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1  |  INTRODUC TION

The microbiome is important in shaping organismal biology in a wide 
range of eukaryotic species and has been shown to play critical roles 

in host physiological functions and susceptibility to disease (Bayer 
et al., 2008; Gatesoupe, 1999; Hentschel et al., 2012). Research de-
scribing the distribution, structure, and function of the microbiome 
has flourished in the last decade, and in marine habitats these studies 
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Abstract
Shifts in microbial communities represent a rapid response mechanism for host organ-
isms to respond to changes in environmental conditions. Therefore, they are likely 
to be important in assisting the acclimatization of hosts to seasonal temperature 
changes as well as to variation in temperatures across a species’ range. The Persian/
Arabian Gulf is the world's warmest sea, with large seasonal fluctuations in tempera-
ture (20℃ - 37℃) and is connected to the Gulf of Oman which experiences more 
typical oceanic conditions (<32℃ in the summer). This system is an informative model 
for understanding how symbiotic microbial assemblages respond to thermal variation 
across temporal and spatial scales. Here, we elucidate the role of temperature on the 
microbial gut community of the sea urchin Echinometra sp. EZ and identify microbial 
taxa that are tightly correlated with the thermal environment. We generated two in-
dependent datasets with a high degree of geographic and temporal resolution. The 
results show that microbial communities vary across thermally variable habitats, dis-
play temporal shifts that correlate with temperature, and can become more disperse 
as temperatures rise. The relative abundances of several ASVs significantly correlate 
with temperature in both independent datasets despite the >300  km distance be-
tween the furthest sites and the extreme seasonal variations. Notably, over 50% of 
the temperature predictive ASVs identified from the two datasets belonged to the 
family Vibrionaceae. Together, our results identify temperature as a robust predictor 
of community-level variation and highlight specific microbial taxa putatively involved 
in the response to thermal environment.

K E Y W O R D S
Echinometra, gut microbiota, microbial ecology, Persian/Arabian Gulf, sea urchin, thermal 
gradient

www.wileyonlinelibrary.com/journal/mec
mailto:﻿
https://orcid.org/0000-0002-0818-2908
https://orcid.org/0000-0003-0842-7757
https://orcid.org/0000-0001-6087-6424
https://orcid.org/0000-0001-5734-7118
mailto:rketchu1@uncc.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.15990&domain=pdf&date_stamp=2021-06-12


3870  |    KETCHUM et al.

have generally focused on species important for ecosystem function, 
including corals (Hadaidi et al., 2017; Ziegler et al., 2019), sponges 
(Reveillaud et al., 2014), macroalgae (Thurber et al., 2012), seagrasses 
(Hurtado-McCormick et al., 2019), sea urchins (Carrier et al., 2020), 
and mangroves (Lin et al., 2019; Trevathan-Tackett et al., 2019). These 
studies have highlighted dynamic microbial responses to environmen-
tal variables that have been implicated in acclimatization of the host to 
abiotic stressors, either through changes in the abundance of bacteria 
or by colonization of beneficial bacteria (Reshef et al., 2006; Voolstra 
& Ziegler, 2020). Given the importance of the microbiome and the 
fundamental role it plays in overall holobiont function (Bordenstein 
& Theis, 2015; Pita et al., 2018), understanding the factors that drive 
microbial change is crucial. This is especially true at a time in which 
historically rapid climate change is occurring (Konopka, 2009).

Sea surface temperatures are predicted to increase 1–3℃ by 2100 
(Collins et al., 2013), representing a significant challenge to marine 
organisms. Research has unequivocally shown that many marine spe-
cies respond to increases in temperature through altered physiologi-
cal functioning (Shama et al., 2016), behavioral variation (D’Agostino 
et al., 2020; Shraim et al., 2017), disease susceptibility (Howells et al., 
2020), and genomic and epigenomic modifications (Liew et al., 2020; 
Popovic & Riginos, 2020). There are, however, fewer studies charac-
terizing holobiont-associated microbial dynamics in response to el-
evated temperatures. To date, studies have shown that temperature 
influences microbial composition in corals (Wang et al., 2018; Ziegler 
et al., 2017), sponges (Erwin et al., 2012; Vargas et al., 2020), oysters 
(Lokmer & Wegner, 2015), anemones (Mortzfeld et al., 2016), and mus-
sels (Li et al., 2019), among others (Brothers et al., 2018). These studies 
typically focus on a single time-point across a geographic range or tem-
poral variability at a single site (Li et al., 2018; Ward et al., 2017; Woo 
et al., 2017); rarely are these approaches combined. Further, as almost 
every step from sample collection to data analysis has been shown to 
introduce bias, assessing consistent trends using data from many stud-
ies that were not processed in the same manner is inherently unreliable 
(Pollock et al., 2018). Using an approach that includes multiple datasets 
processed using the same methodology would facilitate a robust char-
acterization of how environmental variables drive microbial dynamics 
and elucidate conserved microbial responses to temperature.

To this end, we generated two independent datasets investigat-
ing the relationship between temperature and the gut microbiota of 
the sea urchin Echinometra sp. EZ. We sampled the gut microbiota be-
cause it is integrated with host metabolic and immune systems and is 
a key regulator of host physiology (Sepulveda & Moeller, 2020). E. sp. 
EZ are found along an extreme environmental gradient between the 
Persian/Arabian Gulf (herein the PAG) and the Gulf of Oman (herein 
the GO) which represents an informative system to understand how 
environmental variables impact the microbiome (Burt et al., 2020). 
E. sp. EZ is the most abundant sea urchin in the PAG (densities av-
erage 8.6m−2 across eight sites; Burt JA, unpublished data) and they 
play a significant role in the health and dynamics of coral ecosystems 
in the region as major bioeroders (Downing & El-Zahr, 1987). The 
PAG experiences daily mean summer temperatures regularly >35℃ 
and extremes exceeding 37℃ (Burt et al., 2019; Smith et al., 2017) 

while temperatures in the GO are more typical of oceanic conditions 
(<32℃ in the summer, S. L. Coles (2003)). For our first dataset, we 
sampled in August and February from six reefs located in the PAG 
and GO. For the second dataset, we sampled from one reef in the 
PAG across eight months. We describe community-level differenti-
ation across spatial and temporal gradients, test the hypothesis that 
rising temperatures result in increased community dispersion, and 
explore the dynamics between temperature and key microbial taxa.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Two sampling strategies were implemented in this study, each 
generating an independent dataset. First, adult Echinometra sp. EZ 
(Ketchum, DeBiasse et al., 2018) were sampled in August 2017 and 
February 2018 from six sites along the Arabian Peninsula (Table S1, 
Supporting Information) for a total of 183 samples (Figure 1). This 
dataset is referred to as the “summer-winter spatial series.” Second, 
E. sp. EZ adults were sampled approximately every other month from 
March 2017 to February 2018 (Figure S1, Supporting Information) 
from Saadiyat reef in the PAG, for a total of 120 samples. This data-
set is referred to as the “temporal series.” For both sampling strate-
gies we collected 15–17 individuals at each site and/or time point 
and placed urchins into a 100 L cooler filled with seawater until tis-
sue extractions were performed (within 0–2 h). All of the collection 
sites are shallow (<7 m) and there are no known thermoclines. The 
water column is well mixed and a previous study has shown that the 
difference between bottom temperature and surface temperature is 
only 0.2℃ in the summer (Paparella et al., 2019). Urchins were cut 
in half with sterile scissors and a fragment of intestine closest to the 
anus, and its contents, were removed with sterile forceps and placed 
in RNAlater (Ambion). Tubes were then stored in −20℃ after one 
hour to allow the RNAlater to infiltrate the tissue.

2.2  |  Environmental variables

The summer-winter spatial series involved six sites along the Arabian 
Peninsula. We used NOAA’s Environmental Research Division Data 
Access Program (ERDDAP) website to collect sea surface tempera-
ture data. The temperature data was downloaded using a bounding 
box that covered the study area on the day of collection at 12:00:00 
UTC (temperature was averaged over one day). In addition, a tem-
perature logger (Onset Hobo Tidbit V2) was deployed on the reef 
substrate at Saadiyat reef which recorded at 60-minute intervals for 
the temporal series (Figure S1, Supporting Information). To check the 
accuracy of the data collected from ERDDAP, a Pearson correlation 
was used to test for a significant correlation between temperature 
collected using the two different approaches (Figure S2, Supporting 
Information). Chlorophyll concentrations were obtained from 
MODIS AQUA (https://ocean​color.gsfc.nasa.gov) level 3  monthly 

https://oceancolor.gsfc.nasa.gov
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averaged data, and salinity data was obtained from a numeric ocean 
model: the 1/12 Global Hybrid Coordinate Ocean Model (HYCOM; 
https://www.hycom.org/data/glbu0​pt08/expt-91pt2) at 12:00:00 
UTC on the day of collections.

2.3  |  DNA extraction and PCR amplification

Total DNA from urchin guts and their contents was extracted accord-
ing to the optimized protocol (Method 3) described in Ketchum, Smith, 
et al., (2018). Briefly, the DNeasy Blood & Tissue Kit (QIAGEN) was 
used on ~20 μL of homogenized sample according to the manufac-
turers’ protocols for extracting animal tissue, with a few modifica-
tions. First, we added our sample to 180 μL of enzymatic lysis buffer 
(instead of Buffer ATL); 20 mM TrisCL (pH 8), 2 mM sodium EDTA, 
1.2% Triton, 20 mg/ml lysozyme (as described in DNeasy Blood and 
Tissue Manual). The sample was then incubated for 40  minutes at 
37℃. Next, we added 0.5 mL of 0.5 mm zirconia-silica beads (Fisher 
Scientific) and used a Bead Beater (BioSpec Products) for 40  s at 
2,400–3,800 strokes/min and repeated this for a total of three times. 
Finally, as recommended by the User-Developed Protocol for samples 
preserved in RNAlater, we used 40 μL of proteinase K and 220 μL of AL 
buffer instead of 20 and 200 μL, respectively. These additional steps 
have been shown to more effectively capture traditionally difficult to 
lyse taxa, such as gram-positive bacteria (Ketchum, et al., 2018).

All samples were then quantified using a Qubit dsDNA High 
Sensitivity Assay Kit on a Qubit®  2.0 Fluorometer and visualized 
using a 2% agarose gel. Samples that did not contain sufficient 
DNA were reextracted and only samples that had a concentration 
greater than 2 ng/μL were used downstream (n=318). All extraction 
materials were autoclaved and UV sterilized. DNA extractions and 

PCRs were performed in a sterile hood. DNA extractions were nor-
malized to a concentration of 1  ng/μL prior to PCR amplification. 
PCRs were performed in triplicate 25 μL reactions and pooled 
per individual sample to avoid PCR bias. PCR amplification was 
performed using the universal V3/V4 PCR primers (forward: 5′- 
CTACGGGNGGCWGCAG-3′; reverse: 5′-GACTACHVGGGTATCT
AATCC-3′)  (Klindworth et al., 2013) and followed the protocol de-
scribed in Ketchum, et al., (2018).

To account for potential contamination in the reagents and ex-
traction kits, four blanks were sequenced. One of these blanks was 
processed through the DNA extraction column with water as the 
input to identify kit contaminants and three of the blanks were water 
samples that we ran through PCR and subsequently sequenced.

2.4  |  Sequencing and sequence data processing

MiSeq indexing adaptors were added following the Illumina 16S 
Metagenomic Sequencing Library Preparation protocol and an 
AxyPrep Mag™ PCR Clean-up Kit (Axygen Biosciences, Corning) 
was used. 16S rRNA gene amplicon libraries were sequenced on 
the Illumina MiSeq platform using 2 x 300 bp paired-end reads with 
a 30% PhiX control at the University of North Carolina Charlotte 
sequencing facility. All 322 (318 microbial samples and four blanks) 
samples were spread across two sequencing runs with 15 replicate 
samples on both runs to account for potential run-specific variation. 
PERMANOVA analyses revealed no significant run-specific effect 
based on weighted or unweighted unifrac distance (R2 = 0.161766, 
p-value=0.996, R2 = 0.4529, p-value=0.996, respectively).

Raw reads and quality information were imported into 
QIIME2 v.2020.2 (Bolyen et al., 2019). Each sequencing run was 

F I G U R E  1  Sampling map of all collection sites in August 2017 and February 2018. The six sampling sites for the summer-winter spatial 
series are shown in white and the one sampling site for the temporal series is shown in black. Temperature data was downloaded from 
NOAA’s Environmental Research Division Data Access Program (ERDDAP) website (temperatures were averaged over one day and extracted 
from Aug 15, 2017 and Feb 15, 2018 at 12:00:00 UTC for this plot) [Colour figure can be viewed at wileyonlinelibrary.com]
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independently run through DADA2 (Callahan et al., 2016) with a p-
trim-left-f of 17 and a p-trim-left-r of 21 to remove adapters/prim-
ers, and a quality filter of p-trunc-len-f of 280 and p-trunc-len-r of 
220. The two sequencing runs were then combined into one dataset 
so that it could be filtered and taxonomically annotated more effi-
ciently. The Naïve Bayes classifier was trained on the region of the 
target sequences and taxonomy was assigned on the combined data-
set using Silva 132 reference sequences, clustered at 99% similarity 
(Quast et al., 2012). As the taxonomical annotation was performed 
on the combined dataset, there is direct correspondence between 
ASVs in the spatial and temporal dataset. Sequences matching to 
Archaea, chloroplast, mitochondria, or sequences that were pres-
ent in blanks were filtered from the combined dataset. Using the 
feature-table rarefy command within QIIME2, the dataset was then 
rarified to 10 400  sequences per sample and samples which had 
fewer than 10 400 sequences were removed (a total of five samples 
were removed; A-AF-6, A-DB-6, F-MS-3, A-RG-11, F-MS-19) unless 
specific downstream software required a nonrarefied dataset. This 
dataset was subsequently split back into the summer-winter spatial 
series and the temporal series.

2.5  |  16S microbial community analysis

Significant differences in microbial community composition were 
tested with PERMANOVA using the adonis function in vegan v.2.5–6 
(Oksanen et al., 2013) on the rarified feature table. The statistical 
significance of environmental factors (temperature, salinity, and 
chlorophyll concentration) was analyzed using the function envfit 
within vegan and ordination was performed using NMDS based on 
Bray-Curtis dissimilarity. Pearson correlation was used to test for 
significant correlations between temperature and salinity in the 
two datasets (Figure S3 and S4, Supporting Information). Feature 
tables were imported into ampvis2 (Andersen et al., 2018) to run 
Principal Component Analysis (PCA) using Bray-Curtis dissimilari-
ties, a Hellinger transformation, and the “filter_species” flag set to 
zero. The temporal series was divided into three groups based on the 
temperature on the day of collection: summer (33–34℃), intermedi-
ate (26–32℃), and winter (20–24℃) to reveal large-scale patterns. 
We calculated alpha diversity metrics, including the Shannon diver-
sity index and observed features metric, through the QIIME2 core 
diversity metrics plugin. We then tested for significant differences 
in alpha diversity indices with a Kruskal-Wallis test and applied the 
Benjamini-Hochberg false discovery rate correction for multiple 
comparisons (Thissen et al., 2002).

Next, we tested the hypothesis that thermally stressful condi-
tions may result in an increase in microbial community dispersion as 
the host becomes less able to regulate their microbiome (in line with 
the Anna Karenina Principle (Zaneveld et al., 2017)). In the summer-
winter spatial series, we hypothesized that dispersion would increase 
in August compared to February for the PAG sites due to the unchar-
acteristically hot summer of 2017 (Paparella et al., 2019), which was 
likely physiologically stressful for urchins. For the temporal series, 

we hypothesized that dispersion would increase in summer 2017. To 
test these hypotheses, analysis of multivariate homogeneity of group 
dispersion was quantified by conducting permutation tests based on 
Bray-Curtis dissimilarities and applying Tukey's HSD (PERMDISP2, 
Anderson et al. (2006)) using the package vegan v.2.5–6.

In order to elucidate specific microbial signatures that associate 
with temperature, we used selbal which outperforms other meth-
ods commonly used in microbiome research by selecting the small-
est number of variables with a higher discrimination accuracy (Susin 
et al., 2020). Prior to running selbal, feature tables were filtered to re-
move ASVs that were not consistently present in the data (ASVs that 
were found in less than 20% of samples were removed). The analysis 
of microbiome communities is challenging due to the compositional 
aspect of these data, as the relative nature of ASV abundances can 
lead to spurious correlations. To circumvent these issues, selbal uses 
balances, or relative abundances of two groups of taxa, which pre-
serves the principles of compositional data analysis. Selbal uses an 
algorithm that starts with a scan for two taxa whose balances (or log 
ratios) most closely associate with the response variable, in this case 
temperature. Once these two taxa are selected, the algorithm then 
sequentially adds new taxa to the balance such that the predictive 
power is improved. This process continues until there are no new vari-
ables that can improve the optimization or when the maximum num-
ber of components are reached. Selbal was run on both independent 
datasets with an “n.fold” or “number of folds in the cross-validation 
procedure” of 5, 10 iterations, and the “covar” flag set to NULL (as 
recommended when working with a continuous variable). For the 
summer-winter spatial series, the temperature data consisted of the 
output from the NOAA ERDDAP website. For the temporal series, 
temperature was derived from the HOBO logger and averaged over 
the day of sampling. The raw selbal output can be found in Figure S5 
and S6, Supporting Information. ASVs that selbal found to be predic-
tive of temperature were then extracted from the feature tables and 
their abundances were used to generate bubble plots (Zorz, 2019). 
We performed a search using the Nucleotide Basic Local Alignment 
Search Tool (BLASTn) on the ASVs identified by selbal against NCBI’s 
Nucleotide collection (nr/nt) database in order to identify ASVs to 
species level, where possible. An e-value cutoff of 10−8 was used and 
only BLAST hits with 100% identity were retained.

To explore how ASVs that were predictive of temperature from 
the selbal output fit into the context of the wider microbial net-
work, we conducted network analysis using SpiecEasi (Sparse in-
verse covariance estimation for ecological association inference, 
Kurtz et al., (2015)) v1.1.1 on the two datasets (Supplemental 
Methods, Figure S7 and S8, Supporting Information). Further, we 
used Phylogenetic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt v2.0.0, Douglas et al., (2020)) to 
characterize microbial pathways enriched during warmer con-
ditions (Supplemental Methods, Figure S9 and S10, Supporting 
Information).

DEICODE (Martino et al., 2019), a robust Aitchison PCA, was 
implemented within QIIME2 to identify ASVs responsible for the 
differences between the PAG and the GO by looking for ASVs 
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which drive the clustering along PC 1. The unrarefied summer-
winter spatial series dataset was used with a --p-min-feature-count 
of 10 and --p-min-sample-count of 500. The ordination file out-
put from DEICODE was then exported and the top ten and bot-
tom ten feature loadings were input into Rstudio and plotted in 
a heatmap.

Figures were created in R using ggplot2 and illustrations were 
further stylized in Adobe Illustrator.

3  |  RESULTS

3.1  |  Study Design

Our study design implemented two sampling strategies and resulted 
in two independent datasets. The summer-winter spatial series 
consisted of 183 samples collected from six different reefs in both 

August and February (Figure 1). This dataset covers an extreme en-
vironmental gradient across sites as well as two thermally distinct 
months; August 2017 (summer) and February 2018 (winter). The 
temporal series consisted of 120 samples across eight months from 
one sampling site (PAG-SA; Figure 1) with large seasonal tempera-
ture variation (~17℃).

3.2  |  Differences in microbiota composition and 
diversity in the summer-winter spatial series

The summer-winter spatial series showed differences in overall mi-
crobiota composition, as measured by Bray-Curtis dissimilarities. 
There was clear differentiation between the PAG and the GO along 
PC 1 with PAG-MS samples clustered between samples collected 
from the two seas (Figure 2A). Samples collected from PAG-MS in 
February were differentiated from the rest of the dataset along PC 

F I G U R E  2  Microbial diversity from the summer-winter spatial series. (a) Principal Component Analysis based on Bray-Curtis dissimilarities 
after a Hellinger transformation of bacterial communities from three sites within the PAG and three sites within the GO. The shaded color 
represents collection sites and the shape of the point represents month of collection. (b) PCA showing principal component two and 
three and shaded according to month of collection. (c) Box plots of Shannon Diversity metrics for all collection sites and split by month of 
collection. (d) Box plots of observed features for all collection sites and split by month of collection. Asterisks denote significant differences 
in Shannon Diversity or number of observed features when comparing between month of collection within each site, respectively [Colour 
figure can be viewed at wileyonlinelibrary.com]
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2. Samples collected in August were differentiated from those col-
lected in February along PC 3 (Figure 2B). PERMANOVA analyses 
showed a significant effect of gulf (R2 = 0.1335, p-value<0.001), site 
(R2 = 0.1757, p-value<0.001), month (R2 = 0.0634, p-value<0.001), 
gulf by month (R2 = 0.0367, p-value<0.001), and site by month (R2 

= 0.1134, p-value<0.001) on community composition (Table S2, 
Supporting Information). Envfit analysis showed a significant cor-
relation between NMDS ordination of the microbial community 
structure and temperature (R2 = 0.1850, p-value<0.003), chloro-
phyll concentration (R2 = 0.4581, p-value<0.003), and salinity (R2 = 

F I G U R E  3  (a) Regression model of the seven variables that define the balance for the summer-winter spatial series. The shape of the 
points represents month of collection and color represents the site where the samples were collected. (b) The variables that define the 
balance are taxonomically annotated in the bubble plot and their position in the balance is labelled “Numerator” or “Denominator.” The size 
of the bubble corresponds to the relative abundance in the count table and the color of the bubble represents the month the samples were 
collected [Colour figure can be viewed at wileyonlinelibrary.com]
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0.5185, p-value<0.003, Table S3 and S4, Supporting Information). 
The NMDS ordination plot showed that these three environmen-
tal variable vectors were orthogonal to one another (Figure S11, 
Supporting Information). We used DEICODE to identify the main 
taxa driving the differences along PC 1 (i.e., between the two seas). 
We found that ASVs classified as Spirochaeta (ASV8874), Desulfotalea 
(ASV14864), Bacteroidia (ASV11638 and ASV13084), Roseimarinus 
(ASV5463), and Marinifilaceae (ASV4027) were more abundant in 
the GO and two different Vibrio taxa (ASV12189 and ASV1103), 
Propionigenium (ASV331), and Photobacterium (ASV16623) were 
more abundant in the PAG (Figure S12, Supporting Information).

There were significant differences in the Shannon Diversity 
Index (Figure 2C) when comparing August to February for PAG-DH, 
PAG-MS, and GO-AF. For the number of observed features (or ASVs, 
Figure 2D), there were significant differences between PAG-DH, 
PAG-MS, PAG-RG and GO-AF (p-value <0.05, Kruskal-Wallis; see 
Table S5, Supporting Information for all pairwise comparisons). 
Notably, diversity metrics were higher in August than February for all 
of the PAG sites and, inversely, lower in August than February for all 
of the GO sites. Permutation tests of multivariate dispersion showed 
that dispersion was significantly higher in August than February in 
PAG-MS (Figure S13 and Table S6, Supporting Information).

3.3  |  Specific ASVs correlate with increasing 
temperature across a wide geographic range and 
between summer and winter

In the selbal analysis, we identified ASVs that were associated with 
temperature between collection months at each site in the summer-
winter spatial series. The numerator and denominator in the selbal 
output contains taxa whose relative abundances increase and de-
crease, respectively, with increasing temperatures. Selbal analysis 
determined that the optimal number of variables was seven. With 
these seven ASVs, we obtained a R2 value of 0.945 for the regression 
model (Figure 3A). The relative abundance of four of the seven ASVs 
increased with increasing temperatures (uncultured Vallitalea sp. 
[ASV14750], Propionigenium sp. [ASV331], and two Photobacterium 
sp. [ASV9510 and ASV10617], see Figure 3B) and three of the ASVs 
decreased with increasing temperature (Roseimarinus sp. [ASV16721], 
Vibrio sp. [ASV4517], and Shewanellaceae sp. [ASV4983]).

3.4  |  Differences in microbiota composition and 
diversity in the temporal series

The temporal series showed differences in overall microbiota com-
position, as measured by Bray-Curtis dissimilarities (Figure 4A). 
There was clear differentiation on PC 1 between samples grouped 
by temperature at the time of collection. The major axis of commu-
nity variation (eigenvalues from PC 1, Figure 4B) was significantly 
correlated with the average temperature on the day of collection 
(R = 0.76, p-value <2.2e-16; Figure S14, Supporting Information). 

PERMANOVA analysis showed a significant effect of season (sum-
mer, winter, and intermediate; R2 = 0.12272, p-value<0.001) and 
month (R2 = 0.13967, p-value<0.001) on community composition 
(Table S7, Supporting Information). Envfit analysis showed a signifi-
cant correlation between NMDS ordination of the microbial commu-
nity structure and temperature (R2 = 0.7124, p-value<0.003), with 
weaker correlations with chlorophyll concentration (R2 = 0.1951, 
p-value<0.003), and salinity (R2 = 0.1732, p-value<0.003, Table S8 
and S9, Supporting Information). The NMDS ordination plot showed 
that the salinity vector was orthogonal to the temperature and chlo-
rophyll vectors which were overlapping (Figure S15, Supporting 
Information). There were significant differences between specific 
months for both Shannon Diversity Indices (Figure 4C) and ob-
served features (Figure 4D, Table S10, Supporting Information). 
For the Shannon Diversity Index, February was significantly lower 
than March, May, and July and January was significantly lower than 
May and July. Further, July is significantly higher than November, 
August is significantly lower than July and May, and May is signifi-
cantly higher than both November and September. For observed 
features, February was significantly lower than March, May, July, 
and November. No significant differences in alpha diversity metrics 
were found when comparing between the three different temper-
ature groups after a Benjamini & Hochberg correction (Table S10, 
Supporting Information). Permutation tests of multivariate disper-
sion analyses revealed that dispersion was significantly higher in 
August compared to all other months except for March (Figure S16, 
Supporting Information). No significant differences occurred be-
tween the other months (Table S6, Supporting Information).

3.5  |  Specific ASVs correlate with increasing 
temperature in a sampling dataset with high 
temporal resolution

The selbal analysis identified ASVs that were associated with tem-
perature between collection months in our temporal series. Selbal 
identified that the optimal number of variables was eight and these 
eight ASVs resulted in a R2 value of 0.966 for the regression model 
(Figure 5A). The relative abundance of four of the ASVs increased 
as temperature rose (Propionigenium sp. [ASV331], uncultured 
Vallitalea sp. [ASV14750], and 2 ASVs belonged to Vibrio [ASV12030 
and ASV1103], see Figure 5B) and the relative abundance of the 
other four ASVs decreased (two Vibrio spp. [ASV679 and ASV4517], 
Roseimarinus sp. [ASV5483], and Photobacterium sp. [ASV4592]). 
While there were several ASVs which were taxonomically labelled 
as Vibrio spp., they all represent unique sequence variants.

3.6  |  Consistent responses to temperature in both 
independent datasets

Three identical ASVs were identified as correlating with tempera-
ture in the two independent selbal analyses (these are denoted in 
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Figure 5B by an asterisk in front of the taxonomic ID). These three 
ASVs were Propionigenium sp. (ASV331), uncultured Vallitalea sp. 
(ASV14750), and Vibrio sp. (ASV4517). The Vibrio sp. strain was 
further classified through a BLAST search as Vibrio chagasii (100% 
identity score, expect value 0.0, accession number: MT269630.1). 
V. chagasii became relatively less abundant as temperature in-
creased. We were unable to confidently classify any additional 
ASVs to the species level. Beyond these specific ASVs, there 
was also taxonomic redundancy in the two analyses. Although 
ASV identifiers were different, strains of both Roseimarinus spp. 
and Photobacterium spp. were identified in both selbal analyses. 
However, while the abundance trend for Roseimarinus spp. was 
consistent across datasets, Photobacterium spp. was identified as a 
numerator in the summer-winter spatial series and as a denomina-
tor in the temporal series.

SpiecEasi network analyses retained all of the ASVs output 
by selbal. The selbal ASVs did not consistently co-occur with each 
other in either of the two datasets. Further, they were not identi-
fied as keystone microbes based on their hubbiness (Figure S7 and 
S8, Supporting Information). PICRUSt2 analyses showed that both 
datasets were enriched for pathways related to cell wall machinery 
in the warmer sampling months. Further, both datasets showed an 
enrichment in sucrose biosynthesis and degradation-related path-
ways for samples collected in the cooler months (Figure S9 and S10, 
Supporting Information).

4  |  DISCUSSION

All multicellular organisms associate with a diverse microbiome that 
contributes to the physiology, development, and fitness of their host 
(Voolstra & Ziegler, 2020). A fundamental question in animal-microbe 
interactions is how the structure and function of the microbiome is 

influenced by environmental variables and which variables are the 
main drivers of microbial variation. It is particularly important to 
understand temperature-related microbial dynamics as historically 
rapid climate change is occurring. While assessing community-level 
changes across environmental gradients is informative, extracting 
specific microbial taxa that correlate with environmental variables 
is crucial for building predictive models for diagnosis of, for exam-
ple, dysbiosis, stress responses, or disease states (Rivera-Pinto et al., 
2018). To this end, we generated two independent datasets that 
spanned an extreme thermal gradient with high temporal resolution 
in order to assess both community-level changes, as well as highlight 
temperature-predictive microbial taxa.

In the summer-winter spatial series, the majority of the varia-
tion in the data was explained by collection site where PC 1 differ-
entiated the PAG from the GO. This microbial differentiation was 
congruent with previous analyses on the genetic structure of the 
host species, which showed two populations, one in the PAG and 
one in the GO (Ketchum et al., 2020). The Musandam collection 
site is located within the Strait of Hormuz and is geographically sit-
uated at the connection between the two seas. The intermediate 
geographic location is mirrored in the PCA where the samples from 
Musandam are located between samples from the PAG and GO on 
PC 1. Additionally, this site is thermally divergent from the two seas 
so it is unclear whether this differentiation on PC 1 is a result of 
geographic location or environmental conditions. Differences in mi-
crobiota composition were also identified according to the month 
of sampling. This variation is likely due to seasonal temperature 
changes of about 20℃ in the PAG (S. L. Coles, 2003) and 10℃ in the 
GO (S. Coles, 1997). While there is differentiation in the ordination 
data which correlates with salinity and chlorophyll concentration, 
these variables do not follow the same pattern as temperature and 
their ordination vectors are orthogonal to each other. This makes it 
unlikely that salinity and chlorophyll concentration are responsible 

F I G U R E  5  (a) Regression model of the eight variables that define the balance for the temporal series. The color of the points represents 
the month at which they were collected. (b) The variables that define the balance are taxonomically annotated in the bubble plot and their 
position in the balance is labelled “Numerator” or “Denominator.” The size of the bubble corresponds to relative abundance in the count 
table and the color of the bubble represents month of collection. ASVs which were retained from both datasets in selbal analysis are denoted 
by an asterisk [Colour figure can be viewed at wileyonlinelibrary.com]
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for the differentiation between August and February. It is also 
possible that this differentiation is a result of shifting dietary pat-
terns, although this would likely correlate with chlorophyll concen-
trations and therefore would have been identified in our analysis. 
Interestingly, measures of microbial diversity were higher and gener-
ally more variable in August than February for all PAG sites but in the 
GO sites this pattern was not evident. This increase in alpha diversity 
in the PAG may be an adaptive mechanism which allows the urchins 
to meet their energy and nutrient demands during warmer months 
or could simply be a result of optimal growth temperatures for a 
wider variety of microbiota. In our temporal series, we saw a similar 
pattern in which temperature was a likely driver of community com-
position; samples clustered by the temperature at which they were 
collected and we found a significant correlation between tempera-
ture and community composition. While other factors like salinity 
and chlorophyll concentration may contribute to this differentiation 
(ordination vectors between temperature and chlorophyll concen-
tration were overlapping and temperature and salinity were weakly 
correlated), temperature was the single most contributing factor 
with respect to community composition and ordination. Our alpha 
diversity analysiss revealed a temporal oscillation where diversity 
was generally higher in warmer months, however this relationship 
was not always significant. Overall, temperature was a robust pre-
dictor of community-level variation in both independent datasets.

With both datasets, we tested for the Anna Karenina Principle 
(AKP) (Zaneveld et al., 2017) which states that stressed organisms 
may host more stochastic microbiomes than healthy organisms due 
to the host being unable to regulate their microbiome. In the sum-
mer of 2017, there was a mass coral bleaching event that occurred 
between July and August in the southern PAG and reef-bottom tem-
peratures were among the hottest on record with benthic organisms 
spending about two months at temperatures exceeding 34℃ (Burt 
et al., 2019). Therefore, for the summer-winter spatial series, we 
hypothesized that the 2017 coral bleaching event would be phys-
iologically stressful for urchins and would result in an increase in 
microbial dispersion in August compared to February. Similarly, we 
hypothesized that July and August would be physiologically stressful 
and would result in an increase in dispersion in the temporal series. 
For the summer-winter spatial series we only found evidence for a 
significant increase in dispersion in Musandam between August and 
February. For the temporal series, we found that August was signifi-
cantly more disperse than all of the other months except for March. 
It is unclear why the summer-winter spatial series did not highlight 
an increase in dispersion in August for the southern PAG sites while 
the temporal series did. It is possible that the differences in disper-
sion for the southern PAG sites were swamped by the difference 
between August and February for Musandam (dispersion was higher 
in August for all sites, although not significant). There may also be a 
different abiotic stressor which we have not measured that is only 
affected the Musandam population (e.g., runoff, sewage, or indus-
trial waste). Alternatively, Dhabiya and Ras Ghanada may have been 
more protected from thermal extremes than Saadiyat. However, this 
pattern was not evident in Burt et al., (2019), where temperatures 

on Saadiyat reef paralleled those from Dhabiya and Ras Ghanada. 
With the increased resolution in the temporal dataset, we were able 
to show that dispersion was highest during the peak of the coral 
bleaching event. However, it is unclear why dispersion in March was 
also quite high. There may be another stressor affecting dispersion 
in March that is unaccounted for. Finally, we did not observe an in-
crease in dispersion in July when temperatures began to steadily 
increase. It is possible that we collected urchins in July before they 
became physiologically stressed or that there is a time-lag between 
temperature change and microbial shifts. Here we provide some ev-
idence for the AKP, however, future work is needed to ascertain at 
what temperature E. sp. EZ becomes physiologically compromised to 
better understand the relationship between dispersion and thermal 
stress in sea urchins.

In order to go beyond community-level descriptions, we used 
selbal to identify key microbial signatures whose balances were 
predictive of temperature. We performed this analysis on both in-
dependent datasets and found striking patterns. In addition to the 
taxonomic redundancy in the ASVs that were identified, three ASVs 
were identified by selbal in both datasets. The consistency of these 
ASV trends across the two datasets were also reflected in the puta-
tive functional profiles associated with temperature. The presence 
of the same ASVs across datasets may point to a consistent microbial 
biomarker that is responsible for the maintenance of host homeo-
stasis or is opportunistically proliferating (and may be pathogenic) in 
response to temperature change.

Over 50% of the ASVs identified from the two selbal analyses 
were strains of Vibrionaceae, highlighting a consistent temperature-
dependent response from this family of Proteobacteria. Vibrios, as 
well as Photobacterium spp. (which belongs to the Vibrionaceae fam-
ily), are found in aquatic habitats throughout the world and occupy a 
wide variety of ecological niches, sometimes as beneficial symbionts 
(McFall-Ngai & Ruby, 1991; Thompson et al., 2004) or as potential 
pathogens (Cervino et al., 2008; Fabbro et al., 2012; Newton et al., 
2012). Species in these taxonomic groups have been observed in 
several species of sea urchins (Beleneva & Kukhlevskii, 2010; Hakim 
et al., 2016; Yao et al., 2019) and their abundance has been shown 
to increase in response to temperature in the coral Pocillopora dami-
cornis (Tout et al., 2015). We did not see a pattern in which increased 
temperatures consistently resulted in an increase in Vibrionaceae 
strains, rather we found that some strains increased and some de-
creased in relative abundance. Together, these results point to an 
interesting relationship between Vibrionaceae spp. and temperature 
that warrants further investigation due to the great variability in 
phenotypic and pathogenic profiles within this family.

Two other ASVs were identified in both datasets as predictive of 
temperature and were taxonomically labelled as an uncultured strain of 
Vallitalea sp. (from the Lachnospiraceae family) and Propionigenium sp., 
both of which increase in relative abundance when temperature increases. 
Additionally, Roseimarinus spp. were identified in both analyses, although 
the ASVs differed. Vallitalea is a relatively poorly described genus with only 
three species described to date. These species were isolated from hydro-
thermal systems (Aissa et al., 2014; Schouw et al., 2018; Sun et al., 2019), 
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which may indicate extreme thermal tolerance. Vallitalea guaymasensis has 
been classified as a bacterial indicator species associated with the coral 
Porites lutea from the Gulf of Thailand and Andaman Sea (Pootakham et al., 
2017). However, a study on the conspecific P. lobata from the PAG and GO 
did not find V. guaymasensis in their microbiome data (Hadaidi et al., 2017). 
Propionigenium has been identified as one of the most abundant bacterial 
taxa in the guts of five different sea urchins (Yao et al., 2019) and is likely in-
volved in the metabolism of carbohydrates, amino acids, and lipids (Hakim 
et al., 2016). Propionigenium has also been shown to be involved in a variety 
of different host health benefits, not limited to sea urchins. For example, 
it has been associated with the modulation of the lifespan of the killifish 
Nothobranchius furzeri (Smith, Willemsen, et al., 2017). Unlike Vallitalea sp. 
and Propionigenium sp., Roseimarinus’ abundance decreases as temperature 
increases. Although the exact biological function that Roseimarinus spp. play 
in their host is unknown, it has been isolated in other marine microbial stud-
ies and has been shown to decrease in relative abundance as temperature 
increases in the mussel Mytilus galloprovincialis (Li et al., 2019). Although 
beyond the scope of this study, it would be beneficial to determine whether 
these changes in microbial abundances are a direct consequence of tem-
perature change on the microbes (i.e., changes in relative abundance of 
microbes across season or site is simply due to different optimal growth 
temperatures) or indirect selection of microbial abundance by the host re-
quiring different microbes in response to changing metabolic needs.

Assessing how environmental variables drive microbial diversity un-
derpins our understanding of the relationships between hosts and their 
microbiome. Our sampling strategy has allowed us to characterize the 
microbial gut community across a wide geographic and temporal span 
and implicate temperature as a regulator of community composition. 
We take this further by identifying bacterial taxa whose abundances 
correlate with temperature and find a consistent signature response in 
the two independent datasets. As the PAG is the warmest sea in the 
world, it is a highly informative model for our understanding of the mi-
crobial response to thermal extremes as well as for predicting microbial 
shifts in response to climate change. The observed patterns presented 
in this study align well with the idea that acclimatization through re-
structuring of the microbial community constitutes a dynamic environ-
mental response mechanism. We identified several key microbial taxa 
that may either represent opportunistic pathogens or be crucial for the 
maintenance of host homeostasis during thermal extremes.
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