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Abstract Soil organic matter (SOM) stocks, decom-

position and persistence are largely the product of

controls that act locally. Yet the controls are shaped

and interact at multiple spatiotemporal scales, from

which macrosystem patterns in SOM emerge. Theory

on SOM turnover recognizes the resulting spatial and

temporal conditionality in the effect sizes of controls

that play out across macrosystems, and couples them

through evolutionary and community assembly pro-

cesses. For example, climate history shapes plant

functional traits, which in turn interact with contem-

porary climate to influence SOM dynamics. Selection

and assembly also shape the functional traits of soil

decomposer communities, but it is less clear how in

turn these traits influence temporal macrosystem

patterns in SOM turnover. Here, we review evidence

that establishes the expectation that selection and

assembly should generate decomposer communities

across macrosystems that have distinct functional

effects on SOM dynamics. Representation of this

knowledge in soil biogeochemical models affects the

magnitude and direction of projected SOM responses

under global change. Yet there is high uncertainty and

low confidence in these projections. To address these

issues, we make the case that a coordinated set of

empirical practices are required which necessitate (1)

greater use of statistical approaches in biogeochem-

istry that are suited to causative inference; (2) long-

term, macrosystem-scale, observational and experi-

mental networks to reveal conditionality in effect

sizes, and embedded correlation, in controls on SOM

turnover; and (3) use of multiple measurement grains

to capture local- and macroscale variation in controls

and outcomes, to avoid obscuring causative
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understanding through data aggregation. When

employed together, along with process-based models

to synthesize knowledge and guide further empirical

work, we believe these practices will rapidly advance

understanding of microbial controls on SOM and

improve carbon cycle projections that guide policies

on climate adaptation and mitigation.

Keywords Forecasting � Functional redundancy �
Jensen’s Inequality � Logical inference fallacies �
Multilevel models � Soil carbon

Introduction

The response of soil organic matter (SOM) to envi-

ronmental change has high societal significance, given

the importance of SOM for soil fertility and as a global

reservoir of carbon (Jobbágy and Jackson 2000;

Tarnocai et al. 2009; Bünemann et al. 2018; Oldfield

et al. 2019). For example, elevated atmospheric CO2

and climate warming will be accentuated if they cause

net losses in global SOM stocks. Process-based, land-

carbon models are commonly used to evaluate the

plausibility of such scenarios and model projections

range from large SOM losses to gains across the

current century (Friedlingstein et al. 2006; Arora et al.

2013; Wieder et al. 2013). Yet all the models are built

on the understanding that the emergent pattern of

SOM response across broad spatial scales (i.e.

macrosystems) is the product of multiple, interdepen-

dent controls operating on SOM at local scales

(Doetterl et al. 2015; Cotrufo et al. 2019; Wiesmeier

et al. 2019; Abramoff et al. 2019). This local scale of

action on SOM means that changes in SOM stocks,

decomposition and persistence may not themselves be

considered macrosystem phenomena. However, the

temporal pattern in SOM response across a macrosys-

tem that emerges as controls change arises, in part,

from cross-scale interactions among the controls

(Delgado-Baquerizo et al. 2017), making the emergent

pattern an outcome of macrosystem processes (see

Box 1).

We use cross-scale interactions to describe how the

identity and influence of controls on SOM are

interdependent on processes operating at different

temporal and/or spatial scales (e.g. Cash et al. 2006;

Vervoort et al. 2012). For example, SOM persistence

is controlled by soil variables such as texture and

mineralogy, which in turn are influenced by factors

such as geology, climate and erosion which vary and

operate at multiple different scales (Rasmussen et al.

2018; Berhe et al. 2018; Vaughan et al. 2019; von

Fromm et al. 2020). Equally, the relative abundance of

plant traits is associated with climate and soil fertility

(Shiklomanov et al. 2020; Kuppler et al. 2020;

Lancaster and Humphreys 2020), with for example

colder and drier environments selecting for species

with lower litter qualities (e.g. lower nitrogen content,

thicker leaves). The recalcitrant litters of these species

interact with climate controls, slowing SOM decom-

position rates to a greater extent than would be

projected from temperature and moisture conditions

alone (Aerts 1997). Spatial and temporal patterns in

SOM turnover across macrosystems under changing

conditions therefore emerge from biotic and abiotic

controls which vary, and also influence one another, at

multiple scales (Bonan et al. 2002; Sierra et al. 2011;

Pavlick et al. 2013; Poulter et al. 2015; Jian et al. 2018;

Ye et al. 2019).

These cross-scale interactions are represented in

land carbon models, for example through associations

of plant growth forms and strategies with climate

(Moorcroft et al. 2001; Reich 2014; Fisher et al.

2015, 2018). The resulting associations between

temperature, moisture and the nature of plant inputs

(e.g. nitrogen content) reliably estimate spatial

macrosystem patterns in SOM processes such as litter

decomposition (Parton et al. 1987; Bonan et al. 2013).

A challenge now is to translate the understanding of

spatial controls on SOM turnover into robust projec-

tions of future macrosystem SOM patterns (Bradford

et al. 2016b; Lehmann et al. 2020). In addressing this

challenge, microorganisms have re-emerged as poten-

tial, broad-scale controls on the rates of SOM decom-

position, formation and persistence (Tenney and

Waksman 1929; Blankinship et al. 2018). Empirical

insights into microbial controls have stimulated bio-

geochemical modeling efforts that query how repre-

sentation of microbial processes influence projections

of global and regional SOM stocks (Wieder et al.

2015, 2018; Lehmann et al. 2020). Model results show

that the magnitude and direction of projected carbon

cycle feedbacks to atmospheric and climatic change

are strongly dependent on how microbes are repre-

sented (Tang and Riley 2015; Sulman et al. 2018;

Wieder et al. 2019). These results highlight the need to
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fill microbial knowledge gaps to build confidence in

temporal projections of emergent macrosystem pat-

terns in SOM turnover.

Here, we present perspectives on how empirical

research might be designed to productively and

efficiently develop knowledge that can be applied to

process-based, biogeochemical models, to investigate

the role microbes might play in shaping future SOM

dynamics across macrosystems. Three general recom-

mendations emerge: (1) the need for much greater

uptake of statistical approaches in biogeochemistry

that are suited to causative inference focused on

quantifying the functional forms and effect sizes of

controls; (2) the necessity for multiple empirical

approaches to tease out controls from multi-causal,

conditional and correlated data (i.e. use of triangula-

tion as an approach), in particular macrosystem-scale,

experimental and long-term observational networks;

and (3) a shift in thinking within the field fromwhat we

consider the ‘mean approach’ to one focused on

‘variance biogeochemistry’. Before discussing these

recommended practices, we first present the case as to

why we might expect microbes to shape temporal

macrosystem patterns in SOM turnover. We then

discuss why process-based models might be particu-

larly amenable as a synthesis approach for what we

envisage to be an increasing flow of empirical

information from implementation of our three recom-

mendations. We anticipate that convergence of the

empirical practices, with synthesis via process-based

models, will facilitate substantial progress toward an

improved understanding of SOM turnover and more

confident projection of future macrosystem SOM

stocks, distributions and sensitivities under ongoing

environmental change.

Box 1. Terminology

As a relatively new area of enquiry, macrosystem

biology includes many terms that are not singularly

defined. For example, macrosystems can be consid-

ered greater in lateral extent than 1000 km, whereas

other definitions refer to them as continental or global

scale but not regional. Questions about the meaning of

terms are further compounded because macrosystem

work draws together many fields and sub-fields, each

replete with its own definitions. We recognize the

futility of trying to propose a standard set of definitions

(i.e. getting scientists to consensus!) and that limiting

plurality of ideas could be counterproductive by

constraining how we approach questions. However,

for clarity in this paper we use the following defini-

tions for terms.

Biogeochemical understanding

Biogeochemical process A process within elemental

cycles whereby there is an enzyme-catalyzed trans-

formation of an element from one molecular form to

another, which results in the flow (i.e. flux) of the

element between two pools (i.e. stocks). For example,

heterotrophic soil respiration, photosynthesis and

nitrification are all biogeochemical processes.

Causation Knowledge of the identity of a control

and, ideally, the magnitude of its conditional effect on

the outcome (i.e. response variable; in this paper,

outcomes are biogeochemical stocks, forms and

process rates). Note that the process of using obser-

vational and experimental studies, together with

models, to identify and quantify controls falls under

the general umbrella of causative inference.

Causative statistical inference The use of statistical

approaches that are suited to robustly identifying the

conditional functional form and effect sizes of

controlling variables. The approaches are tailored to

reveal the effects of controls (as opposed to defining

what the cause of an effect is), relative to other

controls, and in particular to tease out causation from

correlation.

Conditional When the effect size of one control is

dependent on the value of at least one other control, or

if the identity of controls changes in space and/or time,

then outcomes and their relationships with controls

can be conditional on the spatiotemporal grain and

extent of inquiry.

Effect size The quantitative influence of a defined

change in the value of a control on the size or rate of

the response variable. The effect size is most likely

conditional on the values of other controls.

Models

Confidence Expert opinion concerning the extent to

which well-supported, and often competing, causative

understanding is represented within and among pro-

cess-based models. Confidence in model projections

grows with fuller representation of causative
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understanding among models, and as poorly-under-

stood causation is refined and then represented.

Process-based biogeochemical model Mathemati-

cal formalization of causative (i.e. mechanistic)

knowledge whereby x controls y under condition z,

as opposed to the relationship being correlative (i.e.

associational). These models are typically used to

evaluate how changes in the values of controls

influence the size and turnover rate of elemental

stocks and flow rates.

Projection Process-based model estimates of future

([ 5- and\ 100-year) biogeochemical stocks and

flux rates, typically based on scenarios of control

values that are outside the conditions under which the

model was constructed (i.e. extrapolation), such as

might be experienced through altered management or

global environmental change.

Structural and parameter assumptions The manner

in which causative understanding of controls and their

effect sizes, respectively, are represented within and

among models. Exclusion or inclusion of a control is a

structural assumption. However, so is the decision to

represent the same control (e.g. microbial growth

efficiency) in different structural forms (e.g. first- or

second-order).

Structural and parameter uncertainties The cer-

tainty with which understanding of controls and their

effect sizes (i.e. parameter estimates), respectively, are

known. Parameter uncertainty is reduced with more

observations, especially when collected at multiple

grains and extents to reveal conditionality in effect

size. Structural uncertainty is also reduced through

empirical work, but in this instance through work

designed to resolve competing or ambiguous causative

pathways. Reductions in both parameter and structural

uncertainties builds confidence in model projections.

Scale

Broad and fine scale Broad refers to scales of time and

space that are of greater extent and grain size. For

example, broad scale might refer to an extent of 1000

km2 measured over 10 years, versus a finer scale

extent being an area of 1 m2 measured for 6 months.

Cross-scale Temporal shifts in the values of

controls that emerge from interactions between con-

trols and/or biogeochemical outcomes operating at

different temporal and/or spatial scales. For example,

wetter climates may select for plant traits that are

associated with greater productivity. These traits may

be associated with higher evapotranspiration rates

(feeding back to climate) and also higher foliar litter

leaf quality, which stimulates nutrient cycling, and in

turn selects for traits linked to even greater

productivity.

EmergenceA pattern is emergent if the controls and

their effect sizes are not identifiable from single-grain

observations. Given that temporal macrosystem pat-

terns may be underlain by coupling or uncoupling of

abiotic and biotic controls (e.g. functional traits unable

to track or adapt to climate change), the future

macrosystem might be considered a new entity and

hence emergent behavior would be considered

‘strong’. The possibility of strong emergent behavior

demands that macrosystems be considered as complex

adaptive systems, where complexity and adaptability

mean that confidence in process-based projection of

emergent patterns will only be gleaned through cross-

scale consideration of controls.

Extent and grain Extent is the temporal or spatial

size of the study (e.g. 1000 km2 or 1 m2), whereas

grain refers to the resolution of a single observation

within that study (e.g. hourly CO2 concentrations

measured in the headspace of a 20-cm dia. soil collar

would have a grain of 1 h and 314 cm2).

External validity How well data reflect what is

occurring in the absence of investigator intervention.

Observational data typically have high external valid-

ity, albeit the process of measurement (e.g. inserting a

collar into the soil to measure CO2 efflux) could

decrease external validity by altering the value of the

measured process or control. The ability to detect

causation from observational data is challenging given

correlations and interactions among controls, meaning

such data typically have low internal validity.

Internal validity How amenable data are for

identifying causation. Highly-controlled experiments

typically have high internal validity, in that the

outcome is known to be a product of the investigator’s

manipulation of a control. However, given the design

of controlled interventions (e.g. step-change experi-

ments for elevated CO2) and conditionality in controls,

the effect size in controlled experiments generally has

low external validity.

Macrosystem A system with a spatial extent

whereby emergent patterns in properties of the system

are controlled by interacting variables operating at

scales equal to or beyond, as well as within, the
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macrosystem extent. For example, temperate mixed

forest on the east coast of the U.S. might be considered

a macrosystem from the perspective of the emergent

pattern of SOM stocks across the system. Specifically,

the emergent pattern in SOM is a product of interact-

ing controls that vary in magnitude across the system,

which are influenced by processes operating at scales

beyond and within the macrosystem (e.g. mean annual

climate and functional traits, respectively). Note that

in contrast to the modern definition of ecosystem, the

definition of macrosystem is not size independent.

Macrosystem definitions offered to date do not appear

to unambiguously specify a temporal extent, but given

our focus on projection of future SOM dynamics, we

consider temporal patterns that emerge at time

scales[ 5 years beyond the present.

Multi-scale We use multi-scale to discuss the need

for multiple grains of observation. Different grains of

observation can lead to different conclusions about

causation. For example, coarser grains average vari-

ation within the grain of observation of the control

under study, which can markedly influence the

estimated effect size of that control (i.e. Jensen’s

inequality). A similar phenomenon can occur when the

effect of the control under study is conditional on the

value of another control (i.e. Simpson’s Paradox), and

here the sign of the effect may even switch.

Microbial control of macrosystem SOM dynamics

Scale dependence in microbial controls

Historical environmental regimes (e.g. climate, sub-

strate chemistry, predators) can shape the functional

traits represented within decomposer communities,

introducing scale dependence in how community

metabolism responds to variation in contemporary

conditions (Maynard et al. 2019; Lustenhouwer et al.

2020; Geisen et al. 2020). Perhaps best known is that

different histories of leaf litter inputs can create

functional differences among decomposer communi-

ties (Hättenschwiler and Gasser 2005; Ayres et al.

2009; Schimel and Schaeffer 2012; Pioli et al. 2020).

Functional differences appear underlain by commu-

nity differences in traits, including expression of

exoenzymes that catalyze SOM decomposition (Ger-

man et al. 2011). These differences can translate to

differences in SOM turnover where, for example,

decomposition rates of contemporary litter inputs are

dependent on whether the microbial community has a

history of exposure to the litter species (Gholz et al.

2000; Keiser et al. 2014; Veen et al. 2019).

How climate history shapes microbial community

effects on SOMdynamics under contemporary climate

variation is less well known. Certainly, decomposer

communities adapt to long-term changes in climatic

regimes (Bárcenas-Moreno et al. 2009; Rinnan et al.

2009; Lennon et al. 2012; Evans and Wallenstein

2014). For example, dominant heterotrophic microbes

and extracellular enzymes show local adaptation to

temperature history (German et al. 2012; Rousk et al.

2012; Bradford et al. 2019; Dacal et al. 2019).

Additionally, microbial communities show composi-

tional shifts due to niche partitioning under changing

moisture regimes (Evans et al. 2014), and fungal and

bacterial isolates vary markedly in the range of

moisture limitation over which they remain active

(Lennon et al. 2012). These responses do not simply

track short-term changes in moisture but also exhibit a

historical legacy with regards to moisture and tem-

perature regimes (Evans and Wallenstein 2012, 2014;

Maynard et al. 2019).

Broad differences in how plants respond to con-

temporary climate arise through past climate as a

selective force where, for example, cold and dry

regimes select for more stress-tolerant and hence

constitutive (i.e. less plastic) phenotypes (Sprugel

1989; Bond 1989). Similarly, these climates select for

decomposer fungi that express traits constitutively,

constraining their ability to up-regulate activity when

compared to decomposers selected under favorable

climate conditions (Crowther et al. 2014). The

prevailing climate regime is then expected to select

for the dominance of organisms that express more

constitutive versus inducible (i.e. more plastic) traits,

differentiating community physiology (Malik et al.

2020) and hence community response to contempo-

rary climate (Crowther et al. 2019).

Collectively then, both evolutionary theory and

empirical data suggest that microbial communities

adapt to historical climate and plant-litter regimes,

which may influence emergent macrosystem patterns

in SOM (Buzzard et al. 2019; Malik et al. 2020;

Anthony et al. 2020). However, macrosystem-scale

observations of SOM dynamics, such as multi-site

litter decomposition experiments, tend to find that

variation in outcomes is adequately explained by
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climate and litter trait controls (Aerts 1997; Cornwell

et al. 2008; Currie et al. 2010; Bradford et al. 2016a).

One possible explanation for these findings is that

microbial community effects are obscured by among-

site relationships between SOM dynamics and climate

and litter controls (Bradford et al. 2017; Wilson and

Gerber 2020). Such embedded causation can lead to

conclusions that there are common local and

macrosystem relationships between microbes and

SOM processes (Fig. 1). Indeed, for plants there is

evidence that functional community differences can

be obscured by correlations with variation in abiotic

controls (Rudgers et al. 2018). For example, Lauen-

roth and Sala (1992) found that regional-spatial

patterns between precipitation and plant productivity

did not match with long-term (50-year), temporal

patterns. They found that productivity responses to

high rainfall years were muted at their dry site when

compared to productivity at the wetter end of the

climate gradient. The inability of the spatial relation-

ship observed among sites, to explain the temporal

pattern observed within a site, was attributed to the

constitutive phenotypes of the dry-adapted plants. If

functional differences in microbial communities are

similarly embedded within climate gradients, emer-

gent macrosystem patterns under a changing climate

may differ for those projected under assumptions of

scale-invariant versus -dependent microbial commu-

nity functioning (Fig. 1).

In support of the idea that climate history differen-

tiates microbial community function with respect to

SOM dynamics, Averill et al. (2016) reported that the

prevailing climate shaped the moisture response of

soil extracellular enzyme potentials across a precipi-

tation gradient in Texas, USA. Contrary to expecta-

tions of drier sites havingmore constitutive traits, drier

sites had higher maximum potential rates. Neverthe-

less, these data highlight that climate history can

generate spatially-dependent patterns in the functional

abilities of microbial communities. Strickland et al.

(2015) examined how such histories influenced the

abilities of soil communities, from boreal, temperate

and tropical sites, to mineralize a standard litter

substrate. Using a factorial lab experiment with four

incubation temperatures (15 to 30 �C) and five

moisture levels (ranging from drier to optimum to

wetter), they found that the tropical community had

the highest rates of carbon mineralization under moist

and warm conditions but those rates also declined the

most when the imposed conditions were sub-optimal.

As a result, the constitutive functioning of the boreal

community led to the greatest mineralization rates

under cold and dry conditions, with functioning of the

temperate community intermediate. The spatially-

dependent functional differences among the microbial

communities were consistent with expected trade-offs

in microbial growth strategies under different climate

regimes.

Selection therefore appears to generate condition-

ality in how microbial decomposer communities

interact with climate and litter substrate controls on

SOM dynamics (Evans and Wallenstein 2012; Glass-

man et al. 2018; Lustenhouwer et al. 2020). We note

that we define ‘selection’ following Hochachka and

Somero (2002) to include extant variation in traits that

are acted upon by contemporary abiotic and biotic

variables to influence community assembly (sensu

Kraft et al. 2015). When conditionality is pronounced,

temporal macrosystem patterns will likely be influ-

enced by how microbial communities track shifts in

plant traits and climate. The extent to which commu-

nities track climate and thereby modify direct effects

of climate is a pressing unanswered question in

biogeochemistry (Koven 2013). Yet limited dispersal

and niche conservatism in at least some microbial

communities (Peay et al. 2012) raises the possibility

that disturbances, such as climate change, may

decouple contemporary controls and result in novel

macrosystem patterns (Fig. 1c). There is theoretical

and empirical support for macrosystem patterns

emerging from such interactions between broad-scale

drivers and fine-scale processes (Peters et al. 2007;

Heffernan et al. 2014). To validate this expectation for

microbes and SOM turnover, in Fig. 2 we present a

hypothetical scenario whereby microbial and climate

controls are uncoupled. The scenario shows the

potential dependency of emergent temporal patterns

in SOM dynamics to assumptions of scale-invariant

versus -dependent microbial community functioning.

Microbial representation in models

Process-level understanding in widely-applied, soil

models (e.g. DAYCENT, RothC) reflects dominant

theory about controls on the activities of decomposer

communities and their influence on SOM dynamics.

The theory conforms to ideas of scale invariance in

microbial effects. It is assumed that SOM
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decomposition, formation and heterotrophic respira-

tion are primarily mediated—but not regulated—by

microbes (Jenkinson and Rayner 1977; Parton et al.

1987; Bradford et al. 2016b; Blankinship et al. 2018).

Reflecting this theory, microbes are implicitly repre-

sented through first-order decay dynamics (Todd-

Brown et al. 2012). For projecting macrosystem SOM

patterns, the prevailing assumption is then that

microbial community effects are non-conditional in

space and time, with microbial activity dictated by

climate and other proximate controls similarly at local

and macrosystem scales (Bonan et al. 2013).

The assumption of a common microbial influence

across the macrosystem is based on empirical
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Fig. 1 Ecosystem theory holds that macrosystem-scale controls

on many soil organic matter processes, such as litter decompo-

sition, operate in the context of common decomposer commu-

nity functional relationships across space. This assumption of

scale invariance means that broad-scale patterns in control-

process relationships are representative of how controls operate

at local scales (a). Among-site relationships in decomposer

community function (a) should then be able to estimate temporal

responses of the macrosystem (c). If the pattern instead emerges

from finer-scale relationships (b), illustrated here as unique

domain (or sub-macrosystem) level relationships, then

macrosystem behavior will be emergent and only understood

by examining how natural selection influences the functional

traits represented in a community. Differences in functional

traits across communities can then introduce scale-dependence

in community effects
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evidence of functional equivalence (or redundancy)

among soil decomposer communities (Allison and

Martiny 2008). Equivalence is reasoned to occur

because of high phylogenetic diversity in these

communities, rapid population turnover, functional

convergence, and/or global dispersal kernels (Martiny

et al. 2006; Talbot et al. 2014). There is now abundant

data suggesting instead that decomposer microorgan-

isms can be dispersal limited, show niche conser-

vatism and adaptation to local conditions (Cline and

Zak 2014; Talbot et al. 2014; Morrissey et al. 2019).

Furthermore, examples of functionally distinct

decomposer communities, arising through differences

in traits and organismal interactions, are accumulating

in the literature (Crowther et al. 2015; Albright et al.

2020; Fitch et al. 2020; Domeignoz-Horta et al. 2020).

Given conditionality in the identity and effect sizes of

controls on SOM dynamics across macrosystems, it

should perhaps be unsurprising that there are empirical

data consistent with functional equivalence under

some conditions and with functional differences in

others. Notably, SOM dynamics emerge from the

specific ecosystem context (Schmidt et al. 2011; Neal

et al. 2020), necessitating that we accept conditionality

as true. Consequently, questions as to whether or not to

represent microbes as functionally equivalent or

distinct become obsolete. Instead, we should ask

where, when and how functional microbial differences

must be represented if we are to build confidence in the

accuracy of our projections of future macrosystem

patterns.

Accurate model projections are not dependent on

representation of all controls within a system (Xie

et al. 2020). Models of intermediate complexity often

yield the most accurate projections of system behavior

under disturbance (Clark et al. 2020). Hence accurate

projections are achievable with incomplete under-

standing and/or omission of some knownmechanisms.

Yet for temporal macrosystem projections relevant to

how carbon cycle-climate feedbacks will play out

under a novel set of conditions over the next 30 years,

model accuracy can only be evaluated against

(a)Scale invariant change in turnover time (b)Scale dependent change in turnover time

Fig. 2 Macrosystem implications of scale invariance a versus

scale dependence b on the change in a representative soil

organic matter process, litter turnover time (% change). Under a

business-as-usual scenario, temperatures across the eastern U.S.

are projected to increase 3–5 �C by the end of the century, but

these regional-scale projections in changes to the physical

climate show sub-regional variation that acts locally. Thus,

macrosystem-scale biogeochemical projections that use a scale-

invariant approach in the biotic response a result in spatially

heterogeneous changes in litter turnover time (for a fixed litter

quality), that are solely driven by spatial variation in the physical

climate system. If, however, one applies a scale-dependent

approach b variability in the decomposer community response

will change (and in this case dampen) the magnitude of

macrosystem variation in projected turnover times. Note that

these plots are a spatial extension of the hypotheses presented in

Fig. 1, where in a we model the assumption of scale invariance

through a linear response to changes in local climate condi-

tions. As such, the largest changes in litter turnover occur in

regions where warming alleviates—to a certain extent—cold

conditions that are less favorable for decomposition (e.g. NE

United States and SE Canada). By contrast, in b we can

constrain the response for the same regions to represent scale

dependence arising from historical climate legacies that limit

the phenotypic plasticity of local microbial communities.

Consequently, the largest changes in litter turnover occur in

regions with historically more favorable climate conditions (e.g.

SE United States)
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empirical data after the change has taken place. With

the future unknown, confidence in projections of

process-based models is premised instead on a number

of criteria, with one of the most influential being

representation of the breadth of well-supported,

causative understanding (i.e. structural uncertainties,

Knutti and Sedláček 2013; Baumberger et al. 2017).

To be inclusive of structural uncertainties, a model-

ensemble approach is needed where microbes must be

represented in competing models, or different versions

of the same model, as functionally equivalent versus

distinct. Such modeling work is underway. For

example, comparisons of microbial-implicit and -

explicit representations of microbial-SOM relation-

ships reveal the sensitivity of projected macrosystem

SOM patterns to structural assumptions about micro-

bial control (Buchkowski et al. 2017; Sulman et al.

2018; Zhang et al. 2020). Wieder et al. (2019) showed

that a microbial-implicit model based on assumptions

of microbial density-independence and functional

equivalence projected slight increases in arctic SOM

under simulated global change, whereas two micro-

bial-explicit models projected modest to substantive

losses of arctic SOM. Both microbial-explicit models

represented SOM outcomes as microbial density-

dependent, yet they still led to divergent projections,

highlighting the need to better understand microbial

controls to decrease projection uncertainty.

Synthesis through process-based models

We suggest that a focus on building confidence in

macrosystem projections, by investigating the sensi-

tivity of emergent patterns to scale dependency in

microbial community functioning, identifies process-

based models as an important approach for synthesis

to advance causative understanding. Model compar-

isons help to clarify assumptions and, thus, can be used

to examine how differing hypotheses about microbial

controls influence macrosystem SOM dynamics. Even

when considering only a single physiological variable,

such work reveals that model projections are sensitive

to how microbes are represented (Rousk et al. 2012;

Ye et al. 2019). By focusing on the structural and

parameter assumptions to which ensemble-model

projections are most sensitive, we suggest that

synthesis using process-based models will be an

efficient approach to identifying uncertainties that

can be addressed through empirical research to

advance causal understanding that builds confidence

in model projections. Put another way, when poorly-

constrained or -understood microbial information

minimally affects SOM projections (Buchkowski

et al. 2017), models can be simplified and empirical

research directed toward improved estimation of other

parameters (Transtrum et al. 2015).

Process-based, soil biogeochemical models are

therefore a powerful synthesis approach because they

can be used to represent our best and competing

understanding of microbial influences on SOM

dynamics, and to guide empirical research toward

addressing microbial-knowledge gaps that generate

the most projection uncertainty. Yet there appears to

have been little consideration for how to optimize

empirical research to generate this microbial infor-

mation. In the next section we discuss three general

practices that, when employed together, we expect to

expediently advance knowledge of microbial controls

on temporal SOM dynamics at macrosystem scales.

Empirical needs to advance microbial knowledge

Causative statistical inference

To inform process-based models for projection of

macrosystem SOM patterns, statistical approaches for

analyzing observational and experimental data must

be tailored to quantify conditional functional forms

and effect sizes of controlling variables. Note that we

distinguish ‘causal inference’ from ‘causative statis-

tical inference’, where the latter is focused on teasing

out from datasets correlation versus causation, and

specifically on quantifying the effects of causes

relative to other causes (sensu Holland 1986, see

Box 1). Yet much of the analysis in biogeochemistry is

grounded in approaches that emphasize statistical

significance and minimizing unexplained variation

(e.g. maximizing r2 values). This philosophy of

approach has been advanced recently through devel-

opment of machine-learning and automated model-

selection approaches based on metrics such as AIC,

that identify the so-called best model(s). Yet ‘best’

does not relate to causative inference, but rather to

reproducing the outcome (Burnham and Anderson

2004). These approaches, in their purist form, are

anathema to causative statistical inference (Wadoux

et al. 2020; Tredennick et al. 2021). Their focus is on
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predicting the outcome most accurately under current

conditions (i.e. statistical interpolation), rather than on

elucidating the true form and effects sizes of controls

(e.g. Clark et al. 2020). The latter information is

needed to inform assumptions of process-based mod-

els that focus on extrapolation of knowledge to project

outcomes under novel future conditions.

Causative statistical inferential approaches focus

on identifying relative and absolute effect sizes, and

forms of relationships (e.g. parabolic or sigmoidal),

between a causative predictor (i.e. control) and the

outcome variable (Holland 1986; Manski 2008). The

approaches might entail comparing multiple statistical

model structures to test how robust the coefficient

estimate is for a control (e.g. temperature), when

different assumptions are made about which other

controls and their potential interactions to include (e.g.

soil moisture availability). For example, if the coef-

ficient size is robust across structures as r2 deviates,

then there is greater credibility that the conditional

effect size of the control has been accurately quantified

(Oster 2019). Notably, with this approach concerns

about whether statistical significance and/or a high r2

has been achieved because of such things as overfitting

are minimized. Instead, the focus is on the robustness

of the form and size of the estimated coefficient for the

control of interest, and much less so on the values of

metrics such as AIC, P values and r2.

Causative statistical inference, however, is not a

panacea. Numerous challenges are inherent with

analyzing field data in this way, such as whether

important controls have been omitted, and whether the

estimated coefficient for one control is independent of

correlated controls (Laubmeier et al. 2020). An

overarching challenge is that model results are

dependent on the assumptions made by the investiga-

tor about how the included variables relate to each

other. This fact requires the investigator to explore the

sensitivity of the model results to the assumptions

made (as described in the previous paragraph).

Nevertheless, the risks of model misspecification are

magnified as models become more complex and

contain more parameters, as we might expect when

attempting to understand microbial effects on

macrosystem SOM patterns. Prior knowledge of the

system is then essential for informing measurements,

analysis and interpretation (e.g. Ferraro et al. 2019).

Further, because our knowledge is incomplete, ‘big

data’ in macrosystem science will be valuable for

filling data gaps related to how the influence of

microbial controls are conditional on the values of

other controls that vary across space and time. When

used judiciously (Shiffrin 2016), machine-learning

can aid with the screening of hundreds of predictors to

help identify controls hitherto not considered or

quantified because of incomplete information on the

myriad controls on SOM turnover, which likely

change with the scale of analysis (Keiser et al. 2016;

Waring et al. 2016).

Moving forward, we should employ a suite of

statistical approaches to elucidate the mechanisms

underlying macrosystem patterns, by leveraging the

benefits of one approach to help address the challenges

of another (Laubmeier et al. 2020). For example, the

use of spatial cross-validation and out-of-fit verifica-

tion (rather than in-fit r2), which are commonplace in

machine learning to assess model fit and improve

predictive power, could likewise be generally adopted

in causal statistical inference. Nevertheless, we sug-

gest that there should be greater awareness of the

mismatch between common, increasingly-used

approaches such as machine-learning and model

selection, and the development of causative under-

standing (see Ferraro et al. 2019; Tredennick et al.

2021). There is a plethora of papers published in

biogeochemistry and related fields each year within

which identification of causation from observational

and experimental data is falsely equated with signif-

icant P, high in-fit r2, and low AIC values (Mac Nally

et al. 2018). The results of many of these studies are

contextualized in terms of informing process-based

models without recognition that the basis of the

statistical approaches used is incongruent with this

aim. Without greater awareness, reasonable criticisms

of approaches such as hierarchical mixed models,

which are suited to causative statistical inference with

multi-scale data (Soranno et al. 2014; Wagner et al.

2016; Dixon Hamil et al. 2016), result in naı̈ve

recommendations that they be replaced with ANOVA

designs given ease of specification and hence likeli-

hood of determining accurate P values (e.g. as in

Arnqvist 2020). Instead, when the goal is to generate

knowledge to improve the ability to project temporal

changes in emergent macrosystem patterns, the bio-

geosciences need to move wholesale into the ‘post

P\ 0.05 era’ deemed essential for good practice in

causative statistical inference (Wasserstein et al.

2019).
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Triangulation of study approaches

An increase in the use of causative statistical inferen-

tial approaches will be effective only when partnered

with study designs tailored to identify controls and

their conditional effect sizes. This combined approach

can then meet both structural and parameterization

needs of process-based models. That is, there is a

requirement to identify controls and the size of their

effects under different conditions. Meeting these twin

objectives to advance macrosystem biogeochemical

knowledge will require multiple empirical

approaches, where the advantages of different

approaches can be used to compensate, to a certain

extent, for the caveats of another approach. This

assertion runs counter to recent calls in microbial

ecology (e.g. Prosser 2020) for a renewed focus on the

‘basic scientific method’. We suggest that narrow

adoption of only the deductive approach is poorly

suited to advancing knowledge of how microbes

influence emergent patterns in SOM. Instead, we see

the need for ‘triangulation’ (Munafò and Davey Smith

2018), a philosophy of practice that argues for the

necessity of multiple approaches to tease out causation

from complex, environmental data where there is a

plethora of correlated, putative controls.

The challenge of identifying causation is further

complicated in macrosystem biogeochemistry by the

conditionality in space and time of the effect sizes of

any one control. Long-term, observational networks

that span variation within the macrosystem, and which

take common measurements for multiple variables,

can help to quantify how effect sizes change as context

changes (Soranno et al. 2019). These needs are being

met, for example, through the continental spatial scale

and 30-year extent of the National Ecological Obser-

vatory Network (NEON). Those data being generated

capture spatial and temporal macrosystem patterns in

biogeochemical processes, stocks and their controls.

The temporal extent required to generate a robust

understanding of controls is, however, an open

question. Time-series analyses suggest multiple dec-

ades of data as a potential minimum for explaining

population transitions to new states (Bestelmeyer et al.

2011). If similar timescales apply for understanding

SOM turnover, the fact the first data were available

across the 47 NEON terrestrial sites between 2016 and

2018 means the utility of these data for evaluating

temporal macrosystem projections may not be fully

realized for[ 20 years. Whether true or not, long-

term, observational networked data have high external

validity, in that they document ‘true’ emergent

macrosystem patterns (Naeem 2001; Bradford and

Reynolds 2006). Hence, they provide those data

required to evaluate how model structural and param-

eter assumptions, as well as projections, match with

observations.

The correlated and conditional nature of such

observational data mean that they have low internal

validity. That is, the investigator has low confidence

that the controls and their effect sizes can be identified

unambiguously (Naeem 2001; Bradford and Reynolds

2006). Experiments across the same networks are

therefore essential for teasing out causation and can

generate information in the nearer-term, across mul-

tiple contexts, that can be used to develop and refine

biogeochemical models ahead of the availability of

longer-term data (Bestelmeyer et al. 2011; Jian et al.

2020). ‘Context-awareness’ has been employed in

applied ecosystem science for many decades (Ziliak

2019) and continues today with experimental net-

works (e.g. Keuskamp et al. 2013; Hodapp et al. 2018).

The need for networked experiments is amplified for

understanding how microbes influence macrosystem

biogeochemical patterns given the embeddedness of

microbial functional effects within known controls.

For example, as in Fig. 1, spatial effects of climate on

decomposition may conflate direct effects on organ-

ism metabolic rates with indirect effects that operate

via selection for microbial traits. Controlled lab and

field experiments can identify such embedded causa-

tion (e.g. Glassman et al. 2018; Hawkes et al. 2020).

Controlled experiments have been effective for

revealing functional differences among microbial

communities, yet relatively little attention has been

paid to quantifying conditional sizes of microbial

effects. These parameter estimates are required for use

in process-based models to query the magnitude of

microbial influence on emergent macrosystem pat-

terns. To robustly quantify effect sizes, we need

experiments that vary multiple controls, even if we are

interested in a singular control. For example, Milcu

et al. (2018) in a multi-lab comparison of microcosms

across Europe found that the effect of the control of

interest was more reproducible across labs when

variation was introduced in non-target controls. The

investigators concluded that deliberate introduction of

controlled variation in non-target controls decreased
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the likelihood that responses to the control of interest

were influenced by unaccounted lab-specific factors.

Introducing controlled variation ‘swamped out’

effects of uncontrolled variation, making the effect

of the control of interest more similar among labs. We

see the need to build on this approach, which relied on

significance tests and commonality in the grand mean

of the control of interest across labs. Instead, given

conditionality in the identity and effect sizes of

controls, we see regression designs as more relevant

where the conditional effect size of the control of

interest (e.g. microbial community composition) is

determined at multiple, experimentally-imposed

levels of other controls (e.g. moisture and mineral-

ogy). These designs are more labor-intensive but will

yield more robust microbial effect sizes.

Networked experiments can avail of these insights

by varying non-target controls in a manner that reflects

their observed variability in each sub-macrosystem

context (Smith and Peay 2020). In designing such

networks, a challenge will be to identify the scales at

which controls change across space and time (Mou-

quet et al. 2015). For example, Keiser et al. (2016)

showed that controls on soil nitrification rates across

multiple sub-watersheds depended on forest distur-

bance history. When plots across all sub-watersheds

were considered, two controls emerged as important.

However, their effect sizes changed and additional

controls emerged when only disturbed or only undis-

turbed watersheds were considered. Historical contin-

gencies may therefore generate pronounced

conditionality in controls on soil biogeochemical

processes even at spatial scales of a few kilometers.

Such results highlight the need for multi-scale

research, where study extent is systematically varied,

to test the robustness of structural and parameter

assumptions to the scale of inquiry. When the

generated information is strongly scale sensitive, as

in the Keiser et al. (2016) example, the results further

highlight the need to consider how the scale of

inference relates to the desired scale of projection.

With process-based models as a synthesis tool,

structural and parameter knowledge from controlled

experiments can be represented and tested against

networked, multi-scale, measurements. Potentially,

longer-term data may reveal an uncoupling of embed-

ded microbial effects from other controls (Fig. 1), but

such possibilities will depend on how closely micro-

bial community function tracks correlated controls

such as climate. Nevertheless, by representing

microbes as controls within models, we can evaluate

potential consequences of such uncoupling on SOM

turnover at macrosystem scales. Relatively recent

computational advances mean that integration of these

multiple data streams with models can be direct. For

example, instead of using parameter estimates

informed by data, parameters can be directly estimated

for differential-equation models in a manner that

permits comparison of models with different struc-

tures (Hoffman and Gelman 2014; Betancourt 2018).

Hence, it is feasible to directly compare model

structures and resulting parameter estimates that

represent assumptions of scale-invariant versus -

dependent microbial control, as well as the possibility

that both assumptions hold true within different sub-

macrosystem contexts. To avail of these computa-

tional advances, models need to be developed that

have stocks and processes that empiricists can directly

measure (but see Waring et al. 2020). This develop-

ment has begun (Abramoff et al. 2018) and demands

from empiricists multi-scale, data streams from net-

worked observations and experiments to both inform

model assumptions and evaluate projections.

Variance biogeochemistry

Although we have been using multi-scale to refer to

the need to evaluate how spatial and temporal extent

influences conclusions about controls and their effect

sizes, there is also a need to consider how the grain (i.e.

the spatial or temporal resolution of a single observa-

tion) of measurement or analysis affects our under-

standing of macrosystem biogeochemical patterns.

Firstly, microbes respond to their local environment

and evidence is accumulating that there is high, local-

scale variation (e.g. sub-meter to tens of meters) in the

identity and magnitude of controls on soil biogeo-

chemical processes (Waring et al. 2016; Bradford et al.

2017; Faber et al. 2018; Nunan et al. 2020). Further,

temporal changes in macroclimate can be uncoupled

from changes in microclimate (Lembrechts and Lenoir

2020; Zellweger et al. 2020), meaning that our

understanding of changing controls can be strongly

dependent on the grain at which they are measured.

Secondly, structural and parameter assumptions can

depend on the spatial and temporal grain at which

SOM stocks, fluxes and their controls are measured

(Ruel and Ayres 1999; Bradford et al. 2014; Adhikari

123

Biogeochemistry



et al. 2020). Thirdly, although issues with use of

aggregated data have been appreciated in ecosystem

ecology for years (Rastetter et al. 1992; Luo et al.

2013), much of biogeochemical understanding is still

derived from the analysis of site-mean data (Tomczyk

et al. 2020; Wilson and Gerber 2020). For example,

regression analyses of climatic and litter controls on

SOM process rates from continental networks typi-

cally use site-mean data for both controls and response

variables (Aerts 1997; Cornwell et al. 2008; Currie

et al. 2010). The use of means collapses variation and

increases r2 values (Bradford et al. 2016a; Adhikari

et al. 2020), which leads to false confidence in the

inferred causative relationships. More importantly,

measurements of variables at a single, aggregated

grain can lead to false inferences about the identity and

effects sizes of controls (e.g. Schmitz 2010; Meyer

et al. 2010).

We see the need for a shift in the field from a focus

on the mean toward a practice that we refer to as

‘variance biogeochemistry’. Such a shift would be

consistent with shifts in related fields, such as

community ecology, where false inferences have

driven research that eschews species-level means for

local-level, individual data (Clark 2010; Bolnick et al.

2011; Urban et al. 2012). That structural and param-

eter inferences about the drivers of system change can

be dependent on the grain of observation and analysis

is not surprising. There are numerous mathematical

explanations for why relationships between mean

values (i.e. group averages) of two variables may

obscure or misrepresent true relationships. These

explanations are often referred to as the ‘ecological

inference fallacy’. Some of the best-known underlying

instances of this fallacy are Jensen’s Inequality and

Simpson’s Paradox, which show respectively that

environmental variance and interacting factors can

shape patterns and processes in nature that are

independent of average conditions (Ruel and Ayres

1999; Denny 2017).

For example, Jensen’s Inequality shows that vari-

ance in the X variable for an accelerating or deceler-

ating function, can lead to average results of the

function that differ from the results inferred from the

underlying X–Y relationship. That is, the average of a

function is not necessarily the same as the function of

the average. We can then expect that moisture control

on SOM decomposition rates, for instance, may not be

accurately captured by correlations of site means

given that moisture tends to have high within-site

variability. Work to inform soil sensor designs at the

NEON sites across the U.S. showed that variation in

soil moisture within a site was high, with * 100

spatial points required at most sites to provide a

reasonable estimate of the site mean (Loescher et al.

2014). At any one point within a site, then, moisture is

likely to differ markedly from the site mean.

To test whether such high within-site variation in

well-established controls on SOM dynamics might

change inferences from among-site means, Bradford

et al. (2017) ran a climate gradient study looking at

early-stage decomposition of two grass litters at six

sites. Litterbags were arrayed across transects to

capture within-site heterogeneity in microenviron-

mental conditions, which were measured for each

litterbag. They analyzed decomposition rates using

site-mean versus plot-level data on putative controls.

Consistent with the NEON results, moisture varied

markedly within each site and hence site means were a

poor surrogate for plot-level moisture conditions. In

turn, the moisture–decomposition relationship was

strongly scale-dependent: there was a pronounced

moisture–decomposition relationship for the plot-

level data but a weak group-level relationship esti-

mated from the site-means. Such observations show

that patterns emerging from among-site comparisons

of controls, when expressed as site means, can fail to

represent the true control-SOM relationship. Simi-

larly, Ruel and Ayres (1999) showed how conclusions

about the response of respiration to temperature can

deviate increasingly from the true value as variation in

temperature around the mean value increases. The

grain of observation (or analysis) therefore has the

potential to strongly influence conclusions about the

causative relationships operating between microbes

and other controls on SOM dynamics.

In particular, if the traits of soil microbial commu-

nities are shaped by the environmental regime, then

collecting fine-scale data to accurately capture varia-

tion in environmental conditions is necessary to

expand interpretation beyond emergent, coarser-scale

relationships that can obscure or alter mechanistic

interpretations (Robinson 1950; Levin 1992; Gelman

et al. 2007; Firn et al. 2019; but see McGill 2019).

Similar challenges related to grain of observation

equally apply to the analysis of microbial communities

themselves (Naylor et al. 2020). For example, future

macrosystem SOM dynamics are likely to emerge
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from shifting trait abundances and interactions within

microbial communities (Fukami 2015; Maynard et al.

2017; Smith and Peay 2020), so traits alone are

unlikely to capture all the necessary attributes of

communities that influence ecosystem stocks and

processes (van der Plas et al. 2020). Further, the

extent to which niche breadth, trait variation and

dispersal influence the persistence of functional lega-

cies within microbial communities is largely unknown

(Baym et al. 2016; Maynard et al. 2019; Sorensen and

Shade 2020). Yet evidence is accumulating that the

legacies persist under altered climate regimes for at

least several years (Hawkes et al. 2020). Collectively,

it seems reasonable to conclude that use of commu-

nity-mean trait values is likely to obscure our ability to

explain spatial patterns in the functional capabilities of

microbial communities and how they will shift

temporally (Dickie et al. 2012; Wright and Sutton-

Grier 2012; Funk et al. 2017).

Reconsideration of how observational grain shapes

our causative understanding of SOM dynamics also

has implications for how we synthesize those data

arising from biogeochemical studies. In this paper we

suggest synthesis via process-based, biogeochemical

models. We do this in part because of the pitfalls

inherent to the ever-increasing adoption of formal

meta-analyses for synthesis. Formal meta-analyses in

biogeochemistry (and most fields) analyze the mean

effect sizes of controls, making their causative inter-

pretation vulnerable to inference fallacies arising from

phenomena such as Jensen’s Inequality and Simpson’s

Paradox. Even the emerging use of meta-regression

does nothing to circumvent these data aggregation

issues (Deeks et al. 2020; Spake et al. 2020). Meta-

analysis is therefore a questionable choice for

causative statistical inference aimed at developing

structural and parameter knowledge that can then be

used to inform process-based models used for tempo-

ral macrosystem projections. Worryingly, then, there

has been a move toward adoption of standards (e.g.

PRISMA by the PLoS family of journals, Moher

2009), intended for meta-analysis of randomized,

controlled-trial, mean data, as the required reporting

guidelines for all meta-analyses. We suggest that the

definition of meta-analysis should be broader, as a

synthesis of individual observations from multiple

studies, with means used for supplemental analyses to

investigate scale-dependent outcomes (see Spake et al.

2020). An expanded definition is feasible given the

trend to deposit individual data in open-access repos-

itories when work is published. Far too many authors

are still failing to deposit their data, and one conse-

quence of this failure is the continued reliance on

synthesis of aggregated data and the potentially

fallacious understanding its analysis yields.

Regardless of the historical reasons as to why

‘mean biogeochemistry’ is so pervasive in SOM

science, theory on inference and mathematical proofs

rigorously support the expectation that data aggrega-

tion can change the identity, effect size and even the

sign of controls. The establishment of macroscale

ecological networks will help redress data limitations

for macrosystem science (e.g. Soranno et al. 2014; Fei

et al. 2016). When coupled with advances in micro-

instrumentation, -omic technologies, integration of

remote sensing with field samples, and data science

(e.g. Isaac et al. 2020; Kearney et al. 2020; Naylor

et al. 2020; Chadwick et al. 2020), they present an

opportunity to examine the influence of ‘data-grain’

on our understanding of microbial effects on emergent

macrosystem patterns. There will not be a single,

correct grain (Rose et al. 2017;Wutzler et al. 2020). At

the same time, we recognize that the simple action of

taking a soil core aggregates many microenviron-

ments, meaning that from a practical perspective we

commonly start with aggregated data. We are not

therefore suggesting that every microenvironment be

isolated, but instead simply that more attention be paid

to asking when, for example, consolidating soil cores

might alter our interpretation of causative variables.

Further, we recognize that reductionist, fine-grained

measurements may fail to adequately explain emer-

gent macroscale patterns (Blankinship et al. 2018;

McGill 2019), highlighting the need for a combination

of approaches to unravel the complexity by which

microbial processes affect SOM dynamics at this

scale. Relatedly, if reliable projection is the end goal,

we need to ascertain the extent to which data can be

aggregated, while retaining the same causative inter-

pretation, if heterogeneity and complexity are to be

represented in process-based models (Fisher and

Koven 2020). Yet we believe that increasing scale-

awareness in biogeochemistry will pave the way for

variance biogeochemistry as an effective practice that

will help to quantify microbial controls on emergent

patterns of SOM dynamics at macrosystem scales.
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Conclusions

Ecosystem biogeochemical models that operate at

only one scale of integration are unlikely to incorpo-

rate mechanisms properly (Agren et al. 1991). Yet

structural and parameter assumptions in models are

commonly based on empirical work conducted and/or

analyzed at a single, aggregated scale. We present

evidence that the predominance of ‘mean biogeo-

chemistry’ obfuscates causative understanding. For

microbial controls on emergent SOM dynamics, it

likely falsely reinforces the assumption of spatial

invariance and hence of functional equivalence among

soil microbial communities (Fig. 1). To build

confidence in projections of macrosystem SOM

dynamics will then take more than representation of

microbes as controls in soil biogeochemical models.

Empiricists will need to adopt a suite of practices

(Fig. 3), to resolve how microbes shape emergent

macrosystem SOM patterns, that are suited to identi-

fying and quantifying correlated controls that exert

their influence conditionally in space and time.

We suggest that one of the practices should be

much greater adoption of statistical approaches tai-

lored primarily for identifying the conditional func-

tional form and effect sizes of controls. A shift toward

causative statistical inference will be impeded by the

current overreliance on a limited number of metrics,

Fig. 3 A suggested set of four overarching research practices

necessary to advance and refine causal understanding of how

microbial controls influence macrosystem patterns in soil

organic matter dynamics. Integration of the practices is argued

to be necessary to robustly identify and quantify microbial

community controls. Each side of the triangle represents one

broad empirical practice, with the arrow emerging from the

triangle illustrating how process-based models can be used to

synthesize knowledge gained from the three empirical practices.

The use of process-based models for synthesis is intended to

formalize causative understanding generated by the empirical

work and to identify knowledge gaps (by generating competing

hypotheses) to which macrosystem projections are most

sensitive, thereby guiding further empirical research (depicted

by the arrow returning from models to the empirical triangle).

We suggest that such a coordinated set of practices is required to

rapidly and effectively build confidence in future macrosystem

projections of SOM dynamics relevant to adapting to and

mitigating major environmental issues, such as carbon cycle-

climate feedbacks and soil degradation
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such as P and r2 values. However, the beginnings of a

move in STEM more generally toward presentation

and analysis of individual observations, given issues

of interpreting causation from aggregated data (e.g.

Weissgerber et al. 2015), suggests the statistical-

significance barrier is far from impenetrable.

Triangulation will also need to be widely practiced

given what is termed the ‘partial observability’

problem by philosophers of ecology (Sarkar 2016).

The problem specifies that it is difficult to estimate

parameters accurately in complex systems. One of the

main reasons for the difficulty is the embedded

correlation typical of controls on SOM dynamics,

such as climate or litter quality and functional

differences among microbial communities (Fig. 1).

Correlation can be uncoupled—at least partially—

through longer-term, networked, observational and

controlled experimental work. We also see potential

for microbial trait and community composition

research to reveal when controls are likely operating

directly on microbial metabolism and indirectly

through selection for different phenotypes and organ-

ismal interactions. Overall, however, we assert that for

complex systems causality will only be identified by

systematically revealing cause-and-effect relation-

ships using evidence gleaned from different

approaches to design, execution, and analysis of

research (Munafò and Davey Smith 2018).

For the third practice, we suggest the need for

greater consideration of variance, where the focus is

on individual observations, or disaggregated data, and

when and where aggregation is justified. This need

addresses a range of challenges in macrosystem

biogeochemical science, which fall under the ‘com-

plexity’ and ‘uniqueness’ problems that describe,

respectively, the conditional nature of controls on

emergent system behaviors and their historical con-

tingencies (Sarkar 2016). These problems highlight

the need for multi-scale research to investigate how

context, study extent, and measurement and analysis

grain influence causative understanding. In particular,

variance biogeochemistry as a practice recognizes that

quantification of fine-scale variation is likely neces-

sary to identify controls, and their true effect sizes, on

microbially-mediated biogeochemical processes.

The philosophical problem of ‘structural uncer-

tainty’ in ecology, where differences in theoretical

assumptions make enormous predictive differences

(Sarkar 2016), helps to explain why we suggest that

research integrating the three empirical practices

should be synthesized and informed through a focus

on building confidence in projections from process-

based models. As such, we build on previous recom-

mendations for macrosystem research to start with a

conceptual model (Soranno et al. 2014), by suggesting

that the concepts be formalized through process-based

models (Fig. 3). Our recommendation will permit

multiple, competing hypotheses to be formalized at

the outset of the research. Model pipelines and

ensembles can collectively represent the conditional,

contingent and only partially-observed controls and

parameter estimates to identify those assumptions to

which model projections are most sensitive. Those

assumptions can then be examined through empirical

work following the three overarching practices we

identify and then refined in model representations. We

suggest that doing so will advance causative under-

standing of microbial controls on emergent macrosys-

tem patterns in SOM, while building confidence in

projections of phenomena such as carbon cycle-

climate feedbacks. As such, we foresee that a local-

scale lens focused on microscale organisms has strong

potential to yield macroscale understanding of SOM

dynamics relevant to addressing global-scale, societal

problems.
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