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Abstract: Investigating the spatial distribution patterns of disease and suspected determinants could
help one to understand health risks. This study investigated the potential risk factors associated with
COVID-19 mortality in the continental United States. We collected death cases of COVID-19 from
3108 counties from 23 January 2020 to 31 May 2020. Twelve variables, including demographic (the
population density, percentage of 65 years and over, percentage of non-Hispanic White, percentage
of Hispanic, percentage of non-Hispanic Black, and percentage of Asian individuals), air toxins
(PM2.5), climate (precipitation, humidity, temperature), behavior and comorbidity (smoking rate,
cardiovascular death rate) were gathered and considered as potential risk factors. Based on four
geographical detectors (risk detector, factor detector, ecological detector, and interaction detector)
provided by the novel Geographical Detector technique, we assessed the spatial risk patterns of
COVID-19 mortality and identified the effects of these factors. This study found that population
density and percentage of non-Hispanic Black individuals were the two most important factors
responsible for the COVID-19 mortality rate. Additionally, the interactive effects between any pairs
of factors were even more significant than their individual effects. Most existing research examined
the roles of risk factors independently, as traditional models are usually unable to account for the
interaction effects between different factors. Based on the Geographical Detector technique, this
study’s findings showed that causes of COVID-19 mortality were complex. The joint influence of
two factors was more substantial than the effects of two separate factors. As the COVID-19 epidemic
status is still severe, the results of this study are supposed to be beneficial for providing instructions
and recommendations for the government on epidemic risk responses to COVID-19.

Keywords: COVID-19; geographical detector; spatial distribution; impact factor; interactive effect

1. Introduction

The 2019 novel coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus was
declared as a pandemic on 11 March 2020, by the World Health Organization (WHO) [1].
Compared with Severe Acute Respiratory Syndrome (SARS), the COVID-19 disease is more
infectious, so it has a broader range of outbreaks [2]. The disease has rapidly spread across
the world and led to the infection or death of thousands of people. At present, the amounts
of infections and deaths are still rising in many countries. Apart from the severe threat to
human health, COVID-19 has also hammered economic development, social operation,
and international relations [3].

The infectious COVID-19 disease has attracted extensive attention worldwide. Nu-
merous studies have been carried out to explore the geographical distribution and the
impact factors of the morbidity and mortality of the COVID-19 disease. Understanding
how the transmission of COVID-19 is related to impact factors is critical to understanding
the pandemic’s spatial pattern and intensity. Research shows that the transmission of the
COVID-19 virus is dependent on numerous factors. Population density has been proved to

Int. J. Environ. Res. Public Health 2021, 18, 6832. https://doi.org/10.3390/ijerph18136832 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-5869-7424
https://orcid.org/0000-0002-8557-8017
https://doi.org/10.3390/ijerph18136832
https://doi.org/10.3390/ijerph18136832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18136832
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18136832?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 6832 2 of 16

be an important factor affecting the transmission of the virus. Therefore, compared with
rural areas, urban areas usually suffer from more challenging situations; this is because
urban areas are generally more densely populated. This phenomenon is not only found in
the spread of the COVID-19 disease [4] but is also common among other types of diseases,
such as the hand, foot, and mouth disease [5]. People’s physical conditions and lifestyle
factors are also important factors affecting the severity of symptoms after infection. For
instance, studies proved that smoking and obesity had associations for increased risks
of COVID-19-related severity or fatality [2,6]. Meteorological conditions (e.g., average
temperature, rainfall depth, relative humidity) during the same period of disease outbreak
were found to influence the spread of viruses significantly. Specifically, Gupta et al. demon-
strated that temperature and rainfall had a significant positive and negative association
with the number of COVID-19 infections, respectively [4]. In a study conducted in China,
Wang et al. pointed out that compared with other respiratory viruses, the spread of the
COVID-19 virus was more likely to be affected by natural environment context features,
such as temperature and humidity [2]. A similar study demonstrated that dry and cold
weather was beneficial for the survival and transmission of droplet-mediated viral diseases;
on the other hand, moist and warm weather conditions could weaken viral transmission [7].
The variation of weather conditions could also affect the COVID-19 disease; for example,
the range of diurnal temperature change was positively associated with COVID-19 daily
death counts [8]. Meteorological variables were also proved to affect the spread of other
types of disease [9]. The climate variables’ influences on virus transmission may be due to
their impacts on the vector population. Air quality is also an essential factor affecting the
severity of COVID-19 cases. Wu et al. demonstrated that long-term air pollution exposure
had a high probability of aggravating the health outcomes of COVID-19 cases [10].

Apart from the independent effects of various risk factors on the COVID-19 disease,
complex interactive effects might exist between different risk factors. Previous research
analyzed the independent influence of a single or a set of contextual factors on the COVID-
19 incidence or mortality rate; however, the study on the interactive effects of two or more
risk factors is very lacking. For example, physical environment features (e.g., meteorological
conditions, air quality), people’s behavior and health conditions (e.g., age, sex, habits,
immune health, etc.), and biological properties of viral infectivity have separate influences
on human disease. More notably, their mutual interactions are also critical underlying
factors. Specifically, Wu et al. demonstrated that people with certain underlying medical
diseases and high air pollution exposure might suffer from higher mortality risks [10].

A variety of methods can assess the influences of risk factors, and the most common
method is the multivariate regression model. However, these models have limitations, as
they are usually premised on some assumptions, such as homoscedasticity and normality,
and the violation of these assumptions will limit the model reliability. Additionally, if a
study was not designed especially for evaluating the interaction effects, then incorporating
interactions in the study will make it hard to assess the other effects [5], so it is necessary to
develop an appropriate model for evaluating COVID-19 mortality.

The Geographical Detector technique is a novel method proposed by Wang et al. [11].
The principle of the Geographical Detector technique is based on the stratified spatial
heterogeneity, i.e., the within-strata variance is less than the between-strata variance.
This phenomenon is a fundamental characteristic of geographic events, and the different
mechanisms in different stratum usually cause it. The Geographical Detector is a new tool
to measure, mine, and utilize the stratified spatial heterogeneity. Its theoretical core is to
detect the consistency of spatial distribution patterns between dependent variables and
independent variables, through which the explanatory degrees of independent variables
to dependent variables can be determined. Suppose a geographical event is affected
by a particular factor; in that case, this factor’s spatial distribution pattern will then be
comparable to that of the geographical event [11]. The consistent spatial distribution
patterns of the geographical event and the factor indicate that the factor could promote
or inhibit the occurrence of the geographical event. Similarly, in our study, if a risk factor
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could significantly affect the COVID-19 fatality rate, their spatial stratifications may be
more consistent.

The Geographical Detector technique is novel. It extracts the implicit interrelation-
ships between risk factors and health events without any assumptions or restrictions
regarding explanatory and response variables, challenging the model that uses classic epi-
demiological methods. Additionally, the method applies to both quantitative and nominal
data; the latter may cause trouble with traditional regression when there are too many
categories. In summary, the Geographical Detector provides a quick, easy, and efficient
way for researchers to grasp associations between human health and risk factors from the
perspective of spatial distribution [12].

This study assessed the associations between COVID-19 mortality and a series of risk
factors using the recently proposed Geographical Detector technique [11]. We first mapped
and investigated the spatial distribution patterns of the COVID-19 mortality rate at the
county level. Then, we reported on other impact factors, including socio-demographic,
economic, air quality, climate, and behavior and comorbidity factors. Lastly, we applied
the four detectors to evaluate the relationships between COVID-19 mortality and those
factors and analyzed and discussed the results.

2. Materials and Methods
2.1. Spatial Empirical Bayes-Smoothed COVID-19 Fatality Rate

The COVID-19 mortality data used in this study were sourced from Johns Hopkins
University, Center for Systems Science and Engineering Coronavirus Resource Center [13].
A death on February 6 is thought to be the earliest death connected to SARS-CoV-2 (the
virus which causes COVID-19) in the US [14]. To obtain a reliable understanding of the risk
of dying from COVID-19, we collected the count of persons who died from COVID-19 in
each county between 6 February 2020 and 31 May 2020 in the continental United States.
The crude mortality rate is then the ratio of the number of dead COVID-19 cases to the
total population.

In the field of public health, the crude fatality rate is usually estimated as the death
cases/population ratio, and the estimation accuracy mainly depends on the count of the de-
nominator. Compared with geographical units with large populations, geographical units
with small populations are likely to produce less accurate rate calculations. Differences
in population size may cause the problem of variance instability and spurious outliers
in the raw rates, making the raw rates inadequate to represent the relative magnitude of
the underlying risks. Spatial empirical Bayes (SEB) smoothing is a common technique to
avoid using these crude rates to evaluate the actual rates [15]. The basic principle of SEB
smoothing is to improve the crude rate’s precision by borrowing strength from neighboring
observations [16]. It is implemented by calculating a weighted average between each
geographical unit’s crude rate and the regional average, with weights proportional to the
underlying populations at risk. The rates of geographical units with small populations
are inclined to be significantly adjusted, while the rates of geographical units with larger
populations will barely change [17,18].

Let ri = yi/ni be the observed rate of geographical unit i, where yi represents the
count observed, and ni means population size. The unknown rate in the geographical unit
i is denoted as λi. Assume the underlying rates are independent samples from a prior

probability distribution, with mean µi and variance ϕi. The SEB smoothing
ˆ
λi of λi is a

weighted combination of ri and µi [19]:

ˆ
λi = wiri + (1− wi)µi (1)

depends on ϕi, µi, and ni:

wi =
ϕi

ϕi +
µi
ni

(2)
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The prior distribution is generally assumed to follow the Gamma distribution (mean
µ = ν/α, variance ϕ = v/α2). Therefore, µ and ϕ can be empirically estimated from the
data observed on the set of geographical units in the neighboring regions:

µ̂ =
∑ yi

∑ ni
(3)

ˆ
ϕ =

∑ ni

(
ri −

ˆ
µ

)2

∑ ni
−

ˆ
µ

n
(4)

The SEB smoothing estimator
ˆ
λi of rate λi is then:

ˆ
λi =

ˆ
µ +

ˆ
ϕ

(
ri −

ˆ
µ

)
ˆ
ϕ +

ˆ
µ
ni

(5)

As the raw mortality rates of COVID-19 are tiny numbers, we transformed them into
rates per 100,000 people. Then, the adjusted mortality rates were generated using the SEB
smoothing method.

2.2. Data of Explanatory Variables

COVID-19 mortality is determined by diverse and complex factors. Some factors
are related to the transmission of the virus. Demographic characteristics are a category
of important factors that could affect the transmission of COVID-19 [20]. Therefore, we
considered the influence of population density, which reflects the virus transmission
environment. Additionally, the racial/ethnic disparity of COVID-19 attack rates was
found by many researchers [20,21]. This study considered the population’s racial/ethnic
compositions (the proportion of non-Hispanic White, proportion of non-Hispanic Black,
proportion of Hispanic, and proportion of Asian individuals). Ambient climate conditions
could affect the transmission and survival of coronaviruses [22], so we obtained the average
accumulated precipitation, the average relative humidity, and the average temperature
across 1 January 2020–31 May 2020. Some factors are related to the mortality of the
disease. Previous studies revealed that the risk of COVID-19 mortality is highest for older
people [23], so the proportion of people over 65 was considered as another impact factor in
this study. An increase in the exposure to particulate matter (PM) 2.5, a typical air toxin,
was proven to increase the COVID-19 death rate [10]. In this study, we collected the PM2.5
levels across the period 2000–2018 and obtained the average as the representation of the
long-term exposure to PM2.5. Some human behaviors (e.g., smoking) and comorbidities
(e.g., cardiovascular) could increase the likelihood of severe outcomes during infectious
disease outbreaks, so we considered the percentage of adults that reported smoking in 2019
and the cardiovascular death rate with an age of 65 and over (2016–2018).

In summary, we collected a variety of 12 demographic, air toxins, climate, and behavior
and comorbidity factors which may affect the COVID-19 fatality rate. Table 1 lists the
names, descriptions, and data sources of these variables.

2.3. Method: Geographical Detector

The Geographical Detector technique is designed to evaluate the associations between
a geographical phenomenon and relevant risk factors. It is based on the spatial variance
analysis, the underlying principle of which is to estimate the consistencies between the
spatial distribution patterns of the studied geographical event (e.g., COVID-19 mortality
rate) and those of potential risk factors (e.g., population density). We assume that a geo-
graphical event would show a similar spatial distribution pattern with that of a risk factor
if the risk factor’s attribute significantly impacts the geographical event’s occurrence [11].
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Table 1. Explanatory variables used in this study, together with descriptions and data sources.

Category Name Description Source

Demographic

(1) POPD
(2) POPO
(3) WHT
(4) HISP
(5) BLK
(6) ASI

(1) Population density
(total population for

each county/land
area of the

corresponding
county)

(2) Percentage of 65
years and over

(3) Percentage of
non-Hispanic White

(4) Percentage of
Hispanic

(5) Percentage of
non-Hispanic Black

(6) Percentage of
Asian

((2)–(6) assumed
proportion to the

fraction of the
population living in

the county)

US Census Bureau
Population Estimates 2018
(https://www.census.gov/

programs-surveys/acs/
data.html, (accessed on 10

July 2020))

Air toxins (7) PM25

(7) Average level of
particulate matter
(PM) 2.5 (0.01◦ ×

0.01◦ grid resolution
PM2.5 prediction,

averaged across the
period 2000-2018)

Atmospheric Composition
Analysis Group (https:

//sites.wustl.edu/acag/
datasets/surface-pm2-5/,
(accessed on 10 July 2020))

Climate
(8) PREC
(9) HUM

(10) TEMP

(8) Average
accumulated
precipitation

(9) Average relative
humidity

(10) Average
temperature

((8)–(10): 4 km ×
4 km grid resolution
climate predictions,
averaged across the
period 1 February

2020—31 May 2020)

Climate Engine (https:
//clim-engine.appspot.

com/climateEngine,
(accessed on 10 July 2020))

Behavior and
comorbidity

(11) SMK
(12) CAR

(11) Percentage of
adults that reported
currently smoking

in 2019

County Health Rankings
and Roadmaps
(https://www.

countyhealthrankings.
org/, (accessed on

10 July 2020))

(12) Cardiovascular
death rate per 100,000
with an age of 65 and

over (2016–2018)

CDC’s Interactive Atlas of
Heart Disease and Stroke
(https://nccd.cdc.gov/
DHDSPAtlas/Default.

aspx, (accessed on
10 July 2020))

Specifically, the Geographical Detector method first needs to divide the spatial distri-
butions of the geographic event and risk factors into subregions according to their spatial

https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://clim-engine.appspot.com/climateEngine
https://clim-engine.appspot.com/climateEngine
https://clim-engine.appspot.com/climateEngine
https://www.countyhealthrankings.org/
https://www.countyhealthrankings.org/
https://www.countyhealthrankings.org/
https://nccd.cdc.gov/DHDSPAtlas/Default.aspx
https://nccd.cdc.gov/DHDSPAtlas/Default.aspx
https://nccd.cdc.gov/DHDSPAtlas/Default.aspx
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stratified heterogeneity. Spatial heterogeneity is a major feature of the geographic phe-
nomenon, and it refers to the uneven distributions of events across a region, or, simply,
the spatial variation of attributes [24,25]. A stratification of heterogeneity is, essentially,
a segmentation of a research region, where observations are homogeneous within each
stratum but not between strata [26]. The spatial heterogeneity between areas (each area
consists of one or more units) is commonly referred to as spatial stratified heterogeneity,
a common phenomenon, such as climate or ecological zones, spatial variability of soil
types, and land-use patterns [26]. If the attributes within the strata are uniform or the
variances within the strata are zeros, the stratified heterogeneity is mostly significant;
on the contrary, the stratification of heterogeneity will disappear if there is no difference
between the strata. Generally, a stratification of heterogeneity partitions a target population
by minimizing the within-strata variance and maximizing the between-strata variance of
an attribute. Technically, the stratification of heterogeneity can be accomplished by either
prior knowledge or classification methods [11]. Therefore, the consistency between the
spatial stratified heterogeneities of a pair of geographic events suggests the possibility that
there is a statistical association between these phenomena [27].

The goal of the Geographical Detector model is to assess whether spatial stratified
heterogeneity exists for a geographic phenomenon and explore the interpretation of a
geographic phenomenon by comparing the spatial coincidence of its strata against the strata
of suspected determinants. Specifically, the Geographical Detector model puts forward
four detectors (i.e., a factor detector, risk detector, ecological detector, and interactive
detector) to determine the main and interactive effects of possible factors on the examined
geographic event. A factor detector is used to determine which factors are responsible
for the incidence of the studied geographic event. A risk detector can be applied to
recognize the geographical area with a high possibility of the occurrence of the event. An
ecological detector is used to assess whether the influences of various factors on the studied
geographic event differ remarkably from each other. An interactive detector is applied to
determine whether multiple factors independently or dependently affect the occurrence of
the studied event [5].

Spatial stratified heterogeneity is likely to indicate that there may be distinct mecha-
nisms in strata [28], which may be obscured or even cause aggregation bias and ecological
fallacy by global models [29,30]. The Geographical Detector technique is novel as it extracts
the underlying mutual associations between a studied geographic event and suspected
factors, without any restrictions on the response and explanatory variables [5,31]. Addi-
tionally, the Geographical Detector method is suitable for quantitative and qualitative data,
while traditional regression models may incur problems when the nominal data has too
many categories [32].

This study assumes that the study area is stratified by a potential risk factor X into
subregions (x1, x2, x3) in the geographical space (Figure 1). The risk factor layer overlays
the spatial distribution of the COVID-19 fatality rate. The averages and variances of fa-
tality rates in each subregion and the whole study area are, respectively, represented as
Yh1, Yh2, Yh3, Y and σh1

2, σh2
2, σh3

2, σ2. If the COVID-19 mortality rate is wholly deter-
mined by factor D, the rates will be identical everywhere in each of the subregions (x1,
x2, x3), and σh1

2, σh2
2, and σh3

2 will be zeros. On the contrary, if the COVID-19 mortality
rate is entirely independent of X, the accumulated variance within the subregions will be
consistent with the whole study area’s pooled variance. This mechanism is measured by
the Power of Determinant (PD) [26]:

PD = 1−
∑L

h=1 ∑Nh
i=1

(
Yhi −Yh

)2

∑N
i=1

(
Yi −Y

)2 = 1− ∑L
h=1 Nhσh

2

Nσ2 (6)

where a study area consists of N units and is stratified into L stratums by a factor, repre-
sented as h = 1, 2, . . . , L, respectively; stratum h is comprised of Nh units; Yi and Yhi, respec-
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tively, denote the value of unit i and stratum h; Yh = (1/Nh)
Nh
∑

i=1
Yhi represents the stratum

mean; σh
2 = (1/Nh)

Nh
∑
i

(
Yhi −Yh

)2
represents the stratum variance; Y = (1/N)

N
∑

i=1
Yi rep-

resents the population mean; σ2 = (1/N)
N
∑
i

(
Yi −Y

)2
represents the population variance.

The PD quantifies the degree to which a risk factor explains the COVID-19 mortality, and
its value lies between 0 and 1. The more considerable the amount of PD, the greater the
influence of the factor. If a factor completely controls the COVID-19 mortality rate, PD = 1;
if it is entirely unrelated to the COVID-19 mortality rate, PD = 0.

Figure 1. The principle of the Geographical Detector.

The Geographical Detector method is based on the PD, which generates the following
four detectors [11].

2.3.1. Risk Detector

The risk detector aims to determine whether the mean fatality rates in each subregion
are statistically different from each other when a potential risk factor X stratifies the study
area. This is achieved by the t-value test [31]:

tYh1−Yh2
=

Yh1 −Yh2√
σh1

2

Nh1
+ σh2

2

Nh2

(7)

where Yhi, σhi
2, and Nhi denotes the mean fatality rate, the variance of fatality rate, and

sample size in subregion hi, respectively.
The t-value follows approximately a Student’s t distribution, with the degree of

freedom (df ) as:

d f =

σh1
2

Nh1
+ σh2

2

Nh2

1
Nh1−1

[
σh1

2

Nh1

]2
+ 1

Nh2−1

[
σh2

2

Nh2

]2 (8)

If the null hypothesis H0 : Yh1 = Yh2 is rejected at the confidence level α (usually 5%),
there is a significant difference between mortality rates of two subregions.

2.3.2. Factor Detector

The factor detector quantifies to which extent a factor explains the dependent vari-
able’s spatial variance, which is evaluated by the PD, as shown in Formula (6).
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2.3.3. Ecological Detector

The ecological detector is used to explore whether the impacts of two factors X1,
X2, on the dependent variable have a significant difference, and it is determined by the
F statistics [31]:

F =
NX1(NX1 − 1)SSWX1

NX2(NX2 − 1)SSWX2
(9)

SSWX1 =
L1

∑
h=1

Nhσh
2, SSWX2 =

L2

∑
h=1

Nhσh
2 (10)

where NX1 and NX2, respectively, denote the sample size within the coverage of X1 and
X2. SSWX1 and SSWX2 represent the sum of the within strata variances when X1 and X2,
respectively, form the strata. L1 and L2, respectively, represent the strata number of X1
and X2.

If the null hypothesis H0: SSWX1 = SSWX2 is rejected at the confidence level α (usu-
ally 5%), the influences of X1 and X2 on the dependent variable are considered to be
statistically significant.

2.3.4. Interactive Detector

The interactive detector is used to quantify the interaction effect between the impacts
of two factors, e.g., X1 and X2, on the dependent variable [31]. This is achieved by firstly
overlapping the geographical layers of X1 and X2 to form a new layer X3 and obtaining the
attributes of layer X3 by combining layer X1 and X2. Then, by comparing the PD of layer
X3 with those of X1 and X2, the interactive detector could determine whether two factors,
X1 and X2, when taken together, have stronger or weaker influences on the COVID-19
mortality rate than they do independently.

We can classify the interaction effects between two factors as:

Enhance: if PD(X1∩X2) > PD(X1) or PD(X2);
Enhance, bivariate: if PD(X1∩X2) > PD(X1) and PD(X2);
Enhance, nonlinear: if PD(X1∩X2) > PD(X1) + PD(X2);
Weaken: if PD(X1∩X2) < PD(X1) + PD(X2);
Weaken, univariate: if PD(X1∩X2) < PD(X1) or PD(X2);
Weaken, nonlinear: if PD(X1∩X2) < PD(X1) and PD(X2);
Independent: if PD(X1∩X2) = PD(X1) + PD(X2).

3. Results

The SEB-smoothed COVID-19 mortality rate in the US is shown in Figure 2. As we can
see from the map, the spatial heterogeneity of the mortality rate is large. The rate ranges
from 0 to 1283.48, with a mean of 40.73 (per 100,000 people). Among 3108 counties, the
fatality rates in 998 counties are less than 10 per 10,000 people, accounting for 32%. The
global Moran’s I of the COVID-19 fatality rate is 0.62 (p < 0.001), which indicates a strong
positive spatial autocorrelation. Counties with high fatality rates are mainly located in
the eastern area, such as New York, Philadelphia, and Washington DC in the north-east,
Louisiana, Alabama, and Georgia in the south, and Indiana and Michigan in the north.
Besides, some counties in Colorado, Arizona, California, and Washington also have high
fatality rates.

Continuous variables should be discretized to obtain the layers’ corresponding strat-
ifications to apply the Geographical Detector method. This was achieved by using the
Jenks Natural Breaks classification method, which groups similar values and, at the same
time, maximizes the differences between groups. Figure 3 shows the classifications of the
explanatory variables used in this study. As we can see, the distributions of demographic,
air toxins, climate, behavior and comorbidity factors vary significantly across space. For
instance, the maximum and minimum values of non-Hispanic White (WHT) percentages
are very different: in some counties, the value is 2.76%, while in other counties, it reaches
97.923%. As for PM2.5, the values range from 0.697 to 16.891 µg/m3. The differences in
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climate factors and behavior and comorbidity conditions between counties are also large.
For example, some counties receive an average precipitation of 9.709 mm, while some
counties receive up to 3088.488 mm. The average percentage of adult smokers is 17.837%,
and the minimum and maximum are 6.735% and 41.202%.

Figure 2. A map with COVID-19 mortality rates smoothed by the spatial empirical Bayes method.

The results of the Geographical Detector are listed in Table 2 (risk detector), Table 3
(factor detector), Table 4 (ecological detector), and Table 5 (interactive detector). The risk
detector analyzes the influence of various factors on the COVID-19 mortality rate.

Table 2 presents each subregion’s average mortality rate when a corresponding ex-
planatory variable stratifies the study area. As we can see, when the population density
(POPD) is high, the COVID-19 mortality rate is also high, especially when the population
density is higher than 0.837 (per 100,000 people/km2), the mean COVID-19 mortality rate
is 1016.509 (per 100,000 people). This finding means that there is a correlation between
population density and the COVID-19 mortality rate. The COVID-19 mortality rate also
becomes larger with the increase in BLK and ASI. As to WHT, the COVID-19 mortality
rate decreases as a whole while the factor increases. When WHT is less than 36.715%, the
average COVID-19 mortality rate is only 42.877 per 100,000 people. Overall, the average
COVID-19 mortality rate rises gradually with the increase in the PM2.5 level. The corre-
lations between the average COVID-19 mortality rate and the rest of the factors can be
analyzed in the same way based on the results of the risk detector.
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Figure 3. Maps of explanatory variables. POPD: population density; POPO: percentage of 65 years old and over; WHT:
percentage of non-Hispanic White individuals; HISP: percentage of Hispanic individuals; BLK: percentage of non-Hispanic
Black individuals; ASI: percentage of Asian individuals; PM25: average level of PM2.5; PREC: average accumulated
precipitation; HUM: average relative humidity; TEMP: average temperature; SMK: percentage of adults that reported
currently smoking in 2019; CAR: cardiovascular death rate.
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Table 2. Results of the risk detector.

Variable
Stratum Range of a Factor’s Values in Each Stratum

Mortality Average Mortality Rate in Each Stratum

POPD
Stratum <0.017 0.017–

0.071
0.072–
0.291

0.292–
0.837 >0.837

Mortality 25.798 86.073 147.684 371.756 1016.509

POPO
Stratum <14.009 14.009–

17.903
17.904–
21.751

21.752–
26.864 >26.864

Mortality 39.127 45.341 25.413 13.367 13.169

WHT
Stratum <36.715 36.715–

57.330
57.331–
73.556

73.557–
86.723 >86.723

Mortality 42.877 58.424 41.439 24.374 16.300

HISP
Stratum <8.674 8.674–

21.179
21.180–
39.029

39.030–
62.649 >62.649

Mortality 26.239 43.897 30.530 25.299 12.207

BLK
Stratum <4.559 4.559–

14.345
14.346–
28.870

28.871–
49.363 >49.363

Mortality 20.881 46.247 54.274 85.210 120.908

ASI
Stratum <1.088 1.088–

2.867
2.868–
6.316

6.317–
13.367 >13.367

Mortality 23.725 32.296 56.225 60.282 81.583

PM25
Stratum <3.671 3.671–

5.168
5.169–
7.050

7.051–
9.238 >9.238

Mortality 26.181 16.275 20.338 33.146 58.011

PREC
Stratum <241.613 241.613–

492.229
492.230–
781.142

781.143–
1362.079 >1362.079

Mortality 21.159 37.004 36.021 40.144 29.405

HUM
Stratum <3.590 3.590–

4.824
4.825–
6.582

6.583–
8.814 >8.814

Mortality 22.622 35.659 22.756 44.674 56.282

TEMP
Stratum <1.589 1.589–

5.686
5.687–
10.267

10.268–
15.250 >15.250

Mortality 14.389 24.143 40.740 27.995 48.511

SMK
Stratum <13.490 13.490–

16.426
16.427–
19.554

19.555–
25.048 >25.048

Mortality 38.280 24.024 25.609 45.190 13.845

CAR
Stratum <1131 1131–1344 1345–1544 1545–1812 >1812

Mortality 38.068 26.928 26.655 31.880 37.797

Note: average of the explained variable (COVID-19 mortality rate) according to the stratums of each
explanatory variable.

Table 3. Results of the factor detector.

Variable PD p-Value

POPD 0.094 <0.001
BLK 0.074 <0.001
WHT 0.044 <0.001
PM25 0.043 <0.001
POPO 0.033 <0.001
TEMP 0.025 <0.001

ASI 0.025 <0.001
HUM 0.019 <0.001
SMK 0.015 <0.001
PREC 0.013 <0.001
HISP 0.012 <0.001
CAR 0.004 <0.001

Note: sorted by PD.
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Table 4. Results of the ecological detector.

POPD POPO WHT HISP BLK ASI PM25 PREC HUM TEMP SMK

POPO Y
WHT Y N
HISP Y Y Y
BLK Y Y Y Y
ASI Y N Y N Y

PM25 Y N N Y Y Y
PREC Y Y Y N Y N Y
HUM Y N Y N Y N Y N
TEMP Y N Y N Y N Y N N
SMK Y Y Y N Y N Y N N N
CAR Y Y Y N Y Y Y N N Y N

Note: Y means the difference between the influences of two factors on the COVID-19 mortality rate is statistically
significant with 95% confidence, and N means not.

Table 5. Results of the interactive detector.

POPD POPO WHT HISP BLK ASI PM25 PREC HUM TEMP SMK

POPO 0.142
WHT 0.144 0.068
HISP 0.117 0.052 0.121
BLK 0.159 0.096 0.105 0.105
ASI 0.105 0.066 0.069 0.041 0.098

PM25 0.118 0.076 0.103 0.070 0.081 0.068
PREC 0.131 0.056 0.089 0.038 0.095 0.061 0.065
HUM 0.155 0.060 0.066 0.066 0.135 0.067 0.069 0.056
TEMP 0.152 0.072 0.078 0.079 0.121 0.077 0.073 0.073 0.043
SMK 0.118 0.059 0.092 0.035 0.092 0.051 0.064 0.037 0.052 0.065
CAR 0.115 0.051 0.060 0.040 0.091 0.041 0.051 0.023 0.029 0.045 0.033

Note: italic: enhance, bivariate; others: enhance, nonlinear.

Based on the PD value, the factor detector reveals the extent to which a factor explains
the variation of the COVID-19 fatality rate. Table 3 shows that population density (POPD)
explains the spatial variability of the COVID-19 mortality rate to the maximum extent,
followed by BLK, WHT, PM25, POPO, TEMP, ASI, HUM, SMK, PREC, and HISP, while
CAR has the least influence.

The ecological detector identifies the difference between the values of two PDs; in
other words, the difference between the influences of two factors on the explained variable.
Table 4 shows that the differences between the PD of population density (POPD) and PDs
of the rest of the factors are all statistically significant. As to the PD of the old population
(POPO), it is significantly different from those of HISP, BLK, PREC, SMK, and CAR, but
it is not substantially different from WHT, ASI, PM25, HUM, and TEMP. The differences
between PDs of the rest factors could be interpreted in the same way.

The interactive detector determines the interaction effects between pairs of PDs. The
results shown in Table 5 are impressive, as the interaction effects are either “enhance,
bivariate” or “enhance, nonlinear”. This means that the joint impacts of two factors on
the COVID-19 mortality rate measured by the PD are more substantial than the effects of
two separate factors. For example, the interactive PD of POPD and POPO is 0.142, which
is higher than PDs of two sole factors, POPD (0.094) and POPO (0.033). Additionally, the
interactive effect is stronger than the sum of two individual effects, so the interactive effect
between POPD and POPO is “enhance, nonlinear”. The interactive PD of POPO and WHT
is 0.068, which is higher than PDs of two sole factors, POPO (0.033) and WHT (0.044).
However, the interactive effect is weaker than the sum of two individual effects, so the
interactive effect between POPO and WHT is “enhance, bivariate”.
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4. Discussion

The Geographical Detector method is novel as it extracts the associations between
the observed process and possible influencing factors by the consistency of their spatial
distribution patterns. It is an efficient tool and easy to implement. This study applied four
geographical detectors to analyze the effects of demographic, air toxins, climate, behavior,
and comorbidity factors on the COVID-19 mortality rate. The aim was to determine the
differences of the degrees at which different factors influence the spatial distribution of the
COVID-19 mortality rate and the interaction effects between different factors.

Firstly, we focused on which factors play more critical roles in the COVID-19 mortality
rate. According to the results of four geographical detectors, population density (POPD)
and percentage of non-Hispanic Black individuals (BLK) were the two most important
factors responsible for the COVID-19 mortality rate. The higher the POPD (PD = 0.094) is,
the higher the mortality rate is; the same is true for BLK (PD = 0.074). In general, places
with higher population densities have more frequent interpersonal contact, enhancing
virus transmission in the local area and increasing infection chances [33]. Therefore, POPD
was positively associated with the COVID-19 mortality rate in American counties. Previ-
ous research demonstrated that counties with higher percentages of black residents had
more COVID-19 diagnoses and deaths; this result is consistent with ours. The reason
may be that people in these places have a higher prevalence of comorbidities and are
exposed to more massive air pollution, which increases the risk of becoming seriously ill or
even death when they are infected with the COVID-19 virus [34]. Compared with POPD
and BLK, the percentage of non-Hispanic White individuals (WHT), the average level of
particulate matter (PM) 2.5 (PM25), percentage of individuals 65 years and over (POPO),
average temperature (TEMP), and percentage of Asian individuals (ASI) had relatively
small impacts on the COVID-19 mortality rate. As to PM2.5 (PD = 0.043), Zhu et al. found
a significant positive relationship between the exposure level to air pollutants (such as
PM2.5, PM10, NO2, and O3) and the number of COVID-19 confirmed cases [35]. More
specifically, PM2.5 is a significant factor influencing both the natural environment and
population health [36]. The COVID-19 death rate will increase by 8% when the PM2.5
level increases only by 1 µg/m3 [10]. The elderly usually suffer from certain underlying
medical conditions, especially chronic illnesses such as diabetes, hypertension, heart and
respiratory disease, etc. These comorbidities will increase the death risk when a person
becomes infected with the COVID-19 virus [37]. This may explain the correlation between
POPO (PD = 0.033) and the COVID-19 mortality rate. The factor detector showed that the
PD value of TEMP was 0.025. The near-surface air temperature has been demonstrated
to be an essential factor affecting the survival and spread of droplet-mediated viral dis-
eases, such as influenza [7]. This is because the temperature in the same period could
affect the vectors’ population; therefore, it influences the transmission of the virus [38].
Previous studies have shown a positive linear relationship between the mean temperature
and the amount of COVID-19 cases with a threshold of 3 ◦C [31]. The average relative
humidity (HUM), percentage of adults that reported smoking (SMK), average accumulated
precipitation (PREC), percentage of Hispanic individuals (HISP), and cardiovascular death
rate (CAR) had less impact on the COVID-19 mortality rate compared with other factors,
while CAR had the most minimal effect. The PD value of HUM in this study was 0.019. A
humid environment is not conducive to viral transmission [7]; this is a likely explanation
why Ma et al. found that the relative humidity and COVID-19 daily death count were
negatively associated with each other [8]. For the influence of smoking, Brake revealed that
smoking could impair our ability to combat COVID-19 [39]; similarly, Taghizadeh-Hesary
demonstrated that smoking had an adverse effect on the health outcomes of COVID-19
patients because of the possible decreased immune response [40]. However, for our study,
the influence of smoking (PD = 0.015) on the mortality rate of COVID-19 was not as sig-
nificant as the factors mentioned above, which is in line with Mollalo [20]. One reason
may be that, in addition to traditional cigarettes, there are many other under-investigated
smoking methods and devices, such as electronic cigarettes and waterpipe smoking [39].
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The factor detector showed that the PD value of PREC was 0.013. Precipitation has been
demonstrated to be a deterrent to the transmission of COVID-19 transmission [2]; the nega-
tive influence of rainfall on the number of COVID-19 infections has also been observed [4].
Zheng et al. found that people who had comorbidities such as cardiovascular disease were
more likely to experience cardiac insufficiency and sudden deterioration in their conditions
after they got infected with the COVID-19 virus. Therefore, the proportion of patients
with underlying cardiovascular diseases (PD = 0.004) may increase the COVID-19 death
rate [41]. The influences of the population’s racial compositions on the COVID-19 mortality
rate were notably different. The factor detector showed that the PD values of BLK, WHT,
ASI, and HISP were 0.074, 0.044, 0.025, and 0.012, respectively. Therefore, compared to
the proportion of non-Hispanic Black individuals, the proportion of non-Hispanic White,
proportion of Hispanic, and proportion of Asian individuals had weaker influences on the
COVID-19 mortality rate.

Through the interactive detector, we examined the interaction effects between pairs
of factors. The results demonstrated that these interactive effects were either “enhance,
bivariate” or “enhance, nonlinear”. Therefore, for any two factors considered in this study,
they had a more substantial influence on the COVID-19 mortality rate when they were taken
together than they did independently. For example, the interaction of SMK (PD = 0.015) and
PM25 (PD = 0.043) nonlinearly enhanced the COVID-19 mortality rate, which was 0.064.
The reason for this finding may be that when a proper smoking rate is combined with the
average level of PM2.5, patients’ risks of suffering severe or deteriorating conditions after
they become infected with the COVID-19 virus are more likely to increase. The influence
of CAR was small, but the interactive effects of CAR and other factors were large. For
instance, the interaction of CAR (PD = 0.004) and PM25 (PD = 0.043) nonlinearly enhanced
the COVID-19 mortality rate, which was 0.051. The underlying cause may be that both
CAR and PM25 could increase the likelihood of severe outcomes; when these two factors
were combined, the adverse effect was enhanced. The interaction of POPO and POPD also
nonlinearly increased the COVID-19 mortality rate, which was 0.142. Therefore, when
a proper proportion of older people was combined with population density, the death
rate of the COVID-19 disease was increased. Previous studies demonstrated that a larger
population density meant a better environment for virus transmission, and the risk of death
among the elderly with COVID-19 disease was the highest. Therefore, the combination of
these two factors was likely to make the situation much worse. The interaction of TEMP
(PD = 0.025) and HUM (PD = 0.019) bivariately enhanced the COVID-19 mortality rate,
which was 0.043. The cause might be that when a proper temperature is combined with
relative humidity, the virus is more survivable and capable of reproducing and transmitting.
Similarly, the interaction of PM25 (PD = 0.043) and POPD (PD = 0.094) bivariately enhanced
the COVID-19 mortality rate, which was 0.118. Therefore, population density and level of
PM2.5 could reinforce each other’s influence on the COVID-19 mortality rate.

This study has implications for future research. Firstly, existing research mostly
focused on the independent effects of various risk factors on the COVID-19 mortality;
scanty attention had been paid to the interactive effect between different risk factors. As
for two risk factors, we need to examine their individual influences and understand their
interactive effect. Secondly, the results presented in this research could offer a reference
for understanding the spatial distribution patterns and epidemiological characteristics
of the COVID-19 mortality rate. Finally, implications from this study provide clues for
policymakers to develop strategies to prevent and control the COVID-19 epidemic; for
example, high priority should be paid to regions with high population densities and large
proportions of older people.

One limitation of this study is the discretization of quantitative data. The Geographical
Detector method requires a discretization of the impact factors before they are input into
the model. For qualitative data, it is easy to obtain their classifications according to their
categorical attributes. We used a clustering method for discretization for quantitative
data as we had no prior knowledge about these variables. Clustering methods, however,
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tend to be arbitrary; therefore, variable discretization using these clustering methods may
weaken the Geographic Detector’s ability to characterize the actual associations between
COVID-19 mortality rate and risk factors. The problem of how to discretize quantitative
data effectively should be considered in future studies.

5. Conclusions

This research examined the spatial distribution pattern of the COVID-19 mortality rate
in the continental US. Results showed that the COVID-19 mortality rate is heterogeneous
in the US, and it is highly autocorrelated in space; a large proportion of the counties with
high mortality rates are distributed in the eastern area. Furthermore, using the novel
Geographical Detector method, we investigated the potential determinants of the COVID-
19 mortality rate. This study’s findings suggest that population density and percentage
of non-Hispanic Black individuals played a much larger role in affecting the COVID-19
mortality rate compared with other studied factors. The joint impacts of pairs of factors
are also presented and can be compared with their separate impacts. What is notable is
the interactive effect between different factors: since all the interactive effects promoted
the values of the Power of Determinant, combinations of the studied factors will be more
effective at explaining the spatial variability of the COVID-19 mortality rate when compared
with separate factors. Most existing research considered the independent effects of various
factors on the COVID-19 disease; however, the causes of COVID-19 mortality are complex.
This study demonstrated that the Geographical Detector technique could measure not only
the separate effects of two or even more factors on the COVID-19 mortality rate but also
the interactive effect between different factors.
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