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Abstract. Considered is a multi-channel wireless network for secret
communication that uses the signal-to-interference-plus-noise ratio (SINR)
as the performance measure. An eavesdropper can intercept encoded
messages through a degraded channel of each legitimate transmitter-
receiver communication pair. A friendly interferer, on the other hand,
may send cooperative jamming signals to enhance the secrecy perfor-
mance of the whole network. Besides, the state information of the eaves-
dropping channel may not be known completely. The transmitters and
the friendly interferer have to cooperatively decide on the optimal jam-
ming power allocation strategy that balances the secrecy performance
with the cost of employing intentional interference, while the eavesdrop-
per tries to maximize her eavesdropping capacity. To solve this problem,
we propose and analyze a non-zero sum game between the network de-
fender and the eavesdropper who can only attack a limited number of
channels. We show that the Nash equilibrium strategies for the players
are of threshold type. We present an algorithm to find the equilibrium
strategy pair. Numerical examples demonstrate the equilibrium and con-
trast it to baseline strategies.

Keywords: Physical layer security · Cooperative jamming · Incomplete
channel state information · Non-zero sum game · Convex Optimization

1 Introduction

Wireless communication networks are vulnerable to eavesdropping attacks due to
the wireless signals’ multi-cast nature. Considering the fast development of vari-
ous forms of wireless communication networks, such as wireless sensor networks
and vehicle communication networks, information secrecy against eavesdropping
attacks has become more and more critical. Traditionally, securing messages
transmitted through wireless networks depends on encryption and randomness
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(Grant No.1901721)



2 Zhifan Xu and Melike Baykal-Gürsoy

in coding schemes [24, 29]. It is shown that the difference between the legitimate
channel and the eavesdropping channel capacities, which is defined as Secrecy
Capacity, decides the secrecy level of a transmitter-receiver pair [18].

During the last decade, various efforts have been made to investigate the
security of wireless communication networks at the physical layer, which is coined
as Physical Layer Security. It is shown that intentionally generated interference
signals, either mixed by the transmitter or sent by a third party helper, can
decrease the channel capacity between the transmitter and the eavesdropper at
the physical layer [10, 22, 26, 27]. Thus, the secrecy capacity of the transmitter-
receiver channel can be increased by employing intentional interference signals
at the transmitter-eavesdropper channel. This approach is usually referred to as
Cooperative Jamming when the interference signals are sent by helpers or other
components (i.e., idle relays) in a wireless network [26, 27]. Researchers have
studied the optimal power control strategies and configurations of cooperative
jamming signals under various setups [3, 15].

This paper considers the optimal power allocation strategy for cooperative
jamming on a multi-channel wireless communication system. Such problems
arise, for example, in military operations, where a frequency division multiplex-
ing (FDM) communication system is used to transmit confidential messages in
an adversarial environment. Particularly, we focus on the scenario in which the
presence of eavesdroppers at each communication channel is uncertain and the
state information of the eavesdropper’s channels is not completely known. In
previous works, the assumption of complete channel state information (CSI) has
been widely used to analyze the optimal power allocation strategy for cooper-
ative jamming. However, as argued in [5, 14], CSI may not be easily obtained
since eavesdropping channels’ state information is closely related to eavesdrop-
pers’ private information such as their hidden location and antenna setups. It
is unrealistic to assume complete CSI when the existence of an eavesdropper is
even unknown.

Traditional power allocation schemes for cooperative jamming on a multi-
channel network usually consider passive eavesdroppers listening in all channels.
However, considerable portion of cooperative jamming power is wasted under
such schemes if some channels are not actually attacked by eavesdroppers. Be-
sides, due to other constraints on the number of antennas or on the available
power, an eavesdropper may not be able to attack all channels at the same time.
Instead of simply assigning an arbitrary probability to each channel for being
under eavesdropping attack, a game-theoretic model leaves that decision to the
eavesdropper who tries to maximize her eavesdropping capacity. In fact, in such
game-theoretic settings, an eavesdropper could be a strategic player or nature.
A strategic player tries to maximize his/her own payoff function while nature
is always assumed to work against its adversary. As shown in [12] and [19], a
natural disaster is considered to have been caused by an intelligent player who
targets the weakest point of the system, while the defender uses limited resources
to harden valuable assets. In [32], Yolmeh and Baykal-Gürsoy investigated the
optimal patrolling policy against potential terrorist attacks for a railway sys-
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tem. Wei et al [28] studied the protection strategy of a power system against an
attacker who has enough knowledge of how power systems operate.

A non-zero sum Nash game is proposed for the multi-channel wireless com-
munication system to describe the confrontation between a friendly interferer
and a strategic eavesdropper. In this paper, the eavesdropper is also a decision
maker who can select a communication channel to attack. In addition, the game-
theoretic model incorporates the probability distributions of the eavesdropper’s
fading channel gains into the players’ payoff functions instead of using simple
estimators such as the mean. Moreover, we introduce a cost for the usage of coop-
erative jamming power since the friendly interferer may be a third party service
provider. We show that the Nash equilibrium (NE) strategy of each player is of
threshold type. We present an algorithm to compute the equilibrium strategy,
and apply it to numerical examples to demonstrate its usage and contrast NE to
baseline strategies. If the friendly interferer naively assigns the jamming power
without taking into account the presence of a strategic eavesdropper, the system
may not reach its ultimate secrecy capacity.

1.1 Related works

Due to limitations on battery and power technologies in their current state,
finding optimal power control strategies has been a crucial problem for cooper-
ative jamming. Dong et al. [6] studied the case where a wireless wiretap channel
with a single source-destination pair and a single eavesdropper is aided by a
friendly interferer equipped with multiple antennas. The authors presented the
optimal configuration of all jamming antennas to maximize the secrecy capacity
under a total power constraint. Yang et al. [31] considered a multi-user broad-
cast network where a single eavesdropper with multiple antennas attacks all data
streams simultaneously. They proposed and solved an optimization problem for
a friendly interferer to maximize the minimum secrecy rate of all data streams
under total power and minimum rate constraints. Cumanan et al. [4] investi-
gated a secrecy capacity maximization problem for a single source-receiver pair
in the presence of multiple eavesdroppers and multiple friendly interferers. They
derived optimal power level of each friendly interferer by taking into account the
detrimental effect of interference also on the intended receiver. Zhang et al. [34]
studied wireless cooperative jamming for an orthogonal frequency-division mul-
tiplexing (OFDM) communication system, in which the friendly interferer needs
to optimally assign the limited harvested jamming power to all subcarriers in
order to maximize the total secrecy capacity. In these models, communication
networks are controlled by a single decision maker such as a friendly interferer
or a transmitter, since the eavesdroppers are assumed to be present at every
existing communication channel.

In reality, wireless network secrecy may not only depend on the strategy of
one decision maker. A strategic eavesdropper may also be an active decision
maker. Game-theoretic models arise naturally when conflict of interest exists
among different decision makers, as discussed in the survey by Manshaei et al.
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[20]. Altman et al. [1] obtained a transmitter’s optimal power allocation strat-
egy against a hostile jammer using game-theoretic models. The authors later ex-
tended the model to incomplete information CSI case [2]. Han et al. [11] studied
a pricing game for the negotiation of security service price between transmitters
and multiple friendly interferers. Yuan et al. [33] obtained the optimal strategy
for a two-user Gaussian interference channel in which each user can decide to
activate cooperative jamming by themselves. Gradually, researchers started to
use game-theoretic approaches to explore attack scenarios in which not all com-
munication channels will be eavesdropped. Garnaev and Trappe [9] proposed a
type of active eavesdropper who strategically attacks a limited number of wire-
less channels. In [7], Garnaev et al. considered a target selection game between a
friendly interferer and an eavesdropper with players working on only one channel
at a time. Recently, we have investigated a power control game for cooperative
jamming against a strategic eavesdropper who can only attack one of N paral-
lel channels [30]. A threshold type power allocation plan is obtained under the
complete CSI assumption.

Most works mentioned above, except [2], which considers a hostile jammer
instead of eavesdroppers, assume complete CSI obtained either instantaneously
or statistically from historical data, ignoring the fact that it may actually be
difficult to get complete CSI of eavesdropping channels since eavesdroppers are
hiding and listening passively. Various efforts have been made to overcome this
assumption in traditional setup when eavesdroppers are assumed to attack every
existing communication channel. Garnaev and Trappe [8] presented a zero-sum
anti-eavesdropping game for transmission power allocation on a multi-channel
communication network, in which the environment is regarded as a hostile player
that makes CSI as bad as possible. Hu et al. [13] investigated a cooperative jam-
ming aided multiple-input-single-output (MISO) communication system with
network defenders working together to maximize secrecy capacity under a con-
straint on the secrecy outage probability (SOP). Si et al. [25] studied the power
control problem under SOP constraints for cooperative jamming against an-
other type of active eavesdroppers who can listen and send hostile jamming
signals at the same time. In cases that complete CSI is not available, some his-
torical information might be acquired to infer the probability distributions of
the eavesdroppers’ CSIs.

To the best of our knowledge, this is the first paper studying the cooperative
jamming game against a strategic eavesdropper under the incomplete CSI as-
sumption. The NE strategy derived leads to a more intelligent power allocation
strategy that can handle complex environments with uncertainty.

1.2 Summary of contributions

The contributions of this paper can be summarized as follows:
1. A non-zero sum cooperative jamming game considering a strategic eaves-

dropper and jamming costs is proposed.
2. Instead of using estimators directly, the probability distributions of the eaves-

dropper’s CSIs are incorporated into the players’ payoff functions.
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3. A threshold type power allocation policy is derived. It is also shown the NE
strategy can be computed via a numerical algorithm.
The structure of the paper is as follows. Section 2 introduces the model setup.

Section 3 proposes the two basic optimization problems for the defender and
the eavesdropper, respectively. Section 4 presents a non-zero sum game model
when the fading channel gains of eavesdropping channels are characterized by
discrete distributions. Section 5 demonstrates numerical examples and compares
the game-theoretic model in section 4 with the method of approximating fading
channel gains using mean values. Section 6 summarizes conclusions and discusses
possible future research.

2 System Model and Game Formulation

2.1 System model

Consider a wireless communication network with N parallel channels, such as
a frequency division multiplexing (FDM) communication system as shown in
Figure 1. Each channel occupies a different frequency and the interference from
adjacent channels is mitigated via techniques like pulse-shaping filters. An eaves-
dropper, due to budget limitation, or to reduce the risk of Local Oscillator (LO)
leakage power emitted from eavesdropping antennas that may reveal her hidden
location(see [23, 35]), is using hardware with limited capability and can only
listen on n of N different frequencies at the same time. A friendly interferer
who can simultaneously send cooperative jamming signals to N communication
channels is tasked to enhance the overall secrecy performance against the eaves-
dropper. Let SINR represents the throughput on each channel, which is very
often used, especially for systems operating under low SINR regime [16, 17].
Thus, the Shannon capacity can be approximated by SINR, and the communi-
cation capacity for each channel i ∈ {1, ..., N}, is

CLi
= ln

(
1 +

giTi
σi

)
≈ giTi

σi
,

with Ti as the transmission power, σi as the background noise, and gi as the
fading channel gain from the transmitter to the legitimate receiver at channel
i. We assume that cooperative jamming signals will not interfere with the le-
gitimate receiver, which might be achieved when jamming signals are designed
to be nullified at the receiver or the friendly interferer is carefully positioned to
be away from the receiver [10, 15, 22]. The eavesdropper can intercept encrypted
messages on channel i through a degraded eavesdropping channel with capacity

CEi
(Ji) = ln

(
1 +

αiTi
σi + βiJi

)
≈ αiTi
σi + βiJi

,

with Ji as the cooperative jamming power assigned to channel i, αi as the fading
channel gain from transmitter i to the eavesdropper and βi as the fading channel
gain from the friendly interferer to the eavesdropper at channel i.

If channel i is not under an eavesdropping attack, the full communication
capacity can be used to transmit secret information. However, if channel i is
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Fig. 1: Frequency division multiplexing communication network withN channels,
aided by a friendly interferer.

attacked, information can be transmitted secretly only when the receiver’s chan-
nel is more capable than the eavesdropper’s channel. The difference of these
capacities is called channel i’s secrecy capacity CSi

(Ji) given as

CSi(Ji) =
[
CLi(Ji)− CEi(Ji)

]+
.

We assume that the friendly interferer does not know the fading channel
gains of eavesdropping channels with certainty, but has a belief about the distri-
butions of fading channel gains according to her knowledge of the communication
environment and possible locations of the eavesdropper. Let Ai be the random
variable representing the fading channel gain to receive transmission signals at
eavesdropping channel i such that

Pr(Ai = αmi ) = qmi , ∀m ∈ {1, ...,Mi} ,
with Mi denoting the number of possible transmission gains. Let Bi be the ran-
dom variable representing the fading channel gain to receive cooperative jam-
ming signals at eavesdropping channel i such that

Pr(Bi = βki ) = pki , ∀k ∈ {1, ...,Ki} ,
with Ki denoting the number of possible eavesdropping channel gains. Assume
Ai and Bi are independent. Thus, with probability pki q

m
i , the eavesdropping

capacity at channel i is

Ck,mEi
(Ji) ≈

αmi Ti
σi + βki Ji

,

and the expected eavesdropping capacity at channel i is

E [CEi
(Ji)] =

Ki∑
k=1

Mi∑
m=1

pki q
m
i C

k,m
Ei

(Ji) ≈ E [Ai]E
[

Ti
σi +BiJi

]
,

where

E [Ai] =

Mi∑
i=1

qmi α
m
i ,

is the mean of Ai, and

E
[

Ti
σi +BiJi

]
=

Ki∑
k=1

pki
Ti

σi + βki Ji
.
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The case when Ai’s and Bi’s are continuous random variables is left for future
discussion. Also, for the sake of simplicity, assume E [CEi

(0)]’s are all distinct.

Note that, every eavesdropping channel should always be a degraded version
of the corresponding communication channel, so assume

gi > max{αmi ,m = 1, ...,Mi}, ∀i = 1, ..., N. (1)

Under assumption (1), it will be always true that CLi > Ck,mEi
(Ji). Thus, with

probability pki q
m
i , the secrecy capacity for each channel i is

Ck,mSi
(Ji) = CLi

− Ck,mEi
(Ji) ≈

giTi
σi
− αmi Ti
σi + βki Ji

.

Then, the expected secrecy capacity for channel i under cooperative jamming
power Ji is

E [CSi
(Ji)] =

Ki∑
k=1

Mi∑
m=1

pki q
m
i C

k,m
Si

(Ji) ≈
giTi
σi
− E [Ai]E

[
Ti

σi +BiJi

]
,

which is a positive concave function w.r.t. Ji ≥ 0.

Assume that the friendly interferer incurs $c per unit power used for jamming.
Meanwhile, it earns $r from network users per unit secrecy capacity achieved.
Thus, the payoff at channel i after applying Ji level of cooperative jamming is

µ̃i(Ji) =

{
r giTi

σi
− cJi, if channel i is not attacked,

r( giTi

σi
− E [Ai]E

[
Ti

σi+BiJi

]
)− cJi, if channel i is attacked.

We will simplify this by substituting γ = c/r in the remaining sections as

µi(Ji) ≡
µ̃i(Ji)

r
=

{
giTi

σi
− γJi, if channel i is not attacked,

giTi

σi
− E [Ai]E

[
Ti

σi+BiJi

]
− γJi, if channel i is attacked,

Note that, it is not beneficial to send cooperative jamming signals to channel
i if:

1. channel i is not being eavesdropped, or
2. it is too expensive to enhance secrecy capacity by applying cooperative jam-

ming.

The eavesdropper can only attack n out of N channels. Let yi be the probability
that channel i is going to be under an eavesdropping attack, so the expected
payoff to the friendly interferer at channel i is

E [µi(Ji)] =
giTi
σi
− yiE [Ai]E

[
Ti

σi +BiJi

]
− γJi.

Note that E [µi(Ji)] is a concave function of Ji, since

d

dJi
E [µi(Ji)] = yi

Ki∑
k=1

pki
E [Ai]β

k
i Ti

(σi + βki Ji)
2
− γ,

is a decreasing function of Ji. It is optimal not to jam channel i unless

d

dJi
E [µi(Ji = 0)] = yi

E [Ai]E [Bi]Ti
σi2

− γ > 0, (2)
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where

E [Bi] =

Ki∑
i=1

pki β
k
i ,

is the mean of Bi. Inequality (2) provides a lower bound on yi that makes the
friendly interferer jam channel i.

2.2 Formulation of the game

The proposed non-zero sum Nash game solves the friendly interferer’s problem
of effectively responding to an eavesdropper who strategically picks the channels
to attack. The game is played between the friendly interferer as the defender,
who decides on the jamming power allocation plan, and a strategic eavesdropper
as the attacker. That is, the defender’s strategy is J = (J1, ..., JN ) with Ji ≥
0, ∀i = 1, ..., N such that

∑N
i=1 Ji ≤ J , where J > 0 is the total power available

to the friendly interferer. The attacker’s strategy is y = (y1, ..., yN ) with 0 ≤
yi ≤ 1, ∀i = 1, ..., N such that

∑N
i=1 yi = n, with yi representing the probability

of targeting channel i. Both the friendly interferer and the eavesdropper have
complete knowledge about the system parameters.

While the attacker tries to choose n channels to attack in order to maximize
her total expected eavesdropping capacity, the defender tries to send cooperative
jamming signals to channels to maximize the overall utility of the whole network.
Thus, for a given pair of strategy pair, (J ,y), the defender’s payoff is

vD(J ,y) =

N∑
i=1

E [µi(Ji)] =

N∑
i=1

giTi
σi
−

N∑
i=1

yiE [Ai]E
[

Ti
σi +BiJi

]
−γ

N∑
i=1

Ji, (3)

and the eavesdropper’s payoff is

vE(J ,y) =

N∑
i=1

yiE [CEi
(Ji)] =

N∑
i=1

yiE [Ai]E
[

Ti
σi +BiJi

]
. (4)

Note that increasing the total expected eavesdropping capacity will result in
the decrease of the total expected secrecy capacity, so the defender and the
eavesdropper are playing a game with conflicting interests. Also note that we
are only able to use E[Ai] but not E[Bi] in both payoff functions.

The Nash Equilibrium (NE) provides a pair of power allocation and attack
plans (J∗,y∗) such that no player has an incentive to unilaterally change its
policy, i.e.,

vD(J ,y∗) ≤ vD(J∗,y∗), ∀J ∈ J ,

vE(J∗,y) ≤ vE(J∗,y∗), ∀y ∈ Y,

where J is the region containing all possible power allocation strategies J and
Y is the region containing all probabilistic attack strategies y of this game.
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3 Best Response Functions

We present two optimization problems each corresponding to the best response
for each player when the other player’s strategy is fixed.

First consider the case when the defender’s cooperative jamming strategy,
J = (J1, ..., JN ), is fixed and is known to the eavesdropper. In this case, the
eavesdropper solves the following optimization problem to maximize the total
expected eavesdropping capacities,

max
y

vE(J ,y) =

N∑
i=1

yiE [Ai]E
[

Ti
σi +BiJi

]

s.t.

N∑
i=1

yi ≤ n,

0 ≤ yi ≤ 1, ∀i = 1, ..., N.

(5)

Clearly, (5) is a linear optimization problem w.r.t y since vE(J ,y) is a linear
function of y for fixed J , with linear constraints. Thus, the response of the
eavesdropper can be found as given in the next theorem.

Theorem 1. For a fixed cooperative jamming strategy, J , the optimal strategy
for the active eavesdropper is to eavesdrop on the channels that have the top n

largest expected eavesdropping capacities E [Ai]E
[

Ti

σi+BiJi

]
.

Proof. It is easy to see that

∂vE(J ,y)

∂yi
= E [Ai]E

[
Ti

σi +BiJi

]
, ∀i = 1, ..., N,

which are constants for fixed J . Thus, to maximize vE(J ,y), we should increase

yi’s with the largest ∂vE(J,y)
∂yi

as much as possible. �

Next, consider the case when the defender knows the eavesdropper’s attack
strategy ahead of time. That is, the mixed attack strategy y = (y1, ..., yN ) is fixed
and is revealed to the defender. In this case, the defender solves the following
optimization problem to maximize the total utility of secrecy performance,

max
J

vD(J ,y) =

N∑
i=1

giTi
σi
−

N∑
i=1

yiE [Ai]E
[

Ti
σi +BiJi

]
− γ

N∑
i=1

Ji

s.t.

N∑
i=1

Ji ≤ J,

Ji ≥ 0, ∀i = 1, ..., N.

(6)

Note that vD(J ,y) is a convex function w.r.t. J . Thus, problem (6) is a convex
optimization problem w.r.t. J . The best response of the defender can be found
as given in the next theorem.
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Theorem 2. The best payoff of the defender against the eavesdropper’s strategy,
y = (y1, ..., yN ) is

v∗D =

N∑
i=1

giTi
σi
−

N∑
i=1

[ Ki∑
k=1

pki
yiE [Ai]Ti

σi + βki J
o
i (wD)

− γJoi (wD)
]
,

where wD ≥ 0 is a threshold value and (Jo1 (wD), ..., JoN (wD)) is the optimal power
allocation strategy such that
(a) if

yiTi
E [Ai]E [Bi]

σi2
− γ > wD

then Joi (wD) is the unique root of the following equation

Fi(x) = wD,

where

Fi(x) := yiTi

Ki∑
k=1

E [Ai]β
k
i p
k
i

(σi + βki x)2
− γ,

(b) if

yiTi
E [Ai]E [Bi]

σi2
− γ ≤ wD

then Joi (wD) = 0.
Moreover, the threshold value wD ≥ 0 is a real number such that if

N∑
i=1

Joi (0) > J,

then wD is the unique root of the equation
N∑
i=1

Joi (wD) = J,

otherwise wD = 0.

Proof. Note that

Fi(Ji) =
∂vD(J ,y)

∂Ji
,

and

Fi(0) = yiTi
E [Ai]E [Bi]

σi2
− γ.

By the KKT conditions for problem (6), a vector J = (J1, ..., JN ) is the op-
timal solution if there exists a Lagrange multiplier wD > 0 and non-negative
coefficients λ1, ..., λN such that

wD(J −
∑N
i=1 Ji) = 0,

λiJi = 0, ∀i = 1, ..., N,

wD = Fi(Ji) + λi, ∀i = 1, ..., N.
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Consider the last equality wD = Fi(Ji) + λi. Since λi ≥ 0 and Fi(Ji) is
decreasing in Ji, if Fi(0) > wD, then Ji must be positive. Furthermore, since
λiJi = 0,

Fi(Ji) = wD.

On the other hand, if Fi(0) ≤ wD, then Ji = 0 and λi = wD − Fi(0).
Let Jo(wD) denote the solution to the above KKT conditions as a function

of wD. If
∑N
i=1 J

o
i (0) ≤ J , then Jo(0) is a feasible solution. Thus, wD = 0

and Jo(0) is the optimal solution. But, if
∑N
i=1 J

o
i (0) > J , then Jo(0) is not a

feasible solution. It follows that wD > 0. Thus,
N∑
i=1

Joi (wD) = J,

since wD(J −
∑N
i=1 J

o
i (wD)) = 0. �

4 Nonzero-sum Game Under Uncertainty

This section considers the general case and derives conditions for the Nash Equi-
librium (NE). Since vD(J ,y∗) given y∗ is a concave function w.r.t. J ∈ J and
vE(J∗,y) given J∗ is a concave function w.r.t. y ∈ Y, by the Karush-Kuhn-
Tucker Theorem, the NE cooperative jamming strategy J∗ should satisfy the
KKT conditions

∂vD(J ,y∗)

∂Ji

∣∣∣∣
J=J∗

= y∗i

Ki∑
k=1

pki
E [Ai]β

k
i Ti

(σi + βki J
∗
i )2
− γ{

= wD, if J∗i > 0, i = 1, ..., N,

≤ wD, if J∗i = 0, i = 1, ..., N,

(7)

and
wD(

∑
i∈I

J∗i − J) = 0

where wD ≥ 0 is a Lagrange multiplier. Similarly, the NE attack strategy y∗

should satisfy the KKT conditions

∂vE(J∗,y)

∂yi

∣∣∣∣
y=y∗

=

Ki∑
k=1

pki
E [Ai]Ti
σi + βki J

∗
i

≥ wA, if y∗i = 1, i = 1, ..., N,

= wA, if 0 < y∗i < 1, i = 1, ..., N,

≤ wA, if y∗i = 0, i = 1, ..., N.

(8)

where wA ≥ 0 is a Lagrange multiplier.
In this paper, we limit the capability of the active eavesdropper to n = 1

and leave the case n > 1 for future discussion. The next theorem describes the
case in which the active eavesdropper adopts a pure strategy in the NE, that is,
y∗i = 1 for a single channel i ∈ {1, ..., N}.
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Theorem 3. Let m be a positive integer such that

E [CEm
(0)] = max {E [CEi

(0)] , i = 1, ..., N} .
Let yo be an attack strategy such that

yoi =

{
1, i = m,

0, ∀i 6= m,

and w̃D and Jo(w̃D) be the corresponding threshold value and the optimal power
allocation strategy, respectively, as discussed in Theorem 2. If

E
[
CEm(J̃om(w̃D))

]
≥ E [CEi(0)] , ∀i 6= m,

then (J∗,y∗) = (Jo(w̃D),yo) is a pair of NE strategies with a pure eavesdrop-
per’s strategy.

Proof. We provide a proof in Appendix A. �

When the attacker can not use a pure strategy in the Nash Equilibrium,
y∗ will be a mixed policy such that 0 ≤ y∗i < 1, ∀i = 1, ..., N . Thus, KKT
conditions (8) can be simplified to

∂vE(J∗,y)

∂yi

∣∣∣∣
y=y∗

=

Ki∑
k=1

pki
E [Ai]Ti
σi + βki J

∗
i{

= wA, if y∗i > 0, i = 1, ..., N,

≤ wA, if y∗i = 0, i = 1, ..., N.

(9)

The next theorem describes the general NE strategy pair.

Theorem 4. Let wA be a Lagrange multiplier with a given value and J(wA) be
a cooperative jamming strategy such that

Ji(wA) =

{
the unique root of Ri(x) = wA, if E[Ai]Ti

σi
> wA,

0, if E[Ai]Ti

σi
≤ wA,

(10)

with

Ri(x) :=

Ki∑
k=1

pki
E [Ai]Ti
σi + βki x

,

and the capacity constraint
N∑
i=1

Ji(wA) ≤ J.

Let wD be another Lagrange multiplier such that

wD =


the unique root of

∑
i∈I(wA)

yi(wA, wD) = 1, if
∑N
i=1 Ji(wA) = J,

0, if
∑N
i=1 Ji(wA) < J,

(11)

where
I(wA) = {i = 1, ..., N : Ji(wA) > 0},
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and y(wA, wD) is an attack strategy such that

yi(wA, wD) =

Hi(wA, wD), if Ji(wA) > 0,

0, if E[Ai]Ti
σi

< wA,

min


1 −

∑
j∈I(wA)

yi(wa, wD)

+

, Hi(wA, wD)

 , if E[Ai]Ti
σi

= wA,

(12)

where

Hi(wA, wD) =
γ + wD

Ti
Ki∑
k=1

pki E[Ai]βk
i

(σi+βk
i Ji(wA))2

.

Then, (J∗,y∗) = (J(wA),y(wA, wD)) is a pair of NE strategies if
1. wD ≥ 0, and
2.
∑N
i=1 yi(wA, wD) = 1.

Proof. We provide a proof in Appendix B. �

We will now analyze the process to find the value of wA. Note that wA ≥ w̄A
where w̄A is the unique root of

N∑
i=1

Ji(wA) = J.

If wA = w̄A and wD ≥ 0 as the solution of equations (11) and (12), then a pair
of equilibrium strategies has been found.

However, it is possible that wD < 0 when wA = w̄A. But, this means
N∑
i=1

yi(w̄A, 0) =
∑

i∈I(w̄A)

yi(w̄A, 0) > 1,

suggesting that one should look for wA > w̄A that leads to wD = 0 and smaller
yi(wA, wD)’s.

Clearly, Ji(wA) is decreasing in wA. It then follows that yi(wA, wD) is also

decreasing w.r.t. wA > w̄A. Thus, for a given wA, if
∑N
i=1 yi(wA, wD) > 1, one

should look for the NE with w
′

A > wA; if
∑N
i=1 yi(wA, wD) < 1, one should look

for the NE with w
′

A < wA.
Here we present an algorithm to approximate a pair of Nash Equilibrium

strategies (J∗,y∗) within a given tolerance, ε. The algorithm starts searching
from wA = w̄A and uses a bisection search scheme to converge.

Algorithm 1. Finding NE Strategies (J∗,y∗) under incomplete CSI.
Inputs. State information of the communication network: Ti,E [Ai] , β

k
i , p

k
i ,

∀k = 1, ...,Ki,∀i = 1, ..., N . The background noise σi, ∀i = 1, ..., N . The to-
tal available power J . The explicit tolerance ε ≤ 0.01.
Step 1. Sort E [CEi

(0)] in descending order.
Step 2. Let wA ← w̄A. Find (J(wA),y(wA, wD)) using Eqs. (10), (11) and (12).
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Step 2a. If wD ≥ 0, then (J∗,y∗) = (J(wA),y(wA, wD)) is a pair of NE
strategies and the algorithm is terminated. Otherwise, go to step 2b
Step 2b. If wD < 0, let wLBA ← wA and h be the largest integer such that
Ji(wA) > 0. Go to step 3.

Step 3. Let wA ← E [CEh
(0)]. Find (J(wA),y(wA, wD)) using Eqs. (10), (11)

and (12).

Step 3a. If |
∑N
i=1 yi(wA, wD)−1| ≤ ε, then (J∗,y∗) = (J(wA),y(wA, wD))

is a pair of NE strategies and the algorithm is terminated. Otherwise, go to
step 3b
Step 3b. If

∑N
i=1 yi(wA, wD) > 1 + ε, then let wLBA ← wA and h← h− 1.

Go to step 3. Otherwise, go to step 3c.
Step 3c. If

∑N
i=1 yi(wA, wD) < 1− ε, then let wUBA ← wA. Go to step 4.

Step 4. Let wA ← 1
2 (wUBA + wLBA ). Find (J(wA),y(wA, wD)) using equations

(10), (11) and (12).

Step 4a. If |
∑N
i=1 yi(wA, wD)−1| ≤ ε, then (J∗,y∗) = (J(wA),y(wA, wD))

is a pair of NE strategies and the algorithm is terminated. Otherwise, go to
step 4b
Step 4b. If

∑N
i=1 yi(wA, wD) > 1 + ε, then let wLBA ← wA. Go to step 4.

Otherwise, go to step 4c.
Step 4c. If

∑N
i=1 yi(wA, wD) < 1− ε, then let wUBA ← wA. Go to step 4.

5 Numerical Illustrations

This section compares the following four different power allocation strategies for
the friendly interferer:
1. Strategy 1: the game-theoretic power allocation strategy derived by Theorem

4, which takes into account the uncertainty of the eavesdropper’s fading
channel gains.

2. Strategy 2: the game-theoretic power allocation strategy that uses mean
values of the eavesdropper’s fading channel gains as estimators. It can be

calculated following Theorem 4 with Ri(x) = E[Ai]Ti

σi+E[Bi]x
and Hi(wA, wD) =

(γ+wD)(σi+E[Bi]Ji(wA))2

TiE[Ai]E[Bi]
.

3. Strategy 3: the power allocation strategy of a friendly interferer who expects
eavesdropping attacks at every channel with equal probability but still takes
into account the uncertainty of the eavesdropper’s fading channel gains. This
strategy can be derived following Theorem 2.

4. Strategy 4: the power allocation strategy of a friendly interferer who expects
eavesdropping attacks at every channel with equal probability, but this time
the friendly interferer uses mean values of the eavesdropper’s fading channel
gains as estimators. This strategy can be calculated following Theorem 2

with Fi(x) := yiTi
E[Ai]E[Bi]

(σi+E[Bi]x)2 − γ.

Consider a wireless communication network with 5 parallel channels. Let Ai’s
be the random eavesdropping channel gains of transmission signals whose mean
values are {E [Ai] , i = 1, ..., 5} = (0.75, 0.6, 0.4, 0.275, 0.25). Let Bi’s be the
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(a) Strategy 1. (b) Strategy 2.

Fig. 2: plots of J∗ and y∗ for strategies 1 and 2.

random eavesdropping channel gains of jamming signals such that

[
βki
]

=


0.4 0.8 1.2
0.4 0.7 1.0
0.1 0.5 0.9
0.25 0.6 0.95
0.15 0.45 0.75

 , [pki ] =


0.33 0.34 0.33
0.33 0.34 0.33
0.33 0.34 0.33
0.33 0.34 0.33
0.33 0.34 0.33

 ,
where the ith row stands for channel i and the kth column stands for scenario
k. Note that the mean values of Bi’s are {E [Bi] , i = 1, ..., 5} = (0.8, 0.7, 0.5,
0.6, 0.45). Also, let {gi, i = 1, ..., 5} = (1.2, 1.0, 0.9, 0.75, 0.7), γ = 1.5, T = 1,
J = 1 and σi = 0.12, ∀i = 1, ..., N .

For strategy 1, the optimal power allocation plan is J∗I = (0.292, 0.218, 0.129,
0, 0) with payoff vD(J∗I ,y

∗
I ) = 34.668, as shown in Figure 2a. The eavesdropper’s

best response is y∗I = (0.317, 0.272, 0.307, 0.104, 0). Due to the cost coefficient
γ, channel 4 is not protected by cooperative jamming even when there is unused
power.

For strategy 2, the optimal power allocation plan is J∗II = (0.288, 0.229, 0.134,
0.014, 0) as shown in Figure 2a. Compared to strategy 1, the friendly interferer
adjusts the jamming powers to cover channel 4. If the friendly interferer uses J∗II
to face the eavesdropper who is still using the NE strategy y∗I given by Theorem
4, then the payoff given by equation (3) is vD(J∗II,y

∗
I ) = 34.661, which is 0.02%

worse than the payoff brought by strategy 1.
For strategy 3, let y = (0.2, 0.2, 0.2, 0.2, 0.2). The optimal power alloca-

tion plan is J∗III = (0.197, 0.160, 0.065, 0.040, 0.004), as shown in Figure 3a.
Compared to strategies 1, the friendly interferer covers every channel instead of
using a threshold policy. To use this power allocation plan J∗III against a strategic
eavesdropper who commits to y∗I , the friendly interferer will waste cooperative
jamming power on channel 5, and the expected payoff given by equation (3) is
34.566, which is 0.29% worse than strategy 1.

For strategy 4, still let y = (0.2, 0.2, 0.2, 0.2, 0.2). The optimal power
allocation plan is again covering all channels with J∗IV = (0.204, 0.167, 0.087,
0.047, 0.006), as shown in Figure 3b. To use this power allocation plan J∗IV
against a strategic eavesdropper who commits to y∗I , the expected payoff given
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(a) Strategy 3. (b) Strategy 4.

Fig. 3: plots of J∗ and y for strategy 3 and 4.

by equation (3) is 34.581, which is 0.25% worse than strategy 1 and 0.23% worse
than strategy 2.

These examples demonstrate that the friendly interferer in choosing the best
resource allocation plan should not assume a simplistic attack behavior for a
strategic eavesdropper. Additionally, even though strategies 1 and 2 (also 3 and
4) have quite similar performance in the given examples, in more realistic FDM
systems involving more than 100 channels (see [21]), these differences are ex-
pected to be more significant.

6 Conclusions and Future Research

In this paper, we consider a cooperative jamming game for a multi-channel wire-
less communication network against an active eavesdropper when the eavesdrop-
ping channel gains are uncertain. We present a non-zero sum game to help the
defender find the optimal cooperative jamming power allocation strategy under
the assumption that the eavesdropper will strategically pick her targets. It turns
out that the optimal power allocation strategy follows the classic water-filling
scheme. An algorithm to approximate the optimal strategy to within a given
tolerance is also presented. We show that the uncertain eavesdropping gains, es-
pecially the channel gain of cooperative jamming signals, should not be simply
approximated using the mean values if the defender wants to use the optimal
power allocation strategy.

Of interest for future research is an extension of this model to the case in
which the strategic eavesdropper can attack more than a single channel. Another
possible extension is to include the transmission power control problem as part
of the defender’s decision.
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Appendix A: Proof of Theorem 3

Note that

E [CEi
(Ji)] =

∂vE(J ,y)

∂yi
.
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Given yom = 1 and yoi = 0, ∀i 6= m, Theorem 2 implies

yoi Ti

Ki∑
k=1

E [Ai]β
k
i p
k
i

σi2
− γ = −γ < wD, ∀i 6= m,

which leads to J̃om(w̃D,y
o) = 0, ∀i 6= m.

Assume (J̃o(w̃D),y) is a pair of NE strategies. It is required that

wA ≥ E [CEi
(0)] , ∀i 6= m

by KKT conditions (8). Also, since yom > 0, then

wA = E [CEm
(Jom(w̃D))] ≤ E [CEm

(0)]

by KKT conditions (8). Thus, it must be true that

E [CEm
(0)] ≥ E [CEi

(0)], ∀i 6= m,

E [CEm
(Jom(w̃D))] ≥ E [CEi

(0)] , ∀i 6= m

for the assumption to be true. �

Appendix B: Proof of Theorem 4

Let wA be the Lagrange multiplier for the eavesdropper’s optimization problem
(6). Note that

Ri(Ji) =
∂vE(J ,y)

∂yi
,

Ri(0) =
E [Ai]Ti

σi
,

and Ri(Ji) is decreasing w.r.t. Ji ≥ 0. Let J∗ be the cooperative jamming
strategy in the NE. Note that

Ri(J
∗
i ) ≤ wA, ∀i = 1, ..., N,

as required by KKT condition (9). Thus, if Ri(0) > wA, then J∗i > 0. Let wD
be the Lagrange multiplier for the defender’s optimization problem (5) and y∗

be the attack strategy in the NE. By KKT condition (7), if J∗i > 0, then

y∗i Ti

Ki∑
k=1

E [Ai]β
k
i p
k
i

(σi + βki J
∗
i )2
− γ = wD ≥ 0,

thus giving y∗i > 0. But, if y∗i > 0, then

Ri(J
∗
i ) = wA,

by KKT condition (9). In summary, if Ri(0) > wA, then J∗i is the unique root
of the equation

Ri(x) = wA.

If Ri(0) ≤ wA, then

wA ≥ Ri(0) > Ri(Ji), ∀Ji > 0.

which leads to J∗i = 0 since Ri(J
∗
i ) < wA if J∗i > 0. Thus, let us define J(wA) :=

J∗ to show that the NE cooperative jamming strategy is dependent on wA.
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Note that Hi(wA, wD) is the unique root of the equation

∂vD(J ,y∗)

∂Ji

∣∣∣∣
J=J∗

= wD

w.r.t. y∗i .
If Ri(0) > wA, then J∗i > 0, which leads to y∗i = Hi(wA, wD) by KKT

condition (7).
If Ri(0) < wA, then Ri(J

∗
i ) = Ri(0) < wA since J∗i = 0. It follows that

y∗i = 0 by KKT condition (9).
If Ri(0) = wA, then J∗i = 0, but it is possible to have y∗i > 0 in a NE as long

as 
∂vD(J,y∗)

∂Ji

∣∣
J=J∗ ≤ wD,by KKT condition (7),

y∗i ≥ 0,

y∗i +
∑

j∈I(wA)

y∗j ≤ 1.

Thus, y(wA, wD) in (12) is correctly defined to satisfy KKT conditions (7) and
(9). Note that it is possible to have
– yi(wA, wD) = Hi(wA, wD) < 1−

∑
j∈I(wA)

yj(wA, wD), or

–
∑

j∈I(wA)

yj(wA, wD) > 1.

So the constraint
∑N
i=1 yi(wA, wD) = 1 is not guaranteed by (12).

Finally, it is required that

wD(J −
N∑
i=1

Ji(wA)) = 0.

Thus, if
∑
i∈I(wA) Ji(wA) < J , then wD = 0. In this case, the only requirement

missing for (J(wA),y(wA, wD)) to be a pair of NE strategies is to satisfy

N∑
i=1

yi(wA, wD) = 1.

Now look at the case when
∑
i∈I(wA) Ji(wA) = J . Following (11) and (12) when∑

i∈I(wA) Ji(wA) = J , it is guaranteed that
∑N
i=1 yi(wA, wD) = 1. However, it

is possible that wD < 0, so the only requirement for (J(wA),y(wA, wD)) to be
a pair of NE strategies is to satisfy

wD ≥ 0.

In summary, following (10), (11) and (12), if
1. wD ≥ 0, and
2.
∑N
i=1 yi(wA, wD) = 1,

then (wD, wA) is a proper pair of Lagrange multipliers for the Nash equilibrium
problem. �


