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Abstract— In this work, we study the interaction of strate-
gic agents in continuous action Cournot games with limited
information feedback. Cournot game is the essential market
model for many socio-economic systems where agents learn and
compete without the full knowledge of the system or each other.
We consider the dynamics of the policy gradient algorithm,
which is a widely adopted continuous control reinforcement
learning algorithm, in concave Cournot games. We prove the
convergence of policy gradient dynamics to the Nash equilib-
rium when the price function is linear or the number of agents is
two. This is the first result (to the best of our knowledge) on the
convergence property of learning algorithms with continuous
action spaces that do not fall in the no-regret class.

I. INTRODUCTION

Reinforcement Learning (RL) has yielded impressive re-
sults in various sequential decision-making problems in
recent years. These successes include playing games with
super-human performance [1], solving complex robotic
tasks [2], [3] and autonomous driving [4]. Some of these
applications focus on a single agent, but many applications
of interest consider groups of the agents (or players). In the
latter case, the agents operate in a common environment,
each of them interacting with the environment and other
agents. This multi-agent setting contains a rich set of models
and has received significant attention in the past several years
(see [5] and references within).

In this paper, we focus on the dynamics of learning agents,
where each agent aims to optimize its long-term expected
return by repeatedly participating in the game. This question
has been mostly studied at two extremes, where the agents
are either fully cooperative [6] or they are fully competitive
(i.e. zero-sum games) [7]. Instead of these extremes, we
focus on the case of general-sum games, where the agents
are self-interested but no adversarially so.

General-sum games have been widely used to model
the interactions and competition in cyber-physical systems
because of the wide range of individual goals and possible
relationships between agents [8]. Each agent in the games
is self-interested, and reward may be conflicting with others,
but often not in a zero-sum manner. Compared to the two
extreme cases, there have been relatively few convergence
results for general-sum games, partly because of the tech-
nical challenge caused by heterogeneous goals and limited
information.
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In this work, we focus on a specific class of general-
sum games where the agents undergo Cournot competi-
tions [9]. Cournot game has been used to model the energy
systems [10], transportation networks [11] and healthcare
systems. It is also one of the most prevalent models of firm
competition in economics. In the Cournot game model, firms
control their production level, which influences the market
price. For example, some electricity markets can be thought
of as a Cournot game, where the production level is the
amount of power produced by the generators, and the price
is decided by the total generation bid and the demand. Each
generator’s payoff is then calculated as the market price
multiplying its share of the supply, subtracting its production
cost [10].1 In this example the generators do not cooperate
with each other, but the total profit is also not zero.

When learning is not needed, there is a wealth of results
for the Cournot competition. For example, when each agent
has full information about the game, including the price
function and the cost function of all other agents, there
are many works characterizing the properties of the Nash
equilibrium of the game [12], [13]. However, when learning
is involved and agents do not have full information, the
properties of the game are not well understood. This is even
the case in the simplest setting, where the agents only receive
the price from the system as the feedback but do not know
the price function form nor the actions of other agents.

To answer what happens when agents learn, we must
model how they learn - or more precisely, what type of
learning algorithms is used. A key technical challenge is
that when learning is used, the Cournot game becomes
stochastic. Currently, most works focus on no-regret al-
gorithms [14], [15] because they only require a minimal
set of assumptions on the game. In addition, the no-regret
definition could be directly translated to the coarse correlated
equilibrium condition [16] for a wide range of algorithms
(e.g., multiplicative-weight [17], online mirror descent [18],
Follow-the-Regularized-Leader [19]). However, while the
theoretical properties of no-regret algorithms are attractive,
they also limit the applicability of these algorithms. In
practice, systems and agents are often not adversarial to
each other, and the competition is often designed to have
specific structures. In many games, it is more natural for
players to use myopic policies such as reinforcement learning
algorithms that directly aim for profit maximization. In
addition, the notation of coarse correlated equilibrium can
be quite weak, and sharper results are often desired.

1In this a first-order approximation of the locational marginal pricing used
by markets in the United States.
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These algorithms can lead to much better performances
than no-regret algorithms, but proving their convergence has
proven to be challenging [5] since the coupling between the
(continuous) actions of the players must be carefully ana-
lyzed. Attempts have been made to discretize the space(e.g.,
Q-learning [20]) then studying the resulting discrete game,
but the dimensionally quickly grows and important features
(e.g., convexity) are hard to retain [21], [22].

In this work, we directly work with the continuous action
and state space by considering agents use policy gradient
learning algorithms. In particular, we assume the class of
policies where the actions are parameterized by the mean
of distributions (e.g., Gaussian policies). The major con-
tribution of this work is in the following: we prove that
when the price function is linear or when there are two
agents, there is a unique Nash equilibrium (NE) in the
stochastic Cournot game, and the policy gradient converges
exponentially quickly to the NE. This is the first result (to
the best of our knowledge) on the convergence property of
algorithms with continuous action spaces that do not fall in
the no-regret class.

The rest of the paper is organized as follows. Section II
covers the background and prior works on standard Cournot
games and policy gradient algorithm. Section III describes
the stochastic Cournot game and sketches the convergence
proof for policy gradient agents in the games. Section IV
provides detailed proof of the convergence result. We provide
several case studies and investigative experiments in Sec-
tion V that demonstrate the convergence behavior of agents
in various settings. Finally, Section VI concludes the paper
and outlines directions for future work.

II. PROBLEM SETUP AND PRELIMINARIES

A. Cournot Game

Definition 1 (Cournot Game): Consider N players pro-
duce homogeneous products in a limited market, where the
action space of player i is its production level xi ≥ 0.
The utility function of player i is denoted as πi(x) =
p(
∑N
j=1 xj)xi−Ci(xi), where p is the market price (inverse

demand) function that maps the total production quantity to
a price in R and Ci(·) is the cost function of player i.

The goal of each player i in the Cournot game is to
choose the best production quantity xi such that maximizes
his utility πi. An important concept in game theory is the
Nash equilibrium, at which state no player can increase their
payoffs by unilaterally changing their strategies. A Nash
equilibrium of the Cournot game defined by (π1, ..., πN ) is
a vector x∗ ≥ 0 such that for all i:

πi(x
∗
i ,x

∗
−i) ≥ πi(x̃i,x∗

−i), for all x̃i, (1)

where x−i denotes the actions of all players except i. In this
paper, we restrict our attention to Cournot games satisfying
the following assumptions:

Assumption: We assume the price function and cost func-
tions:

(A1) The price function p is concave, strictly decreasing and
twice differentiable on [0, ymax], where ymax is the first

point where p becomes 0. For y > ymax, p(y) = 0. In
addition, p(0) > 0.

(A2) The cost function Ci(xi) is convex, strictly increasing,
twice differentiable and p(0) > C ′i(0), for all i.

These assumptions are standard in the literature (e.g.,
see [23] and references within). The assumption p(0) >
C ′i(0) is to avoid the triviality of a player never participating
in the game. The following proposition shows that Cournot
game satisfying the above assumptions has an unique Nash
equilibrium.

Proposition 1: A Cournot game satisfying (A1) and (A2)
has exactly one Nash equilibrium.

Proof of Proposition 1 refers to Theorem 1 in [24].

B. Policy-based Reinforcement Learning

In this work, we adopt a policy-based methods of how
agents would learn and act. For each agent, we assume that
it has (possibly noisy) information of the system states at
time t, which we denote by st. This agent maintains a policy
πθ(·|st), which is a probability distribution on the action it
would take, conditioned on the agent’s information st. At
each time step, after the agent picks actions at ∼ πθ(·|st),
the system releases reward. Subsequently, players update
their policy parameters along the gradient direction of their
long-term expected reward. Such learning procedure is called
policy gradient method [25] in the literature. As a key
permise for the idea, the policy long-term reward is,

J(θ) = Eτ∼pθ(τ)[
∑
t

r(st,at)] (2)

and the gradient is given by,

∇θJ(θ) = Eτ∼pθ(τ)[(

T∑
t=1

∇θ log πθ(at|st))(
T∑
t=1

r(st,at))] ,

(3)
where τ and J(θ) are trajectories and the expected trajectory
return under policy πθ, respectively, and ∇θ log πθ(at|st))
is the score function of the policy. Various of policy gradient
methods have been proposed by estimating the gradient (3) in
different ways, including REINFORCE [25], natural policy
gradient [26] and actor-crtic algorithms [27].

III. STOCHASTIC COURNOT GAME

We discuss the main convergence results in this section.
As briefly mentioned, we consider policy-based models of
how agents choose and evolve their actions. In particular, as
the agents only get the reward as feedback and nothing else,
the dynamics in Section II-B reduces to the stateless version.
This is consistent with the practice of many social-economic
systems (e.g., energy markets [28]), where providing full
feedback is either impractical or explicitly disallowed due
to privacy and market power concerns.

In particular, we consider a policy that is parameterized by
the mean of a distribution. This model includes many popular
algorithms, for example, the ubiquitous Gaussian policies
and their extensions [29]. Let θi denote the mean of player
i’s action, and Xi to be a zero-mean random variable. For

3562

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 31,2021 at 16:36:01 UTC from IEEE Xplore.  Restrictions apply. 



convenience, we assume it is continuous and has a bounded
density function denoted by fi(Xi). We say Xi is unimodal
at mean if fi has a global maximum at the mean and no
other isolated local maxima 2.

At each time step, player i choose the action to play as
ai ∼ πθi(·) = θi + Xi. Note that in most Cournot games,
the action is interpreted as quantity, that cannot be negative.
Therefore, player i has to play by drawing a quantify from
the rectified distribution (θi+Xi)

+, where a+ = max(a, 0).
Under the Cournot game setup, the expected profit in Eq. (2)
can be written out as the follows,

Ji(θi;θ−i) = EX

p
 N∑
j=1

(θj +Xj)
+

 (θi +Xi)
+

−Ci((θi +Xi)
+)
]
.

(4)

and the gradient value in Eq. (3) equals,

∇θiJi = E

[
1(θi +Xi ≥ 0)

{
p′
(

N∑
j=1

(θj +Xj)
+

)
(θi +Xi)

+p

(
N∑
j=1

(θj +Xj)
+

)
− C′

i(θi +Xi)

}]
, (5)

where 1(·) is the indicator function.
We call the game associated with these Ji’s the stochastic

Cournot game, where player i chooses θi, observe the
profit Ji, and update θi according to the payoff gradient.
The Nash equilibrium of the stochastic Cournot game is
defined as, (θ∗1 , ..., θ

∗
N ) such that ∇θ∗i Ji = 0,∀i. The form

of (5) has made analyzing the system dynamics difficult
compared to standard Cournot games. Firstly, because the
actions are rectified, the profit of player i not long just
depends on the sum of the other players (as in a Cournot
game), but it actually depends on each of the other players’
parameters. This rules out many elegant and simple results
on the existence and uniqueness of Nash equilibria [30],
[31], [32], [33]. Secondly, although the realization fo the
actions are nonnegative, it is not obvious that θi’s need to
be nonnegative, or even bounded. The main result in the
paper is to overcome these challenges and show that under
some assumptions, the game is well-behaved and policy
gradient updates converge exponentially quickly to the Nash
equilibrium in Stochastic Cournot games.

Theorem 1: Consider a stochastic Cournot game satisfy-
ing the assumptions (A1) and (A2). Suppose each player’s
policy is parameterized as the mean θi and a zero-mean
random variable Xi that is unimodal at the mean with infinite
support, and suppose that all players follow policy gradient
in (5) to update their mean. Then the policies converge to the
Nash equilibrium exponentially quickly for all initializations
either of the following condition holds:

1) The price function is linear.
2) The number of players equals two.

2For example, Gaussian and uniform distributions are unimodal under
this definition.

The condition of the theorem includes Gaussian policies,
which is a natural choice for continuous action spaces, and
such a form also includes popular neural network policies [2]
where the mean can be parameterized via a neural network.
We also do not restrict the players to be symmetric, and
each of the players would adopt different variances or even
have completely different classes of distributions. The infinite
support requirement of the distribution is a technicality and
can be weakened, although it would make the proofs much
more cumbersome.

The proof of Theorem 1 proceeds in three lemmas. We
defer the full proofs of these lemmas to Section IV and sketch
the steps in the proof here. The first step in the proof is to
show that we can restrict the actions of the players to a
compact region using the following lemma:

Lemma 1: Under the assumptions of Theorem 1, θi can
be restricted to [θi, ymax], where θi is a constant.

This lemma essentially confines the choices of the players
to a compact interval, which sets up the rest of the proof.
As a reminder, ymax is the point where the price function
becomes 0. The proof of this lemma is based on showing that
player i’s profit will be suboptimal if it chooses an θi outside
of the interval, regardless of other players’ choices. The
detailed proof of Lemma 1 could be found in the extended
version [34].

Interestingly, to show the parameters of the policy gra-
dients converges to the Nash equilibrium of the stochastic
Cournot game for the two cases stated in Theorem 1, we
need two different proof techniques. Therefore, we separate
them into two lemmas as stated below.

Lemma 2: Under the assumptions of (A1)-(A2) and sup-
pose the market price is linear, the policy gradient updates
converge to the unique Nash equilibrium exponentially fast
under all initial conditions.

Lemma 3: Under the assumptions of (A1)-(A2) and sup-
pose there are only two players, the policy gradient updates
converge to the unique Nash equilibrium exponentially fast
under all initial conditions.

We close this section with two remarks. Firstly, our proof
provides the sufficient conditions for the convergence of
policy gradient in Cournot games, that is either the price
function is linear, or the player number is no more than
two for general price function. However, these may not be
necessary. We provide a three-player example with quadratic
price function in Section V-C, where we also observe con-
vergence behavior. Secondly, it should be noted that in
practice, some players may decide to not follow the policy
gradient updates and use other learning algorithms (or act in
adversarial manners). We provide some empirical evaluations
of the system robustness in Section V-C, by assuming a
small portion of players is acting randomly. Both directions,
1) generalizing the convergence proof to a broader class
of games and 2) dynamics under heterogeneous/adversarial
learning agents are important as future works.
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IV. PROOF OF THEOREM 1

In this section, we prove the two major lemmas regarding
the convergence result stated in the previous section.

A. Proof of Lemma 2

Let G denote the Hessian of the game, so

Gij =
∂2Ji
∂θi∂θj

=
∂gi
∂θj

.

Focusing on the diagonal terms, we have

Gii =
∂2Ji
∂θ2i

= E

[
1(θi +Xi ≥ 0) ·

{
p′′
(

N∑
j=1

(θj +Xj)
+

)

·(θi +Xi) + 2p′
(

N∑
j=1

(θj +Xj)
+

)
− C′′

i (θi +Xi)

}]
< 0,

(6)

which is negative by assumptions (A1) and (A2). A game is
said to be a concave N-player game [35] if Gii < 0,∀i and
the action space is convex and compact. Therefore, it is a
concave N-player game. The following proposition is given
in [35] as a sufficient condition to show when gradient-based
algorithms converge to Nash equilibriums:

Proposition 2: Let G denote the Hessian of a concave N-
player game. If GT +G is negative definite over the space
of actions, there is a unique Nash equilibrium and the policy
gradient dynamics approach it exponentially quickly for all
initializations.

Using Proposition 2, it suffices for us to show that the
negative definiteness ofGT+G under the stochastic Cournot
game. The main challenge of proving the negative definite-
ness lies in the expectation term, and we need to relate the
properties of the Hessian of a function to its expectation. The
following proposition tackles the aforementioned challenge
and relates the Hessian property to its expectation.

Proposition 3: Let f : RN → R be a continuous function
and suppose that the first and second order partial derivatives
exist for all points except possibly for a set of measure 0.
Let G be the Hessian of f , whenever it exists. Now consider
the function f̂ : RN → R, where f̂(y) = EXf(y +X) and
X is random vector in RN , with continuous and bounded
density function and infinite support. Let Ĝ be the Hessian
of f̂ . Then: i) If GT+G is negative semidefinite at all points
where G exists, then ĜT + Ĝ is negative semidefinite. ii) If
GT +G is negative definite for a set of measure larger than
0, then ĜT + Ĝ is negative definite.

Proof: The proof of this proposition is straightforward.
By the assumption on the random vector X , we can switch
the order of differentiation and the expectation. In addition,
the density being continuous allows us to ignore the points
where G does not exist. Then

vT (GT (y) +G(y))v

= EX

[
vT (GT (y +X) +H(y +X))v

]
≤ 0,

for any v. Now suppose GT (y+x)+G(y+x)) is negative
definite for set of positive measure, then by the continuity

of the density function, vT (GT (y) + G(y))v < 0 for all
nonzero v and ĜT + Ĝ is negative definite.

Let fi(x) = p(
∑
i x

+
i )x

+
i , which is continuous and twice

differentiable except for a measure zero set on RN . Since
Ji = E[fi(θ + X)], we need to show f =

[
f1 . . . fN

]
satisfies the condition of Proposition 3. Given a vector x,
without loss of generality, assume that x1, . . . , xk ≥ 0 and
xk+1, . . . , xN < 0. The second order derivatives of f are,

∂2fi
∂xi∂xj

=1 (xi ≥ 0) ·{
p′′(
∑
l x

+
l )xi + 2p′(

∑
l x

+
l )− C

′′
i (xi), i = j

1(xj > 0)
(
p′′(
∑
l x

+
l )xi + p′(

∑
l x

+
l )
)
, i 6= j

.

Because of the indicator on both xi ≥ 0 and xj ≥ 0,
the Hessian is only nonzero for the upper left block. In this
block, we have ∀i, j ≤ k,

∂2fi
∂xi∂xj

=

{
p′′(
∑k
l=1 xl)xi + 2p′(

∑k
l=1 xl)− C

′′
i (xi), i = j

p′′(
∑k
l=1 xl)xi + p′(

∑k
l=1 xl), i 6= j,

.

When the price function is linear, the second order deriva-
tive term vanishes, i.e. p′′(

∑k
l=1 xl) = 0. Therefore, we have,

∂2fi
∂xi∂xj

=

{
2p′(

∑k
l=1 xl)− C ′′i (xi) if i = j, i, j ≤ k

p′(
∑k
l=1 xl) if i 6= j, i, j ≤ k

Now we can write G as G1 +G2 +G3 where

G1 =



p
′(
∑k
l=1 xl) · · · p′(

∑k
l=1 xl)

...
. . .

...
p′(
∑k
l=1 xl) · · · p′(

∑k
l=1 xl)


0 · · · 0

...
. . .

...
0 · · · 0


0 · · · 0

...
. . .

...
0 · · · 0


0 · · · 0

...
. . .

...
0 · · · 0




(7)

Both G2,G3 are diagonal matrices. For G2, it has the i’th
component being p′(

∑k
l=1 xl) for i ≤ k and 0 for i > k.

Since Xi have infinite support, there exists cases where k =
N (all player sample non-negative actions) for a measure
larger than 0 set, in which G2 is negative definite. For G3,
it has the i’th component being −C ′′i (xi) ≤ 0 for i ≤ k and
0 for i > k, thus it is negative semi-definite. Therefore, it
suffices for us to show the negative semi-definess of G1.

The eigenvalues of G1 in Eq. (7) are the combination
of eigenvalues of the upper left and lower-right matrices.
Eigenvalues of the upper left matrix are kp′(

∑k
l=1 xl) < 0

and 0 (k− 1 repeats), and eigenvalues of the lower right are
all zeros. Thus G1 is negative semi-definite.

Therefore, there exists an measure nonzero set of actions,
such that G = G1 + G2 + G3 is negative definite. By
Proposition 3, we have the Hessian of (J1, ..., JN ), that is
Ĝ is negative definite.

B. Proof of Lemma 3

Now, consider the two-player Cournot games with general
price function p(·) under assumption (A1) and (A2). There
are four cases considering the positiveness of x1 and x2.
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a) x1, x2 ≥ 0:

Ga =

{
p′′(x1 + x2)xi + 2p′(x1 + x2)− C ′′i (xi), i = j,

p′′(x1 + x2)xi + p′(x1 + x2), i 6= j,

b) x1 < 0, x2 ≥ 0:

Gb =

[
0 0
0 p′′(x1 + x2)x2 + 2p′(x1 + x2)− C ′′2 (x2)

]
c) x1 ≥ 0, x2 < 0:

Gc =

[
p′′(x1 + x2)x1 + 2p′(x1 + x2)− C ′′1 (x1) 0

0 0

]
d) x1 < 0, x2 < 0:

Gd =

[
0 0
0 0

]
The game Hessian matrix thus follows,

Ĝ = E [1(x1, x2 ≥ 0)Ga + 1(x1 < 0, x2 ≥ 0)Gb

+1(x1 ≥ 0, x2 < 0)Gc + 1(x1 < 0, x2 < 0)Gd] , (8)

Ga is a strictly diagonally dominant matrix since the
magnitude of the diagonal entry is strictly larger than the
sum of the magnitudes of all the other (non-diagonal) entries
in each row, i.e., |p′′(x1+x2)xi+2p′(x1+x2)−C ′′i (xi)| >
|p′′(x1+x2)xi+p′(x1+x2)|,∀i. Given that Gb,Gc,Gd are
all diagonally dominant matrices, Ĝ in Eq. (8) is a strictly
diagonally dominant matrix . Therefore, the eigenvalues
of matrix Ĝ are all in the left–half plane (i.e., the real
parts of eigenvalues are negative) by the Gershgorin circle
theorem [36]. Proposition 4 in [37] showed that when all
eigenvalues of the Hessian are in the open left–half plane,
then the Nash equilibrium is an exponentially stable fixed
point of the dynamical system generated by the gradient
descend algorithm.

V. NUMERICAL EXPERIMENTS

In this section, we exam the performance of policy gradi-
ent algorithms in various of Cournot games. We first verify
the convergence behavior under linear price and two-player
cases. Next, we provide investigative studies on the system
behavior under multi-player and players with random actions
scenarios is well as intuitions for the robustness behavior.

A. Experiment Setup

We perform all the experiments using the natural policy
gradient algorithm [26] with a Gaussian policy. Following
the derivations in Section II-B, the gradient with respect to
the policy parameter θi follows,

∇θiJi(θi) = Ex[πi(xi, x−i)∇θi log fθi(xi)]

=
1

N

N∑
i=1

π̂i∇θ log fθ(xi) , (9)

where πi(xi, x−i) is the payoff function of player i and π̂i
is the observed payoff. In the above formula, fθi(xi) = θi+
Xi is the decision making policy for player i and Xi ∼
N(0, σi). For the action, we have xi = (µi +Xi)

+, where

(a) G1 (b) G2

(c) G3 (d) G4

Fig. 1: Convergence behavior of policy gradient in stochastic
Cournot games: (a)-(b) are games with linear price and (c)-
(d) are two-player games with general price functions.

the action is truncated to be non-negative. We choose the
standard deviation for each player the same as σ = 0.05. All
experiments are run using a 2.2 GHz Intel Core i7 Macbook
Pro with 16 GB memory.

B. Cournot Game Examples

In this section, we verify the convergence behavior of the
proposed algorithm in four example Cournot games, with
different price and individual cost settings. G1: three-player
with linear price function p(x) = 1 − (x1 + x2 + x3) and
no individual cost Ci(xi) = 0,∀i. The Nash equilibrium
is x∗1 = x∗2 = x∗3 = 1

4 . G2: three-player with linear price
function p(x) = 1− (x1 + x2 + x3) and differnet individual
cost Ci(xi) = 0.1 · i · xi for player i. The Nash equilibrium
is x∗1 = 0.3, x∗2 = 0.2, x∗3 = 0.1. G3: two-player quadratic
price function p(x) = 1−(x1+x2)

2 without cost. The Nash
equilibrium is x∗1 = x∗2 =

√
1/8 ≈ 0.3536. G4: two-player

cubic price function p(x) = 1 − 1
2 (x1 + x2)

3 without cost.
The Nash equilibrium is x∗1 = x∗2 = 3

√
1/20 ≈ 0.3684.

In all of the games, each player simultaneously picks a
production level. The price is determined by the sum of
productions and broadcasted back to all players. This game
is repeated multiple times with all players use policy gradient
to learn and act. The dynamics of the policy parameter
(i.e., the mean) are plotted in Figure 1. In all simulated
games with different initializations and settings, the policy
parameters converge to the Nash equilibrium, which verifies
the theoretical results in Section III.

C. Investigative Studies

In this section, we provide two investigative studies relat-
ing to system performance under more general setups: 1)
multi-agent Cournot game with non-linear price function;
2) hetergenous players that do not follow policy gradient
updates. Note that our theoretical result in Section III does
not apply to the following two cases. G5: three-player with
quadratic price function p(x) = 1 − (x1 + x2 + x3)

2 and
no cost. G6: three-player with linear price function p(x) =
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(a) G5 (b) G6

Fig. 2: Dynamics of policy gradient beyond the convergence
condition provided in Theorem 1.

1− (x1 + x2 + x3) and no individual cost. One player does
not follow policy gradient updates.

Fig 2 shows that both the three-player general price and
heterogeneous players cases also converge to some equilibria,
though they do not satisfy the convergence conditions in
Theorem 1, These results are promising in the sense that
our results might be able to generalize to a broader class
of games, and theoretically proving these would be valuable
future work. There may also be settings where players are
malicious, but designing optimal adversarial tactics and the
detection algorithms, by themselves are topics that contain a
vast body of literature and is beyond the scope of this work.

VI. CONCLUSION

In this paper, we study the interaction of strategic players
in Cournot games with limited feedback. We proved the
convergence of policy gradient reinforcement learning to the
Nash equilibrium, where player’s policy is parameterized by
the mean, under two conditions: either the price function
is linear or there are two players. Extending the results to
more general conditions such as multi-player general price
functions would be an important future direction.
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