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A force-based optimization method is proposed to apply the first and second kind of Piola-Kirchhoff stresses in
molecular statics simulation. This method is important for finite deformation problems in which the atomistic
behavior can be more accurately described using Piola-Kirchhoff stresses. The performance of the method is
tested and validated using Silicon as a model material.

1. Introduction

Molecular statics (MS) is widely applied in atomistic simulations
under constant stress for searching local minima and the minimum en-
ergy path on the potential energy landscape. A widely used method to
apply stress was proposed by Parrinello and Rahman (PR) [1]. PR
barostat was initially formulated to control stress in molecular dynamics
(MD) simulations, which can be adopted to apply stress in MS simulation
in the limit of zero temperature. The stress controlled by PR algorithm
can be interpreted as the second Piola-Kirchhoff (PK) stress if one sets
the pressure in the original PR formula to zero. Notably, the PR algo-
rithm can be also used to apply Cauchy stress for infinitesimal defor-
mation. For finite deformation problems, the Cauchy stress can be
applied by periodically resetting the reference configuration to the
current one during optimization, so that PR algorithm provides good
approximation in a stepwise manner. For MD simulations, Miller et. al.
[2] proposed a Cauchy barostat based on a facile modification to the PR
algorithm in order to apply an accurate Cauchy stress under finite
deformation, where they used the target Cauchy stress as a reference to
correct the second PK stress that is controlled by PR algorithm during
MD time steps.

Cauchy stress is most commonly used in MS simulations, because it
measures the force per unit area in the deformed configuration and can
be directly computed using Viral stress formula [3,4]. On the other
hand, PK stresses (including the first and second kind) have been widely
used in solid mechanics for finite deformation problems [5], which
however may not be familiar to nonexperts in mechanics. Briefly, the
first PK stress tensor (P) is also called engineering stress or nominal
stress, because it measures the force per unit area in reference config-
uration. The second PK stress tensor (S) is defined entirely in the
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reference configuration: using a fictitious force pulled from the
deformed configuration, which is then divided by the corresponding
area in the reference configuration. One of the advantages of PK stresses
is that they have well defined work conjugates, allowing accurate
evaluation of the work done by a constant external stress. This has been
recently exploited in nudged elastic band method for computing the
barriers and minimum energy paths of solid—solid phase transitions
under finite deformation [6-8]. Therefore, we believe that the method
proposed in this paper is important to study atomistic behavior in the
materials under finite or large deformation, where using PK stresses is
more appropriate than Cauchy stress.

In this paper, we propose a method to apply PK stresses in MS
simulation, which is different from the algorithm used in PR barostat.
There are two motivations to propose a new method. First, the new
method uses a force-based optimization method built upon the idea
proposed by Sheppard et al. [9]. Such method does not require an
objective function, so it could be used for optimization problems when
there is no a well-defined total energy, e.g. finding minimum energy
path in nudged elastic band method. By contrast, PR algorithm was
originally developed using extended Hamiltonian, so that the algorithm
requires a well-defined energy form. In fact, the concept of the proposed
algorithm has been used in our recently published finite deformation
nudged elastic band method [6], while this is the first time we present
the detailed implementation and discussion of the algorithm.

The second motivation of this paper is that it may not be convenient
to use PR method to apply PK stresses through some publicly available
software packages. This is due to the original and common imple-
mentation of PR method. The Hamiltonian in PR method (exclude the

kinetic part) can be written as 7 = 7" -V, <§u +ﬁ5U)EU —p(V - V),
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where 7 is the potential energy, Sy, is the target second PK stress tensor
and p is the target hydrostatic pressure, Ej; is the Green strain tensor, Vg
and V are the volumes of initial and deformed configurations, &;; rep-
resents the Kronecker delta function, and the Einstein summations is
applied to the dummy index. Apparently, one can apply a hydrostatic
pressure by setting S;; = —psy, to make the second term zero. In the other

case, one must set p = 0 in order to apply a second PK stress Sy. In
atomistic simulations packages (such as LAMMPS [10]), oftentimes, the
hydrostatic and the second PK stress are not set independently, thereby
the nature of the specified stress controlled by the PR algorithm is
ambiguous, as discussed in [11]. For example, in LAMMPS, the stress
controlled by PR algorithm is neither Cauchy stress nor the second PK
stress for finite deformation. As a result, such conventional imple-
mentation of PR algorithm makes it inconvenient to apply PK stresses,
unless one does it with a customized code. To this end, one purpose of
this paper is to propose an alternative and facile approach to apply PK
stresses in MS simulations and to provide a ready-to-use code shared
with public.

2. Algorithm of applying Piola-Kirchhoff stress

In MS simulations, the atomic degrees of freedom, i.e. atom posi-
tions, can be optimized based on the atomic forces, which converge to a
given tolerance force when equilibrium is achieved. Similarly, the cell
degrees of freedom, i.e. the cell vectors used to describe the deformation,
can be optimized based on the stress acting on the cell. At equilibrium,
the externally applied stress is balanced by the internal restoring stress
computed with the Viral stress formula. To apply a stress in MS simu-
lations, the atomic and cell degrees of freedom need to be optimized
simultaneously. Sheppard et al. [9] proposed a method to treat the
atomic and cell degrees of freedom in equal footing during optimization.
Following their idea, the geometry of a computation cell can be
described by a cell matrix H written as

[hl]l [hZ]l [h3]l
H=| 0 [h], [k],], (€Y
0 0 (5],

where [k;]; is the jth component of the cell vector ;. Particularity, k; and
hy are confined to axis-1 and plane 1-2 as illustrated in Fig. 1. In this
way, the rotational degrees of freedom of the cell are eliminated so that
the cell only contains 6 independent components. The change of these
components can be considered as the kinematics resulting from the
corresponding Cauchy stress acting on the cell. Specifically, the six
components of the Cauchy stress tensor can be expressed by three stress
vectors defined as:

% :({7111010)1

2
% = (621,62270)7 2

;= (031,632,633)-

The stress vector X; can be used to drive the change of the compu-

z

Fig. 1. Computation cell and cell vectors used in the proposed algorithm.

Computational Materials Science 195 (2021) 110496

tation cell vector h;, along with the change of the atom positions driven
by the atomic forces, leading to a deformed equilibrium configuration in
terms of both atomic and cell degrees of freedom.

Next, the algorithm is presented by considering a second PK stress
S%P that is applied to a computation cell described by the matrix H . This
stress is not directly used to drive the cell deformation but converted to a
Cauchy stress during each optimization step by

o = dm(]g‘(n))*IF(H)SZ'PP(F(n))T7 3)
where n indicates nth optimization step and the deformation gradient,

F(n) — H(n) (Href) -1 , (4)

is defined with respect to a pre-defined reference cell (H*!, which could
be chosen as a zero-stress configuration). Then, 6™ is used to form the
stress vectors ZE") defined in Eq. (2). In order to update the cell vectors

and atom positions simultaneously, ZE") are combined with the atomic
force vectors to form a generalized force vector, defined as

f(") _ (fin)7 ;n)7 N ,f%l) , a(zl:ell(n) _ E(ln)) , a(zzell(n) _ Zgn)) , a(zgell(n) _ Eg;r))) ,

)

where f; is the force vector of ith atom of a system containing total N
atoms, X! is the ith stress vector corresponding to the internal restoring
Cauchy stress 6°°!', which can be calculated by interatomic potentials or
Density Functional Theory (DFT). The parameter « is a scaling factor to
scale the stress to the order of atomic force for the convenience of
convergence. A simple and intuitive choice of « is illustrated in Fig. 2.
Consider a simple cubic system, the stress acting on the unit cell ¢ is
related to the interatomic force f by

f= (%)o ©)

so the scaling factor can be taken as

0 (%) %)

The generalized force vector f can then be used by any force-based
optimization methods to drive the change of the atomic and cell de-
grees of freedom. Such change is described by a generalized displace-
ment vector

AR = (A ArY Ay AR AR Aar™), ®
where the vector Ar; represents the change of ith atom’s position and Ar;

represents the generalized displacement that is used to update the cell
vectors by

Ah; = BAr;. (©)

A scaling factor, g, is introduced to scale Ar; to the order of cell
vector Ah;. § can be chosen as

Fig. 2. A simple cubic cell used to demonstrate the parameter used to scale the
stress to the order of the atomic force.
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p=(N), (10)

if we consider the simple cubic system shown in Fig. 2. Once the cell
vectors are changed, the deformation gradient F™ and the Cauchy stress
6™ can be respectively updated by Eq. (4) and Eq. (3). Subsequently, the

. <, .
updated generalized force vector f ~ drives another change on atom
positions and cell vectors, generating an iterative process, which is

converged until the force vectors of all elements inside fw are less than
a given tolerance fy,x, namely

‘ V(")
max ||f;
i

Based on our numerical tests, a slight modification to the values of
scaling factors a and $ (for example, multiplying them by 2) is not likely
to jeopardize the convergence of the algorithm, however, it may lead to
a different convergence rate. Following the same algorithm described
above, a first PK stress P* can be also applied by replacing Eq. (3) with

< fmax- 11)

6" = det(F™) ™" PP ()T, a2)

Algorithm 1. Apply Piola-Kirchhoff stress using MDmin optimizer

: initialize f(oj defined in Eq. (3)
: set the initial velocity #© defined in Eq. (13) to zero
:n =0

compute deformation gradient F™ with Eq. (4)

1

2

3

. ~(n)

4: while maxini “>me do
5

6: compute applied Cauchy stress 6™ with Eq. (3)
7

compute atomic forces fl(") and Cauchy stress 6*°' from emipirical potentials or
DFT

8: form generalized force vector f(") using Eq. (5)

2
nt o .
o: V( 2) =9 1 7" at/2

)
nt o
< 2) < 0then

10: iff v
(+2)
nt o
11: v\ 2/ —o
12: else
1
1) ) (n+7)
n+ = N 5 2
13: A< 2 :f(n)f v
~(n) ~(n)
ff
14: end if

)
n+z PN
15: ﬁ(”“):$< 2) 4 7"ar2

16: compute A7"™ defined in Eq. (8): AF™ = 3™V A¢

17:  update atomic positions rl"™ = r™ 4 Ar®and cell vectors """ = h{" +
pAr ™
18 n=n+1

19: end while

The algorithm described above can be integrated to many optimi-
zation methods, such as steepest descents and conjugate gradient
methods ((both have to be modified to work with forces) as well as
damped dynamics. Here, we use the MDmin optimization method, as
implemented in Atomic Simulation Environment (ASE) package [12], to
demonstrate a detailed implementation of the algorithm. MDmin is a
damped dynamics routine where the damping parameter is replaced by
a projection of the velocity along the force direction. It is simply a
modification of the Velocity Verlet molecular dynamics algorithm. In
addition, the conventional velocity is generalized in order to include the
cell degrees of freedom,

B = () i ) 3)

where v; is the velocity of ith atom and v; represents the generalized
velocity induced by the generalized forces. The procedure of applying a
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second PK stress is summarized in Algorithm 1, where the MDmin
method is applied from line 9 to line 16. At each time step, the dot
product between the forces and the velocity vectors is checked. If it is
zero, the velocity is set to zero, otherwise, the velocity is projected to the
force direction and its magnitude is set equal to the damping parameter.
The atomic and cell degrees of freedom are both updated by Velocity
Verlet. The MDmin method can perform very efficiently for large sys-
tems because it takes advantage of the physics of the problem.

3. Numerical example

In this section, we use diamond cubic silicon as a model material to
demonstrate the performance and application of the proposed algo-
rithm. Fig. 3 shows a computation cell containing 1000 atoms which are
randomly disturbed from their equilibrium positions. In this way, both
the atoms and the cell are initially set to non-equilibrium state. A zero
stress equilibrium configuration is taken as the reference configuration
for measuring PK stresses. Two stress states are applied in this example
(units: GPa, unspecified stress components are zeros):

(i) uniaxial compression: the first PK stress P33 = —13.452; the
second PK stress S33 = —15.823, which are both equivalent to a
Cauchy stress o33 = —12.

(i) compression plus shear: the first PK stress
P11 =—0.620,P12 = 5.653,P3; =5.703 and P33 = —7.401; the
second PK stress S;; =—1.211,815 =S5 =5.522 and S33 =
—8.042, which are both equivalent to Cauchy stress 613 = 621 =
6 and o33 = —7.

All calculations are performed with Stillinger-Weber (SW) [13]
interatomic potential as implemented in LAMMPS [10]. The conver-
gence of both the atomic forces and stresses are monitored during the
optimizations, as shown in Figs. 4 and 5 respectively for stress states (i)
and (ii). It can be seen that the atomic forces and stresses converge at
very similar rates, meaning that the atomic and cell degrees of freedom
are treated equivalently during optimization. In addition, a similar
convergence behavior is shown for the first and second PK stress,
because they are both converted to the Cauchy stress before being
passed to the optimizer. It is also confirmed that the optimizations under
the first and second PK stress prescribed in (i) and (ii) yield the correct
configurations where both the atoms and the computation cell are
brought to the equilibrium states, as shown in Fig. 3b.

The numerical examples and the proposed algorithm are imple-
mented based on the Atomic Simulation Environment (ASE) [12], an
open source Python package. The advantage of ASE is that it provides an
interface to various external atomistic computational codes, such as
VASP and LAMMPS, which can be used as the calculators to compute
atomic forces and stresses. The code and the example scripts reported in
this paper are available at: https://github.com/Gao-Group/stressbox.

Finally, we use the phase transition of Silicon, from a diamond cubic
(Si-I) phase to a metallic g-tin structure (Si-II) [14], as an example to
explain the importance of applying PK stresses in MS simulations. The
transition from Si-I to Si-II is accompanied with finite lattice deforma-
tion, and the work done by the external stress contribute significantly to
the transition barriers and the minimum energy path (MEP). As
mentioned in the introduction, using Cauchy stress yields inaccurate
evaluation of the work done by the stress, and hence lead to inaccurate
barriers and deviated MEP. Because of this, PK stresses are better suited
for phase transition problems when material is subjected to finite
deformation. Recently, we proposed a finite deformation nudged elastic
band (FD-NEB) method to compute the transition barrier and MEP [6]
under a constant PK stress. In order to compute the barrier and MEP of
Si-I to Si-II phase transition, one important step is to apply the PK stress
to both the initial state Si-I and the final state Si-II using the algorithm
described above. After that, a number of intermediate states generated
between the initial and final states are optimized simultaneously under
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Fig. 3. The computation cell of diamond cubic Si containing 1000 atoms. (a) Initially, all atoms are randomly perturbed from their equilibrium positions. (b) When
PK stress is applied on [001] direction as in stress state (i), both atoms and cell are optimized to the equilibrium configuration.
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Fig. 4. Convergence of the atomic forces and stress under uniaxial compressive stress specified by (i) in the text, (a) for first PK stress and (b) for second PK stress.
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Fig. 5. Convergence of the atomic forces and stress under compressive and shear stresses specified by (ii) in the text, (a) for first PK stress and (b) for second

PK stress.

the applied PK stress until a converged MEP is established. A typical
MEP calculated under 8 GPa compressive first PK stress is shown in
Fig. 6. SW interatomic potential is used in this calculation, which
overestimates the phase transition barriers comparing to DFT results, as
noted by previous studies [15].

4. Summary

A new method is formulated to apply the first and second kind of PK

stresses in MS simulation. The proposed force-based algorithm can be
integrated to a variety of optimization methods. A damped dynamics
optimizer, MDmin, is used to demonstrate the implementation of the
proposed algorithm. The performance of the method is tested on dia-
mond cubic silicon material, showing that the atomic and cell degrees of
freedom can be optimized equivalently under constant PK stresses. The
method is useful for finite deformation problems in which PK stresses are
more appropriate to describe the atomic behavior, such as the phase
transitions in the materials subjected to finite deformation.
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Fig. 6. The minimum energy path of Si-I to Si-II phase transition under 8 GPa
compressive first PK stress applied along [001] direction.
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