processes MbPY

Communication

A Charge-Based Mechanistic Study into the Effects of
Process Parameters on Fiber Accumulating Geometry
for a Melt Electrohydrodynamic Process

Kai Cao, Fucheng Zhang and Robert C. Chang *

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
kcao7@stevens.edu (K.C.); fzhang?1@stevens.edu (F.Z.)
* Correspondence: rchangb6@stevens.edu; Tel.: +201-216-8301

check for

Received: 9 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 updates

Abstract: Melt electrohydrodynamic processes, in conjunction with a moveable collector,
have promising engineered tissue applications. However, the residual charges within the fibers
deteriorate its printing fidelity. To clarify the mechanism through which the residual charges play roles
and exclude the confounding effects of collector movement, a stationary printing mode is adopted
in which fibers deposit on a stationary collector. Effects of process parameters on generalizable
printing outcomes are studied herein. The fiber deposit bears a unique shape signature typified by
a central cone surrounded by an outer ring and is characterized by a ratio of its height and base
diameter Hgep/Dgep- Results indicate Hgep/Dygep increases with collector temperature and decreases
slightly with voltage. Moreover, the steady-state dynamic jet deposition process is recorded and
analyzed at different collector temperatures. A charge-based polarization mechanism describing
the effect of collector temperature on the fiber accumulating shape is apparent in both initial and
steady-state phases of fiber deposition. Therefore, a key outcome of this study is the identification
and mechanistic understanding of collector temperature as a tunable process variable that can yield
predictable structural outcomes. This may have cross-cutting potential for additive manufacturing
process applications such as the melt electrowriting of layered scaffolds.
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1. Introduction

Melt electrowriting processes, as an emergent technology utilizing the principle of
electro-hydrodynamics and additive manufacturing [1,2], have aroused wide interest due to its
ability to produce polymeric scaffold with tunable microarchitecture [3-6] and morphology [7-11].
Moreover, the solvent-free characteristic of the process makes it amenable for a broad application
scope for engineered tissues [12-18]. However, the printing fidelity of the engineered scaffold
notably deteriorates when the printing toolpath is designed for larger layering dimensions [19] or
smaller feature pore sizes [20]. When the layering height of engineered scaffold exceeds a threshold
(maximum 7 mm), the scaffold will lose its fidelity in the layering direction [19]. However, when pore
size or the interfiber distance is small enough, the jet exposed to interaction from the preexisting
fibers will deviate from its prescribed path, thus losing printing fidelity in the lateral direction [20].
This deterioration is attributed to many factors, including the jet instability and fiber sagging [21].
Among them, the most important factor is the residual charge entrapped within the scaffold [19],
whose effects include the two primary aspects, charge amount and distribution. Considering the
principle of electrohydrodynamic process and the semi-conductivity of processed polymeric melt,
the jetted fiber carries a net positive charge [22,23]. However, due to the effect of external electric
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field, the existence of negative charges and its separation from positive charges (charge polarization),
becomes critically important in affecting the interaction between the jet and deposit (i.e., whatever
has been printed on the collector). While the amount of charge governs the jet-deposit repulsion,
the charge polarization dictates the jet-deposit attraction. These two competing, coexisting effects
define the distinctive behavior of jet deposition and the various printing outcomes.

Two methods have been studied to mitigate the effects of residual charge towards improving
the printing fidelity, including dynamic control of an external electric field [19] and manipulation
of substrate conductivity [20]. However, there are still several theoretical problems that need to
b answered. First, although control of the external electric field and other process variables is beneficial
in taming the in-flight jet [1,24], the formation of final printing outcomes depends more on the
interaction between the jet and deposit, which has not been clarified. Second, the interaction on the jet
from the deposit depends not only on the charge amount, but also the charge distribution within the
deposit, or charge polarization, which has not previously been studied with rigor. Lastly, although
the charge amount within the fiber can be tuned by changing substrate conductivity, it is inflexible,
or even unfeasible to obtain a desired substrate material with appropriate conductivity. Moreover,
this method has little effect when the jet deposits on layers away from the substrate.

To address these problems, a stationary printing mode is applied to elucidate the charge polarization
mechanism and how it determines interaction between the jet and deposit, thus printing outcomes. Unlike a
typical melt electrowriting process, the collector is kept motionless throughout the printing process, and the
effect of any other process parameters can be reflected by the geometry of fiber accumulation. In this way,
any effects due to a relative movement between jet and deposit, including jet lag and fluctuation in jet
speed, can be eliminated, thus giving a more explainable result. Collector temperature is extensively studied
considering its significant effect on charge polarization, and printing outcomes.

2. Materials and Methods

2.1. Material Preparation

Poly (e-Caprolactone) (PCL, Capa 6500) is in the form of pellet with an average molecular weight
(M) of 45,600 g/mol and polydiversity of 1.219 (Perstorp UK Ltd., Warrington, UK). A glass Luer-lock
5 mL syringe (Hamilton Company, Reno, NV, USA) is loaded with 5 g PCL pellets. An industrial
heat gun (Steinel Inc., Bloomington, MN, USA) set at 160 °C is used to heat the syringe barrel with
its needle-end upwards from bottom to top, until roughly half of the pellets melt into transparent
liquid. The plunger is then pushed upwards so that the melt fills the space among the remainder
pellets and expels the air out of the syringe barrel. The syringe is then placed vertically with its
needle-end upwards in a laboratory convective oven (Sheldon Manufacturing Inc., Cornelius, OR,
USA) set at 70 °C and heated overnight to remove any bubbles that may affect the process stability and
the structural formability of fibers. After each experiment, the syringe is kept at room temperature to
avoid unnecessary thermal degradation during storage.

2.2. Melt Electrohydrodynamic System Configuration

The electrohydrodynamic system applied in this paper is schematized in Figure 1. The barrel
of the syringe is heated by the industrial heat gun set at 160 °C through a heating tunnel.
The bottom of the heating tunnel is penetrated by the needle of the syringe and the exposed
needle length is 2 mm. The plunger of the syringe is propelled by a programmable extrusion pump
(Harvard Apparatus, Holliston, MA, USA). The needle of the syringe and the aluminum collector plate
(203 mm x 203 mm X 3.3 mm) are connected to the positive and negative terminals of the high voltage
supply (Gamma High Voltage Research Inc., Ormond Beach, FL, USA), respectively. The collector
plate (shown in Figure 1) is fixed on a heat exchange element (DigiKey Electronics, Thief River Falls,
MN, USA, 172 mm X 162 mm X 20 mm), which is mounted on an XY moving platform consisting of
two X slides (Velmex Inc., Bloomfield, NY, USA). The inlet of the heat exchange element is connected
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significance is characterized by the probability p-value.

3. Results
3. Results
3.1. Effect of Deposition Time and Collector Temperature on Bulk Geometry of the Fiber Deposit
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prescribed according to Table 1. The general observation here is that the shape of the bulk fiber

deposit geometry is typically a high central cone encircled by an outer ring. Between the central cone
and outer ring, several lower cones can also be vaguely identified upon closer inspection (highlighted
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Figure 4. Effect of depesition time and collector temperature on the formation of fiber accumulation
geometry: (a) effects of deposition time on Higy; (b) effects of deposition time on D)ggy; (¢) effects of
deposition time s Hf/ Diy; () effects of collector tempernitiuze smHg;/D)gs As the deposition time
increases, Ioifin Hjp and Dy, inmezse in (a) and (b), while tfheiir neetfios Hs/Dgy, ane relatively constant
in (c). As the collector temperature increases, Hig/[Diyyiinreasessiggniitaarthy.
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For a low collector temperature setting (around 16 °C) in Case 2, the introduction of fiber
repulsion weakens the dependence of deposition probability at each point in the orange area in Figure
7a on its location, and results in a characteristic disc-like fiber deposition shape (Figure 7c).
Instantaneously, the fibers may have a higher probability of depositing at some existing points of
transient material accumulation. However, the weak polarization and the accumulated fiber
repulsion redirect the fiber trajectory away from these existing material deposits, yielding a relatively
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that the fiber deposits have a lower probability of spiraling down, yielding relative increases in Hgep
and decreases in Dygp. Case 3 at medium temperature (around 23.5 °C) in Figure 7d is a transitioning
state from Case 2 to Case 4. Finally, if extremely high collector temperatures are prescribed as in
Case 5 in Figure 7f, the jet will be attracted by the fiber deposit tightly, stop whipping and deposit
continuously at the point right below the needle, thus the fiber accumulation will be like a pole.

The probabilistic behavior explains the initiation of different shapes of fiber deposit. After the
initial shape has been formed (after 2 min), the jet deposition reaches a steady state and becomes more
predictable. Since the prescribed range of collector temperatures in this study results in the fiber deposit
shapes illustrated in Figure 7c—e and Case 3 in Figure 7d represents a typical state of fiber accumulation,
the jet deposition behavior in steady state for this case is dynamically recorded and analyzed. Results
indicate that the location of jet deposition point is determined by the polarization state of the deposit
(shown in Figure 8), and switches between the central cone and the outer periphery ring (Figure 6b,c).
In Figure 8a, the jet has just returned to the central cone from the outer ring because the cone has been
sufficiently polarized, and the upper part of the cone is abundant with negative charge. The incoming
positively charged jet mixes with the negative charge in the cone (Figure 8b), until the increasing
positive charge repels the jet to the outer ring (Figure 8c), which has been sufficiently polarized.
While the jet is deposited at the outer ring, the charge in the cone is gradually redistributed because
of external electric field (Figure 8d). Therefore, the jet is attracted back to the cone again (Figure 8a).
This forms a cycle in which deposition and polarization happens cyclically at both the cone and ring.
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process variable sensitive to affecting the shape of fiber accumulation. By changing the collector
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voltage leads to an intensification in the whipping motion, which makes the jet more likely to spiral
down along the periphery. Both the decrease of Hy,, and increase of D, result in smaller Hep/Dep
(Figure 5). However, compared to voltage, collector temperature is a more tunable process variable
sensitive to affecting the shape of fiber accumulation. By changing the collector temperature from
16 °C to 30 °C, Hyep/Dgep increases approximately 10 times from 0.14 to 1.38, while, by changing the
voltage from 15kV to 11 kV, Hye,/Dyep increases 1.14 to 1.29.

5. Conclusions

In the stationary printing mode of operation for a melt electrohydrodynamic process, the fiber
accumulation geometry, as characterized by the ratio of its height to its base diameter (Hyep/Dyep),
is found to be affected by the two key process variables of collector temperature and voltage. Within the
experimental variable ranges studied herein, collector temperature is determined to be a more tunable
process variable with significant downstream formation of the fiber deposition shape. Specifically,
the collector temperature plays a mechanistic role by affecting the charge polarization process in the
initial deposit and thus affecting the probabilistic deposition behavior of the jet. By dynamically
observing the steady-state deposition process, the jet is found to alternatingly deposit between the
central cone and outer ring as a function of time. As the collector temperature increases, the jet
deposition point resides longer on the central cone and switches its states less frequently as predicted
by the polarization mechanism. Although the stationary printing mode of operation investigated
in this study does not yield engineered porous 3D tissue scaffolds, the advanced approach reveals
the generalizable effects of collector temperature on charge polarization on fiber deposition shape.
As a result, this work sheds light on the explanation of charged-related phenomena in other melt
electrohydrodynamic processes, such as melt electrowriting of microscale porous structures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/11/1440/s1,
Video S1: Video of jet deposition at 23.5 °C, Video S2: Video of jet deposition at 30 °C.
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