting that if needed the backflow correction 
can be eliminated for efficiency. 

4. Relationship between graph structure and probability of 
infection 

We examined the results from the Measles, Influenza 1, and Influenza 

2 experiments to identify potential associations between graph structure 
and simulation outcomes. In each of these three experiments, a single 
vertex served as the initial source of infection. As before, edge weights in 
the graph were chosen to be proportional to pairwise contact proba
bilities and were derived from the total duration in hours of shared class 
time between a pair of vertices. For each vertex, the graph distance to 
the source of infection was calculated. For analysis, graph edge weights 

Fig. 6. State of vertices in the measles simulation. Left: Comparison between the number of vertices in each state over time for PIM and the Monte Carlo (MC) 
method averaged over 100 trials. Right: Probability of infection of 100 randomly selected vertices of the network. The peak occurs around days 35-45. 

Fig. 7. Simulation of Measles, number of infected individuals on ADH network(Left) and ANY network(right). “The dotted lines show the PIM outbreak curve shifted 
by the upper bound on the standard deviation of the number of infectious individuals”. 

Table 5 
Time in milliseconds for a single trial, averaged over 100 trials. These trials were 
run with an Intel Core i7-10510U CPU at 3 GHz.   

Probabilistic Infection Model 
Disease Ad50 network ANU network UNT network 

Measles 225.01 16.08 16755.81 
Influenza 1 196.41 16.39 14895.05 
Influenza 2 337.34 16.96 27229.71   

Probabilistic Infection Model (No backflow correction) 
Disease Ad50 network ANU network UNT network 

Measles 186.39 11.38 2571.78 
Influenza 1 157.18 11.67 3022.39 
Influenza 2 190.82 14.95 4091.78   

Monte Carlo model 
Disease Ad50 network ANU network UNT network 

Measles 210.47 10.12 3988.59 
Influenza 1 160.69 7.5 2797.35 
Influenza 2 203.69 10.55 3107.09  

Fig. 8. The percent difference between the peak number of infected individuals 
is shown for simulations for measles produced by PIM with and without 
backflow correction for every possible initially infectious v0. 

W. Qian et al.                                                                                                                                                                                                                                   



Journal of Computational Science 54 (2021) 101419

8

were inverted before corresponding distances were calculated. In this 
manner, although a longer duration of shared class time between two 
vertices leads to a larger edge weight, a larger edge weight corresponds 
to a smaller distance. Thus, vertices connected to the initial source of 
infection via paths consisting of edges with larger weights are consid
ered to be closer in distance to the source of infection. 

First, for all three diseases, we examine the relationship between the 
day of peak infection probability and the distance to the source of 
infection for each vertex (Fig. 9). R2 values for these analyses are 0.835, 
0.784, and 0.754 for Measles, Influenza 1, and Influenza 2, respectively. 
Thus, the day of peak infection for each vertex appears to be heavily 
influenced by the distance of that vertex to the initial source of infection. 

Next, to determine whether proximity to the source of infection af
fects a vertex’s infection risk, we examine the relationship between the 
probability of ever becoming infected and the distance to the source of 
infection for each vertex (Fig. 10). R2 values for Influenza 1 and Influ
enza 2 were 0.174 and 0.142, respectively. Considering these results, the 
probability of a vertex ever becoming infected does not appear to be 
heavily influenced by the vertex’s distance from the infection source. 
Further, in the case of measles, there was no statistically significant 
association between distance to the source of infection and infection 
risk. Indeed, it is sensible that for a highly infectious disease such as 
measles, distance to the source of infection has little bearing on the 
probability of ever becoming infected. 

Finally, in Fig. 11, we investigate whether a vertex’s degree is pre
dictive of the probability of it becoming infected. Note that vertex de
grees are shown on a logarithmic scale. R2 values for Influenza 1 and 
Influenza 2 were 0.639 and 0.642, respectively. Thus, a vertex’s degree 
is a better predictor of whether it will ever be infected than the vertex’s 
distance to the initial source of infection. 

Based on these findings, in settings where contact networks can be 
derived such that individuals are represented as vertices and edges 
represent contact durations between pairs of individuals, outbreak 
mitigation activities could be informed by distance to the initial source 
of infection. If the index case in a disease outbreak is known, then the 
network distance from each vertex to this index case can be used to 
predict how the outbreak may unfold over time. Armed with this 
knowledge, responders could target testing or other mitigation resources 
to specific individuals at different points during the outbreak. Further, 
responders could leverage the structure of the social network to inform 
decisions regarding which individuals should be quarantined in order to 
temporarily modify the social network to curtail the spread of the 
disease. 

5. Effect of varying COVID-19 transmissibility on outbreak 
dynamics 

The PIM was used to investigate the effects of non-pharmaceutical 

interventions on a simulated COVID-19 outbreak within the same uni
versity population used for Measles and Influenza simulations earlier in 
this manuscript. Social distancing was simulated by changing how 
contacts were dervived from shared classtime; and mask wearing was 
simulated by varying the transmissibility of the disease. Due to the 
deterministic nature of PIM, only a single simulation run was required to 
generate a result corresponding to a particular set of input parameters. 
Multiple simulation runs were executed in order to investigate how 
varying parameters representative of social distancing and mask wear
ing impacted the outbreak. The same initial source of infection was 
chosen for each of the simulation runs. 

Disease specific parameters used in the COVID-19 simulations were 
adapted from [29] and [31]. The base transmission probability Tbase was 
set to a value of 0.11. The incubation period σ was set to 6 days, and the 
infectious period γ was set to 7 days. 

Social distancing was simulated by modifying the number of contacts 
Ωt(v) for each vertex v resulting from each hour of classroom time. For 
each simulation, the number of contacts per hour was applied uniformly 
across all vertices. For instance, a particular simulation run may 
generate 5 contacts for each hour of class time shared between a pair of 
vertices. Contacts per hour were restricted to values in the range (0,10]. 

The effect of mask wearing was simulated by implementing a tran
simissibility multiplier η to represent reduced potential for disease 
transmission resulting from wearing a mask. Thus, the transmission 
probability used in a given simulation was T = ηTbase. Values for η were 
constrained to the range (0,1]. 

A total of 625 simulation runs were executed to analyze the effects of 
nonpharmaceutical interventions for COVID-19. For the number of con
tacts per hour of shared class time, simulation parameter values were 
started at 0.4 and were increased to 10 by increments of 0.4. These 
increasing values of contacts per hour were designed to simulate 
increasing degrees of social distancing. For the transmissibility multi
plier, simulation parameter values were started at 1 and were decreased 
to 0.04 by increments of 0.04. The decreasing transmissibility multiplier 
values were designed to simulate decreasing likelihoods of transmission 
resulting from more effective mask wearing interventions. Results of 
these simulation runs are depicted in Figs. 12–14. All three of these 
figures indicate that either maximizing social distancing or maximizing 
mask wearing effectiveness will impede COVID-19 transmission by a 
degree sufficient to curtail the outbreak. Further, a combination of 
slightly relaxed social distancing and slightly less effective mask wearing 
are also sufficient to curtail the outbreak. However, as social distancing 
and/or mask wearing effectiveness decrease, the outbreak spreads to a 
larger population. 

Plots focusing on the day of peak infectious depicted in Fig. 13 show 
the most dramatic results for increased contacts per hour. For each 
particular value of the transmissibility multiplier η, there appears to be a 
threshold value of the number of contacts per hour, that, if not reached, 

Fig. 9. Day of peak infection probability for each vertex plotted against the distance to the source of infection for Measles (left), Influenza 1 (middle) and Influenza 
2 (right). 
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prevents an outbreak from taking hold altogether. However, once this 
contacts per hour threshold is reached, the day of peak infectious spikes 
dramatically, indicating that at this threshold, an extremely prolonged 
outbreak will take hold and run its course. As contacts per hour con
tinues to increase above this threshold, the length of the outbreak de
creases, indicating that more rapid outbreaks occur when contact rates 
are high. Nonetheless, these results need to be taken in the context of the 
total number of individuals ever infected. In this case, by considering the 
results depicted in Figs. 13 and 14 together, it can be seen that a longer 
outbreak does not necessarily imply a larger number of individual will 
(at some point) become infected. 

6. Related research 

Computational epidemiology is an active area of research. Despite 
the advances in modeling infection spread using networks several 
challenges exist. As discussed in [27], including developing more ac
curate network models from data, extending epidemic simulations to 
dynamic and weighted networks, understanding how the structure of 
the network relates to the spread of diseases and developing prevention 
strategies. These challenges represent on-going problems and are being 
addressed by several recent publications as discussed below. 

The challenges of creating reliable contact networks are discussed in 

Fig. 10. Probability for each vertex to ever be infected plotted against the distance to the source of infection for Measles (left), Influenza 1 (middle) and Influenza 
2 (right). 

Fig. 11. Probability for each vertex to ever be infected plotted against the degree of each vertex for Measles (left), Influenza 1 (middle) and Influenza 2 (right).  

Fig. 12. Results focusing on the peak number of infectious individuals across multiple simulation runs with varying numbers of contacts per hour and transimissibilty 
multipliers. Five different values for η are extracted in the left plot, and the right plot includes results from simulation runs using values of η in the range (0,1]. 
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[9]. In 2008 [24], a cross-sectional survey on 7,290 participants con
ducted by different public health institutes or commercial companies 
was conducted to build a contact network. Another study [16], per
formed through the 2009 H1N1 flu pandemic on a population of 36 
people based on communication using sensors. Recent studies have also 
looked into the dynamic contact networks [4] and the effect of misin
formation in developing contact networks [15]. A survey on spread of 
epidemics on temporal networks is discussed in [34] and [20]. 

A large number of epidemic studies are modeled on synthetic models 
[19], such as the Erdos-Reyni model for random networks, the 
Barabasi-Albert model for scale free networks, etc. A primary focus in on 
leveraging the structure of the network to predict and/or to prevent the 
spread of epidemics. Two important methods as discussed in [5] for 
modeling the spread of epidemics in contact network are the 
Reed-Foster which models the spread of epidemic in discrete time and 
the Markovian model which looks at the epidemic spread in continuous 
time. Based on the degree distribution of the network, specifically the 
random network, it is possible to theoretically estimate the R0, basic 
reproductive number, and Rv basic preventive number after v in
dividuals have been vaccinated. 

Epidemiology simulation using contact networks have gained further 
prominence with the onset of covid as in for studying control strategies 
[11], studying the spread of covid [33,21] and developing dynamic real 
world models of covid outbreaks [18]. There has also been studies on 
how asymptomatic cases can spread the diseases, which advocate con
tact tracing in addition to quarantine of infected individuals [22]. 
Different strategies for creating contact networks [2,17] has also gained 
prominence, including several tools for digital contact tracing. 

Several software tools for simulating disease over a population have 

been developed including EpiSims [13] and DiSimS [7] that use high 
performance computing, and Broadwick [25] which uses a sequential, 
but modular framework that can be modified for various disease pa
rameters. As discussed below, our PIM method can be modified to be 
implemented to be parallel, and thus can be executed on large networks. 

A common theme in these papers are the challenges in obtaining a 
contact network, both in terms of accuracy, as well as in terms of pre
serving the privacy of the participants. In this context our method of 
creating contact networks from scheduled data has an advantage in that 
it can be built from publicly available information (with appropriate 
anonymization), and can potentailly scale to very large numbers. 

7. Conclusion and future work 

In this paper, we introduce a Probabilistic Infection Model for 
simulating the spread of infectious diseases on contact networks. Our 
model encapsulates the advantages of both deterministic meta- 
population models as well as stochastic models on contact networks. 
We further propose a method of obtaining contact networks based on the 
scheduled activities of individuals in specific environments (e.g., busi
nesses, schools, etc.), and simulate our model on a contact network built 
from a university’s class enrollment data. Comparisons of the results 
obtained from stochastic modelling and PIM on the contact network of 
university students demonstrate that our approach produces similar 
results to the stochastic model. In addition, our model gives a tractable 
framework for probabilistic analysis of outbreak dynamics at the indi
vidual level. It should be noted that the conclusions in Section 4 and 5 on 
the effect of the graph structure and non pharmaceutical interventions 
on the transmissibility of infection is on the scheduled activity data. 

Fig. 13. Results focusing on the day the peak number of infectious individuals occurred across multiple simulation runs with varying numbers of contacts per hour 
and transimissibilty multipliers. Five different values for eta are extracted in the left plot, and the right plot includes results from simulation runs using values of η in 
the range (0,1]. 

Fig. 14. Results focusing on the total number of vertices ever infected across multiple simulation runs with varying numbers of contacts per hour and transimissibilty 
multipliers. Five different values for eta are extracted in the left plot, and the right plot includes results from simulation runs using values of η in the range (0,1]. 
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While we anticipate that similar results will hold on other networks, 
further experiments need to be conducted. 

Although our proposed PIM method has a similar asymptotic 
computational complexity to the stochastic method, the main compu
tational cost in practical terms comes from applying backflow correction 
on high degree vertices. This cost can be reduced by updating the 
backflow correction of these vertices at frequent intervals but not at 
every time step. Further, PIM removes the need for numerous repeated 
trials that is often required when using Monte Carlo methods. 

Our PIM model can also compute R0(v), the basic reproduction 
number based on the vertex in the contact network from which the 
infection started. While an average R0 provides the reproduction num
ber with respect to the network, vertex based R0 can help in identifying 
vertices that are more critical to the spread of diseases. 

One might argue that the stochastic agent-based approach can be 
trivially parallelized, thereby giving it an additional computational 
advantage. It is however unfortunately quite difficult to determine the 
number of model executions necessary to obtain a reliable estimate of 
the outbreak characteristics. The required number of executions is 
generally not determined a priori. Instead, the model execution 
sequence is terminated once the cumulative results fall within a pre
determined confidence interval (e.g., 95%) and a specific level of pre
cision (e.g., ±1%), or the width of the confidence interval. Each of the 
individual model executions can hence be viewed as a sample of the 
outcome space, and depending on the sample standard deviation of the 
specific measurements that define the outbreak characteristics, an 
extensive number of executions may be required. In contrast, the PIM 
model requires only one execution, and the states of vertices are being 
computed based on the states of their neighbors only. This makes the 
PIM model more amenable to parallelization, since each vertex can be 
updated independently. 

An important aspect of our PIM model is that we can model the 
values of the infectious period and incubation period per individual. In 
this paper, we are modeling individuals of about the same age group 
(students in university or school), and therefore set the values to be 
uniform. 

As part of our future work, we will explore how we can factor in 
information about individuals such as age, health conditions and other 
demographic information to obtain more individualized latent periods 
and infectious periods as well as transmission probabilities selected from 
distributions rather than as static values. We also will develop approx
imate algorithms to improve the execution time of PIM. Moreover, we 
will pursue further studies of vaccine distribution and other individual- 
level outbreak intervention strategies by applying PIM’s approximations 
for individual SEIR state-probabilities. 

The source code for the PIM model, along with the UNT class 
enrollment network data, can be found at https://github.com/wqi 
an0/Partial-Infection-Model. 
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