
 1 © 2021 by ASME

Proceedings of the ASME 2021 16th International

Manufacturing Science and Engineering Conference
MSEC2021

June 21-25, 2021, Virtual, Online

MSEC2021-63670

COLLABORATIVE ROBOT RISK OF PASSAGE AMONG DYNAMIC OBSTACLES

Jared T. Flowers
University of Florida

Gainesville, FL

Gloria J. Wiens1
University of Florida

Gainesville, FL

ABSTRACT
Industry 4.0 projects ubiquitous collaborative robots in

smart factories of the future, particularly in assembly and
material handling. To ensure efficient and safe human-robot
collaborative interactions, this paper presents a novel algorithm
for estimating Risk of Passage (ROP) a robot incurs by passing
between dynamic obstacles (humans, moving equipment, etc.).
This paper posits that robot trajectory durations will be shorter
and safer if the robot can react proactively to predicted collision
between a robot and human worker before it occurs, compared
to reacting when it is imminent. I.e., if the risk that obstacles
may prohibit robot passage at a future time in the robot’s
trajectory is greater than a user defined risk limit, then an
Obstacle Pair Volume (OPV), encompassing the obstacles at that
time, is added to the planning scene. Results found from
simulation show that an ROP algorithm can be trained in ~120
workcell cycles. Further, it is demonstrated that when a trained
ROP algorithm introduces an OPV, trajectory durations are
shorter compared to those avoiding obstacles without the
introduction of an OPV. The use of ROP estimation with addition
of OPV allows workcells to operate proactively smoother with
shorter cycle times in the presence of unforeseen obstacles.

Keywords: human-robot collaboration, adaptive control,
augmented intelligence, machine learning, smart factory,
industry 4.0

NOMENCLATURE
arg min

𝑥∈𝑆
𝑓(𝑥) returns the minimizer 𝑥 of the function 𝑓. The

minimizer 𝑥 belongs to the set 𝑆.
𝑐𝑂𝑖𝑠 obstacle keypoint 𝑖; cartesian coordinates for the

actual location of the centroid of obstacle 𝑖
face 𝑠, 𝑖 ∈ {1,2}, 𝑠 ∈ {𝑛, 𝑓}, 𝑛 for nearest to
origin or 𝑓 for farthest from origin

𝐸̅12𝑠 vector between 𝑐𝑂1𝑠 and 𝑐𝑂2𝑠, 𝑠 ∈ {𝑛, 𝑓}

1 Corresponding author: Gloria J. Wiens, University of Florida, gwiens@ufl.edu

𝑘 count of consecutive workcell cycles executing
the current task

𝑙𝑚𝑎𝑥 maximum length of the OPV (‖𝐸̅1‖ or ‖𝐸̅2‖) to
consider

𝑚 count of workcell cycles when the OPV
prevented passage for the current task

min(𝑎, 𝑏) returns the minimum value between a and b
max(𝑎, 𝑏) returns the maximum value between a and b
𝑚𝑝𝑥 midpoint of vector x
𝑛 number of robot joints
𝑃𝑖𝑗𝑘
𝐹 vertex of the Obstacle Pair Volume. 𝑖 ∈ {1,2} for

obstacle 1 or obstacle 2. 𝑗 ∈ {𝑛, 𝑓} for near or
far. 𝑘 ∈ {1,2} indicating which of the two points
per obstacle face is considered, and F indicates
relative to the fixed reference frame.

𝑞𝑠 robot joint variables: angles (revolute joints) or
joint offsets (prismatic joints) at configuration
indicated by 𝑠 ∈ {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡,𝑚𝑎𝑥}

𝑞̇𝑚𝑎𝑥 robot maximum joint velocities
𝑟𝑖 radius of obstacle 𝑖, 𝑖 ∈ {1,2}
𝑟𝑚𝑎𝑥 maximum obstacle radius to consider
𝑟𝑟𝑜𝑏𝑜𝑡 minimum clearance between obstacles for robot

passage
𝑠𝑎𝑡𝑎,𝑏(𝑥) function that saturates 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏.
𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥 maximum duration to consider for calculating

and executing a re-planned trajectory due to the
OPV prohibiting passage

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 maximum duration into the future to consider
when checking for collapse of the OPV

𝑡𝑟𝑒𝑝𝑙𝑎𝑛 duration of the robot backing up and replanning
𝑡𝑒𝑥𝑒𝑐 duration of the robot executing the new plan
𝑣𝑐𝑂𝑖𝑠 current velocity of the point 𝑐𝑂𝑖𝑠 in the fixed

coordinate frame
‖𝑋̅‖ the Euclidean norm of vector 𝑋̅

 2 © 2021 by ASME

𝑣𝑠 robot end effector velocity at the time the robot
enters or exits the OPV. 𝑠 ∈ {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡}

𝑣𝑂𝑃𝑉 robot end effector velocity, either 𝑣𝑒𝑛𝑡𝑟𝑦 or 𝑣𝑒𝑥𝑖𝑡 ,
that had the smallest magnitude

𝛿𝑖 unknown weight for the 𝑖𝑡ℎ factor in the Risk of
Passage, 𝑖 ∈ {1, … , 8}

𝛿̂𝑖 estimate of the 𝑖𝑡ℎ factor in the Risk of Passage.
𝑖 ∈ {1, … , 8}. 𝛿̂ is a vector of all 𝛿̂𝑖

Γ positive definite gains matrix to control the rate
of adaptation of 𝛿̂

𝜑 and 𝜑̂ actual and estimated risk of passage

1. INTRODUCTION

Industry 4.0 projects a rise in the use of collaborative robots
in manufacturing settings leading to ubiquitous co-robots in
smart factories of the future, particularly in applications such as
assembly and material handling. One of the main challenges in
Human-Robot Collaboration (HRC) is ensuring safe interaction
with humans in real-time while also ensuring maximum task
efficiency. To ensure safe interaction, the robot manipulator
must be able to avoid collisions either by stopping motion or
executing an alternative, collision-free trajectory. In
manufacturing, stopping robot motion to wait for a possible
collision situation to clear can add significant time to the
workcell cycle. Therefore, an alternate trajectory, which may
require real-time replanning, is needed to minimize cycle time
delays. However, replanning may require selecting trajectories
with rapid changes in robot velocity when an unforeseen
collision becomes imminent. As found by Nicora et al. [1], short
reaction distances generally resulted in increased execution
times due to sharp turns the robot must make to avoid the
collision, constrained by actuation acceleration limits. Hence,
augmented intelligence (seamless integration of sensing,
cognition and prediction into the robot controller) is critical for
real-time awareness, response and communication inside a
heterogeneous manufacturing cell (robots, humans, equipment).

 Path planning in a 3D space has been a persistent challenge
in robotics. Much research has been conducted in developing
path planning algorithms to improve performance with robot
manipulators [2]. However, as algorithms become more
complex, computational demand increases. Another challenge in
path planning has been crowded environments where obstacles
are many and dynamic [3]. This challenge can easily be
visualized with the 2D example of pedestrians walking along a
path, shown in Fig. 1. If pedestrian A is approaching two other
pedestrians, pedestrian B and pedestrian C, then the three
pedestrians’ paths might converge at some time in the future, tf.
Pedestrian A will observe the motions of pedestrians B and C and
try to infer what future paths they will take. Depending on the
inferred paths, pedestrian A might make a trajectory change to
avoid the gap between pedestrians B and C at time tf.

Many replanning algorithms avoid the complications of

dynamic obstacles by assuming that obstacles, which are

dynamic between initial and final time, are static at each time
step [4]. Another simplification is accounting only for the tip of
the end effector when considering collisions [5]. These
assumptions could be hazardous when a robot is working
amongst a human or working in synchronization with the human.

A recent area of research is predicting obstacle trajectories.

Mainprice and Berenson utilized a Gaussian Mixture Model
(GMM) to extract human motion and compute likelihood of
workspace occupancy from data collected from a depth camera
[6]. Liu and Wang utilized the notion that human actions in a
workcell cycle are a linear sequence that is pre-defined for a
manufacturing task and created a Hidden Markov Model to
predict human motions [7]. Zhang et al. utilized recurrent neural
networks to recognize human tasks and predict future human
motion trajectories, including time data [8]. In an offline
approach to workspace sharing for human-robot cooperation,
Pelligrinelli et al. [9] generated Human Occupancy Volumes that
yield an indicator of the likelihood a volume will be occupied by
a human worker.

This paper provides a method which leverages the predicted
and real-time motions of humans and other obstacles throughout
the workcell cycle to call for a trajectory re-plan before the robot
must stop due to a pair of obstacles close enough in proximity to
prohibit robot passage. This paper posits that if the collision
situations between multiple dynamic obstacles can be predicted
before the collision occurs, then a trajectory re-planned to avoid
the predicted collision will be smoother and have less execution
time compared to a trajectory that was re-planned at the time of
impending collision. This concept is illustrated with the
pedestrian example in Fig. 1b, where the trajectory of pedestrian
A shown by the dashed line would be slower than that shown by
the dotted line due to the sharp turn and corresponding severe
velocity reduction in the dashed line once collision was
imminent. The method, herein, captures not only predicted robot
collisions with single dynamic obstacles, but also predicted
collision risks of robot passage between pairs of obstacles that

(a) (b)

FIGURE 1. a) PEDESTRIANS A, B, AND C APPROACHING
WITH THE OBSTACLE PAIR AREA BETWEEN B AND C,
b) TWO POSSIBLE TRAJECTORIES FOR PEDESTRIAN A

 3 © 2021 by ASME

would have been missed if obstacles were considered
individually.

The risk estimation ties into a broader robot control structure

by allowing the robot to execute trajectories with less
interruptions. Figure 2 shows the industrial robot control loop,
showing how the proposed method takes feedback from the
sensors and predictions and provides an output to the trajectory
planner. During offline trajectory planning, the proposed method
ensures the planned trajectories will avoid high risk volumes of
the workcell between obstacles where it is predicted that passage
may not be possible. During the robot’s real-time execution of
its tasks, the proposed method continuously monitors for
predicted and real-time occurring dynamic obstacles and detects
associated high-risk volumes between obstacles prone to
blocking robot passage, quantified by a threshold based on
updated sensor and prediction data. If such a volume is detected
along the robot’s trajectory, an obstacle pair volume (OPV) is
generated, added to the planning scene, and the robot’s trajectory
is re-planned online to avoid in real-time the volume of high risk
and potential task interruptions. The remainder of the paper is
organized into the following sections: estimation of the Risk of
Passage (ROP) through the volume between two dynamic
obstacles, development of actual risk and risk estimation error,
OPV generation, and evaluation by simulation.

2. ROP ALGORITHM, ADAPTATION AND CONTROL

In order to apply the estimated risk of passage algorithm to
any robot and any number and type of obstacle, the algorithm
parameters must be able to adapt accordingly. Additionally, an
actual measure of risk can be derived from the times the robot
waits for a re-plan and the time the robot executes a new
trajectory in the event of a collision. Therefore, this paper
presents a method of parameter adaptation to minimize the error
between the estimated and actual risk of passage determination.

2.1 Assumptions

For this paper, it is assumed that motion of each obstacle in
the robot’s workspace is defined by a set of keypoints. As input
to the controller’s ROP, sensor data and the ‘Prediction’ block’s
prediction/cognition algorithms [8] are assumed to provide both
the real-time and predicted location, velocity, and uncertainty of
those keypoints, respectively. The predicted locations and
velocities of the obstacle keypoints are assumed valid for the
entirety of some planning horizon. The actual locations of the
obstacle keypoints are also assumed to be updated at least as

frequently as the robot system’s real-time execution frequency.
Additionally, the approximate shape and size of each obstacle is
assumed to be provided by an algorithm that interprets data from
sensors such as depth cameras. Furthermore, it is assumed that
the robot’s nominal trajectory has been pre-planned for a known
task. The parameter adaptation method presented in this paper
utilizes linear parameterizations so it must be assumed that the
factors contributing to risk are linear in the unknown parameters.

2.2 Definition of the Obstacle Pair Volume (OPV)

The obstacle pair volume (OPV) is defined as the volume
between a pair of obstacles in the robot’s workspace. If the
workspace contains more than two obstacles, then an OPV is
defined for each unique set of two obstacles. Two keypoints on
each obstacle will be determined that ensure the OPV completely
encompasses both obstacles. If the obstacles are generalized to
cylinders, then the center of each face of the cylinders will be
used as keypoints for a total of four keypoints. Those four
keypoints, along with the width and height of the generalized
obstacles, can be used to define the shape of the OPV. For the
purposes of calculating the robot risk of passage presented in the
next section, only four keypoints of the obstacles will be
considered for defining a 2D OPV. Figure 3 shows a 2D OPV
defined between two human forearms. The human is modeled as
a skeleton with the human’s shape generalized to cylinders, with
the forearms labeled as obstacle 1 and 2. The keypoints of the
forearms are shown as (red) circles. The OPV, which is currently
only defined as planes, is formed between the forearm keypoints,
shown as a faceted (green) surface. The actual volume of the
OPV, as opposed to the planes, is generated if the risk is too high.

2.3 Probability of Robot Passage

An approximation of the risk associated with passage
through a volume between a dynamic obstacle pair can have

FIGURE 2. ROBOT SYSTEM CONTROL BLOCK DIAGRAM

FIGURE 3. ROP FLOW DIAGRAM AND SCENE WITH A
HUMAN AND ROBOT

 4 © 2021 by ASME

many components. Compared to the 2D illustration of
pedestrians presented in the introduction, the considerations
become more complex when approximating the risk of passage
of a robot manipulator through a volume between dynamic 3D
obstacles. The obstacles for a robot manipulator in a work cell
could be humans or their appendages, such as arms or hands, or
the obstacles could be links of other manipulators, automated
equipment, ground vehicles, etc. An expression for the predicted
risk level will now be developed to quantify the estimated risk of
delay or entrapment due to passing through an OPV. The
components of the estimated risk, shown in Table 1, will have
values between zero and one with zero corresponding to no risk
and one corresponding to highest risk. A measure of the actual
risk level will also be developed as delay or entrapment events
occur so the estimation can be adapted to improve accuracy.

Figure 3 illustrates the proposed sequence between
determining the initial OPV, determining Risk of Passage
through the OPV, determining the full OPV, and re-planning the
robot trajectory around the full OPV. The predicted risk level,
which is updated continuously at the robot systems real-time
frequency, will be defined as 𝜑̂ with the following function:

𝜑̂ = 𝑓(𝐽, 𝑐𝑂1𝑛 , 𝑐𝑂1𝑓 , 𝑐𝑂2𝑛 , 𝑐𝑂2𝑓), 𝜑̂ ∈ ℝ (1)
where 𝐽 is the robot Jacobian, and 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛, and 𝑐𝑂2𝑓 are
the obstacle keypoints at a given time step as shown in Fig. 3.
Points 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛, and 𝑐𝑂2𝑓 would be the joints of a
skeleton model in the case of human obstacles. Subscript n and
f will be used to denote the points or edges that are nearest to the
robot base or farthest from the robot base, respectively. In the
case of a human with arms extended towards the robot, 𝑐𝑂1𝑛 and
𝑐𝑂2𝑛 would be the wrist joints and 𝑐𝑂1𝑓 and 𝑐𝑂2𝑓 would be the

elbow joints as shown in Fig. 3. The position of those four points
can be determined from real-time data or come from prediction
algorithms such as recurrent neural networks [8]. Without loss
of generality, the following theoretical derivations assume an
articulated robot manipulator with all revolute joints.

The robot geometry at the point in time when the robot
would enter the OPV should affect the risk of passage. First, to
determine this risk factor, the robot’s ability to navigate away
from the OPV should be evaluated. Considering the robot
geometry required to reach into the OPV, if the joint variables
can be adjusted by a small amount to cause a displacement of the
manipulator large enough to avoid the OPV, then this factor of
risk is low. However, if a large change in joint variables is
necessary to move the manipulator arm enough to avoid the
OPV, then this factor of risk is high because the manipulator is
less likely to avoid the OPV before colliding. Next, a predictive
collision detection method is used to determine the predicted
time a collision would start and end, which will be referred to as
the predicted collision interval [10]. The geometry of the
manipulator is swept through the trajectory of robot poses over
time and a 3D spatial map is generated using Coon’s patches. A
line for collision checking is created between the two OPV points
closest to the robot base and the two OPV points farthest from
the robot base and each line is discretized to the grid space of the
Coon’s patches.

The robot Jacobian is utilized to determine the end effector

velocity if all joints were actuated at their maximum velocity
simultaneously for each robot instantaneous pose at the times the
robot enters and exits the OPV. To normalize the risk factor due
to robot geometry, the resulting end effector cartesian velocity
will be divided by the maximum end effector velocity of the
robot. This will be the norm of the end effector cartesian velocity
if the robot were fully extended and all the joints were actuated
with the maximum joint velocities. In determining the robot
Jacobian, forward kinematics determined equations for the
position of the end effector in the fixed cartesian coordinate
system. Then the robot Jacobian was determined by taking the
partial derivatives of the x, y, and z positions with respect to each
variable robot joint parameter. The translational Jacobian for the
end effector of a manipulator with 𝑛 total, revolute and prismatic,
joints is given by:

𝐽 =

[

𝑑𝑥

𝑑𝑞1
…

𝑑𝑥

𝑑𝑞𝑛
𝑑𝑦

𝑑𝑞1
…

𝑑𝑦

𝑑𝑞𝑛
𝑑𝑧

𝑑𝑞1
…

𝑑𝑧

𝑑𝑞𝑛]

 (2)

The maximum end effector velocities at the time the robot

enters and exits the OPV are given by:
𝑣𝑠 = 𝐽(𝑞𝑠)𝑞̇𝑚𝑎𝑥, 𝑠 = {𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡,𝑚𝑎𝑥} (3)

where 𝑞𝑒𝑛𝑡𝑟𝑦 is the vector of joint variable values at the point
when the robot enters the OPV, 𝑞𝑒𝑥𝑖𝑡 is the vector of joint

TABLE 1: FACTORS CONTRIBUTING TO ROBOT RISK OF
PASSAGE THROUGH AN OPV.

Grouping Factor Contribution

Backtracking
capability

𝑓1 Reaction speed, or reaction time, of the robot
required for the robot to move out of the volume
between obstacles.

𝑓2 Approach angle between the robot manipulator
and the volume between obstacles.

Closure of
passage
window

𝑓3 Time to collapse the near (𝑓3) and far (𝑓4) gap
(width) of the OPV if the obstacles are dynamic
and approaching. Can robot make it through the
space before the space is too small?

𝑓4

Dimensions
of obstacles,
distance to

backtrack out
of collision

situation

𝑓5 Length of
obstacle

1.

Together, these two factors are the
contribution due to the length of the
OPV. The longer the OPV is, the
more time required to retract parallel
to the approach direction of the OPV
if robot passage becomes blocked in
the middle of the OPV.

𝑓6 Length of
obstacle

2.

𝑓7 Size of
obstacle

1.

The larger the radius of an obstacle,
or height of an obstacle, the longer it
would take the robot to retract
perpendicular to approach direction
of the OPV should passage between
obstacles become blocked.

𝑓8 Size of
obstacle

2.

 5 © 2021 by ASME

variable values at the point when the robot exits the OPV, and
𝑞𝑚𝑎𝑥 is the vector of joint variable values that can maximize the
end effector linear velocity. The 𝑞̇𝑚𝑎𝑥 is a column vector of the
robot’s maximum joint velocities. When considering the velocity
of the end effector, the worst-case scenario for getting out of a
risky situation would be to consider the velocity 𝑣𝑒𝑛𝑡𝑟𝑦 or 𝑣𝑒𝑥𝑖𝑡
which has the smallest norm, defined as 𝑣𝑂𝑃𝑉 :

𝑣𝑂𝑃𝑉 ≜ arg min
𝑣=𝑣𝑒𝑛𝑡𝑟𝑦,𝑣𝑒𝑥𝑖𝑡

(‖𝑣‖) (4)
Now the risk due to robot geometry at the time the robot is in the
OPV is given by:

𝑓1 = 𝛿1 (1 −
max (‖𝑣𝑂𝑃𝑉𝑥,𝑦‖ , ‖𝑣𝑂𝑃𝑉𝑧‖)

max (‖𝑣𝑚𝑎𝑥𝑥,𝑦‖ , ‖𝑣max𝑧 ‖)
). (5)

Another factor that contributes to the risk of passage is the

orientation of the obstacle pair volume relative to the
manipulator. Two obstacles could be oriented such that if the
manipulator were in between the obstacles and had to re-plan its
trajectory, the manipulator would have great difficulty retracting
from the obstacle pair volume. On the other hand, two obstacles
could be oriented such that if the manipulator needed to get out
of the OPV, a small adjustment in the joint variables could
manipulate the robot out of the OPV. Before defining this factor
of risk, some vector and point definitions must be introduced.
Vectors between the obstacles’ near and far keypoints are:

𝐸̅12𝑛 ≜ 𝑐𝑂2𝑛 − 𝑐𝑂1𝑛 and 𝐸̅12𝑓 ≜ 𝑐𝑂2𝑓 − 𝑐𝑂1𝑓 . (6)
In Fig. 3, the points 𝑐𝑂1𝑛 and 𝑐𝑂2𝑛 are nearest to the robot base
and 𝑐𝑂1𝑓 and 𝑐𝑂2𝑓 are farthest from the robot base. The
midpoints of Eq. (6) vectors are defined as 𝑚𝑝𝐸12𝑛 being the
midpoint of 𝐸̅12𝑛 and 𝑚𝑝𝐸12𝑓 being the midpoint of 𝐸̅12𝑓. Now
the risk factor due to the orientation of the OPV relative to the
manipulator can be expressed as:

𝑓2 = 𝛿2 (1 −
|(𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛) ⋅ (𝑚𝑝𝐸12𝑛 − 0)|

‖𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛‖‖𝑚𝑝𝐸12𝑛 − 0‖
) (7)

The right side of Eq. (7), subtracted from one is the cosine of the
angle between the vectors formed by 𝑚𝑝𝐸12𝑓 −𝑚𝑝𝐸12𝑛 and
𝑚𝑝𝐸12𝑛 − 0. Point 0 is the location of the robot’s base. When
these two vectors are perpendicular as opposed to parallel, then
the robot requires a side approach to the obstacles instead of a
head on approach in order to back out from between the
obstacles.

Another more obvious contribution to the risk of passing

between obstacles in the future is the time until the volume
between the obstacles is too small to allow passage, or in other
words, the rate of collapse of the OPV. An OPV might be
sufficiently large so there is no risk of passage at one time step,
but at that time step the velocities of the points 𝑐𝑂1𝑛, 𝑐𝑂1𝑓, 𝑐𝑂2𝑛,
and 𝑐𝑂2𝑓 might indicate that at the next time step the OPV will
be small enough that the risk of passage is too high for passage.
This will be based on the velocities of the centroids at each end

of the obstacles, 𝑣𝑐𝑂1𝑛 , 𝑣𝑐𝑂2𝑛, 𝑣𝑐𝑂1𝑓 , 𝑣𝑐𝑂1𝑓, as expressed by the
following:

𝑣𝑠 ≜ (𝑣̅𝑐𝑂1𝑠 − 𝑣̅𝑐𝑂2𝑠) ⋅
𝐸̅12𝑠
‖𝐸̅12𝑠‖

, 𝑠 = {𝑛, 𝑓} (8)

The relative velocities are projected onto the direction of the
vectors between the near and far centroids of the obstacles (𝐸̅12𝑛
and 𝐸̅12𝑓) so that only the velocity in the direction that reduces
the volume (+𝑣𝑠) is considered. The contributions to risk due to
the time until the OPV collapses enough at the near and far end
of the OPV to prevent passage can be expressed by the following:

𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 ≜
‖𝐸̅12𝑠‖ − 𝑟1 − 𝑟2 − 𝑟𝑟𝑜𝑏𝑜𝑡

𝑣𝑠
, 𝑠 ∈ {𝑛, 𝑓} (9)

𝑓3,4 = 𝛿3,4

{

0 𝑖𝑓 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 < 0 𝑜𝑟 𝑣𝑠 = 0

1 −
𝑡𝑒𝑛𝑡𝑟𝑦 − 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑖𝑓 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 < 𝑡𝑒𝑛𝑡𝑟𝑦

1 −
𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

− 𝑡𝑒𝑥𝑖𝑡

𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑖𝑓 𝑡𝑒𝑥𝑖𝑡 < 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠

1 𝑖𝑓 𝑡𝑒𝑛𝑡𝑟𝑦 ≤ 𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠 ≤ 𝑡𝑒𝑥𝑖𝑡

 (10)

∀ 𝑡𝑒𝑥𝑖𝑡 > 𝑡𝑒𝑛𝑡𝑟𝑦, 𝑠 ∈ {𝑛, 𝑘}

where 𝑠 = 𝑛 for 𝑓3 and 𝑠 = 𝑓 for 𝑓4. The 𝑡𝑒𝑛𝑡𝑟𝑦 is the time when
the robot first enters the OPV, 𝑡𝑒𝑥𝑖𝑡 is the time when the robot
exits the OPV, and 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is the maximum time horizon for
consideration. The radii 𝑟1, 𝑟2, and 𝑟𝑟𝑜𝑏𝑜𝑡 are the radius of
obstacle 1, the radius of obstacle 2, and the minimum distance
for passage through the OPV required by the robot, respectively.
Both ends of the OPV are considered because the obstacles could
possibly be oriented such that the distance between obstacles
along the near edge is not less than the distance along the far
edge or vice versa. The contribution to risk is between zero and
one for both cases: a) if the OPV collapses before the robot enters
the OPV and b) if the OPV collapses after the robot exits the
OPV. The contribution to risk is one if the OPV collapses while
the robot is in the OPV. This factor of risk is zero if the OPV
near or far keypoints are diverging or if the time of OPV collapse
is predicted farther in the future than the planning horizon.

The length of each obstacle would determine the volume of
the OPV and the amount of time or joint actuation required to
move the robot out of the OPV in the event of a collision
situation. Therefore, the risk contributions due to the length of
the obstacles 1 and 2 (‖𝐸̅1‖ or ‖𝐸̅2‖, respectively) are:

𝑓5 = 𝛿5𝑠𝑎𝑡(0,1) (
‖𝐸̅1‖

𝑙𝑚𝑎𝑥
) (11)

𝑓6 = 𝛿6𝑠𝑎𝑡(0,1) (
‖𝐸̅2‖

𝑙𝑚𝑎𝑥
) (12)

where 𝑙𝑚𝑎𝑥 is a maximum length of an obstacle (‖𝐸̅1‖ or ‖𝐸̅2‖) to
consider, which is a parameter set by the user. The user would
likely set 𝑙𝑚𝑎𝑥 less than or equal to the maximum reach of the
robot. The radius of each obstacle also determines the volume of
the OPV, defining the following risk components:

𝑓7 = 𝛿7𝑠𝑎𝑡(0,1) (
𝑟1
𝑟𝑚𝑎𝑥

) (13)

 6 © 2021 by ASME

𝑓8 = 𝛿8𝑠𝑎𝑡(0,1) (
𝑟2
𝑟𝑚𝑎𝑥

) (14)

where 𝑟𝑚𝑎𝑥 is a maximum radius to consider for an obstacle.
This will likely be less than or equal to the reach of the robot. A
limit was placed on the obstacle radius because if each obstacle
of the pair were larger in radius than the reach of the robot, then
half of the robot’s work area would be occupied and unreachable.
A robot manipulator will more easily get trapped between
obstacles of larger radius and can more easily remove itself from
the volume between obstacles of smaller radius.

The estimated risk of passage, 𝜑̂, is now defined as the
product of a regression vector 𝑌 and a vector 𝛿̂ containing
estimates of the unknown coefficients in Eq. (5) through (14),
defined as

𝜑̂ = 𝑌𝛿̂ = [𝑌1 … 𝑌8][𝛿1 … 𝛿8]
𝑇 , (15)

𝑌𝑖 =
𝑓𝑖
𝛿𝑖
, 𝑖 = {1,… , 8}. (16)

The actual risk can only be updated once robot passage

through the OPV becomes prohibited due to OPV size at that
time. The actual risk is a function of the likelihood of a collision
occurring, the time the manipulator trajectory planner is
generating a new trajectory, as well as the additional time the
manipulator takes to move around the obstacle pair volume. This
can be expressed as

𝜑(𝑘) =
𝑚

𝑘
min (

𝑡𝑟𝑒𝑝𝑙𝑎𝑛 + 𝑡𝑒𝑥𝑒𝑐

𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥
, 1) (17)

where 𝑚 is the number of times a re-plan was needed to navigate
around the obstacles and 𝑘 is the total number of simulated
workcell cycles. The duration 𝑡𝑟𝑒𝑝𝑙𝑎𝑛 is the time the robot system
spends backing out of the OPV and then computing an updated
trajectory after the OPV prohibits robot passage. The time 𝑡𝑒𝑥𝑒𝑐
is the duration the manipulator takes to execute the replanned
trajectory that goes around the OPV. The time 𝑡𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥 is a
maximum time threshold for the delay. The rationale behind the
delay threshold is that the robot could take an infinitely long time
to generate and execute a re-plan, but the estimated risk should
not be infinite and should saturate at one. Therefore, dividing
the trajectory re-planning and execution time by the threshold
and taking the minimum of that normalized value and one
ensures 𝜑(𝑘) will be bounded between zero and one. Since Eq.
(17) consists of counts of cycles and time, 𝜑(𝑘) can never be less
than zero.

The risk estimation error and parameter estimation error will
be given by:

𝜑̃(𝑘) = 𝜑 − 𝜑̂(𝑘) = 𝑌𝛿(𝑘) 𝑤ℎ𝑒𝑟𝑒 𝛿(𝑘) = 𝛿 − 𝛿̂(𝑘) . (18)
A parameter update law to adjust the parameters in 𝛿̂(𝑘) must be
developed to minimize 𝛿(𝑘) as follows:

𝛿̂(𝑘 + 1) = max (0, 𝛿̂(𝑘) + Γ𝑌𝑇𝜑̃(𝑘)) . (19)

The value of 𝛿̂(𝑘 + 1) has a lower bound of zero because none of
the factors contributing to risk should be negative, which would
reduce the effect of other factors. The matrix Γ is a positive
definite gains matrix that the user selects. The rate of learning
for 𝛿̂ is inversely proportional to the minimum eigenvalue of Γ,
but larger values for the elements of Γ could cause greater steady
state error in 𝛿̂.

2.4 Parameter Estimation Error Stability

The stability analysis begins with the following simple,
positive definite, Lyapunov like candidate function which was
selected to show that 𝛿(𝑘) will be minimized:

𝑉𝑙(𝑘) = 𝛿(𝑘)
𝑇Γ−1𝛿(𝑘). (20)

The delta of the Lyapunov like function between iterations is:
∆𝑉𝑙(𝑘 + 1) = 𝑉𝑙(𝑘 + 1) − 𝑉𝑙(𝑘) (21)

It can be shown that ∆𝑉𝑙(𝑘 + 1) after substitutions becomes:

∆𝑉𝑙(𝑘 + 1) = (𝛿̂(𝑘 + 1) − 𝛿)
𝑇
𝑌𝑇Γ−1𝑌Γ𝑌𝑇𝜑̃(𝑘 + 1) (22)

∆𝑉𝑙(𝑘 + 1) will always be negative or zero because the elements
of 𝑌 and Γ are always positive and the sign of the elements of
𝛿̂(𝑘 + 1) − 𝛿 and the sign of the elements of 𝜑̃(𝑘 + 1) will
always oppose each other, except when the estimation error is
exactly zero. Therefore, as the number of robot cycles
approaches infinity, the parameter estimation error will diminish.

3. RESULTS AND DISCUSSION

The goal of the Risk of Passage (ROP) algorithm presented
in this paper is to estimate the risk of manipulator passage
between dynamic obstacles encountered in manufacturing HRC.
The algorithm predicts the likelihood obstacles will prevent the
manipulators passage between them at a future time. If the
estimated risk is greater than a user selected threshold, then an
Obstacle Pair Volume (OPV) is created, blocking unsafe passage
of any part of the robot arm between the moving obstacles. This
ensures real-time updates by a trajectory planner and safe robotic
interaction with humans within manufacturing workcells. If the
manipulator can avoid the spaces between obstacles which may
prohibit passage in the future, then the increase in the
manipulators time to reach the goal pose will be less than if the
OPV were not created and the robot’s trajectory must be
replanned after getting too close to the obstacles. In this section,
implementation of the ROP-based robot system is presented in
simulation, demonstrating learning of ROP parameters and
creation of OPVs for a variety of likely scenarios.

3.1 Simulation Design

To test the ROP estimation algorithm, many scenarios were
developed so the algorithm can be evaluated at many points in
the state space defined by the parameters of 𝑌 in Eq. (5) through
(14) and (16). Each scenario includes a trajectory for the robot
as well as trajectories, dimensions, and rotations for two
cylinders, which are the dynamic obstacles. The two cylinders
are intended to represent the forearms of a human. For many
scenarios, the cylinders have a length of 0.2 meters and radius of

 7 © 2021 by ASME

0.04 meters, approximately the same dimensions as a forearm.
The scenarios vary the parameters of the cylinders according to
the list in Table 2. Those scenarios also have an associated robot
trajectory, which is listed in Table 3. Most of the scenarios
position the cylinders in a way that prohibits the robot from
executing its original trajectory, which would pass between the
cylinders. Scenarios 20, 21, 42, and 47 from Table 2 allow robot
passage, demonstrating that the OPV does not need to be created
when the ROP is low enough. The parameters adjusted for each
scenario can be seen in Fig. 4.

The robot’s trajectories from the starting joint configuration

to the end joint configuration are planned before the obstacles
have been added to the collision checking planning scene.
Therefore, the obstacles represent unforeseen human movement
in the robot’s workcell. The obstacles are introduced according
to one of the obstacle scenarios once the robot begins its

trajectory. Initially, the risk threshold for introducing the OPV
is set relatively high so the OPV is not introduced before the ROP
parameters, from Eq. (15), are learned and at steady state. This
allows the system to use every scenario provided to the
simulation to learn the correct weights to make the ROP
estimation as accurate as possible. When the OPV was not
created, the robot proceeded along its original trajectory and then
stopped once the robot was within 5 cm of either obstacle. Then
the robot backed away from the obstacles and replanned its
trajectory to navigate around the OPV and reach the goal pose.
The robot needed to back away because when the robot was
within 5 cm of an obstacle the trajectory planner did not have
enough clearance to generate a valid collision-free trajectory.

Once the parameters of the ROP algorithm had been learned

and were at steady state, the risk threshold for introducing the
OPV was set relatively low to cause the OPV to be introduced
for most scenarios. When the OPV is allowed, as soon as the
obstacles are introduced, the system calculates the ROP at the
beginning of each scenario and adds the OPV at the size
necessary for when the robot will be near the obstacles. The
ROP algorithm can calculate risk due to the robot trajectory and
obstacles at any time in the trajectory, but due to limitations with
simulation, only the beginning of the scenarios is used to
calculate risk or add the OPV. Many scenarios were designed so
that the cylinders are far apart at the start of a scenario and then
approach as time progresses. The robot starts at a position far
from the obstacles and then approaches the obstacles. Therefore,
the OPV necessary for avoiding the obstacles needs to be sized
according to the position of the cylinders at the future time when
the robot would be near the cylinders. To ensure enough
scenarios were completed for learning the weights, the 57
obstacle scenarios in Table 2 along with their corresponding
robot trajectory were executed at least four times, for a total of
at least 228 cycles. Additionally, to ensure the ordering of the
obstacle scenarios does not create a bias in the learned weights,
the obstacle scenarios are executed in a random order.

The ROP algorithm was evaluated on an Ubuntu 18.04

Virtual Machine running on a computer with four 2.3 Ghz Intel
i7 CPU cores and using Robot Operating System, MoveIt!
libraries, and Python 2.7 [11]. The robot used for simulation in
both systems was a Comau e.Do robot [12], which can be seen
in Fig. 4. ROS enables simulations that provide results that are
very similar to results obtained when using a physical robot and
collecting data from sensors. The MoveIt! libraries utilize the
Flexible Collision Library for collision checking, which
considers the entire manipulator geometry when checking for
collisions with the obstacles [13]. Additionally, MoveIt! utilizes
the Open Motion Planning Library (OMPL) [14], whose
planners check for collisions between any point along the robot
and obstacles when considering locations for nodes in joint
space. Due to the constraints of ROS with the MoveIt! libraries,
the OPV was added as a rectangular prism surrounding the two
obstacles.

FIGURE 4. ROBOT AND OBSTACLE DEFINITIONS

TABLE 3. ROBOT TRAJECTORIES FOR LEARNING
Trajectory Joint Angles (°)

1 start [90,0, 0,0,0,0]
goal [90,97, 12,0,−6,0]

2 start [34,74, 0,0,0,0]
goal [115,74, 0,0,0,0]

3 start [34,74, 0,0,0,0]
goal [126,46, 46,−90,−17,0]

TABLE 2. OBSTACLE TRAJECTORIES FOR SIMULATION
Obstacle
Scenario Description

1-21 Vary the pitch angle of cylinder 1 from 0 to 180 degrees
with robot trajectory 1

22-32 Vary the approach duration, velocity and direction in the
x and y directions of the cylinders with robot trajectory
1

33-34 Vary the yaw angle of the cylinders between -90 and 90
degrees with robot trajectory 1

35-42 Vary approach durations and velocities of the cylinders
in the y direction with robot trajectory 2

43-47 Vary approach durations and velocities of the cylinders
in the y direction with robot trajectory 3

48-52 Vary the radius and length of the cylinders with robot
trajectory 1

53-57 Vary the radius and length of the cylinders with robot
trajectory 2

 8 © 2021 by ASME

To evaluate the effectiveness of the ROP algorithm, the Bi-
Rapidly Exploring Random Trees (BiRRT), Probabilistic Road
Map (PRM), and Sparse Roadmap Spanners (SPARS) planners
in OMPL will be considered. The BiRRT planner was selected
for this experiment because Nicola et al. [1] found that it was the
fastest RRT planner in OMPL and since it comes from the RRT
family it has randomness built into its node selection. The
BiRRT algorithm generates two trees in joint space, one which
begins at the start node and the other that starts from the goal
node [15]. The two trees are connected after expansion to
generate a path from start to goal. Each node of the trees is
generated by randomly generating a point in joint space, finding
its nearest neighbor node, and then making a step from the
nearest node in the direction of the random point. For testing,
the BiRRT algorithm was configured to use an initial
temperature of 100, temperature change factor of 0.1, frountier
node ratio of 0.1, and cost threshold of infinity. The PRM
algorithm was selected for testing because it is widely used in
robot path planning and should provide trajectories that are less
random than an RRT planner [16]. The PRM algorithm also
randomly fills joint space with nodes [17]. Nodes are then
selected and connected to form the most optimal path from start
to goal from the generated nodes. PRM is more deterministic
than an RRT method since PRM’s determination of new nodes
does not depend on previously generated nodes. For testing,
PRM was set to find a maximum of 10 nearest neighbors per
node. The SPARS planner was selected for testing because it is
one of the more recently developed planners in OMPL and in
theory should be less random than BiRRT and have faster
trajectory generation time than PRM due to sparse node
selection. The SPARS algorithm is an extension of sampling-
based planners such as PRM [18]. SPARS generates nodes in C-
space in the same way was PRM, except SPARS does not add all
nodes to the graph, creating a sparse collection of nodes in C-
space. SPARS includes adaptation to determine the number of
nodes to keep. SPARS utilizes the PRM* algorithm to construct
a graph of the nodes, but is different in that it uses “visibility
regions” to ensure path lengths are less than or equal to that of
paths generated by the standard PRM* algorithm.

The initial ROP parameter weights were 𝛿̂(0) =

[. 3, .1, .1, .1, .1, .1, .1, .1]𝑇, selected to ensure the parameters did not
start at the steady state values to demonstrate adaptation. The
learning gain was Γ = 𝑑𝑖𝑎𝑔([. 2, .1, .1, .1, .2, .2,1,1]), selected by
trial and error to find the parameters that would provide the
fastest parameter convergence, most stable parameter estimates,
and least risk estimation error. Additionally, the maximum time
considered for a re-planned trajectory was 45 seconds. No
randomness was applied to the motion of the cylinders, so the m
divided by k part of Eq. (17) is always one.

3.2 Simulation Results

The results obtained from simulating the robot and obstacle
scenarios are shown in Table 4. The results indicate that when
using a random planner, such as RRT, the randomness of the
planned robot joint trajectories can have a major impact on the

accuracy of the learned ROP parameters. Random planners
build a tree by randomly placing tree nodes in the joint parameter
space. A trajectory from start to goal is generated by finding the
most optimal connection of the nodes in the tree. The number of
allowed planning iterations was limited to ensure a solution for
safe real-time robot reactive response to dynamic obstacles (e.g.,
human). Therefore, during a few cycles the random planners
selected trajectories that were significantly less optimal than
most other robot cycles, as indicated by the spikes in actual
trajectory times in Fig. 5. Those instances had very large
planning times, so the risk estimation reached an unusually large
value for those cycles, shown by the spikes in in Fig. 6. This
caused a slight increase in ROP parameter weights after those
cycles due to continuous adaptation of the weights as new data
is acquired. Then the parameters would require a few cycles to
return to correct values again, as shown in Fig. 7.

The results indicate that the ROP algorithm is able to adapt

its parameters because the parameters appear to reach steady
state values, as shown after approximately 120 robot cycles of
TABLE 4. SIMULATED EXPERIMENTAL RESULTS

Trajectory Duration Statistics (seconds unless noted otherwise)
Planner BiRRT PRM SPARS
Nominal (no obstacle)-Average 6.92 6.92 7.01
Nominal (no obs.)-Std. Deviation 0.611 0.607 0.910
Actual w/o OPV-Average 26.87 41.71 49.93
Actual w/o OPV-Std. Deviation 9.72 11.78 17.36
Actual w/o OPV-% of Nominal 389% 603% 713%
Actual w/ OPV-Average 25.62 39.00 47.03
Actual w/ OPV-Std. Deviation 9.99 7.69 16.84
Actual w/ OPV-% of Nominal 373% 561% 656%
Reduction in Avg. Cycle Time1 1.25 2.71 2.90
Percent Improvement2 4.65% 6.50% 5.81%
Steady state ROP estimate average 0.285 0.342 0.442
Steady state ROP estimate std. dev. 0.062 0.056 0.081
1. Calculated as “Actual w/o OPV-Average”-”Actual w/ OPV-Average”
2. Calculated as “Reduction in Avg. Cycle Time”/”Actual w/o OPV-Average”

FIGURE 5. TRAJECTORY EXECUTATION TIMES

 9 © 2021 by ASME

learning in Fig. 7, and the estimated risk appears to be the
average of the actual risk at steady state, as shown in Fig. 6. The
success of adaptation would have been much clearer if the risk
estimation were the same as the actual risk for every robot cycle
at steady state. However, this is not possible due to randomness
in trajectory durations. It is also possible that randomness comes
from the hardware and software used. The computer operating
system was not a real-time operating system, so CPU cores could
not be dedicated to running only ROS threads.

The results show that when an obstacle prevented the robot

from executing the original trajectory, the average trajectory
duration was lower when the OPV was created compared to
when the OPV was not created. This was observed with all three
planners tested, shown in bold in Table 4. The nominal trajectory
times were determined by the trajectory planners when no
obstacles were present and serve as a baseline trajectory time.
When the OPV was used, the average trajectory durations were
1.25 seconds shorter with the BiRRT planner, 2.71 seconds
shorter with PRM, and 2.90 seconds shorter with SPARS
compared to cycles times without introducing the OPV. Those

reductions in cycle times corresponded to percentages of cycle
time saved of 4.65% for BiRRT, 6.50% for PRM, and 5.81% for
SPARS when compared to the cycle times without introducing
the OPV. Therefore, the results indicate the ROP algorithm
becomes more beneficial as the computation time of the planner
increases. The observed reductions in trajectory durations are
partially attributed to ROP avoiding the necessity of the robot
backing away from the obstacles. Other factors, such as
selection of planner, clearly influenced the improvement in cycle
time because the reduction in average cycle time was not
constant for all three planners. Results show ROP proactively
smooths reactions, reducing cycle time and increasing
productivity in a workcell with dynamic, unforeseen obstacles.

Another observation is that the PRM planner produced the

lowest standard deviation in the steady state ROP parameters
estimates. That was 0.056 for PRM compared to 0.062 for the
BiRRT planner and 0.081 for the SPARS planner. The PRM
planner also showed a smaller standard deviation in cycle time
when using the OPV compared to the BiRRT and SPARS
planners. The PRM planner utilizes a less random method of
selecting nodes for the planning tree compared to the BiRRT
planner. Therefore, the ROP algorithm may be more beneficial
when used with a planner with more constrained randomness.
The trajectory times for each individual scenario were also
inspected to see if any scenarios led to unusually high trajectory
durations. The results showed that outliers caused the average
trajectory duration for some scenarios to be relatively large, but
most cycles for those same scenarios had close to average
trajectory durations. Therefore, the peaks in trajectory duration
cannot be attributed to individual scenarios.

The results also show that the SPARS algorithm had the

highest averages and standard deviations of trajectory durations
when the robot must avoid the obstacles, with and without the
OPV. The SPARS planner also produced ROP parameter
estimates with higher standard deviation than the other planners.
This result seems contrary to the motivation for using the SPARS
algorithm, per [18]. It was the planner closest to the state-of-the-
art and the planner that should have the lowest computation time
due to node sparsity, but it did not perform as well as the BiRRT
or PRM planners in terms of planning time and producing stable
steady state results. Therefore, the SPARS algorithm does not
appear to be a good candidate for use with the ROP algorithm.

4. CONCLUSION
In conclusion, this paper demonstrates a method for

estimating the risk of passage through volumes between
predicted obstacle pairs. This allows the robot system to respond
to multiple, unforeseen, dynamic obstacles before collisions
become imminent. This is advantageous because it allows for the
creation of faster trajectories that avoid collision situations, as
opposed to waiting to replan trajectories until collision is
imminent. The results showed that when the ROP algorithm
estimates risk and generates the OPV, robot trajectories take less
time on average. Thus, ROP is effective in ensuring safety in

FIGURE 7. RISK OF PASSAGE PARAMETER ESTIMATES

FIGURE 6. RISK ESTIMATES AND ACTUALS

 10 © 2021 by ASME

HRC while respecting productivity. However, randomness in the
robot trajectory planners, which effected the actual measure of
risk used to train the ROP algorithm, made the results appear less
stable than desired. Alternate parameter adaptation and machine
learning techniques will be explored towards mitigating outlier
effects and providing faster convergence of parameter estimates
and better theoretical stability. Future work will also include
introducing obstacles of other geometries besides cylinders and
validating the effectiveness of ROP, with implementation in a
more comprehensive, physical industrial robot control system.

ACKNOWLEDGEMENTS

Funding was provided by the NSF/NRI: INT: COLLAB:
Manufacturing USA: Intelligent Human-Robot Collaboration
for Smart Factory (Award I.D. #:1830383). Any opinions,
findings and conclusions or recommendations expressed are
those of the researchers and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] Nicora, M.L., Ambrosetti, R., Wiens, G.J., and Fassi, I.
“Human-Robot Collaboration in Smart Manufacturing: Robot
Reactive Behavior Intelligence.” ASME Journal of Manuf. Sci.
Eng. Vol. 143 No. 3 (2021): pp. 31-40. DOI:10.1115/1.4048950.

[2] Yang, L., Qi, J., Song, D., Xiao, J., Han, J., and Xia, Y.
“Survey of Robot 3D Path Planning Algorithms.” Journal of
Control Science and Engineering (2016): pp. 1–22.
DOI:10.1155/2016/7426913.

[3] Chao, C., Trautman, P., and Iba, S. “Dynamic Channel:
A Planning Framework for Crowd Navigation.” IEEE Int. Conf.
on Robotics and Automation: pp. 5551–557. Montreal, QC,
Canada, 2019. DOI:10.1109/ICRA.2019.8794192.

[4] Holmes, P.D., Kousik, S., Zhang, B., Raz, D., Barbalata,
C., Johnson-Roberson, M., and Vasudevan, R. “Reachable Sets
for Safe, Real-Time Manipulator Trajectory Design.” Robotics:
Science and Systems XVI Vol. 16 (2020): pp. 100-113.
DOI:10.15607/RSS.2020.XVI.100.

[5] Du, S., Shang, W., Cong, S., Zhang, C., and Liu, K.
“Moving Obstacle Avoidance of a 5-DOF Robot Manipulator by
Using Repulsive Vector.” IEEE Int. Conf. on Robotics and
Biomimetics: pp. 688–693. Macau, China, December 5-8, 2017.
DOI:10.1109/ROBIO.2017.8324497.

[6] Mainprice, J., and Berenson, D. “Human-Robot
Collaborative Manipulation Planning Using Early Prediction of
Human Motion.” IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems: pp. 299–306. Tokyo, Japan, 2013.
DOI:10.1109/IROS.2013.6696368.

[7] Liu, H., and Wang, L. “Human Motion Prediction for
Human-Robot Collaboration.” Journal of Manufacturing
Systems Vol. 44 (2017): pp. 287–94.
DOI:10.1016/J.JMSY.2017.04.009.

[8] Zhang, J., Liu, H., Chang, Q., Wang, L., Gao, R.X.
“Recurrent Neural Network for Motion Trajectory Prediction in
Human-Robot Collaborative Assembly.” Cirp Annals-
Manufacturing Technology Vol. 69 No. 1 (2020): pp. 9–12.
DOI:10.1016/j.cirp.2018.04.066.

[9] Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti,
L.M., and Tolio, T.A.M. “A Probabilistic Approach to
Workspace Sharing for Human–Robot Cooperation in Assembly
Tasks.” Cirp Annals-Manufacturing Technology Vol. 65 No. 1
(2016): pp. 57–60. DOI:10.1016/J.CIRP.2016.04.035.

[10] Streitmatter, G., and Wiens, G.J. “Human-Robot
Collaboration: A Predictive Collision Detection Approach for
Operation Within Dynamic Environments.” ASME International
Symposium on Flexible Automation. Online. July 8–9, 2020.
DOI:10.1115/ISFA2020-9659.

[11] Coleman, D., Șucan, I.A., Chitta, S., Correll, N.
“Reducing the Barrier to Entry of Complex Robotic Software: a
MoveIt! Case Study.” Journal of Software Engineering for
Robotics Vol. 5 No. 1 (2014): pp. 3–16.
DOI:10.6092/JOSER_2014_05_01_p3.

[12] e.Do Technical Sheet. Comau S.p.A. (2017).

[13] Pan, J., Chitta, S., and Manocha, D. “FCL: A General-
Purpose Library for Collision and Proximity Queries.” IEEE
International Conference on Robotics and Automation: pp.
3859–3866. Saint Paul, MN, 2012.
DOI:10.1177/0278364911406761.

[14] Șucan, I.A., Moll, M., Kavraki, L.E. “The Open Motion
Planning Library.” IEEE Robotics & Automation Magazine Vol.
19 No. 4 (2012): pp. 72–82. DOI:10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.

[15] LaValle, S.M., Kuffner, J.J. “Randomized
Kinodynamic Planning.” The International Journal of Robotics
Research Vol. 20 No. 5 (2001): pp. 378–400.
DOI:10.1177/02783640122067453.

[16] Karaman, S., and Frazzoli, E. “Sampling-Based
Algorithms for Optimal Motion Planning.” The International
Journal of Robotics Research Vol. 30 No. 7 (2011): pp. 846–94.
DOI:10.1177/0278364911406761.

[17] Kavraki, L.E., Svestka, P., Latombe, J.C., and
Overmars, M.H. “Probabilistic Roadmaps for Path Planning in
High-Dimensional Configuration Spaces.” IEEE Transactions
on Robotics and Automation Vol. 12 No. 4 (1996): pp. 566-580.
DOI:10.1109/70.508439.

[18] Dobson, A., and Bekris, K.E. “Sparse Roadmap
Spanners for Asymptotically Near-Optimal Motion
Planning.” The International Journal of Robotics Research Vol.
33 No. 1 (2014): pp. 18–47. DOI:10.1177/0278364913498292.

https://doi.org/10.1155/2016/7426913
https://doi.org/10.1109/ICRA.2019.8794192
https://doi.org/10.15607/RSS.2020.XVI.100
https://doi.org/10.1109/ROBIO.2017.8324497
https://doi.org/10.1109/IROS.2013.6696368
https://doi.org/10.1016/J.JMSY.2017.04.009
https://doi.org/10.1016/j.cirp.2018.04.066
https://academic.microsoft.com/paper/3007287549/reference?showAllAuthors=1
https://academic.microsoft.com/paper/3007287549/reference?showAllAuthors=1
http://dx.doi.org/10.6092/JOSER_2014_05_01_p3
https://doi.org/10.1177/0278364911406761
https://ompl.kavrakilab.org/
https://doi.org/10.1177%2F02783640122067453
https://doi.org/10.1177/0278364913498292

