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A B S T R A C T   

A force-based optimization method is proposed to apply the first and second kind of Piola-Kirchhoff stresses in 
molecular statics simulation. This method is important for finite deformation problems in which the atomistic 
behavior can be more accurately described using Piola-Kirchhoff stresses. The performance of the method is 
tested and validated using Silicon as a model material.   

1. Introduction 

Molecular statics (MS) is widely applied in atomistic simulations 
under constant stress for searching local minima and the minimum en
ergy path on the potential energy landscape. A widely used method to 
apply stress was proposed by Parrinello and Rahman (PR) [1]. PR 
barostat was initially formulated to control stress in molecular dynamics 
(MD) simulations, which can be adopted to apply stress in MS simulation 
in the limit of zero temperature. The stress controlled by PR algorithm 
can be interpreted as the second Piola-Kirchhoff (PK) stress if one sets 
the pressure in the original PR formula to zero. Notably, the PR algo
rithm can be also used to apply Cauchy stress for infinitesimal defor
mation. For finite deformation problems, the Cauchy stress can be 
applied by periodically resetting the reference configuration to the 
current one during optimization, so that PR algorithm provides good 
approximation in a stepwise manner. For MD simulations, Miller et. al. 
[2] proposed a Cauchy barostat based on a facile modification to the PR 
algorithm in order to apply an accurate Cauchy stress under finite 
deformation, where they used the target Cauchy stress as a reference to 
correct the second PK stress that is controlled by PR algorithm during 
MD time steps. 

Cauchy stress is most commonly used in MS simulations, because it 
measures the force per unit area in the deformed configuration and can 
be directly computed using Viral stress formula [3,4]. On the other 
hand, PK stresses (including the first and second kind) have been widely 
used in solid mechanics for finite deformation problems [5], which 
however may not be familiar to nonexperts in mechanics. Briefly, the 
first PK stress tensor (P) is also called engineering stress or nominal 
stress, because it measures the force per unit area in reference config
uration. The second PK stress tensor (S) is defined entirely in the 

reference configuration: using a fictitious force pulled from the 
deformed configuration, which is then divided by the corresponding 
area in the reference configuration. One of the advantages of PK stresses 
is that they have well defined work conjugates, allowing accurate 
evaluation of the work done by a constant external stress. This has been 
recently exploited in nudged elastic band method for computing the 
barriers and minimum energy paths of solid–solid phase transitions 
under finite deformation [6–8]. Therefore, we believe that the method 
proposed in this paper is important to study atomistic behavior in the 
materials under finite or large deformation, where using PK stresses is 
more appropriate than Cauchy stress. 

In this paper, we propose a method to apply PK stresses in MS 
simulation, which is different from the algorithm used in PR barostat. 
There are two motivations to propose a new method. First, the new 
method uses a force-based optimization method built upon the idea 
proposed by Sheppard et al. [9]. Such method does not require an 
objective function, so it could be used for optimization problems when 
there is no a well-defined total energy, e.g. finding minimum energy 
path in nudged elastic band method. By contrast, PR algorithm was 
originally developed using extended Hamiltonian, so that the algorithm 
requires a well-defined energy form. In fact, the concept of the proposed 
algorithm has been used in our recently published finite deformation 
nudged elastic band method [6], while this is the first time we present 
the detailed implementation and discussion of the algorithm. 

The second motivation of this paper is that it may not be convenient 
to use PR method to apply PK stresses through some publicly available 
software packages. This is due to the original and common imple
mentation of PR method. The Hamiltonian in PR method (exclude the 

kinetic part) can be written as H = V −V0

(
S̃IJ + p̃δIJ

)
EIJ −p̃(V − V0), 
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where V is the potential energy, ̃SIJ is the target second PK stress tensor 
and ̃p is the target hydrostatic pressure, EIJ is the Green strain tensor, V0 
and V are the volumes of initial and deformed configurations, δIJ rep
resents the Kronecker delta function, and the Einstein summations is 
applied to the dummy index. Apparently, one can apply a hydrostatic 
pressure by setting ̃SIJ =−p̃δIJ to make the second term zero. In the other 
case, one must set p̃ = 0 in order to apply a second PK stress S̃IJ. In 
atomistic simulations packages (such as LAMMPS [10]), oftentimes, the 
hydrostatic and the second PK stress are not set independently, thereby 
the nature of the specified stress controlled by the PR algorithm is 
ambiguous, as discussed in [11]. For example, in LAMMPS, the stress 
controlled by PR algorithm is neither Cauchy stress nor the second PK 
stress for finite deformation. As a result, such conventional imple
mentation of PR algorithm makes it inconvenient to apply PK stresses, 
unless one does it with a customized code. To this end, one purpose of 
this paper is to propose an alternative and facile approach to apply PK 
stresses in MS simulations and to provide a ready-to-use code shared 
with public. 

2. Algorithm of applying Piola-Kirchhoff stress 

In MS simulations, the atomic degrees of freedom, i.e. atom posi
tions, can be optimized based on the atomic forces, which converge to a 
given tolerance force when equilibrium is achieved. Similarly, the cell 
degrees of freedom, i.e. the cell vectors used to describe the deformation, 
can be optimized based on the stress acting on the cell. At equilibrium, 
the externally applied stress is balanced by the internal restoring stress 
computed with the Viral stress formula. To apply a stress in MS simu
lations, the atomic and cell degrees of freedom need to be optimized 
simultaneously. Sheppard et al. [9] proposed a method to treat the 
atomic and cell degrees of freedom in equal footing during optimization. 
Following their idea, the geometry of a computation cell can be 
described by a cell matrix H written as 

H =

⎡

⎣
[h1]1 [h2]1 [h3]1

0 [h2]2 [h3]2
0 0 [h3]3

⎤

⎦, (1)  

where [hi]j is the jth component of the cell vector hi. Particularity, h1 and 
h2 are confined to axis-1 and plane 1–2 as illustrated in Fig. 1. In this 
way, the rotational degrees of freedom of the cell are eliminated so that 
the cell only contains 6 independent components. The change of these 
components can be considered as the kinematics resulting from the 
corresponding Cauchy stress acting on the cell. Specifically, the six 
components of the Cauchy stress tensor can be expressed by three stress 
vectors defined as: 

Σ1 = (σ11, 0, 0),
Σ2 = (σ21, σ22, 0), (2)  

Σ3 = (σ31, σ32, σ33).

The stress vector Σi can be used to drive the change of the compu

tation cell vector hi, along with the change of the atom positions driven 
by the atomic forces, leading to a deformed equilibrium configuration in 
terms of both atomic and cell degrees of freedom. 

Next, the algorithm is presented by considering a second PK stress 
Sapp that is applied to a computation cell described by the matrix H . This 
stress is not directly used to drive the cell deformation but converted to a 
Cauchy stress during each optimization step by 

σ(n) = det(F(n))
−1F(n)Sapp(F(n))

T
, (3)  

where n indicates nth optimization step and the deformation gradient, 

F(n) = H(n)(Href)−1
, (4)  

is defined with respect to a pre-defined reference cell (Href , which could 
be chosen as a zero-stress configuration). Then, σ(n) is used to form the 
stress vectors Σ(n)

i defined in Eq. (2). In order to update the cell vectors 
and atom positions simultaneously, Σ(n)

i are combined with the atomic 
force vectors to form a generalized force vector, defined as 

f̂
(n)

=
(
f (n)1 , f (n)2 ,…, f (n)N ,α

(
Σcell(n)

1 − Σ(n)
1
)
,α
(
Σcell(n)

2 − Σ(n)
2
)
,α
(
Σcell(n)

3 − Σ(n)
3
))
,

(5)  

where f i is the force vector of ith atom of a system containing total N 
atoms, Σcell

i is the ith stress vector corresponding to the internal restoring 
Cauchy stress σcell, which can be calculated by interatomic potentials or 
Density Functional Theory (DFT). The parameter α is a scaling factor to 
scale the stress to the order of atomic force for the convenience of 
convergence. A simple and intuitive choice of α is illustrated in Fig. 2. 
Consider a simple cubic system, the stress acting on the unit cell σ is 
related to the interatomic force f by 

f =

(
V
N

)2
3

σ, (6)  

so the scaling factor can be taken as 

α =

(
V
N

)2
3

. (7) 

The generalized force vector f̂ can then be used by any force-based 
optimization methods to drive the change of the atomic and cell de
grees of freedom. Such change is described by a generalized displace
ment vector 

Δr̂(n) =
(
Δr(n)1 ,Δr(n)2 ,…,Δr(n)N ,Δr∗(n)1 ,Δr∗(n)2 ,Δr∗(n)3

)
, (8)  

where the vector Δri represents the change of ith atom’s position and Δr*
i 

represents the generalized displacement that is used to update the cell 
vectors by 

Δhi = βΔr*
i . (9) 

A scaling factor, β, is introduced to scale Δr*
i to the order of cell 

vector Δhi. β can be chosen as 

Fig. 1. Computation cell and cell vectors used in the proposed algorithm.  
Fig. 2. A simple cubic cell used to demonstrate the parameter used to scale the 
stress to the order of the atomic force. 
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β = (N)
1
3, (10)  

if we consider the simple cubic system shown in Fig. 2. Once the cell 
vectors are changed, the deformation gradient F(n) and the Cauchy stress 
σ(n) can be respectively updated by Eq. (4) and Eq. (3). Subsequently, the 

updated generalized force vector f̂
(n)

drives another change on atom 
positions and cell vectors, generating an iterative process, which is 

converged until the force vectors of all elements inside ̂f
(n)

are less than 
a given tolerance fmax, namely 

max
i

⃦
⃦
⃦f̂

(n)
i

⃦
⃦
⃦ < fmax. (11) 

Based on our numerical tests, a slight modification to the values of 
scaling factors α and β (for example, multiplying them by 2) is not likely 
to jeopardize the convergence of the algorithm, however, it may lead to 
a different convergence rate. Following the same algorithm described 
above, a first PK stress Papp can be also applied by replacing Eq. (3) with 

σ(n) = det(F(n))
−1Papp(F(n))

T
. (12)   

Algorithm 1. Apply Piola-Kirchhoff stress using MDmin optimizer 

1: initialize f̂
(0)

defined in Eq. (3)  
2: set the initial velocity v̂(0) defined in Eq. (13) to zero  
3: n = 0  

4: while maxi

⃦
⃦
⃦ f̂

(n)
i

⃦
⃦
⃦⩾fmax do  

5: compute deformation gradient F(n) with Eq. (4)  
6: compute applied Cauchy stress σ(n) with Eq. (3)  

7: compute atomic forces f (n)i and Cauchy stress σcell from emipirical potentials or 
DFT  

8: form generalized force vector f̂
(n)

using Eq. (5)  

9: v̂

(

n+
1
2

)

= v̂(n)
+ f̂

(n)
Δt/2  

10: if f̂
(n)

⋅v̂

(

n+
1
2

)

< 0 then  

11: v̂

(

n+
1
2

)

= 0  
12: else 

13: v̂

(

n+
1
2

)

= f̂
(n) f̂

(n)
⋅v̂

(

n+
1
2

)

f̂
(n)

⋅ f̂
(n)

14: end if 

15: v̂(n+1)
= v̂

(

n+
1
2

)

+ f̂
(n)

Δt/2  
16: compute Δr̂(n) defined in Eq. (8): Δr̂(n) = v̂(n+1)Δt  

17: update atomic positions r(n+1)
i = r(n)i + Δr(n)and cell vectors h(n+1)

k = h(n)
k +

βΔr∗(n)

18: n = n + 1  
19: end while  

The algorithm described above can be integrated to many optimi
zation methods, such as steepest descents and conjugate gradient 
methods ((both have to be modified to work with forces) as well as 
damped dynamics. Here, we use the MDmin optimization method, as 
implemented in Atomic Simulation Environment (ASE) package [12], to 
demonstrate a detailed implementation of the algorithm. MDmin is a 
damped dynamics routine where the damping parameter is replaced by 
a projection of the velocity along the force direction. It is simply a 
modification of the Velocity Verlet molecular dynamics algorithm. In 
addition, the conventional velocity is generalized in order to include the 
cell degrees of freedom, 

v̂(n)
=

(
v(n)1 , v(n)2 ,…, v(n)N , v∗(n)1 , v∗(n)2 , v∗(n)3

)
, (13)  

where vi is the velocity of ith atom and v*
i represents the generalized 

velocity induced by the generalized forces. The procedure of applying a 

second PK stress is summarized in Algorithm 1, where the MDmin 
method is applied from line 9 to line 16. At each time step, the dot 
product between the forces and the velocity vectors is checked. If it is 
zero, the velocity is set to zero, otherwise, the velocity is projected to the 
force direction and its magnitude is set equal to the damping parameter. 
The atomic and cell degrees of freedom are both updated by Velocity 
Verlet. The MDmin method can perform very efficiently for large sys
tems because it takes advantage of the physics of the problem. 

3. Numerical example 

In this section, we use diamond cubic silicon as a model material to 
demonstrate the performance and application of the proposed algo
rithm. Fig. 3 shows a computation cell containing 1000 atoms which are 
randomly disturbed from their equilibrium positions. In this way, both 
the atoms and the cell are initially set to non-equilibrium state. A zero 
stress equilibrium configuration is taken as the reference configuration 
for measuring PK stresses. Two stress states are applied in this example 
(units: GPa, unspecified stress components are zeros):  

(i) uniaxial compression: the first PK stress P33 = −13.452; the 
second PK stress S33 = −15.823, which are both equivalent to a 
Cauchy stress σ33 = −12.  

(ii) compression plus shear: the first PK stress 
P11 =−0.620,P12 = 5.653,P21 = 5.703 and P33 = −7.401; the 
second PK stress S11 =−1.211, S12 = S21 = 5.522 and S33 =

−8.042, which are both equivalent to Cauchy stress σ12 = σ21 =

6 and σ33 = −7. 

All calculations are performed with Stillinger–Weber (SW) [13] 
interatomic potential as implemented in LAMMPS [10]. The conver
gence of both the atomic forces and stresses are monitored during the 
optimizations, as shown in Figs. 4 and 5 respectively for stress states (i) 
and (ii). It can be seen that the atomic forces and stresses converge at 
very similar rates, meaning that the atomic and cell degrees of freedom 
are treated equivalently during optimization. In addition, a similar 
convergence behavior is shown for the first and second PK stress, 
because they are both converted to the Cauchy stress before being 
passed to the optimizer. It is also confirmed that the optimizations under 
the first and second PK stress prescribed in (i) and (ii) yield the correct 
configurations where both the atoms and the computation cell are 
brought to the equilibrium states, as shown in Fig. 3b. 

The numerical examples and the proposed algorithm are imple
mented based on the Atomic Simulation Environment (ASE) [12], an 
open source Python package. The advantage of ASE is that it provides an 
interface to various external atomistic computational codes, such as 
VASP and LAMMPS, which can be used as the calculators to compute 
atomic forces and stresses. The code and the example scripts reported in 
this paper are available at: https://github.com/Gao-Group/stressbox. 

Finally, we use the phase transition of Silicon, from a diamond cubic 
(Si-I) phase to a metallic β-tin structure (Si-II) [14], as an example to 
explain the importance of applying PK stresses in MS simulations. The 
transition from Si-I to Si-II is accompanied with finite lattice deforma
tion, and the work done by the external stress contribute significantly to 
the transition barriers and the minimum energy path (MEP). As 
mentioned in the introduction, using Cauchy stress yields inaccurate 
evaluation of the work done by the stress, and hence lead to inaccurate 
barriers and deviated MEP. Because of this, PK stresses are better suited 
for phase transition problems when material is subjected to finite 
deformation. Recently, we proposed a finite deformation nudged elastic 
band (FD-NEB) method to compute the transition barrier and MEP [6] 
under a constant PK stress. In order to compute the barrier and MEP of 
Si-I to Si-II phase transition, one important step is to apply the PK stress 
to both the initial state Si-I and the final state Si-II using the algorithm 
described above. After that, a number of intermediate states generated 
between the initial and final states are optimized simultaneously under 
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the applied PK stress until a converged MEP is established. A typical 
MEP calculated under 8 GPa compressive first PK stress is shown in 
Fig. 6. SW interatomic potential is used in this calculation, which 
overestimates the phase transition barriers comparing to DFT results, as 
noted by previous studies [15]. 

4. Summary 

A new method is formulated to apply the first and second kind of PK 

stresses in MS simulation. The proposed force-based algorithm can be 
integrated to a variety of optimization methods. A damped dynamics 
optimizer, MDmin, is used to demonstrate the implementation of the 
proposed algorithm. The performance of the method is tested on dia
mond cubic silicon material, showing that the atomic and cell degrees of 
freedom can be optimized equivalently under constant PK stresses. The 
method is useful for finite deformation problems in which PK stresses are 
more appropriate to describe the atomic behavior, such as the phase 
transitions in the materials subjected to finite deformation. 

Fig. 3. The computation cell of diamond cubic Si containing 1000 atoms. (a) Initially, all atoms are randomly perturbed from their equilibrium positions. (b) When 
PK stress is applied on [001] direction as in stress state (i), both atoms and cell are optimized to the equilibrium configuration. 

Fig. 4. Convergence of the atomic forces and stress under uniaxial compressive stress specified by (i) in the text, (a) for first PK stress and (b) for second PK stress.  

Fig. 5. Convergence of the atomic forces and stress under compressive and shear stresses specified by (ii) in the text, (a) for first PK stress and (b) for second 
PK stress. 
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