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Abstract—The power flow (PF) problem is a fundamental
problem in power system engineering. Many popular solvers like
PF and optimal PF (OPF) face challenges, such as divergence and
network information sharing between multi-areas. One can try
to rewrite the PF problem into a fixed point (FP) equation (more
stable), which can be solved exponentially fast. But, existing FP
methods are not distributed and also have unrealistic assumptions
such as requiring a specific network topology. While preserving
its stable nature, a novel FP equation that is distributed in nature
is proposed to calculate the voltage at each bus. This distributed
computation enables the proposed algorithm to compute the
voltages for multi-area networks without sharing private topology
information. Unlike existing distributed methods, the proposed
method does not use any approximate network equivalents
to represent the neighboring area. Thus, it is approximation-
free, and it also finds use cases in distributed AC OPFs. We
compare the performance of our FP algorithm with state-of-the-
art methods, showing that the proposed method can correctly find
the solutions when other methods cannot, due to high condition
number matrices. In addition, we empirically show that the FP
algorithm is more robust to bad initialization points than the
existing methods.

Index Terms—Distributed power flow, fixed-point equation,
multi-area network power flow, ill-conditioned problems

NOMENCLATURE
Bold signifies a vector.

(ap,bp,cp)  Three tuple describing the circle representing
the real power equation.
(aq,bg,cq)  Three tuple describing the circle representing

the reactive power equation.
1 Vector of 1’s of appropriate length.

AS Vector of difference between the actual and
calculated apparent powers at all buses in the
network.

AV Vector of change in voltage state at all buses
in the network.

B Vector with bus type information of all buses
in the network.

by Vector of susceptances of all branches connect-
ing bus d and its neighbors A/ (d).

g4 Vector of conductances of all branches con-
necting bus d and its neighbors N(d).

0p, Oq Centers of the circles representing real and
reactive power equations respectively.

u Vector with concatenation of all real

(vg.r Yk € N(d)) followed by all imaginary
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(vg,i Yk € N(d)) voltage
neighboring buses to bus d.
v Vector of complex voltages at all buses in the
power network.
Apparent power mismatch of a bus with the
largest mismatch in the entire power network.
A Load (real, reactive powers) and generation
(real power) scaling factor.
N(d) Set of neighboring buses connected to bus d.
¢ Tolerance for the convergence of the algorithm.

parts of the

ct Orthogonal circle that passes through the inter-
sections of the real and reactive power circles.
9d.k, bak Conductance and susceptance of the branch

connecting buses d and k.
J Jacobian matrix.

Pds qd Net real and reactive power injections at bus d.

P, Q; Specified net real and reactive power injections
at bus 1.

Qmaz, Qmin Upper and lower reactive power limits of a PV
bus.

Tp, Tq Radii of the circles representing real and reac-
tive power equations respectively.

Vd,r, Vdi Real and imaginary parts of the complex volt-
age (vq) at bus d.

Viey Specified voltage magnitude of a PV bus.

I. INTRODUCTION

The power flow problem is one of the canonical problems
in power engineering and it is frequently used in power system
operation and planning studies [1], [2]. Existing power flow
methods mostly rely on iterative methods such as Newton-
Raphson (NR) [3] or fast decoupled load flow (FDLF) [4],
[5]. These algorithms have been the workhorses of the power
industry and have performed well most of the time. Addi-
tionally, due to the popularity of electric and autonomous
vehicles, the state power grids are seeing an alarming demand
growth, and some utilities have even issued statements about
overloaded circuits [6]-[9]. Furthermore, this demand growth
is also coupled with commercial and industrial developments.
As large-scale development of renewable resources and dis-
tributed generation push systems to operate in new regimes,
the existing algorithms can experience convergence issues,
especially when systems operate close to their loadability
limits [10]-[13]. Therefore, the need for new efficient and
robust power flow algorithms to complement these existing
methods remains despite decades of studies [14].

Algorithms like NR can be thought as variants of descent
algorithms (or approximate descent in the case of FDLF) that
modifies the solution iteratively. A fundamental reason for why
these algorithms can fail to converge to a solution is simply
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because the geometry of power flow is not convex [15], [16].
For example, NR uses the Jacobian to find the direction of
the steepest descent. Because the power flow equations are
nonlinear and non-convex, there are many local minimums
and saddle points, and the Jacobian-based power flow solvers
fails to converge to a decent solution. This is because the
gradient value becomes zero at these points and the Jacobian-
based power flow solvers get stuck at these points. To prevent
the algorithm from getting stuck, it becomes important to
pick “good” initial starting points [17]-[20]. Consequently,
a number of methods have been developed to overcome the
sensitive dependence on the initial guess [21]-[24].

As systems start to operate closer to their limits, picking
better initialization points becomes insufficient. Since the Jaco-
bians for all points that are close to the boundary of the feasible
power flow region have eigenvalues close to O (they loose
rank), they necessarily become ill-conditioned and iterative
algorithms may diverge [25]-[27]. To avoid this phenomenon,
a class of non-divergent power flow algorithms was developed
to accelerate or decelerate the updates based on the condi-
tioning of the Jacobian [28]-[31]. However, these approaches
can still be sensitive to the initial guess and sometimes exhibit
oscillatory behavior, where the solutions may neither converge
nor diverge. An approach using complementarity conditions is
developed in [32], but it can reach local minimums or saddle
points instead of the true power flow solution. Energy-function
analysis based on mechanical models can help algorithms to
escape these stationary points [33], but implementing them
for different bus types in a practical power system is non-
trivial. Holomorphic embedding is used in [34], [35], but
these algorithms are slower and require very high precision
machines. Genetic algorithms such as [36] and [37] typically
use Newton-Raphson (NR) as an inner loop, thus can struggle
when the inner NR loop diverges. Robust NR power flow
(e.g., [38] can prevent divergence, but may lead to algorithms
that stall rather than converge to a true solution).

Recently, a new class of power flow formulations based on
fixed point equations has been proposed mainly to overcome
this ill-conditioning problem. This class of power flow solvers
also overcome the algorithmic challenges present in descent
algorithms [39], [40]. The basic idea is to write the power
flow equations in a form of v = f(v), where v is the
complex voltage and a fixed point of the function f [41]. If this
relationship can be found, then a simple algorithm to find the
fixed point is to repeatedly apply the function f. Furthermore,
if the iterates converge to the fixed point, then it will converge
exponentially quickly. The challenge is to find a suitable f,
which have only exists for restricted class of systems. For
example, the results in [40], [42] apply to networks with
only PQ buses, and the result in [39] only applies to purely
inductive (lossless) radial networks. Compared to the works
in [43] and [44], they use matrix-based (i.e., needing to invert
the Jacobian matrix), which experiences the same difficulty
as more traditional power flow methods when the network
becomes ill-conditioned. Therefore, there is a need for a fixed
point function f that has no such limitations.

Hence, in this paper, we present a novel fixed point formu-
lation of the full AC power flow equations that is applicable

to networks with arbitrary topologies and mixture of PQ and
PV buses. Additionally, with the restructuring of power sector,
there is a need for localized algorithms between different areas
of the system operated by different entities. This calls for
distributed fixed point algorithms. Distributed methods like
[45]-[47] use approximate network equivalents to represent
the other area connected via a tie line but they are prone
to inaccuracies. This work presents a distributed fixed point
method that is also approximation-free and hence it is not
prone to inaccuracies. This approach is based on a coordinate
transformation, where power flow solutions are interpreted
as the intersections of circles, where the parameters (center
and radius) of the circles depend linearly on the voltages of
the neighboring buses. This formulation can be thought as a
generalization of the PV noise curve often used to visualize
power transfer between two buses. Computationally, only the
intersection of two circles needs to be calculated, which
involves a series of simple algebraic computations. Therefore,
this approach is much cheaper than other algorithms (e.g., NR)
that require matrix calculations.

To verify the performance of our algorithm, we test it on
the standard IEEE systems, including large ones with 2383
and 3375 buses. We compare our approach with NR, FDLF
and non-divergent power flow algorithms. We show that when
the loading is heavy, our algorithm is able to converge to
the right solution while the other algorithm can diverge or
become unstable. In addition, we show that our method is
much more robust to random initialization points than the other
methods. It is important to note that we are not advocating
to replace existing power flow solvers. These algorithms have
been highly optimized and do perform extremely well in many
situations. Rather, the proposed algorithm in this paper can be
used as a complementary tool by the system operators when
conventional algorithm diverge or stall.

The paper is organized as follows: Section II introduces
the rectangular power flow equations and show how they can
be thought as intersections of circles. Section III discusses
the fixed point formulation of the power flow equations and
walks through a three-bus example. Section IV presents the
main algorithm and its distributed feature with an example.
Section IV-B introduces a 3-tuple vector form of circles
and shows how closed-form formulas with good numerical
properties can be found using the vector notation. Section V
shows numerical results of our proposed algorithm compared
against existing state-of-the-art algorithms on different IEEE
benchmark networks. Section VI concludes the paper.

II. POWER FLOW EQUATIONS AND CIRCLES
A. Power Flow Equations in Rectangular Coordinates

To develop a distributed fixed point equation, first we have
to formulate the traditional power flow equations at a bus in
a distributed framework. This means that in order to solve
for voltage at a bus, we must require only its neighboring
bus information. This section presents this formulation using
power flow circles.

Throughout this paper we use rectangular coordinates where
a bus is index by d; py and g4 are the active and reactive
powers, respectively; vy, and vy ; are the real and imaginary
parts of the bus voltage, respectively; and N (d) is the set of
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(a) 3-bus system.

Fig. 1: Active and reactive circles for a three-bus system.

neighboring buses connected to bus d. We adopt the standard IT
model of transmission lines and write the admittance of a line
between buses d and k as ggx + jbgr. We assume that by, < 0
for all lines (lines are inductive). Shunt admittances and tap
changing transformers are modeled with fixed tap ratios and
incorporated into the admittance matrix using 7 equivalent
representations.
In these notations, the power flow equations become:

(1a)
(1b)

2 2
Pd =1td1 Vg, +ta2 - Vir+td1 - Vg, +ta,3 - Va,i,

2 2
qd =1%da - Vg, —la3 - Var +tda-Vg; +ld2 " Vd

The parameters ¢4 1,%4,2,%4,3,t4,4 are given by

ta1 = — Z Ok,dy td2 = Z (Vk,r Gk, d — Vr,iOk,d),
keN(d) keN(d)
tas = Z (Vk,rbk,a + Vk,iGk.d)s tda = Z b.q-
keEN(d) kEN ()

Since the terms t4; and tgq4 are always negative, (la)
and (1b) describe two circles in the variables vgq, and vg;.
We call the circle described by (la) the active power circle
parametrized by its center o, and radius r,; similarly, we say
that (1b) describes the reactive power circle parameterized by
center o, and radius r,. These parameters are given by:
—tg2 —t4,3 tq3 —taz2
O = (275(1,1 " 2tqn ) » %= (Qtd,4’ 2tg.4 ) ’ (22)

2 2
pa (taz2)” + (tas)
=) 2E 4 2] T ds) 7h
Tp \/tcu + iz, (2b)
2 2
qa , (tas)” + (taz2)
— ) ) 2
"a \/td,4 + 4t§74 (20)

Fig. 1 shows a three bus network. The line admittance of
all branches are 1 — 7 - 1.5. Bus 1 is considered to be a
slack bus with a voltage of 1 p.u., while buses 2 and 3 are
considered to be PQ buses. To demonstrate how the circles
are drawn, assuming that we know the voltage phasor values
at buses 1 and 3, using (2), as shown in Fig. 1b, we can
calculate the centers and radii for the power flow circles in
(1) corresponding to bus 2. Similarly, we can also draw the
power flow circles at bus 3 when the voltage phasor values

radius = 0.3808
(b) P and Q at bus 2.

(c) P and Q at bus 3.

Bus 1 is the slack bus and buses 2 and 3 are PQ buses.

at buses 1 and 2 known. The intersection points A and B in
Fig. 1b represents the voltage phasor (power flow) solution at
bus 2.

This voltage update computation at a bus is distributed in
nature since (1) at bus d only requires its adjacent branch and
neighboring buses voltage information. We will later show
that when solving power flow problem using the proposed
distributed iterative algorithm we can use estimates of the
unknown neighboring bus voltage phasor values and we do
not necessarily need to know the exact voltage phasor values
of the neighboring bus voltages to calculate the power flow
solution (voltage) at current bus.

B. PV Buses

The discussions in the above section focus on PQ buses,
but PV buses are also frequently used to describe generators.
In this case, the reactive power balance equation in (1b) is
replaced by a condition on the voltage magnitude:

vd7+vdz_ ref’ (3)

where V... is the reference voltage. Again, we can think of
PV buses in term of circles, since (3) is a circle centered at
the origin with a fixed radius. Therefore, our framework does
not require different treatment of PQ and PV buses.

III. FIXED POINT EQUATION FOR POWER FLOW

The geometric representation of the power flow equations as
the intersection of circles leads to a simple fixed point view
of power flow solutions. Suppose that a vector of complex
voltages is given. Then, the voltage at a particular bus d
is determined by its neighbors alone (distributed) as the
intersection of the active power circle with the reactive power
circle (for a PQ bus) or with the voltage magnitude circle (for
a PV bus). Of course, two circles, if they intersect, could do
so at two distinct points as shown in Figs. 1b and lc. In this
case, we need to pick one of the intersection points as the
complex voltage at a bus and use it to compute the parameter
of its neighboring circles. To make this choice, we follow two
common assumptions made in power flow calculations.

The assumption we make is that we are interested in
solutions at higher voltage magnitudes [48]. These solutions
have long been seen as the practical and stable solutions in
actual systems. For example, in both Figs. 1b and 1c, we would
chose point B as the solution. For a PV bus, all points of
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Fig. 2: A seven bus system with two areas (red & green) demonstrating the proposed distributed fixed point based algorithm.

intersection have the same voltage magnitude. In this case,
we make the second assumption that voltages with smaller
(absolute) angles are preferable. This assumption is rooted in
power system stability analysis, where smaller angles indicate
more stable solutions [49].

With these choices, the complex voltage at a bus is uniquely
determined by the complex voltages of its neighbors, which
leads to a natural consistency condition for a solution. Given
v, let f be a function that takes v and performs the circle
intersection operation (choosing a unique solution as described
in the last paragraph). Then a vector v is a solution to the
power flow problem if and only if v = f(v). That is, v is a
fixed point of f. Note that if two circles do not intersect at a
bus, then we can declare that v is not a fixed point.

Here, we use the three bus single area network in Fig. 1
to illustrate an algorithm to solve the power flow problem.
The line admittance of all the branches are 1 — j - 1.5. Bus
1 is considered to be a slack bus with a voltage of 1 p.u.,
while buses 2 and 3 are considered to be PQ buses. Initially,
the voltage v» = vy, + jua,; at bus 2 is fixed with an initial
guess. Based on v, the real and reactive power circles at bus
3 can be calculated. If these circles intersect with each other,
the one with the higher voltage magnitude would be assigned
as the value for vs. Then, the voltage at bus 3 is fixed and
intersections of the two circles at bus 2 are used to update vs.
This is repeated until the convergence is achieved. Next, we
describe the algorithm for a general network.

IV. MAIN ALGORITHM
A. Description of the Distributed FP Algorithm

For an n-bus single area system, to start the algorithm, the
voltages at all the buses in the system are fixed with an initial
guess. Then the voltage solution at a bus is updated using
its neighbors. This is repeated for all buses, which we call a
round of the algorithm. The algorithm terminates if none of
the buses update their complex power in a round or when the
complex power mismatch is less than the tolerance set by the
user. Algorithm 1 presents the pseudo code for a system with
only PQ buses.

In the case of a multi-area system, as illustrated in Fig. 2,
area | and area 2 contain the buses in red and green colors
respectively. The boundary buses (buses 4 and 5) connect the
two areas via a tie line. With the proposed approach, the
power flow is solved for this multi-area power system in a
distributed manner, in the sense that the red and green buses
do not need to know the topology information about the other
group. First, both area 1 and area 2 buses are initialized with a

1 p.u. voltage guess. Next, the voltage at each bus is calculated
and simultaneously updated using the proposed fixed-point
equation.

For example, as shown in Fig. 2, at iteration/round 1, bus 2
voltage is first calculated locally with the help of the proposed
fixed-point equation that only requires the neighbors’ (buses
1 and 4) voltages of bus 2. This calculated voltage phasor
value is updated as bus 2’ voltage simultaneously. This same
approach is applied to bus 3 as well using its neighboring bus’
(bus 4) voltage phasor value. To calculate the voltage at bus
4, its adjacent branch admittances and voltage values at buses
2/, 3’, and 5 are required. Using a communication between the
two area operators, voltage iterate value at bus 5 (in this case
at iteration 1, it is 1 p.u.) at the current iteration is shared with
the area 1 operator to compute the voltage phasor iterate value
at bus 4. This calculated voltage phasor value is updated as bus
4’ voltage simultaneously. These similar steps are also carried
out in area 2 to calculate and update the voltages at bus 5 (via
communication) and at buses 6, 7 (locally). This total process
(Algorithm 1) is repeated for several iterations/rounds until
convergence. The highlight is that the two system operators
does not need to share their area topology sensitive information
with the other area since each voltage update at a bus in
Algorithm 1 is a distributed computation.

Another important contribution is that unlike [45], [47],
the proposed method does not use approximate network
equivalents or decomposition techniques and hence, it is
approximation-free and not prone to any inaccuracies. For a
system with mixed PQ and PV buses, a similar algorithm is
presented in Appendix. The exact distributed equation (18)
to find the intersection will be explained in more details in
Section IV-B. The exact order of updates is not constrained
by the algorithm, although it is an interesting question to see
if there exist an “optimal” update order in some sense. It is
possible that the circles do not intersect at a bus either at the
start of the algorithm or during one of the iterations. In these
cases, we simply restart the algorithm with a new initial guess.
We note that for feasible problems with PQ buses, we have
never observed the non-intersection of the circles. However
for non-feasible problems, it is observed that the algorithm
will have non-intersection of circles and further updates in the
iterative process are not possible.

B. Basic Block in FP Method: Finding Intersection Points
In Algorithm 1, the main computation step is to find the

intersection of two circles. At a first glance, this operation is

almost trivial and there are many different ways to compute
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Fig. 3: Geometrical illustration of calculating the voltage solution at a bus.

Algorithm 1 Distributed FP algorithm for system with only
PQ buses.

Input

: P;, Q; forbus ¢ = 2,---  n are specified values,
Tolerance ( for the stopping criterion.
Output: v; forbus i =2,--- ,n

1: Initialize voltages at all buses, v; for ¢ =2, - - -

2: Let the neighboring bus index be k;
where £ € N(m). > N(m): Neighboring buses of bus
m.

3: Calculate power mismatch (AS = ||p; +¢; —
Vi=2 -

, T

(Pi+Qi)ll)
,n; where p;, g; are calculated using (1a),(1b).
4: while (AS) > ¢ do > Convergence criteria.
5: form=2,---,ndo

6: Calculate (0,,7,) at bus m, V k € N (m);
7 Calculate (og4, ) at bus m, V k € N(m);

8 Calculate the voltage vy, for bus m using (18);
9 U = Ums > Update current bus (m) voltage.
end for

11: Calculate (AS);

end while

13: return v, ¥V buses m =2,--- ,

the intersections. However, the numerical implementation of
an intersection algorithm can experience subtle but critical
issues. First of all, this operation is called upon many times
in the algorithm, and small errors can propagate and result
in slower convergence speeds. Second of all, the circles can
have very small or large radii. For example, if lines are
close to being purely inductive (high X/R ratio), then the
reactive circle becomes a circle with a very large radius and
straightforward algorithms would run into numerical instabil-
ities. Finally, since finding the intersections takes most of the
time in Algorithm 1, it would be desirable to get as close
to a closed-form solution as possible. Therefore, we use an
unconventional representation of circles developed by [50] to
provide a robust and efficient algorithm to find the intersection
of circles. For ease of exposition, we focus on system with PQ
bus. Analogous results can be derived for PV buses.

Fig. 3 outlines the steps we take to derive the closed-form
solution for the intersection of the active and reactive power
circles. This is achieved in three steps. First, we find the line

through the two circles (Fig. 3a). Then, we find the smallest
circle (called the orthogonal circle) that passes through the
intersecting points of the original circles (Fig. 3b). Next, we
find the intersection of the line with the orthogonal circle
(Fig. 3c) to obtain the proposed fixed-point equation. We
present the derivation of fixed-point equation in the subsequent
sections below by representing the circles in a vector space.
It turns out that when we represent circles in a vector space,
the above three step computations can be thought as vector
manipulations, which is simple to perform and numerically
stable. In the rest of this section, we develop this theory based
on the material in [50].
C. For Numerical Stability: 3x1 Vector Presentation of Circles
Instead of the traditional center/radius parameterization, we
can describe all of the points x € R? on a circle by the
following equation:

a(x-X) +b-x+c=0, “4)

where - denotes the dot product between two vectors. The form
in (4) allows us to describe a circle using a three tuple (a, b, ¢).
Note that this presentation is not unique, since scaling all of
the parameters by a scalar does not change the points that
satisfy (4). If a is not zero, we will scale parameters such that
a = 1. In this notation, the circles described by the real and
reactive power equations in (1a) and (1b) respectively becomes

T
_ ta2  tas Pd
(ap?bp’ cp) - (17 |:td,1 td,1:| ) _td,1> 9 (5)
and
T
_ ta,s3  lae dd
(ag; b, cq) = (1’ [ ta,4 td,4:| ) td4> (6)

In these representations, the circles shift gracefully and the
same calculations can be applied to a wide range of parameter
values even if they approach zero or infinity.

Next, we separate the fixed parameters in the system
(e.g., admittance values) and the voltages. Given a bus
d, let di,ds,---,d; its neighboring nodes. Let gy
[9dr.d  Yda,d 9d,..a] denote the vector of conductances
between bus d and its neighbors. Similarly, let by
[bdl_,d ba, a bdk,d] denote the vector of susceptances.
Let 1 denote the vector of all 1’s of the appropriate length.
To represent the voltages of the neighboring buses, we use
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a vector u formed by concatenating the real and imaginary
voltages:

u=[va,r Udyr Vdpr  VUdyi Vdi VUdy i)
Then, we can rewrite (5) and (6) as
-a 0 Da
(apvbpv Cp) = <1a l:_(s _a:| u, 1 . gd) b (7)
-B —7] —qd )
ag,bg,cq) = 1, , 8
(abe) = (1|7 ) ®
where
g4 by gd by
= 7/8 = 7’7 = 75 = .
1'gd ]_'bd ].-bd 1'gd

If needed, the centers and radii of power flow circles can
be computed easily from (7) and (8):

—b —b

Op = 570 = ©)
b,-b b, b

T‘p2_< p4 p_cp>?rq2_< 114 q_cq)7 (10)

where o, and o, are the centers of the real and reactive power
circles, r, and r, are the radii, respectively.
D. Line Passing Through Intersection Points of the Power
Flow Circles
Given two arbitrary circles C; = (1,by,¢;) and Cy =
(1, ba, c2), the line passing through their points of intersection
is described by C; — C5, provided the circles intersect. More

formally, Cy — Cs is
Cy — Cy = (0,by —ba, ¢ — ¢c2) = (0,Ly, L3) (11
and describes the points v, that satisfies the equation
Lo-vy+ L3 =0, (12)

where
U,
Vg = d,r .
Ud,i

Substituting (7) and (8) into (12), we have the line described

by
—a+ ﬁ
(o 2%2 ) a
E. Orthogonal Circle
In principle, we can use the line computed in (13) to find
the intersection points by intersecting that line with one of the
active or reactive circles. However, the numerical accuracy
and stability can suffer because the line may intersect the
circles at a very acute angle. Therefore, it is more desirable
to use the orthogonal circle for calculations. Geometrically,
the orthogonal circle is the smallest circle that passes through
the two intersection points. Algebraically, we label it as C'*.

Y+ Dd 4d
—a+pB| "1-g; 1-b

6

Again, the parameters of this circle can be computed from (7)
and (8) via simple algebra [50], [51]:!

CL — (aL,bl,cL)
_ (4 b; + by n (b —b1) (K — &)
T2 2(by —bof*
c1 + co (C2 - Cl) (k12 _2k22) 7 (14)
2 2{by — by
where
= [by|]* = 4arca,
ks = |[ba||” — dazco.
Here, || || is the standard /o norm. The center and the radius

of the orthogonal circle is given by

L
Center' = —b- (15)
and
TN
ry = % — ¢t (16)
Substituting (7) and (8) in (14), we get
2
1
ct = 1, =Mpu + s
2 M aul|?
l <2l ||u2\| m)
1( pa 4d )
— — + , 17
2 (1~gd 1-by M 4ul? a7
where
a-p —(’7+5)} [—(a+ﬁ) d—~
My = Mp =
! {wé a-B |7 |-(0-7) —(a+h)
| = Pa qd
1- ga 1 bd7
= (lleel® +1181%) = (Iv[I* + 1811) -

F. Point of Intersection

Next, we find the point of intersection (Fig. 3c). These
points are found at a distance of r, from the center of
orthogonal circle along the line computed in (13). Through

!"The original formula given in [50] is in fact incorrect and the right formula
is given in [51].
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simple algebra, we compute the point of intersection, that is,
the updated voltage at bus d given by

RL
[Ud’r} = Center™ + r, ——=

Vd,i [[La|l
1 T L
. L
:_ii b--b i &7 (18)
2 4 Ll
2
Car
—1
= —Mpgu-— 7
4 2+ |[Maull
) 2
Tl g 91} Mau
L 11\/[ + ?
- |=Mpu _
4112 [M_aul|
1
) -
2
l<2l”u|KC>
1<Pd 4d >+ 2 “RL
2\1-g¢ 1-byg M ul [Lal|’
where
0 -1
m-[l 4]

and b~ is given by (14) and Ly is given by (11). To choose
one solution or a sign in (18), we will pick the one that leads
to the higher voltage magnitude. Note that in (18), the terms
M4, Mp, and K. has only network admittance parameters.
Thus, these terms are required to be calculated only once at
each bus in the network as they remain constant throughout
the iterative process of the proposed power flow algorithm.
Applying (18) to every bus d also gives us an analytical form
of the fixed point equation for the complex voltages.
V. NUMERICAL RESULTS

In this section, simulation studies on standard IEEE test
cases are presented, specifically 4, 14, 30, 33, 39, 57, 118, 2383
and 3375 bus systems are used. Their information are obtained
from the Matpower software. The proposed fixed point algo-
rithm is compared with other power flow methods at nominal
loading and heavy loading conditions. We also test the sensitiv-
ity of these algorithm to the initializaton points. In particular,
we consider the following five algorithms: 1) FP, proposed
algorithm; 2) GS, the standard Gauss-Seidel algorithm [52];
3) NR, the standard Newton-Raphson algorithm; 4) FDLF,
the fast decoupled load flow algorithm and 5) Iwamoto, a
Jacobian-based adjustable step size method (sometimes called
non-divergent or cubic interpolation power flow method) [28].

A. Performance of Proposed Method

First we study the convergence of the proposed FP algorithm
on the standard 14-, 30- and 118-IEEE bus systems as shown
in Fig. 4 under nominal loading conditions. As shown in Fig. 4,
for these standard cases, the fixed point algorithm converges
in tens of iterations. Since each iteration is cheap to compute,
the convergence time is in 10s of milliseconds.

7

Power Mismatch

0 26 46 66 80 100
Iterations
Fig. 4: Semi-log plot of the convergence of the fixed point
algorithm for IEEE standard systems at base case loading with
bus switching.

Next, we compare the convergence speed of FP with NR
and Iwamoto algorithms for a variety of systems. For this
convergence speed study, instead of comparing different power
flow methods at base case loading of different network sizes,
it is better to compare different power flow methods at heavy
loading scenarios because the number of iterations required to
converge increases not only when the network size increases
but also when a network is heavily loaded. Hence, we intro-
duce a scaling parameter A to scale the real powers of loads
and generations, and reactive powers of loads like [24], [53],
[54]. For example, if the loads in the grid increase by only
1% then there is no need to re-dispatch as the slack bus can
handle the load change. But if the total loading on the grid is
increased by 200% and the generators are not re-dispatched
(i.e., the P’s in PV buses are not scaled) then the slack bus
will have to handle a large load change. This may lead to the
slack bus violating its Var limits and power ratings. Therefore
the solution is more realistic if the setpoints of the PV buses
are scaled together with the load.

Like [24], [28], [53], for each IEEE test system, the scaling
factor A\ is determined through a trial and error procedure.
The goal is to increase A until existing methods exhibit conver-
gence issues. The time performance of all three algorithms are
shown in Fig. 5 using a log-scale for different network sizes.
The value of the scaling parameter A\ for different networks
in Fig. 5 shows the maximum power transfer capability of the
corresponding network. None of the algorithms are tuned, in
the sense that various parameter settings are at their default
values. The proposed method is not faster than the existing
methods and it is meant to serve as a complementary technique
especially when existing algorithms diverge or stalls (presented
in Section V-B). Fig. 6 compares the convergence speed of
FP and GS for a variety of networks with different sizes. GS
calculates the voltage solutions at every bus in the system
via a lexicographical approach [52]. Even though GS is partly
similar to the proposed approach, the fixed point equation used
to calculate the voltages in both the methods are different. This
difference makes the FP perform faster when compared to GS
as shown in Fig. 6. From Fig. 5 and Fig. 6, it can be observed
that the proposed method converges at heavy and base case
loading conditions for both radial and mesh networks.
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Fig. 5: Time taken to attain the desired precision by FP, NR
and Iwamoto’s method for different size systems when load
scaling parameter A is maximum.
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Fig. 6: Time taken to attain the desired precision by GS and
FP method for different size systems at base case loading.

B. Heavily Loaded Networks

The more challenging setting for any power flow algorithm,
and the setting the FP algorithm is designed to address,
is when the systems are heavily loaded. For example, we
take the 14-bus network and scale the loads and real power
of the generators by a factor of 3.99. This loading is still
feasible, but is very close to the loadability limit of the

—FP

—FDLF
Iwamoto

—NR

Power Mismatch

0 20 40 60 80 100 120 140 160
lterations

Fig. 7: Convergence performance of FP compared with NR,
Iwamoto and FDLF. The test system is the IEEE 14-bus system
with loads scaled by a factor of 3.99.

system. Fig. 7 presents the convergence comparison of the
methods. The convergence criteria is that the infinity norm
over the apparent power mismatch at all buses in the network
must be less or equal to 0.001 p.u. on a 100 MVA base.
From Fig. 7, the NR method given by the update equation
AV = (J7') - (AS) diverges since the Jocabian matrix is
very ill-conditioned around the solution. This is because when
the power network is loaded to its maximum power transfer
capability, the minimum singular value of the J becomes very
close to zero and it results in a close to infinite condition
number of the matrix J due to finite machine precision
[55]. Thus, as shown in Fig. 7, NR method diverges. [55]
shows that for bigger network sizes, the faster NR method
diverges while the matrix-free methods do not have error in
convergence accuracy. A variety of robust variations of the
basic Newton’s method were proposed to solve this problem.
One such technique is Iwamoto’s method [28]. Majority of
these new techniques modify AV = (J71)-(AS) to include
the multiplier ;1 to control the step size for the updates i.e.,
AV = p- (J71) - (AS). However, if J is very close to
being singular then J~! cannot be accurately calculated due
to limited machine precision [28], [55]. Hence, from Fig. 7,
the Iwamoto’s method [28] also becomes unstable because of
numerical issues. The FDLF also diverges, while it does not
face conditioning problems since the Jacobian is approximated
by a fixed matrix in decoupled load flow, the update direction
provided by the fixed Jacobian becomes invalid and the
algorithm diverges very quickly. Thus, as shown in Fig. 7,
we not only provide a matrix free iterative method to avoid
the pitfalls of high condition number of the Jacobian but we
also provide a fixed-point method which is much faster and
stable than the GS method as highlighted in [55]. Alternatively,
the proposed method can also be used to obtain better initial
voltage estimates for NR based method in case of a hard-to-
solve scenario. Similar behaviors to Fig. 7 are observed in
IEEE 4-, 30- and 118-bus systems for load multiplier of 4.5,
3.65 and 1.78, respectively. In contrast, our proposed method
is able to converge even under these conditions since it does
not use the power flow Jacobian. This illustrates the envisioned
utility of the proposed FP method in practice. An operator can
use conventional power flow solvers and when they do not
converge, instead of fine tuning parameters or trying many
different initialization points, the FP algorithm can be used as
a viable tool to obtain convergence.

Fig. 8 compares the performance of the FP, NR, and
Iwamoto algorithms in more detail. As we can see, the NR
algorithm jumps erratically in the voltage space. The Iwamoto
method controls this behavior by scaling the updates by p, but
even though it prevents the algorithm from diverging, it cannot
converge reliably and instead oscillate around the solution. The
FP algorithm again converges reliably and do not oscillate.
Thus, FP algorithm has the highest convergence accuracy
since it does not encounter the numerical instabilities like
NR, Iwamoto, and FDLF since the only calculation required
is the intersection of two circles (regardless of the network
size), and these intersections can be handled gracefully using
the proposed matrix free algorithm. We also observed the
proposed FP method is more stable than the GS method but
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Fig. 8: Comparison of NR, FP and Iwamoto’s voltage updates

at bus 4 in IEEE-14 bus system under the loading condition

of Fig. 7.

it is omitted from the results due to interest of space in the
paper during first draft.
C. Sensitivity to Initial Conditions

In addition to convergence, it is important for an algorithm
to be robust to the initial conditions, especially as the uncer-
tainty in the system increases due to renewable integration. To
test the performance of various algorithms to initial conditions,
we take the IEEE 30-bus system at its standard loading and
randomly select the starting voltages. In our experiments, we
set the initial guess to be random samples from the uniform
distribution on the interval [1 — x, 1 + x] for various values of
x (we always set the imaginary part to be 0), independently
for each bus. Table I reports the number of successful con-
vergences (defined as power mismatch convergence less than
0.001 p.u.) for the FDLF, NR, Iwamoto and our proposed FP
methods for 100 trials.

TABLE I: Convergence test of the power flow methods with
random initialization for 100 trials. The initial voltages are
generated identical and independently from uniform distribu-
tion of [1 — x, 1+ x].

Initialization spread x | NR | FDLF | Iwamoto | FP

0.05 100 98 100 100
0.1 64 62 100 100
0.3 0 0 0 100
0.4 0 0 0 100

As we see in Table I, our proposed FP method is much
more robust to the value of the initial guesses than the other
methods: it always converged while the other methods quickly
stopped working when « becomes large. Hence it is observed
that the phenomenon of power flow fractals is not exhibited
by the proposed method unlike NR based methods. This hints
that the fixed point method may avoid being trapped in local
optima that can impact descent algorithms since local optima
are not fixed points by definition.

15
Reduced 19
network 30
23

Reduced

network 7

(b) IEEE 14-bus system.

Fig. 9: Power networks with two areas.

TABLE II: Total number of lines whose branch flow (apparent
power) error is greater than the desired threshold of 0.01 p.u.
or 1 MVA in case of REI and proposed method for IEEE 14
and 118-bus systems.

IEEE power Total REI method - Proposed method -
network branches Total lines where Total lines where
in area 1 Serrer > 1 MVA Serror > 1 MVA
4-bus grid 9 3 0
118-bus grid 144 16 0

D. Distributed Approximation-free Multi-area Power System
Analysis

Network equivalence and mathematical decomposition tech-
niques are widely used to solve for multi-area AC power flow
in a distributed or decentralized manner [47], [56], [57]. By
distributed, we mean that areas connected by tie lines do not
need to share their internal information with each other. We
selected a standard network equivalence technique known as
REI method as it is widely used in the literature of multi-
area power system analysis [58]-[65]. Also, when a distributed
algorithm is based on matrix-based formulations like NR or
FDLEF, if the centralized versions do not converge, then the
distributed version do not either.

Let us consider the IEEE 14 and 118-bus systems with
two areas as shown in Fig. 9b and Fig. 9a. The boundary
buses are represented in these two areas. The buses other than
boundary buses in area 2 are eliminated and represented by
the equivalent network. Among these eliminated nodes, all PQ
buses are represented by one REI network equivalent/node,
and all PV buses are represented by a separate REI network
equivalent/node for accurate modeling [60], [62]. The purpose
is to solve the area 1 power flow problem without requiring the
area 2 information which is represented by two REI equivalent
nodes (one node representing all PQ buses in area 2 and the
other node representing all PV buses in area 2).

The solution quality is evaluated based on branch flows
in area 1 since the error in voltage phasor solution will be
reflected in branch flows [56], [62], [63]. The flow error of
a branch (S5';°") connecting buses d, and k is defined as
the difference between actual branch flow and the calculated
branch flow using either the REI or proposed method.

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 31,2021 at 16:47:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3098479, IEEE

Transactions on Power Systems

10% ¢
~ 102} ]
<>’: £ ——REI method - Line joining buses 89 and 92
= —REI method - Line joining buses 49 and 66
= 0. Proposed method - Line joining buses 89 and 92|
2 107 Proposed method - Line joining buses 49 and 66/
3
= 4 i
£ 107
R ]
5 E i
510
=100

108! ‘ ‘

4000 4500 5000 5500 6000 6500 7000 7500

Total loading on the IEEE 118 bus system in MWs

(a) Error in branch flows for both REI and proposed method at different
operating conditions in base 10-logarithmic scale for IEEE 118-bus
system shown in Fig. 9a.

10

§ 100 L

b=} ——REI method - Line joining buses 4 and 7

o ——REI method - Line joining buses 1 and 2

; Proposed method - Line joining buses 4 and 7

g 102F Proposed method - Line joining buses 1 and 2| 5
=)

&

P

B0t ]
5]

=
=

=

IS

S 08¢ E

0-8 L L L L L L
250 300 350 400 450 500 550 600 650
Total loading on the IEEE 14 bus system in MWs

700

(b) Error in branch flows for both REI and proposed method at different
operating conditions in base 10-logarithmic scale for IEEE 14-bus
system shown in Fig. 9b.

Fig. 10: Comparison of branch flow errors between the REI
and proposed method for different operating conditions on
IEEE 118 and 14-bus systems.

Tab. II presents the total number of branches in which the
branch flow error (S¢"°") is greater than the tolerance of
0.01 p.u. (1 MVA). It can be observed that the REI method
has a total of 3 (out of 9) and 16 (out of 144) branches in
area 1 of IEEE 14, and 118-bus systems respectively whose
flow error violates the tolerance of 0.01 p.u.. Whereas the
proposed method has 0 branches whose flow error violates the
set tolerance. In addition, the flow error values of all branches
in area 1 using the proposed method are observed to be very
close to 0 MVA.

In addition, Fig. 10a shows the branch flow errors (log
scaled MVA) of 2 branches from area 1 of the IEEE 118-
bus system for various operating conditions in the case of
both REI and proposed method. Similarly, Fig. 10b shows the
branch flow errors of 2 branches from area 1 of the IEEE 14-
bus system. It can be observed that the error in branch flows
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is negligible in the case of the proposed method while it is not
negligible for the REI method for various operating conditions.
A similar observation can also be made for Fig. 10b. This
error in the REI method is mainly due to approximation error
caused by the linearized representation of the non-linear power
grid loads. Because of this reason, it is hard to obtain a good
REI equivalent network of area 2 that works well on different
operating conditions. However, the approximation-free nature
of the proposed method with negligible branch flow errors
showcases the applicability of the proposed method in multi-
area power system analysis.
VI. CONCLUSION

A new fixed-point formulation of the power flow equation is
developed in this paper. The distributed feature of the proposed
ACPF enables to develop distributed AC OPFs that does not
require the private information exchange between two different
entities. In contrast to existing distributed methods for multi-
area power system analysis, the proposed distributed method
does not use any approximate equivalents of other areas and is
more accurate. In contrast to existing fixed point formulations,
it includes all possible cases of PV/PQ buses, mesh networks,
resistive and inductive lines. Geometrically, our formulation
treats the active and reactive power flow equations as circles
and the power flow solutions as the intersection of these
circles. Using a 3-tuple vector representation of circles, we
derive simple, efficient and numerically stable equation. Nu-
merical studies on the standard IEEE benchmarks show that
our algorithm is able to converge when other state-of-the-art
robust algorithms diverges. We also show that the performance
of proposed algorithm is comparable to other Jacobian based
methods for large test systems. In addition, we show that our
algorithm is robust to the initial starting point, able to converge
for a wide range of starting conditions while other algorithms
diverged.
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APPENDIX

A. Handling PQ and PV buses

Here we present the fixed-point algorithm for a system
with both PQ and PV buses. In the case of PV buses,
Section II-B discusses the replacement of the reactive power
balance equation by a condition on the voltage magnitude

Q).

The voltage circle is centered at origin (o,) with fixed
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Algorithm 2 FP method for PQ and PV buses.
: Piforbusi=2,---,n,
Q; V PQ buses,
Viep ¥ PV buses,
Qmaz and @i, for PV buses,
Bus type information B{:} for bus i = 2,--- | n,
Tolerance ( for the stopping criterion.
Output: v; forbus i =2,--- . n
1: Initialize voltages at all buses, v; for ¢ =2, - - -
2: Let the neighboring bus index be k;
where k € N'(m). > N(m): Neighboring buses to m.
3: Calculate power mismatch (AS = ||p;+¢; — (Pi+ Qi) o0)
Vi=2,---,n; where p;, g; are calculated using (1a),(1b)
and reactive power mismatch ¢; —@; = 0V ¢ € PV buses.

Input

, T

4: while (AS) > ¢ do > Convergence criteria.
5: for m = 2, ,n do

6: if B{m} == PQ bus then

7 Calculate (0,,7,) at bus m, V k € N3

8 Calculate (o4, 74) at bus m, ¥V k € N,,,;

9: Calculate the voltage v, for bus m using (18);
10: Um = Um; > Update bus m voltage.
11: if B{m} == PQpq and v,, > V. then
12: | Revert to PV bus and update B{m};

13: end if

14: if B{m} == PQuin and v,, < V,.s then
15: | Revert to PV bus and update B{m};

16: end if

17: else > PV bus.
18: Calculate (0,,7,) at bus m, V k € N3

19: Calculate (0,,1,) at bus m, V k € N,,,;

20: if Circles (o,, 1) and (o, r,,) intersect then
21: Calculate the voltage v, for bus m (18);
22: AV = Ly > Update voltage angle.
23: else

24: Convert bus m to PQ bus & update B{m};
25: Calculate (o, 7,) at bus m;

26: Calculate (o4, 14) at bus m;

27: Calculate the voltage v, for bus m (18);
28: U, = U} > Update bus m voltage.
29: end if

30: end if

31 end for

32: Calculate (AS);

33: end while

34: return v,, V buses m =2,--- ,n;

radius of V..t (r,). Thus the voltage solution for a PV bus
can be calculated similarly to PQ bus by the intersection of
two circles, real power (la) and specified voltage magnitude
circles (3) at bus d.

B. Bus Type Switching for PV Buses
1) PV to PQ switching

When there are no common points between the real power
and specified voltage magnitude circles, the reactive power at
bus d is calculated to check for the violation of reactive power
limits. In such a scenario, the PV bus is converted to a PQ
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bus by fixing its reactive power with the violated limit and it
is then solved as a PQ bus. During the iterative process, this
PQ bus is converted back to a PV bus as discussed below.
2) PQ to PV switching

The bus that is converted to PQ has its real and reactive
power fixed while the voltage phase angle and magnitude
are free to change. However, this bus should be reverted to
PV bus during the power flow iterative process when it is
feasible since the problem still didn’t converge. Let the voltage
solution at this converted PQ bus be v. The violated upper and
lower limit reactive powers be represented by Q42 and Qoin
respectively. A converted PQ bus (due to PV to PQ switching)
with Q = Qaz OF Q = Qmin is referred as PQ,,q, bus or
PQpin bus respectively. For PQ ., bus, when v > V¢
it indicates that the reactive power at this bus is no longer
needed to be fixed at Q,,,, and it can be reverted back to a
PV bus. Similarly for PQ.:, bus when v < V.., it is no
longer needed for the reactive power to be fixed at ), and
PQ),,.in bus can be reverted back to a PV bus.
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