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ABSTRACT 
Industry 4.0 projects ubiquitous collaborative robots in 

smart factories of the future, particularly in assembly and 
material handling. To ensure efficient and safe human-robot 
collaborative interactions, this paper presents a novel algorithm 
for estimating Risk of Passage (ROP) a robot incurs by passing 
between dynamic obstacles (humans, moving equipment, etc.).  
This paper posits that robot trajectory durations will be shorter 
and safer if the robot can react proactively to predicted collision 
between a robot and human worker before it occurs, compared 
to reacting when it is imminent.  I.e., if the risk that obstacles 
may prohibit robot passage at a future time in the robot’s 
trajectory is greater than a user defined risk limit, then an 
Obstacle Pair Volume (OPV), encompassing the obstacles at that 
time, is added to the planning scene.  Results found from 
simulation show that an ROP algorithm can be trained in ~120 
workcell cycles.  Further, it is demonstrated that when a trained 
ROP algorithm introduces an OPV, trajectory durations are 
shorter compared to those avoiding obstacles without the 
introduction of an OPV.  The use of ROP estimation with addition 
of OPV allows workcells to operate proactively smoother with 
shorter cycle times in the presence of unforeseen obstacles.  

Keywords: human-robot collaboration, adaptive control, 
augmented intelligence, machine learning, smart factory, 
industry 4.0 

NOMENCLATURE 
arg min

𝑥∈𝑆
𝑓(𝑥) returns the minimizer 𝑥 of the function 𝑓. The 

minimizer 𝑥 belongs to the set 𝑆. 
𝑐𝑂𝑖𝑠 obstacle keypoint 𝑖; cartesian coordinates for the 

actual location of the centroid of obstacle 𝑖 
face 𝑠, 𝑖 ∈ {1,2}, 𝑠 ∈ {𝑛, 𝑓}, 𝑛 for nearest to 
origin or 𝑓 for farthest from origin 

𝐸̅12𝑠 vector between 𝑐𝑂1𝑠 and 𝑐𝑂2𝑠, 𝑠 ∈ {𝑛, 𝑓} 

 
1 Corresponding author: Gloria J. Wiens, University of Florida, gwiens@ufl.edu 

𝑘 count of consecutive workcell cycles executing 
the current task 

𝑙𝑚𝑎𝑥 maximum length of the OPV (‖𝐸̅1‖ or ‖𝐸̅2‖) to 
consider 

𝑚 count of workcell cycles when the OPV 
prevented passage for the current task 

min(𝑎, 𝑏) returns the minimum value between a and b 
max(𝑎, 𝑏) returns the maximum value between a and b 
𝑚𝑝𝑥 midpoint of vector x 
𝑛 number of robot joints 
𝑃𝑖𝑗𝑘 
𝐹  vertex of the Obstacle Pair Volume. 𝑖 ∈ {1,2} for 

obstacle 1 or obstacle 2.  𝑗 ∈ {𝑛, 𝑓} for near or 
far.  𝑘 ∈ {1,2} indicating which of the two points 
per obstacle face is considered, and F indicates 
relative to the fixed reference frame. 

𝑞𝑠 robot joint variables: angles (revolute joints) or 
joint offsets (prismatic joints) at configuration 
indicated by 𝑠 ∈ {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡,𝑚𝑎𝑥} 

𝑞̇𝑚𝑎𝑥 robot maximum joint velocities 
𝑟𝑖  radius of obstacle 𝑖, 𝑖 ∈ {1,2} 
𝑟𝑚𝑎𝑥  maximum obstacle radius to consider 
𝑟𝑟𝑜𝑏𝑜𝑡  minimum clearance between obstacles for robot 

passage 
𝑠𝑎𝑡𝑎,𝑏(𝑥) function that saturates 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏. 
𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥  maximum duration to consider for calculating 

and executing a re-planned trajectory due to the 
OPV prohibiting passage 

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 maximum duration into the future to consider 
when checking for collapse of the OPV 

𝑡𝑟𝑒𝑝𝑙𝑎𝑛 duration of the robot backing up and replanning 
𝑡𝑒𝑥𝑒𝑐 duration of the robot executing the new plan 
𝑣𝑐𝑂𝑖𝑠 current velocity of the point 𝑐𝑂𝑖𝑠 in the fixed 

coordinate frame 
‖𝑋̅‖ the Euclidean norm of vector 𝑋̅ 
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𝑣𝑠 robot end effector velocity at the time the robot 
enters or exits the OPV. 𝑠 ∈ {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡} 

𝑣𝑂𝑃𝑉 robot end effector velocity, either 𝑣𝑒𝑛𝑡𝑟𝑦 or 𝑣𝑒𝑥𝑖𝑡 , 
that had the smallest magnitude 

𝛿𝑖 unknown weight for the 𝑖𝑡ℎ factor in the Risk of 
Passage, 𝑖 ∈ {1, … , 8} 

𝛿̂𝑖 estimate of the 𝑖𝑡ℎ factor in the Risk of Passage. 
𝑖 ∈ {1, … , 8}. 𝛿̂ is a vector of all 𝛿̂𝑖 

Γ positive definite gains matrix to control the rate 
of adaptation of 𝛿̂ 

𝜑 and 𝜑̂ actual and estimated risk of passage 
 
1. INTRODUCTION 

Industry 4.0 projects a rise in the use of collaborative robots 
in manufacturing settings leading to ubiquitous co-robots in 
smart factories of the future, particularly in applications such as 
assembly and material handling.  One of the main challenges in 
Human-Robot Collaboration (HRC) is ensuring safe interaction 
with humans in real-time while also ensuring maximum task 
efficiency.  To ensure safe interaction, the robot manipulator 
must be able to avoid collisions either by stopping motion or 
executing an alternative, collision-free trajectory. In 
manufacturing, stopping robot motion to wait for a possible 
collision situation to clear can add significant time to the 
workcell cycle.  Therefore, an alternate trajectory, which may 
require real-time replanning, is needed to minimize cycle time 
delays.  However, replanning may require selecting trajectories 
with rapid changes in robot velocity when an unforeseen 
collision becomes imminent.  As found by Nicora et al. [1], short 
reaction distances generally resulted in increased execution 
times due to sharp turns the robot must make to avoid the 
collision, constrained by actuation acceleration limits. Hence, 
augmented intelligence (seamless integration of sensing, 
cognition and prediction into the robot controller) is critical for 
real-time awareness, response and communication inside a 
heterogeneous manufacturing cell (robots, humans, equipment).  

 
 Path planning in a 3D space has been a persistent challenge 
in robotics.  Much research has been conducted in developing 
path planning algorithms to improve performance with robot 
manipulators [2].  However, as algorithms become more 
complex, computational demand increases. Another challenge in 
path planning has been crowded environments where obstacles 
are many and dynamic [3].  This challenge can easily be 
visualized with the 2D example of pedestrians walking along a 
path, shown in Fig. 1.  If pedestrian A is approaching two other 
pedestrians, pedestrian B and pedestrian C, then the three 
pedestrians’ paths might converge at some time in the future, tf. 
Pedestrian A will observe the motions of pedestrians B and C and 
try to infer what future paths they will take.  Depending on the 
inferred paths, pedestrian A might make a trajectory change to 
avoid the gap between pedestrians B and C at time tf.  

 
Many replanning algorithms avoid the complications of 

dynamic obstacles by assuming that obstacles, which are 

dynamic between initial and final time, are static at each time 
step [4].  Another simplification is accounting only for the tip of 
the end effector when considering collisions [5]. These 
assumptions could be hazardous when a robot is working 
amongst a human or working in synchronization with the human. 

 
A recent area of research is predicting obstacle trajectories.  

Mainprice and Berenson utilized a Gaussian Mixture Model 
(GMM) to extract human motion and compute likelihood of 
workspace occupancy from data collected from a depth camera 
[6].  Liu and Wang utilized the notion that human actions in a 
workcell cycle are a linear sequence that is pre-defined for a 
manufacturing task and created a Hidden Markov Model to 
predict human motions [7]. Zhang et al. utilized recurrent neural 
networks to recognize human tasks and predict future human 
motion trajectories, including time data [8]. In an offline 
approach to workspace sharing for human-robot cooperation, 
Pelligrinelli et al. [9] generated Human Occupancy Volumes that 
yield an indicator of the likelihood a volume will be occupied by 
a human worker.  
 

This paper provides a method which leverages the predicted 
and real-time motions of humans and other obstacles throughout 
the workcell cycle to call for a trajectory re-plan before the robot 
must stop due to a pair of obstacles close enough in proximity to 
prohibit robot passage. This paper posits that if the collision 
situations between multiple dynamic obstacles can be predicted 
before the collision occurs, then a trajectory re-planned to avoid 
the predicted collision will be smoother and have less execution 
time compared to a trajectory that was re-planned at the time of 
impending collision.  This concept is illustrated with the 
pedestrian example in Fig. 1b, where the trajectory of pedestrian 
A shown by the dashed line would be slower than that shown by 
the dotted line due to the sharp turn and corresponding severe 
velocity reduction in the dashed line once collision was 
imminent. The method, herein, captures not only predicted robot 
collisions with single dynamic obstacles, but also predicted 
collision risks of robot passage between pairs of obstacles that 

  
(a) (b) 

FIGURE 1. a) PEDESTRIANS A, B, AND C APPROACHING 
WITH THE OBSTACLE PAIR AREA BETWEEN B AND C,  
b)  TWO POSSIBLE TRAJECTORIES FOR PEDESTRIAN A 
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would have been missed if obstacles were considered 
individually.  

 
The risk estimation ties into a broader robot control structure 

by allowing the robot to execute trajectories with less 
interruptions.  Figure 2 shows the industrial robot control loop, 
showing how the proposed method takes feedback from the 
sensors and predictions and provides an output to the trajectory 
planner. During offline trajectory planning, the proposed method 
ensures the planned trajectories will avoid high risk volumes of 
the workcell between obstacles where it is predicted that passage 
may not be possible.  During the robot’s real-time execution of 
its tasks, the proposed method continuously monitors for 
predicted and real-time occurring dynamic obstacles and detects 
associated high-risk volumes between obstacles prone to 
blocking robot passage, quantified by a threshold based on 
updated sensor and prediction data.  If such a volume is detected 
along the robot’s trajectory, an obstacle pair volume (OPV) is 
generated, added to the planning scene, and the robot’s trajectory 
is re-planned online to avoid in real-time the volume of high risk 
and potential task interruptions. The remainder of the paper is 
organized into the following sections: estimation of the Risk of 
Passage (ROP) through the volume between two dynamic 
obstacles, development of actual risk and risk estimation error, 
OPV generation, and evaluation by simulation. 

 
2. ROP ALGORITHM, ADAPTATION AND CONTROL 

In order to apply the estimated risk of passage algorithm to 
any robot and any number and type of obstacle, the algorithm 
parameters must be able to adapt accordingly.  Additionally, an 
actual measure of risk can be derived from the times the robot 
waits for a re-plan and the time the robot executes a new 
trajectory in the event of a collision.  Therefore, this paper 
presents a method of parameter adaptation to minimize the error 
between the estimated and actual risk of passage determination. 

 
2.1 Assumptions 

For this paper, it is assumed that motion of each obstacle in 
the robot’s workspace is defined by a set of keypoints.  As input 
to the controller’s ROP, sensor data and the ‘Prediction’ block’s 
prediction/cognition algorithms [8] are assumed to provide both 
the real-time and predicted location, velocity, and uncertainty of 
those keypoints, respectively.  The predicted locations and 
velocities of the obstacle keypoints are assumed valid for the 
entirety of some planning horizon.  The actual locations of the 
obstacle keypoints are also assumed to be updated at least as 

frequently as the robot system’s real-time execution frequency.  
Additionally, the approximate shape and size of each obstacle is 
assumed to be provided by an algorithm that interprets data from 
sensors such as depth cameras. Furthermore, it is assumed that 
the robot’s nominal trajectory has been pre-planned for a known 
task.  The parameter adaptation method presented in this paper 
utilizes linear parameterizations so it must be assumed that the 
factors contributing to risk are linear in the unknown parameters. 

 
2.2 Definition of the Obstacle Pair Volume (OPV) 

The obstacle pair volume (OPV) is defined as the volume 
between a pair of obstacles in the robot’s workspace.  If the 
workspace contains more than two obstacles, then an OPV is 
defined for each unique set of two obstacles.  Two keypoints on 
each obstacle will be determined that ensure the OPV completely 
encompasses both obstacles. If the obstacles are generalized to 
cylinders, then the center of each face of the cylinders will be 
used as keypoints for a total of four keypoints. Those four 
keypoints, along with the width and height of the generalized 
obstacles, can be used to define the shape of the OPV.  For the 
purposes of calculating the robot risk of passage presented in the 
next section, only four keypoints of the obstacles will be 
considered for defining a 2D OPV. Figure 3 shows a 2D OPV 
defined between two human forearms. The human is modeled as 
a skeleton with the human’s shape generalized to cylinders, with 
the forearms labeled as obstacle 1 and 2.  The keypoints of the 
forearms are shown as (red) circles.  The OPV, which is currently 
only defined as planes, is formed between the forearm keypoints, 
shown as a faceted (green) surface. The actual volume of the 
OPV, as opposed to the planes, is generated if the risk is too high.   

 
2.3 Probability of Robot Passage 

An approximation of the risk associated with passage 
through a volume between a dynamic obstacle pair can have  

FIGURE 2. ROBOT SYSTEM CONTROL BLOCK DIAGRAM  

 

 

 
FIGURE 3. ROP FLOW DIAGRAM AND SCENE WITH A 
HUMAN AND ROBOT 
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many components. Compared to the 2D illustration of 
pedestrians presented in the introduction, the considerations 
become more complex when approximating the risk of passage 
of a robot manipulator through a volume between dynamic 3D 
obstacles.  The obstacles for a robot manipulator in a work cell 
could be humans or their appendages, such as arms or hands, or 
the obstacles could be links of other manipulators, automated 
equipment, ground vehicles, etc. An expression for the predicted 
risk level will now be developed to quantify the estimated risk of 
delay or entrapment due to passing through an OPV.  The 
components of the estimated risk, shown in Table 1, will have 
values between zero and one with zero corresponding to no risk 
and one corresponding to highest risk.  A measure of the actual 
risk level will also be developed as delay or entrapment events 
occur so the estimation can be adapted to improve accuracy. 

Figure 3 illustrates the proposed sequence between 
determining the initial OPV, determining Risk of Passage 
through the OPV, determining the full OPV, and re-planning the 
robot trajectory around the full OPV.  The predicted risk level, 
which is updated continuously at the robot systems real-time 
frequency, will be defined as 𝜑̂ with the following function: 

𝜑̂ = 𝑓(𝐽, 𝑐𝑂1𝑛 , 𝑐𝑂1𝑓 , 𝑐𝑂2𝑛 , 𝑐𝑂2𝑓), 𝜑̂ ∈ ℝ (1) 
where 𝐽 is the robot Jacobian, and 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛, and 𝑐𝑂2𝑓  are 
the obstacle keypoints at a given time step as shown in Fig. 3.  
Points 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛, and 𝑐𝑂2𝑓 would be the joints of a 
skeleton model in the case of human obstacles.  Subscript n and 
f will be used to denote the points or edges that are nearest to the 
robot base or farthest from the robot base, respectively.  In the 
case of a human with arms extended towards the robot, 𝑐𝑂1𝑛 and 
𝑐𝑂2𝑛 would be the wrist joints and 𝑐𝑂1𝑓 and 𝑐𝑂2𝑓 would be the 

elbow joints as shown in Fig. 3.  The position of those four points 
can be determined from real-time data or come from prediction 
algorithms such as recurrent neural networks [8].  Without loss 
of generality, the following theoretical derivations assume an 
articulated robot manipulator with all revolute joints. 
 

The robot geometry at the point in time when the robot 
would enter the OPV should affect the risk of passage.  First, to 
determine this risk factor, the robot’s ability to navigate away 
from the OPV should be evaluated.  Considering the robot 
geometry required to reach into the OPV, if the joint variables 
can be adjusted by a small amount to cause a displacement of the 
manipulator large enough to avoid the OPV, then this factor of 
risk is low.  However, if a large change in joint variables is 
necessary to move the manipulator arm enough to avoid the 
OPV, then this factor of risk is high because the manipulator is 
less likely to avoid the OPV before colliding. Next, a predictive 
collision detection method is used to determine the predicted 
time a collision would start and end, which will be referred to as 
the predicted collision interval [10]. The geometry of the 
manipulator is swept through the trajectory of robot poses over 
time and a 3D spatial map is generated using Coon’s patches.  A 
line for collision checking is created between the two OPV points 
closest to the robot base and the two OPV points farthest from 
the robot base and each line is discretized to the grid space of the 
Coon’s patches.  

 
The robot Jacobian is utilized to determine the end effector 

velocity if all joints were actuated at their maximum velocity 
simultaneously for each robot instantaneous pose at the times the 
robot enters and exits the OPV.  To normalize the risk factor due 
to robot geometry, the resulting end effector cartesian velocity 
will be divided by the maximum end effector velocity of the 
robot.  This will be the norm of the end effector cartesian velocity 
if the robot were fully extended and all the joints were actuated 
with the maximum joint velocities. In determining the robot 
Jacobian, forward kinematics determined equations for the 
position of the end effector in the fixed cartesian coordinate 
system. Then the robot Jacobian was determined by taking the 
partial derivatives of the x, y, and z positions with respect to each 
variable robot joint parameter.  The translational Jacobian for the 
end effector of a manipulator with 𝑛 total, revolute and prismatic, 
joints is given by: 

𝐽 =

[
 
 
 
 
 
 
𝑑𝑥

𝑑𝑞1
…

𝑑𝑥

𝑑𝑞𝑛
𝑑𝑦

𝑑𝑞1
…

𝑑𝑦

𝑑𝑞𝑛
𝑑𝑧

𝑑𝑞1
…

𝑑𝑧

𝑑𝑞𝑛]
 
 
 
 
 
 

 (2) 

 
The maximum end effector velocities at the time the robot 

enters and exits the OPV are given by: 
𝑣𝑠 =  𝐽(𝑞𝑠)𝑞̇𝑚𝑎𝑥, 𝑠 = {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡,𝑚𝑎𝑥} (3) 

where 𝑞𝑒𝑛𝑡𝑟𝑦 is the vector of joint variable values at the point 
when the robot enters the OPV, 𝑞𝑒𝑥𝑖𝑡  is the vector of joint 

TABLE 1:  FACTORS CONTRIBUTING TO ROBOT RISK OF 
PASSAGE THROUGH AN OPV. 

Grouping Factor Contribution 

Backtracking 
capability 

𝑓1 Reaction speed, or reaction time, of the robot 
required for the robot to move out of the volume 
between obstacles. 

𝑓2 Approach angle between the robot manipulator 
and the volume between obstacles. 

Closure of 
passage 
window 

𝑓3 Time to collapse the near (𝑓3) and far (𝑓4) gap 
(width) of the OPV if the obstacles are dynamic 
and approaching.  Can robot make it through the 
space before the space is too small? 

𝑓4 

Dimensions 
of obstacles, 
distance to 

backtrack out 
of collision 

situation 

𝑓5 Length of 
obstacle 

1. 

Together, these two factors are the 
contribution due to the length of the 
OPV.  The longer the OPV is, the 
more time required to retract parallel 
to the approach direction of the OPV 
if robot passage becomes blocked in 
the middle of the OPV.   

𝑓6 Length of 
obstacle 

2. 

𝑓7 Size of 
obstacle 

1. 

The larger the radius of an obstacle, 
or height of an obstacle, the longer it 
would take the robot to retract 
perpendicular to approach direction 
of the OPV should passage between 
obstacles become blocked. 

𝑓8 Size of 
obstacle 

2. 
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variable values at the point when the robot exits the OPV, and 
𝑞𝑚𝑎𝑥  is the vector of joint variable values that can maximize the 
end effector linear velocity. The 𝑞̇𝑚𝑎𝑥  is a column vector of the 
robot’s maximum joint velocities. When considering the velocity 
of the end effector, the worst-case scenario for getting out of a 
risky situation would be to consider the velocity 𝑣𝑒𝑛𝑡𝑟𝑦 or 𝑣𝑒𝑥𝑖𝑡  
which has the smallest norm, defined as 𝑣𝑂𝑃𝑉 : 

𝑣𝑂𝑃𝑉 ≜ arg min
𝑣=𝑣𝑒𝑛𝑡𝑟𝑦,𝑣𝑒𝑥𝑖𝑡

(‖𝑣‖) (4) 
Now the risk due to robot geometry at the time the robot is in the 
OPV is given by: 

𝑓1 = 𝛿1 (1 −
max (‖𝑣𝑂𝑃𝑉𝑥,𝑦‖ , ‖𝑣𝑂𝑃𝑉𝑧‖)

max (‖𝑣𝑚𝑎𝑥𝑥,𝑦‖ , ‖𝑣max𝑧 ‖)
).  (5) 

 
Another factor that contributes to the risk of passage is the 

orientation of the obstacle pair volume relative to the 
manipulator.  Two obstacles could be oriented such that if the 
manipulator were in between the obstacles and had to re-plan its 
trajectory, the manipulator would have great difficulty retracting 
from the obstacle pair volume.  On the other hand, two obstacles 
could be oriented such that if the manipulator needed to get out 
of the OPV, a small adjustment in the joint variables could 
manipulate the robot out of the OPV.  Before defining this factor 
of risk, some vector and point definitions must be introduced.  
Vectors between the obstacles’ near and far keypoints are:  

𝐸̅12𝑛 ≜ 𝑐𝑂2𝑛 − 𝑐𝑂1𝑛 and 𝐸̅12𝑓 ≜ 𝑐𝑂2𝑓 − 𝑐𝑂1𝑓 . (6) 
In Fig. 3, the points 𝑐𝑂1𝑛 and 𝑐𝑂2𝑛 are nearest to the robot base 
and  𝑐𝑂1𝑓 and 𝑐𝑂2𝑓 are farthest from the robot base.  The 
midpoints of Eq. (6) vectors are defined as 𝑚𝑝𝐸12𝑛 being the 
midpoint of 𝐸̅12𝑛 and 𝑚𝑝𝐸12𝑓 being the midpoint of 𝐸̅12𝑓. Now 
the risk factor due to the orientation of the OPV relative to the 
manipulator can be expressed as: 

𝑓2 = 𝛿2 (1 −
|(𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛 ) ⋅ (𝑚𝑝𝐸12𝑛 − 0)|

‖𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛‖‖𝑚𝑝𝐸12𝑛 − 0‖
) (7) 

The right side of Eq. (7), subtracted from one is the cosine of the 
angle between the vectors formed by 𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛  and 
𝑚𝑝𝐸12𝑛 − 0.  Point 0 is the location of the robot’s base.  When 
these two vectors are perpendicular as opposed to parallel, then 
the robot requires a side approach to the obstacles instead of a 
head on approach in order to back out from between the 
obstacles. 

 
Another more obvious contribution to the risk of passing 

between obstacles in the future is the time until the volume 
between the obstacles is too small to allow passage, or in other 
words, the rate of collapse of the OPV.  An OPV might be 
sufficiently large so there is no risk of passage at one time step, 
but at that time step the velocities of the points 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛, 
and 𝑐𝑂2𝑓  might indicate that at the next time step the OPV will 
be small enough that the risk of passage is too high for passage. 
This will be based on the velocities of the centroids at each end 

of the obstacles, 𝑣𝑐𝑂1𝑛 , 𝑣𝑐𝑂2𝑛, 𝑣𝑐𝑂1𝑓 , 𝑣𝑐𝑂1𝑓, as expressed by the 
following: 

𝑣𝑠 ≜ (𝑣̅𝑐𝑂1𝑠 − 𝑣̅𝑐𝑂2𝑠) ⋅
𝐸̅12𝑠
‖𝐸̅12𝑠‖

, 𝑠 = {𝑛, 𝑓} (8) 

The relative velocities are projected onto the direction of the 
vectors between the near and far centroids of the obstacles (𝐸̅12𝑛 
and 𝐸̅12𝑓) so that only the velocity in the direction that reduces 
the volume (+𝑣𝑠) is considered. The contributions to risk due to 
the time until the OPV collapses enough at the near and far end 
of the OPV to prevent passage can be expressed by the following: 

𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 ≜
‖𝐸̅12𝑠‖ − 𝑟1 − 𝑟2 − 𝑟𝑟𝑜𝑏𝑜𝑡

𝑣𝑠
, 𝑠 ∈ {𝑛, 𝑓} (9) 

𝑓3,4 = 𝛿3,4

{
  
 

  
 
0 𝑖𝑓 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 < 0 𝑜𝑟 𝑣𝑠 = 0

1 −
𝑡𝑒𝑛𝑡𝑟𝑦 − 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑖𝑓 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 < 𝑡𝑒𝑛𝑡𝑟𝑦

1 −
𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

− 𝑡𝑒𝑥𝑖𝑡

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑖𝑓 𝑡𝑒𝑥𝑖𝑡 < 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

1 𝑖𝑓 𝑡𝑒𝑛𝑡𝑟𝑦 ≤ 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 ≤ 𝑡𝑒𝑥𝑖𝑡

 (10) 

∀ 𝑡𝑒𝑥𝑖𝑡 > 𝑡𝑒𝑛𝑡𝑟𝑦, 𝑠 ∈ {𝑛, 𝑘} 

where 𝑠 = 𝑛 for 𝑓3 and 𝑠 = 𝑓 for 𝑓4.  The 𝑡𝑒𝑛𝑡𝑟𝑦 is the time when 
the robot first enters the OPV, 𝑡𝑒𝑥𝑖𝑡  is the time when the robot 
exits the OPV, and 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is the maximum time horizon for 
consideration.  The radii 𝑟1, 𝑟2, and 𝑟𝑟𝑜𝑏𝑜𝑡  are the radius of 
obstacle 1, the radius of obstacle 2, and the minimum distance 
for passage through the OPV required by the robot, respectively. 
Both ends of the OPV are considered because the obstacles could 
possibly be oriented such that the distance between obstacles 
along the near edge is not less than the distance along the far 
edge or vice versa. The contribution to risk is between zero and 
one for both cases: a) if the OPV collapses before the robot enters 
the OPV and b) if the OPV collapses after the robot exits the 
OPV. The contribution to risk is one if the OPV collapses while 
the robot is in the OPV.  This factor of risk is zero if the OPV 
near or far keypoints are diverging or if the time of OPV collapse 
is predicted farther in the future than the planning horizon. 
 

The length of each obstacle would determine the volume of 
the OPV and the amount of time or joint actuation required to 
move the robot out of the OPV in the event of a collision 
situation.  Therefore, the risk contributions due to the length of 
the obstacles 1 and 2 (‖𝐸̅1‖ or ‖𝐸̅2‖, respectively) are: 

𝑓5 = 𝛿5𝑠𝑎𝑡(0,1) (
‖𝐸̅1‖

𝑙𝑚𝑎𝑥
) (11) 

𝑓6 = 𝛿6𝑠𝑎𝑡(0,1) (
‖𝐸̅2‖

𝑙𝑚𝑎𝑥
) (12) 

where 𝑙𝑚𝑎𝑥 is a maximum length of an obstacle (‖𝐸̅1‖ or ‖𝐸̅2‖) to 
consider, which is a parameter set by the user.  The user would 
likely set 𝑙𝑚𝑎𝑥 less than or equal to the maximum reach of the 
robot. The radius of each obstacle also determines the volume of 
the OPV, defining the following risk components:  

𝑓7 = 𝛿7𝑠𝑎𝑡(0,1) (
𝑟1
𝑟𝑚𝑎𝑥

) (13) 
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𝑓8 = 𝛿8𝑠𝑎𝑡(0,1) (
𝑟2
𝑟𝑚𝑎𝑥

) (14) 

where 𝑟𝑚𝑎𝑥 is a maximum radius to consider for an obstacle.  
This will likely be less than or equal to the reach of the robot.  A 
limit was placed on the obstacle radius because if each obstacle 
of the pair were larger in radius than the reach of the robot, then 
half of the robot’s work area would be occupied and unreachable.  
A robot manipulator will more easily get trapped between 
obstacles of larger radius and can more easily remove itself from 
the volume between obstacles of smaller radius. 
 

The estimated risk of passage, 𝜑̂, is now defined as the 
product of a regression vector 𝑌 and a vector 𝛿̂ containing 
estimates of the unknown coefficients in Eq. (5) through (14), 
defined as 

𝜑̂ = 𝑌𝛿̂ = [𝑌1 … 𝑌8][𝛿1 … 𝛿8]
𝑇 , (15) 

𝑌𝑖 =
𝑓𝑖
𝛿𝑖
, 𝑖 = {1,… , 8}. (16) 

 
The actual risk can only be updated once robot passage 

through the OPV becomes prohibited due to OPV size at that 
time. The actual risk is a function of the likelihood of a collision 
occurring, the time the manipulator trajectory planner is 
generating a new trajectory, as well as the additional time the 
manipulator takes to move around the obstacle pair volume.  This 
can be expressed as 

𝜑(𝑘) =
𝑚

𝑘
min (

𝑡𝑟𝑒𝑝𝑙𝑎𝑛 + 𝑡𝑒𝑥𝑒𝑐

𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥
, 1) (17) 

where 𝑚 is the number of times a re-plan was needed to navigate 
around the obstacles and 𝑘 is the total number of simulated 
workcell cycles. The duration 𝑡𝑟𝑒𝑝𝑙𝑎𝑛 is the time the robot system 
spends backing out of the OPV and then computing an updated 
trajectory after the OPV prohibits robot passage. The time 𝑡𝑒𝑥𝑒𝑐 
is the duration the manipulator takes to execute the replanned 
trajectory that goes around the OPV. The time 𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥  is a 
maximum time threshold for the delay.  The rationale behind the 
delay threshold is that the robot could take an infinitely long time 
to generate and execute a re-plan, but the estimated risk should 
not be infinite and should saturate at one.  Therefore, dividing 
the trajectory re-planning and execution time by the threshold 
and taking the minimum of that normalized value and one 
ensures 𝜑(𝑘) will be bounded between zero and one.  Since Eq. 
(17) consists of counts of cycles and time, 𝜑(𝑘) can never be less 
than zero.  
 

The risk estimation error and parameter estimation error will 
be given by: 

𝜑̃(𝑘) = 𝜑 − 𝜑̂(𝑘) = 𝑌𝛿(𝑘) 𝑤ℎ𝑒𝑟𝑒 𝛿(𝑘) = 𝛿 − 𝛿̂(𝑘) . (18) 
A parameter update law to adjust the parameters in 𝛿̂(𝑘) must be 
developed to minimize 𝛿(𝑘) as follows: 

𝛿̂(𝑘 + 1) = max (0, 𝛿̂(𝑘) + Γ𝑌𝑇𝜑̃(𝑘)) . (19) 

The value of 𝛿̂(𝑘 + 1) has a lower bound of zero because none of 
the factors contributing to risk should be negative, which would 
reduce the effect of other factors.  The matrix Γ is a positive 
definite gains matrix that the user selects.  The rate of learning 
for  𝛿̂ is inversely proportional to the minimum eigenvalue of Γ, 
but larger values for the elements of Γ could cause greater steady 
state error in 𝛿̂. 
 
2.4 Parameter Estimation Error Stability 

The stability analysis begins with the following simple, 
positive definite, Lyapunov like candidate function which was 
selected to show that 𝛿(𝑘) will be minimized: 

𝑉𝑙(𝑘) = 𝛿(𝑘)
𝑇Γ−1𝛿(𝑘). (20) 

The delta of the Lyapunov like function between iterations is: 
∆𝑉𝑙(𝑘 + 1) = 𝑉𝑙(𝑘 + 1) − 𝑉𝑙(𝑘) (21) 

It can be shown that ∆𝑉𝑙(𝑘 + 1) after substitutions becomes: 

∆𝑉𝑙(𝑘 + 1) = (𝛿̂(𝑘 + 1) − 𝛿)
𝑇
𝑌𝑇Γ−1𝑌Γ𝑌𝑇𝜑̃(𝑘 + 1) (22) 

∆𝑉𝑙(𝑘 + 1) will always be negative or zero because the elements 
of 𝑌 and Γ are always positive and the sign of the elements of 
𝛿̂(𝑘 + 1) − 𝛿 and the sign of the elements of 𝜑̃(𝑘 + 1) will 
always oppose each other, except when the estimation error is 
exactly zero. Therefore, as the number of robot cycles 
approaches infinity, the parameter estimation error will diminish. 

 
3. RESULTS AND DISCUSSION 

The goal of the Risk of Passage (ROP) algorithm presented 
in this paper is to estimate the risk of manipulator passage 
between dynamic obstacles encountered in manufacturing HRC.  
The algorithm predicts the likelihood obstacles will prevent the 
manipulators passage between them at a future time.  If the 
estimated risk is greater than a user selected threshold, then an 
Obstacle Pair Volume (OPV) is created, blocking unsafe passage 
of any part of the robot arm between the moving obstacles.  This 
ensures real-time updates by a trajectory planner and safe robotic 
interaction with humans within manufacturing workcells.  If the 
manipulator can avoid the spaces between obstacles which may 
prohibit passage in the future, then the increase in the 
manipulators time to reach the goal pose will be less than if the 
OPV were not created and the robot’s trajectory must be 
replanned after getting too close to the obstacles.  In this section, 
implementation of the ROP-based robot system is presented in 
simulation, demonstrating learning of ROP parameters and 
creation of OPVs for a variety of likely scenarios.   

 
3.1 Simulation Design 

To test the ROP estimation algorithm, many scenarios were 
developed so the algorithm can be evaluated at many points in 
the state space defined by the parameters of 𝑌 in Eq. (5) through 
(14) and (16).  Each scenario includes a trajectory for the robot 
as well as trajectories, dimensions, and rotations for two 
cylinders, which are the dynamic obstacles.  The two cylinders 
are intended to represent the forearms of a human.  For many 
scenarios, the cylinders have a length of 0.2 meters and radius of 
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0.04 meters, approximately the same dimensions as a forearm.  
The scenarios vary the parameters of the cylinders according to 
the list in Table 2. Those scenarios also have an associated robot 
trajectory, which is listed in Table 3.  Most of the scenarios 
position the cylinders in a way that prohibits the robot from 
executing its original trajectory, which would pass between the 
cylinders.  Scenarios 20, 21, 42, and 47 from Table 2 allow robot 
passage, demonstrating that the OPV does not need to be created 
when the ROP is low enough. The parameters adjusted for each 
scenario can be seen in Fig. 4. 

 
The robot’s trajectories from the starting joint configuration 

to the end joint configuration are planned before the obstacles 
have been added to the collision checking planning scene.  
Therefore, the obstacles represent unforeseen human movement 
in the robot’s workcell.  The obstacles are introduced according 
to one of the obstacle scenarios once the robot begins its 

trajectory.  Initially, the risk threshold for introducing the OPV 
is set relatively high so the OPV is not introduced before the ROP 
parameters, from Eq. (15), are learned and at steady state.  This 
allows the system to use every scenario provided to the 
simulation to learn the correct weights to make the ROP 
estimation as accurate as possible.  When the OPV was not 
created, the robot proceeded along its original trajectory and then 
stopped once the robot was within 5 cm of either obstacle.  Then 
the robot backed away from the obstacles and replanned its 
trajectory to navigate around the OPV and reach the goal pose.  
The robot needed to back away because when the robot was 
within 5 cm of an obstacle the trajectory planner did not have 
enough clearance to generate a valid collision-free trajectory.   

 
Once the parameters of the ROP algorithm had been learned 

and were at steady state, the risk threshold for introducing the 
OPV was set relatively low to cause the OPV to be introduced 
for most scenarios. When the OPV is allowed, as soon as the 
obstacles are introduced, the system calculates the ROP at the 
beginning of each scenario and adds the OPV at the size 
necessary for when the robot will be near the obstacles.  The 
ROP algorithm can calculate risk due to the robot trajectory and 
obstacles at any time in the trajectory, but due to limitations with 
simulation, only the beginning of the scenarios is used to 
calculate risk or add the OPV.  Many scenarios were designed so 
that the cylinders are far apart at the start of a scenario and then 
approach as time progresses. The robot starts at a position far 
from the obstacles and then approaches the obstacles.  Therefore, 
the OPV necessary for avoiding the obstacles needs to be sized 
according to the position of the cylinders at the future time when 
the robot would be near the cylinders. To ensure enough 
scenarios were completed for learning the weights, the 57 
obstacle scenarios in Table 2 along with their corresponding 
robot trajectory were executed at least four times, for a total of 
at least 228 cycles.  Additionally, to ensure the ordering of the 
obstacle scenarios does not create a bias in the learned weights, 
the obstacle scenarios are executed in a random order.   

 
The ROP algorithm was evaluated on an Ubuntu 18.04 

Virtual Machine running on a computer with four 2.3 Ghz Intel 
i7 CPU cores and using Robot Operating System, MoveIt! 
libraries, and Python 2.7 [11].  The robot used for simulation in 
both systems was a Comau e.Do robot [12], which can be seen 
in Fig. 4. ROS enables simulations that provide results that are 
very similar to results obtained when using a physical robot and 
collecting data from sensors. The MoveIt! libraries utilize the 
Flexible Collision Library for collision checking, which 
considers the entire manipulator geometry when checking for 
collisions with the obstacles [13].  Additionally, MoveIt! utilizes 
the Open Motion Planning Library (OMPL) [14], whose 
planners check for collisions between any point along the robot 
and obstacles when considering locations for nodes in joint 
space. Due to the constraints of ROS with the MoveIt! libraries, 
the OPV was added as a rectangular prism surrounding the two 
obstacles.   

FIGURE 4. ROBOT AND OBSTACLE DEFINITIONS 

 

TABLE 3. ROBOT TRAJECTORIES FOR LEARNING 
Trajectory Joint Angles (°) 

1 start [90,0, 0,0,0,0 ] 
goal [90,97, 12,0,−6,0 ] 

2 start [34,74, 0,0,0,0 ] 
goal [115,74, 0,0,0,0 ] 

3 start [34,74, 0,0,0,0 ] 
goal [126,46, 46,−90,−17,0 ] 

 
 

TABLE 2.  OBSTACLE TRAJECTORIES FOR SIMULATION 
Obstacle 
Scenario Description 

1-21 Vary the pitch angle of cylinder 1 from 0 to 180 degrees 
with robot trajectory 1 

22-32 Vary the approach duration, velocity and direction in the 
x and y directions of the cylinders with robot trajectory 
1 

33-34 Vary the yaw angle of the cylinders between -90 and 90 
degrees with robot trajectory 1 

35-42 Vary approach durations and velocities of the cylinders 
in the y direction with robot trajectory 2 

43-47 Vary approach durations and velocities of the cylinders 
in the y direction with robot trajectory 3 

48-52 Vary the radius and length of the cylinders with robot 
trajectory 1 

53-57 Vary the radius and length of the cylinders with robot 
trajectory 2 
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To evaluate the effectiveness of the ROP algorithm, the Bi-
Rapidly Exploring Random Trees (BiRRT), Probabilistic Road 
Map (PRM), and Sparse Roadmap Spanners (SPARS) planners 
in OMPL will be considered. The BiRRT planner was selected 
for this experiment because Nicola et al. [1] found that it was the 
fastest RRT planner in OMPL and since it comes from the RRT 
family it has randomness built into its node selection. The 
BiRRT algorithm generates two trees in joint space, one which 
begins at the start node and the other that starts from the goal 
node [15].  The two trees are connected after expansion to 
generate a path from start to goal.  Each node of the trees is 
generated by randomly generating a point in joint space, finding 
its nearest neighbor node, and then making a step from the 
nearest node in the direction of the random point.  For testing, 
the BiRRT algorithm was configured to use an initial 
temperature of 100, temperature change factor of 0.1, frountier 
node ratio of 0.1, and cost threshold of infinity. The PRM 
algorithm was selected for testing because it is widely used in 
robot path planning and should provide trajectories that are less 
random than an RRT planner [16]. The PRM algorithm also 
randomly fills joint space with nodes [17].  Nodes are then 
selected and connected to form the most optimal path from start 
to goal from the generated nodes.  PRM is more deterministic 
than an RRT method since PRM’s determination of new nodes 
does not depend on previously generated nodes.  For testing, 
PRM was set to find a maximum of 10 nearest neighbors per 
node. The SPARS planner was selected for testing because it is 
one of the more recently developed planners in OMPL and in 
theory should be less random than BiRRT and have faster 
trajectory generation time than PRM due to sparse node 
selection. The SPARS algorithm is an extension of sampling-
based planners such as PRM [18].  SPARS generates nodes in C-
space in the same way was PRM, except SPARS does not add all 
nodes to the graph, creating a sparse collection of nodes in C-
space.  SPARS includes adaptation to determine the number of 
nodes to keep.  SPARS utilizes the PRM* algorithm to construct 
a graph of the nodes, but is different in that it uses “visibility 
regions” to ensure path lengths are less than or equal to that of 
paths generated by the standard PRM* algorithm.   

 
The initial ROP parameter weights were 𝛿̂(0) =

[. 3, .1, .1, .1, .1, .1, .1, .1]𝑇, selected to ensure the parameters did not 
start at the steady state values to demonstrate adaptation. The 
learning gain was Γ = 𝑑𝑖𝑎𝑔([. 2, .1, .1, .1, .2, .2,1,1]), selected by 
trial and error to find the parameters that would provide the 
fastest parameter convergence, most stable parameter estimates, 
and least risk estimation error. Additionally, the maximum time 
considered for a re-planned trajectory was 45 seconds. No 
randomness was applied to the motion of the cylinders, so the m 
divided by k part of Eq. (17) is always one. 
 
3.2 Simulation Results 

The results obtained from simulating the robot and obstacle 
scenarios are shown in Table 4.  The results indicate that when 
using a random planner, such as RRT, the randomness of the 
planned robot joint trajectories can have a major impact on the 

accuracy of the learned ROP parameters.  Random planners 
build a tree by randomly placing tree nodes in the joint parameter 
space. A trajectory from start to goal is generated by finding the 
most optimal connection of the nodes in the tree. The number of 
allowed planning iterations was limited to ensure a solution for 
safe real-time robot reactive response to dynamic obstacles (e.g., 
human).  Therefore, during a few cycles the random planners 
selected trajectories that were significantly less optimal than 
most other robot cycles, as indicated by the spikes in actual 
trajectory times in Fig. 5. Those instances had very large 
planning times, so the risk estimation reached an unusually large 
value for those cycles, shown by the spikes in in Fig. 6. This 
caused a slight increase in ROP parameter weights after those 
cycles due to continuous adaptation of the weights as new data 
is acquired. Then the parameters would require a few cycles to 
return to correct values again, as shown in Fig. 7.  

 
The results indicate that the ROP algorithm is able to adapt 

its parameters because the parameters appear to reach steady 
state values, as shown after approximately 120 robot cycles of 
TABLE 4. SIMULATED EXPERIMENTAL RESULTS 

Trajectory Duration Statistics (seconds unless noted otherwise) 
Planner BiRRT PRM SPARS 
Nominal (no obstacle)-Average 6.92 6.92 7.01 
Nominal (no obs.)-Std. Deviation 0.611 0.607 0.910 
Actual w/o OPV-Average 26.87 41.71 49.93 
Actual w/o OPV-Std. Deviation 9.72 11.78 17.36 
Actual w/o OPV-% of Nominal 389% 603% 713% 
Actual w/ OPV-Average 25.62 39.00 47.03 
Actual w/ OPV-Std. Deviation 9.99 7.69 16.84 
Actual w/ OPV-% of Nominal 373% 561% 656% 
Reduction in Avg. Cycle Time1 1.25 2.71 2.90 
Percent Improvement2 4.65% 6.50% 5.81% 
Steady state ROP estimate average 0.285 0.342 0.442 
Steady state ROP estimate std. dev. 0.062 0.056 0.081 
1. Calculated as “Actual w/o OPV-Average”-”Actual w/ OPV-Average”  
2. Calculated as “Reduction in Avg. Cycle Time”/”Actual w/o OPV-Average” 
 

 
FIGURE 5. TRAJECTORY EXECUTATION TIMES 
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learning in Fig. 7, and the estimated risk appears to be the 
average of the actual risk at steady state, as shown in Fig. 6.  The 
success of adaptation would have been much clearer if the risk 
estimation were the same as the actual risk for every robot cycle 
at steady state. However, this is not possible due to randomness 
in trajectory durations. It is also possible that randomness comes 
from the hardware and software used. The computer operating 
system was not a real-time operating system, so CPU cores could 
not be dedicated to running only ROS threads. 

 
The results show that when an obstacle prevented the robot 

from executing the original trajectory, the average trajectory 
duration was lower when the OPV was created compared to 
when the OPV was not created.  This was observed with all three 
planners tested, shown in bold in Table 4. The nominal trajectory 
times were determined by the trajectory planners when no 
obstacles were present and serve as a baseline trajectory time.  
When the OPV was used, the average trajectory durations were 
1.25 seconds shorter with the BiRRT planner, 2.71 seconds 
shorter with PRM, and 2.90 seconds shorter with SPARS 
compared to cycles times without introducing the OPV.  Those 

reductions in cycle times corresponded to percentages of cycle 
time saved of 4.65% for BiRRT, 6.50% for PRM, and 5.81% for 
SPARS when compared to the cycle times without introducing 
the OPV. Therefore, the results indicate the ROP algorithm 
becomes more beneficial as the computation time of the planner 
increases.  The observed reductions in trajectory durations are 
partially attributed to ROP avoiding the necessity of the robot 
backing away from the obstacles.  Other factors, such as 
selection of planner, clearly influenced the improvement in cycle 
time because the reduction in average cycle time was not 
constant for all three planners.  Results show ROP proactively 
smooths reactions, reducing cycle time and increasing 
productivity in a workcell with dynamic, unforeseen obstacles. 

 
Another observation is that the PRM planner produced the 

lowest standard deviation in the steady state ROP parameters 
estimates.  That was 0.056 for PRM compared to 0.062 for the 
BiRRT planner and 0.081 for the SPARS planner. The PRM 
planner also showed a smaller standard deviation in cycle time 
when using the OPV compared to the BiRRT and SPARS 
planners.  The PRM planner utilizes a less random method of 
selecting nodes for the planning tree compared to the BiRRT 
planner.  Therefore, the ROP algorithm may be more beneficial 
when used with a planner with more constrained randomness.  
The trajectory times for each individual scenario were also 
inspected to see if any scenarios led to unusually high trajectory 
durations.  The results showed that outliers caused the average 
trajectory duration for some scenarios to be relatively large, but 
most cycles for those same scenarios had close to average 
trajectory durations.  Therefore, the peaks in trajectory duration 
cannot be attributed to individual scenarios. 

 
The results also show that the SPARS algorithm had the 

highest averages and standard deviations of trajectory durations 
when the robot must avoid the obstacles, with and without the 
OPV. The SPARS planner also produced ROP parameter 
estimates with higher standard deviation than the other planners. 
This result seems contrary to the motivation for using the SPARS 
algorithm, per [18].  It was the planner closest to the state-of-the-
art and the planner that should have the lowest computation time 
due to node sparsity, but it did not perform as well as the BiRRT 
or PRM planners in terms of planning time and producing stable 
steady state results.  Therefore, the SPARS algorithm does not 
appear to be a good candidate for use with the ROP algorithm.   
 

4. CONCLUSION 
In conclusion, this paper demonstrates a method for 

estimating the risk of passage through volumes between 
predicted obstacle pairs. This allows the robot system to respond 
to multiple, unforeseen, dynamic obstacles before collisions 
become imminent. This is advantageous because it allows for the 
creation of faster trajectories that avoid collision situations, as 
opposed to waiting to replan trajectories until collision is 
imminent. The results showed that when the ROP algorithm 
estimates risk and generates the OPV, robot trajectories take less 
time on average. Thus, ROP is effective in ensuring safety in 

 
FIGURE 7.  RISK OF PASSAGE PARAMETER ESTIMATES 

 

 
FIGURE 6. RISK ESTIMATES AND ACTUALS 
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HRC while respecting productivity. However, randomness in the 
robot trajectory planners, which effected the actual measure of 
risk used to train the ROP algorithm, made the results appear less 
stable than desired. Alternate parameter adaptation and machine 
learning techniques will be explored towards mitigating outlier 
effects and providing faster convergence of parameter estimates 
and better theoretical stability. Future work will also include 
introducing obstacles of other geometries besides cylinders and 
validating the effectiveness of ROP, with implementation in a 
more comprehensive, physical industrial robot control system. 
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