Biogeochemistry
https://doi.org/10.1007/s10533-021-00789-5

)

Check for
updates

SYNTHESIS AND EMERGING IDEAS

Quantifying microbial control of soil organic matter

dynamics at macrosystem scales

Mark A. Bradford

- Stephen A. Wood - Ethan T. Addicott - Eli P. Fenichel -

Nicholas Fields - Javier Gonzalez-Rivero - Fiona V. Jevon - Daniel S. Maynard -
Emily E. Oldfield - Alexander Polussa + Elisabeth B. Ward - William R. Wieder

Received: 11 December 2020/ Accepted: 2 April 2021

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract  Soil organic matter (SOM) stocks, decom-
position and persistence are largely the product of
controls that act locally. Yet the controls are shaped
and interact at multiple spatiotemporal scales, from
which macrosystem patterns in SOM emerge. Theory
on SOM turnover recognizes the resulting spatial and
temporal conditionality in the effect sizes of controls
that play out across macrosystems, and couples them
through evolutionary and community assembly pro-
cesses. For example, climate history shapes plant
functional traits, which in turn interact with contem-
porary climate to influence SOM dynamics. Selection
and assembly also shape the functional traits of soil
decomposer communities, but it is less clear how in
turn these traits influence temporal macrosystem
patterns in SOM turnover. Here, we review evidence
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that establishes the expectation that selection and
assembly should generate decomposer communities
across macrosystems that have distinct functional
effects on SOM dynamics. Representation of this
knowledge in soil biogeochemical models affects the
magnitude and direction of projected SOM responses
under global change. Yet there is high uncertainty and
low confidence in these projections. To address these
issues, we make the case that a coordinated set of
empirical practices are required which necessitate (1)
greater use of statistical approaches in biogeochem-
istry that are suited to causative inference; (2) long-
term, macrosystem-scale, observational and experi-
mental networks to reveal conditionality in effect
sizes, and embedded correlation, in controls on SOM
turnover; and (3) use of multiple measurement grains
to capture local- and macroscale variation in controls
and outcomes, to avoid obscuring causative
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understanding through data aggregation. When
employed together, along with process-based models
to synthesize knowledge and guide further empirical
work, we believe these practices will rapidly advance
understanding of microbial controls on SOM and
improve carbon cycle projections that guide policies
on climate adaptation and mitigation.

Keywords Forecasting - Functional redundancy -
Jensen’s Inequality - Logical inference fallacies -
Multilevel models - Soil carbon

Introduction

The response of soil organic matter (SOM) to envi-
ronmental change has high societal significance, given
the importance of SOM for soil fertility and as a global
reservoir of carbon (Jobbagy and Jackson 2000;
Tarnocai et al. 2009; Biinemann et al. 2018; Oldfield
et al. 2019). For example, elevated atmospheric CO,
and climate warming will be accentuated if they cause
net losses in global SOM stocks. Process-based, land-
carbon models are commonly used to evaluate the
plausibility of such scenarios and model projections
range from large SOM losses to gains across the
current century (Friedlingstein et al. 2006; Arora et al.
2013; Wieder et al. 2013). Yet all the models are built
on the understanding that the emergent pattern of
SOM response across broad spatial scales (i.e.
macrosystems) is the product of multiple, interdepen-
dent controls operating on SOM at local scales
(Doetterl et al. 2015; Cotrufo et al. 2019; Wiesmeier
et al. 2019; Abramoff et al. 2019). This local scale of
action on SOM means that changes in SOM stocks,
decomposition and persistence may not themselves be
considered macrosystem phenomena. However, the
temporal pattern in SOM response across a macrosys-
tem that emerges as controls change arises, in part,
from cross-scale interactions among the controls
(Delgado-Baquerizo et al. 2017), making the emergent
pattern an outcome of macrosystem processes (see
Box 1).

We use cross-scale interactions to describe how the
identity and influence of controls on SOM are
interdependent on processes operating at different
temporal and/or spatial scales (e.g. Cash et al. 2006;
Vervoort et al. 2012). For example, SOM persistence
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is controlled by soil variables such as texture and
mineralogy, which in turn are influenced by factors
such as geology, climate and erosion which vary and
operate at multiple different scales (Rasmussen et al.
2018; Berhe et al. 2018; Vaughan et al. 2019; von
Fromm et al. 2020). Equally, the relative abundance of
plant traits is associated with climate and soil fertility
(Shiklomanov et al. 2020; Kuppler et al. 2020;
Lancaster and Humphreys 2020), with for example
colder and drier environments selecting for species
with lower litter qualities (e.g. lower nitrogen content,
thicker leaves). The recalcitrant litters of these species
interact with climate controls, slowing SOM decom-
position rates to a greater extent than would be
projected from temperature and moisture conditions
alone (Aerts 1997). Spatial and temporal patterns in
SOM turnover across macrosystems under changing
conditions therefore emerge from biotic and abiotic
controls which vary, and also influence one another, at
multiple scales (Bonan et al. 2002; Sierra et al. 2011;
Pavlick et al. 2013; Poulter et al. 2015; Jian et al. 2018;
Ye et al. 2019).

These cross-scale interactions are represented in
land carbon models, for example through associations
of plant growth forms and strategies with climate
(Moorcroft et al. 2001; Reich 2014; Fisher et al.
2015, 2018). The resulting associations between
temperature, moisture and the nature of plant inputs
(e.g. nitrogen content) reliably estimate spatial
macrosystem patterns in SOM processes such as litter
decomposition (Parton et al. 1987; Bonan et al. 2013).
A challenge now is to translate the understanding of
spatial controls on SOM turnover into robust projec-
tions of future macrosystem SOM patterns (Bradford
et al. 2016b; Lehmann et al. 2020). In addressing this
challenge, microorganisms have re-emerged as poten-
tial, broad-scale controls on the rates of SOM decom-
position, formation and persistence (Tenney and
Waksman 1929; Blankinship et al. 2018). Empirical
insights into microbial controls have stimulated bio-
geochemical modeling efforts that query how repre-
sentation of microbial processes influence projections
of global and regional SOM stocks (Wieder et al.
2015, 2018; Lehmann et al. 2020). Model results show
that the magnitude and direction of projected carbon
cycle feedbacks to atmospheric and climatic change
are strongly dependent on how microbes are repre-
sented (Tang and Riley 2015; Sulman et al. 2018;
Wieder et al. 2019). These results highlight the need to
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fill microbial knowledge gaps to build confidence in
temporal projections of emergent macrosystem pat-
terns in SOM turnover.

Here, we present perspectives on how empirical
research might be designed to productively and
efficiently develop knowledge that can be applied to
process-based, biogeochemical models, to investigate
the role microbes might play in shaping future SOM
dynamics across macrosystems. Three general recom-
mendations emerge: (1) the need for much greater
uptake of statistical approaches in biogeochemistry
that are suited to causative inference focused on
quantifying the functional forms and effect sizes of
controls; (2) the necessity for multiple empirical
approaches to tease out controls from multi-causal,
conditional and correlated data (i.e. use of triangula-
tion as an approach), in particular macrosystem-scale,
experimental and long-term observational networks;
and (3) a shift in thinking within the field from what we
consider the ‘mean approach’ to one focused on
‘variance biogeochemistry’. Before discussing these
recommended practices, we first present the case as to
why we might expect microbes to shape temporal
macrosystem patterns in SOM turnover. We then
discuss why process-based models might be particu-
larly amenable as a synthesis approach for what we
envisage to be an increasing flow of empirical
information from implementation of our three recom-
mendations. We anticipate that convergence of the
empirical practices, with synthesis via process-based
models, will facilitate substantial progress toward an
improved understanding of SOM turnover and more
confident projection of future macrosystem SOM
stocks, distributions and sensitivities under ongoing
environmental change.

Box 1. Terminology

As a relatively new area of enquiry, macrosystem
biology includes many terms that are not singularly
defined. For example, macrosystems can be consid-
ered greater in lateral extent than 1000 km, whereas
other definitions refer to them as continental or global
scale but not regional. Questions about the meaning of
terms are further compounded because macrosystem
work draws together many fields and sub-fields, each
replete with its own definitions. We recognize the
futility of trying to propose a standard set of definitions
(i.e. getting scientists to consensus!) and that limiting

plurality of ideas could be counterproductive by
constraining how we approach questions. However,
for clarity in this paper we use the following defini-
tions for terms.

Biogeochemical understanding

Biogeochemical process A process within elemental
cycles whereby there is an enzyme-catalyzed trans-
formation of an element from one molecular form to
another, which results in the flow (i.e. flux) of the
element between two pools (i.e. stocks). For example,
heterotrophic soil respiration, photosynthesis and
nitrification are all biogeochemical processes.

Causation Knowledge of the identity of a control
and, ideally, the magnitude of its conditional effect on
the outcome (i.e. response variable; in this paper,
outcomes are biogeochemical stocks, forms and
process rates). Note that the process of using obser-
vational and experimental studies, together with
models, to identify and quantify controls falls under
the general umbrella of causative inference.

Causative statistical inference The use of statistical
approaches that are suited to robustly identifying the
conditional functional form and effect sizes of
controlling variables. The approaches are tailored to
reveal the effects of controls (as opposed to defining
what the cause of an effect is), relative to other
controls, and in particular to tease out causation from
correlation.

Conditional When the effect size of one control is
dependent on the value of at least one other control, or
if the identity of controls changes in space and/or time,
then outcomes and their relationships with controls
can be conditional on the spatiotemporal grain and
extent of inquiry.

Effect size The quantitative influence of a defined
change in the value of a control on the size or rate of
the response variable. The effect size is most likely
conditional on the values of other controls.

Models

Confidence Expert opinion concerning the extent to
which well-supported, and often competing, causative
understanding is represented within and among pro-
cess-based models. Confidence in model projections
grows with fuller representation of causative
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understanding among models, and as poorly-under-
stood causation is refined and then represented.

Process-based biogeochemical model Mathemati-
cal formalization of causative (i.e. mechanistic)
knowledge whereby x controls y under condition z,
as opposed to the relationship being correlative (i.e.
associational). These models are typically used to
evaluate how changes in the values of controls
influence the size and turnover rate of elemental
stocks and flow rates.

Projection Process-based model estimates of future
(> 5- and < 100-year) biogeochemical stocks and
flux rates, typically based on scenarios of control
values that are outside the conditions under which the
model was constructed (i.e. extrapolation), such as
might be experienced through altered management or
global environmental change.

Structural and parameter assumptions The manner
in which causative understanding of controls and their
effect sizes, respectively, are represented within and
among models. Exclusion or inclusion of a control is a
structural assumption. However, so is the decision to
represent the same control (e.g. microbial growth
efficiency) in different structural forms (e.g. first- or
second-order).

Structural and parameter uncertainties The cer-
tainty with which understanding of controls and their
effect sizes (i.e. parameter estimates), respectively, are
known. Parameter uncertainty is reduced with more
observations, especially when collected at multiple
grains and extents to reveal conditionality in effect
size. Structural uncertainty is also reduced through
empirical work, but in this instance through work
designed to resolve competing or ambiguous causative
pathways. Reductions in both parameter and structural
uncertainties builds confidence in model projections.

Scale

Broad and fine scale Broad refers to scales of time and
space that are of greater extent and grain size. For
example, broad scale might refer to an extent of 1000
km? measured over 10 years, versus a finer scale
extent being an area of 1 m* measured for 6 months.

Cross-scale Temporal shifts in the values of
controls that emerge from interactions between con-
trols and/or biogeochemical outcomes operating at
different temporal and/or spatial scales. For example,
wetter climates may select for plant traits that are
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associated with greater productivity. These traits may
be associated with higher evapotranspiration rates
(feeding back to climate) and also higher foliar litter
leaf quality, which stimulates nutrient cycling, and in
turn selects for traits linked to even greater
productivity.

Emergence A pattern is emergent if the controls and
their effect sizes are not identifiable from single-grain
observations. Given that temporal macrosystem pat-
terns may be underlain by coupling or uncoupling of
abiotic and biotic controls (e.g. functional traits unable
to track or adapt to climate change), the future
macrosystem might be considered a new entity and
hence emergent behavior would be considered
‘strong’. The possibility of strong emergent behavior
demands that macrosystems be considered as complex
adaptive systems, where complexity and adaptability
mean that confidence in process-based projection of
emergent patterns will only be gleaned through cross-
scale consideration of controls.

Extent and grain Extent is the temporal or spatial
size of the study (e.g. 1000 km? or 1 m?), whereas
grain refers to the resolution of a single observation
within that study (e.g. hourly CO, concentrations
measured in the headspace of a 20-cm dia. soil collar
would have a grain of 1 h and 314 cm?).

External validity How well data reflect what is
occurring in the absence of investigator intervention.
Observational data typically have high external valid-
ity, albeit the process of measurement (e.g. inserting a
collar into the soil to measure CO, efflux) could
decrease external validity by altering the value of the
measured process or control. The ability to detect
causation from observational data is challenging given
correlations and interactions among controls, meaning
such data typically have low internal validity.

Internal validity How amenable data are for
identifying causation. Highly-controlled experiments
typically have high internal validity, in that the
outcome is known to be a product of the investigator’s
manipulation of a control. However, given the design
of controlled interventions (e.g. step-change experi-
ments for elevated CO,) and conditionality in controls,
the effect size in controlled experiments generally has
low external validity.

Macrosystem A system with a spatial extent
whereby emergent patterns in properties of the system
are controlled by interacting variables operating at
scales equal to or beyond, as well as within, the
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macrosystem extent. For example, temperate mixed
forest on the east coast of the U.S. might be considered
a macrosystem from the perspective of the emergent
pattern of SOM stocks across the system. Specifically,
the emergent pattern in SOM is a product of interact-
ing controls that vary in magnitude across the system,
which are influenced by processes operating at scales
beyond and within the macrosystem (e.g. mean annual
climate and functional traits, respectively). Note that
in contrast to the modern definition of ecosystem, the
definition of macrosystem is not size independent.
Macrosystem definitions offered to date do not appear
to unambiguously specify a temporal extent, but given
our focus on projection of future SOM dynamics, we
consider temporal patterns that emerge at time
scales > 5 years beyond the present.

Multi-scale We use multi-scale to discuss the need
for multiple grains of observation. Different grains of
observation can lead to different conclusions about
causation. For example, coarser grains average vari-
ation within the grain of observation of the control
under study, which can markedly influence the
estimated effect size of that control (i.e. Jensen’s
inequality). A similar phenomenon can occur when the
effect of the control under study is conditional on the
value of another control (i.e. Simpson’s Paradox), and
here the sign of the effect may even switch.

Microbial control of macrosystem SOM dynamics
Scale dependence in microbial controls

Historical environmental regimes (e.g. climate, sub-
strate chemistry, predators) can shape the functional
traits represented within decomposer communities,
introducing scale dependence in how community
metabolism responds to variation in contemporary
conditions (Maynard et al. 2019; Lustenhouwer et al.
2020; Geisen et al. 2020). Perhaps best known is that
different histories of leaf litter inputs can create
functional differences among decomposer communi-
ties (Héttenschwiler and Gasser 2005; Ayres et al.
2009; Schimel and Schaeffer 2012; Pioli et al. 2020).
Functional differences appear underlain by commu-
nity differences in traits, including expression of
exoenzymes that catalyze SOM decomposition (Ger-
man et al. 2011). These differences can translate to
differences in SOM turnover where, for example,

decomposition rates of contemporary litter inputs are
dependent on whether the microbial community has a
history of exposure to the litter species (Gholz et al.
2000; Keiser et al. 2014; Veen et al. 2019).

How climate history shapes microbial community
effects on SOM dynamics under contemporary climate
variation is less well known. Certainly, decomposer
communities adapt to long-term changes in climatic
regimes (Barcenas-Moreno et al. 2009; Rinnan et al.
2009; Lennon et al. 2012; Evans and Wallenstein
2014). For example, dominant heterotrophic microbes
and extracellular enzymes show local adaptation to
temperature history (German et al. 2012; Rousk et al.
2012; Bradford et al. 2019; Dacal et al. 2019).
Additionally, microbial communities show composi-
tional shifts due to niche partitioning under changing
moisture regimes (Evans et al. 2014), and fungal and
bacterial isolates vary markedly in the range of
moisture limitation over which they remain active
(Lennon et al. 2012). These responses do not simply
track short-term changes in moisture but also exhibit a
historical legacy with regards to moisture and tem-
perature regimes (Evans and Wallenstein 2012, 2014;
Maynard et al. 2019).

Broad differences in how plants respond to con-
temporary climate arise through past climate as a
selective force where, for example, cold and dry
regimes select for more stress-tolerant and hence
constitutive (i.e. less plastic) phenotypes (Sprugel
1989; Bond 1989). Similarly, these climates select for
decomposer fungi that express traits constitutively,
constraining their ability to up-regulate activity when
compared to decomposers selected under favorable
climate conditions (Crowther et al. 2014). The
prevailing climate regime is then expected to select
for the dominance of organisms that express more
constitutive versus inducible (i.e. more plastic) traits,
differentiating community physiology (Malik et al.
2020) and hence community response to contempo-
rary climate (Crowther et al. 2019).

Collectively then, both evolutionary theory and
empirical data suggest that microbial communities
adapt to historical climate and plant-litter regimes,
which may influence emergent macrosystem patterns
in SOM (Buzzard et al. 2019; Malik et al. 2020;
Anthony et al. 2020). However, macrosystem-scale
observations of SOM dynamics, such as multi-site
litter decomposition experiments, tend to find that
variation in outcomes is adequately explained by
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climate and litter trait controls (Aerts 1997; Cornwell
et al. 2008; Currie et al. 2010; Bradford et al. 2016a).
One possible explanation for these findings is that
microbial community effects are obscured by among-
site relationships between SOM dynamics and climate
and litter controls (Bradford et al. 2017; Wilson and
Gerber 2020). Such embedded causation can lead to
conclusions that there are common local and
macrosystem relationships between microbes and
SOM processes (Fig. 1). Indeed, for plants there is
evidence that functional community differences can
be obscured by correlations with variation in abiotic
controls (Rudgers et al. 2018). For example, Lauen-
roth and Sala (1992) found that regional-spatial
patterns between precipitation and plant productivity
did not match with long-term (50-year), temporal
patterns. They found that productivity responses to
high rainfall years were muted at their dry site when
compared to productivity at the wetter end of the
climate gradient. The inability of the spatial relation-
ship observed among sites, to explain the temporal
pattern observed within a site, was attributed to the
constitutive phenotypes of the dry-adapted plants. If
functional differences in microbial communities are
similarly embedded within climate gradients, emer-
gent macrosystem patterns under a changing climate
may differ for those projected under assumptions of
scale-invariant versus -dependent microbial commu-
nity functioning (Fig. 1).

In support of the idea that climate history differen-
tiates microbial community function with respect to
SOM dynamics, Averill et al. (2016) reported that the
prevailing climate shaped the moisture response of
soil extracellular enzyme potentials across a precipi-
tation gradient in Texas, USA. Contrary to expecta-
tions of drier sites having more constitutive traits, drier
sites had higher maximum potential rates. Neverthe-
less, these data highlight that climate history can
generate spatially-dependent patterns in the functional
abilities of microbial communities. Strickland et al.
(2015) examined how such histories influenced the
abilities of soil communities, from boreal, temperate
and tropical sites, to mineralize a standard litter
substrate. Using a factorial lab experiment with four
incubation temperatures (15 to 30 °C) and five
moisture levels (ranging from drier to optimum to
wetter), they found that the tropical community had
the highest rates of carbon mineralization under moist
and warm conditions but those rates also declined the
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most when the imposed conditions were sub-optimal.
As a result, the constitutive functioning of the boreal
community led to the greatest mineralization rates
under cold and dry conditions, with functioning of the
temperate community intermediate. The spatially-
dependent functional differences among the microbial
communities were consistent with expected trade-offs
in microbial growth strategies under different climate
regimes.

Selection therefore appears to generate condition-
ality in how microbial decomposer communities
interact with climate and litter substrate controls on
SOM dynamics (Evans and Wallenstein 2012; Glass-
man et al. 2018; Lustenhouwer et al. 2020). We note
that we define ‘selection’ following Hochachka and
Somero (2002) to include extant variation in traits that
are acted upon by contemporary abiotic and biotic
variables to influence community assembly (sensu
Kraft et al. 2015). When conditionality is pronounced,
temporal macrosystem patterns will likely be influ-
enced by how microbial communities track shifts in
plant traits and climate. The extent to which commu-
nities track climate and thereby modify direct effects
of climate is a pressing unanswered question in
biogeochemistry (Koven 2013). Yet limited dispersal
and niche conservatism in at least some microbial
communities (Peay et al. 2012) raises the possibility
that disturbances, such as climate change, may
decouple contemporary controls and result in novel
macrosystem patterns (Fig. 1c). There is theoretical
and empirical support for macrosystem patterns
emerging from such interactions between broad-scale
drivers and fine-scale processes (Peters et al. 2007;
Heffernan et al. 2014). To validate this expectation for
microbes and SOM turnover, in Fig. 2 we present a
hypothetical scenario whereby microbial and climate
controls are uncoupled. The scenario shows the
potential dependency of emergent temporal patterns
in SOM dynamics to assumptions of scale-invariant
versus -dependent microbial community functioning.

Microbial representation in models

Process-level understanding in widely-applied, soil
models (e.g. DAYCENT, RothC) reflects dominant
theory about controls on the activities of decomposer
communities and their influence on SOM dynamics.
The theory conforms to ideas of scale invariance in
microbial effects. It is assumed that SOM
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Fig.1 Ecosystem theory holds that macrosystem-scale controls
on many soil organic matter processes, such as litter decompo-
sition, operate in the context of common decomposer commu-
nity functional relationships across space. This assumption of
scale invariance means that broad-scale patterns in control-
process relationships are representative of how controls operate
at local scales (a). Among-site relationships in decomposer
community function (a) should then be able to estimate temporal

decomposition, formation and heterotrophic respira-
tion are primarily mediated—but not regulated—by
microbes (Jenkinson and Rayner 1977; Parton et al.
1987; Bradford et al. 2016b; Blankinship et al. 2018).
Reflecting this theory, microbes are implicitly repre-
sented through first-order decay dynamics (Todd-
Brown et al. 2012). For projecting macrosystem SOM

system climate

responses of the macrosystem (c). If the pattern instead emerges
from finer-scale relationships (b), illustrated here as unique
domain (or sub-macrosystem) level relationships, then
macrosystem behavior will be emergent and only understood
by examining how natural selection influences the functional
traits represented in a community. Differences in functional
traits across communities can then introduce scale-dependence
in community effects

patterns, the prevailing assumption is then that
microbial community effects are non-conditional in
space and time, with microbial activity dictated by
climate and other proximate controls similarly at local
and macrosystem scales (Bonan et al. 2013).

The assumption of a common microbial influence
across the macrosystem is based on empirical
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Fig. 2 Macrosystem implications of scale invariance a versus
scale dependence b on the change in a representative soil
organic matter process, litter turnover time (% change). Under a
business-as-usual scenario, temperatures across the eastern U.S.
are projected to increase 3-5 °C by the end of the century, but
these regional-scale projections in changes to the physical
climate show sub-regional variation that acts locally. Thus,
macrosystem-scale biogeochemical projections that use a scale-
invariant approach in the biotic response a result in spatially
heterogeneous changes in litter turnover time (for a fixed litter
quality), that are solely driven by spatial variation in the physical
climate system. If, however, one applies a scale-dependent
approach b variability in the decomposer community response
will change (and in this case dampen) the magnitude of

evidence of functional equivalence (or redundancy)
among soil decomposer communities (Allison and
Martiny 2008). Equivalence is reasoned to occur
because of high phylogenetic diversity in these
communities, rapid population turnover, functional
convergence, and/or global dispersal kernels (Martiny
et al. 2006; Talbot et al. 2014). There is now abundant
data suggesting instead that decomposer microorgan-
isms can be dispersal limited, show niche conser-
vatism and adaptation to local conditions (Cline and
Zak 2014; Talbot et al. 2014; Morrissey et al. 2019).
Furthermore, examples of functionally distinct
decomposer communities, arising through differences
in traits and organismal interactions, are accumulating
in the literature (Crowther et al. 2015; Albright et al.
2020; Fitch et al. 2020; Domeignoz-Horta et al. 2020).
Given conditionality in the identity and effect sizes of
controls on SOM dynamics across macrosystems, it
should perhaps be unsurprising that there are empirical
data consistent with functional equivalence under
some conditions and with functional differences in
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macrosystem variation in projected turnover times. Note that
these plots are a spatial extension of the hypotheses presented in
Fig. 1, where in a we model the assumption of scale invariance
through a linear response to changes in local climate condi-
tions. As such, the largest changes in litter turnover occur in
regions where warming alleviates—to a certain extent—cold
conditions that are less favorable for decomposition (e.g. NE
United States and SE Canada). By contrast, in b we can
constrain the response for the same regions to represent scale
dependence arising from historical climate legacies that limit
the phenotypic plasticity of local microbial communities.
Consequently, the largest changes in litter turnover occur in
regions with historically more favorable climate conditions (e.g.
SE United States)

others. Notably, SOM dynamics emerge from the
specific ecosystem context (Schmidt et al. 2011; Neal
et al. 2020), necessitating that we accept conditionality
as true. Consequently, questions as to whether or not to
represent microbes as functionally equivalent or
distinct become obsolete. Instead, we should ask
where, when and how functional microbial differences
must be represented if we are to build confidence in the
accuracy of our projections of future macrosystem
patterns.

Accurate model projections are not dependent on
representation of all controls within a system (Xie
et al. 2020). Models of intermediate complexity often
yield the most accurate projections of system behavior
under disturbance (Clark et al. 2020). Hence accurate
projections are achievable with incomplete under-
standing and/or omission of some known mechanisms.
Yet for temporal macrosystem projections relevant to
how carbon cycle-climate feedbacks will play out
under a novel set of conditions over the next 30 years,
model accuracy can only be evaluated against
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empirical data after the change has taken place. With
the future unknown, confidence in projections of
process-based models is premised instead on a number
of criteria, with one of the most influential being
representation of the breadth of well-supported,
causative understanding (i.e. structural uncertainties,
Knutti and Sedlacek 2013; Baumberger et al. 2017).

To be inclusive of structural uncertainties, a model-
ensemble approach is needed where microbes must be
represented in competing models, or different versions
of the same model, as functionally equivalent versus
distinct. Such modeling work is underway. For
example, comparisons of microbial-implicit and -
explicit representations of microbial-SOM relation-
ships reveal the sensitivity of projected macrosystem
SOM patterns to structural assumptions about micro-
bial control (Buchkowski et al. 2017; Sulman et al.
2018; Zhang et al. 2020). Wieder et al. (2019) showed
that a microbial-implicit model based on assumptions
of microbial density-independence and functional
equivalence projected slight increases in arctic SOM
under simulated global change, whereas two micro-
bial-explicit models projected modest to substantive
losses of arctic SOM. Both microbial-explicit models
represented SOM outcomes as microbial density-
dependent, yet they still led to divergent projections,
highlighting the need to better understand microbial
controls to decrease projection uncertainty.

Synthesis through process-based models

We suggest that a focus on building confidence in
macrosystem projections, by investigating the sensi-
tivity of emergent patterns to scale dependency in
microbial community functioning, identifies process-
based models as an important approach for synthesis
to advance causative understanding. Model compar-
isons help to clarify assumptions and, thus, can be used
to examine how differing hypotheses about microbial
controls influence macrosystem SOM dynamics. Even
when considering only a single physiological variable,
such work reveals that model projections are sensitive
to how microbes are represented (Rousk et al. 2012;
Ye et al. 2019). By focusing on the structural and
parameter assumptions to which ensemble-model
projections are most sensitive, we suggest that
synthesis using process-based models will be an
efficient approach to identifying uncertainties that
can be addressed through empirical research to

advance causal understanding that builds confidence
in model projections. Put another way, when poorly-
constrained or -understood microbial information
minimally affects SOM projections (Buchkowski
et al. 2017), models can be simplified and empirical
research directed toward improved estimation of other
parameters (Transtrum et al. 2015).

Process-based, soil biogeochemical models are
therefore a powerful synthesis approach because they
can be used to represent our best and competing
understanding of microbial influences on SOM
dynamics, and to guide empirical research toward
addressing microbial-knowledge gaps that generate
the most projection uncertainty. Yet there appears to
have been little consideration for how to optimize
empirical research to generate this microbial infor-
mation. In the next section we discuss three general
practices that, when employed together, we expect to
expediently advance knowledge of microbial controls
on temporal SOM dynamics at macrosystem scales.

Empirical needs to advance microbial knowledge
Causative statistical inference

To inform process-based models for projection of
macrosystem SOM patterns, statistical approaches for
analyzing observational and experimental data must
be tailored to quantify conditional functional forms
and effect sizes of controlling variables. Note that we
distinguish ‘causal inference’ from ‘causative statis-
tical inference’, where the latter is focused on teasing
out from datasets correlation versus causation, and
specifically on quantifying the effects of causes
relative to other causes (sensu Holland 1986, see
Box 1). Yet much of the analysis in biogeochemistry is
grounded in approaches that emphasize statistical
significance and minimizing unexplained variation
(e.g. maximizing * values). This philosophy of
approach has been advanced recently through devel-
opment of machine-learning and automated model-
selection approaches based on metrics such as AIC,
that identify the so-called best model(s). Yet ‘best’
does not relate to causative inference, but rather to
reproducing the outcome (Burnham and Anderson
2004). These approaches, in their purist form, are
anathema to causative statistical inference (Wadoux
et al. 2020; Tredennick et al. 2021). Their focus is on
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predicting the outcome most accurately under current
conditions (i.e. statistical interpolation), rather than on
elucidating the true form and effects sizes of controls
(e.g. Clark et al. 2020). The latter information is
needed to inform assumptions of process-based mod-
els that focus on extrapolation of knowledge to project
outcomes under novel future conditions.

Causative statistical inferential approaches focus
on identifying relative and absolute effect sizes, and
forms of relationships (e.g. parabolic or sigmoidal),
between a causative predictor (i.e. control) and the
outcome variable (Holland 1986; Manski 2008). The
approaches might entail comparing multiple statistical
model structures to test how robust the coefficient
estimate is for a control (e.g. temperature), when
different assumptions are made about which other
controls and their potential interactions to include (e.g.
soil moisture availability). For example, if the coef-
ficient size is robust across structures as r* deviates,
then there is greater credibility that the conditional
effect size of the control has been accurately quantified
(Oster 2019). Notably, with this approach concerns
about whether statistical significance and/or a high r*
has been achieved because of such things as overfitting
are minimized. Instead, the focus is on the robustness
of the form and size of the estimated coefficient for the
control of interest, and much less so on the values of
metrics such as AIC, P values and .

Causative statistical inference, however, is not a
panacea. Numerous challenges are inherent with
analyzing field data in this way, such as whether
important controls have been omitted, and whether the
estimated coefficient for one control is independent of
correlated controls (Laubmeier et al. 2020). An
overarching challenge is that model results are
dependent on the assumptions made by the investiga-
tor about how the included variables relate to each
other. This fact requires the investigator to explore the
sensitivity of the model results to the assumptions
made (as described in the previous paragraph).
Nevertheless, the risks of model misspecification are
magnified as models become more complex and
contain more parameters, as we might expect when
attempting to understand microbial effects on
macrosystem SOM patterns. Prior knowledge of the
system is then essential for informing measurements,
analysis and interpretation (e.g. Ferraro et al. 2019).
Further, because our knowledge is incomplete, ‘big
data’ in macrosystem science will be valuable for
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filling data gaps related to how the influence of
microbial controls are conditional on the values of
other controls that vary across space and time. When
used judiciously (Shiffrin 2016), machine-learning
can aid with the screening of hundreds of predictors to
help identify controls hitherto not considered or
quantified because of incomplete information on the
myriad controls on SOM turnover, which likely
change with the scale of analysis (Keiser et al. 2016;
Waring et al. 2016).

Moving forward, we should employ a suite of
statistical approaches to elucidate the mechanisms
underlying macrosystem patterns, by leveraging the
benefits of one approach to help address the challenges
of another (Laubmeier et al. 2020). For example, the
use of spatial cross-validation and out-of-fit verifica-
tion (rather than in-fit /), which are commonplace in
machine learning to assess model fit and improve
predictive power, could likewise be generally adopted
in causal statistical inference. Nevertheless, we sug-
gest that there should be greater awareness of the
mismatch between common, increasingly-used
approaches such as machine-learning and model
selection, and the development of causative under-
standing (see Ferraro et al. 2019; Tredennick et al.
2021). There is a plethora of papers published in
biogeochemistry and related fields each year within
which identification of causation from observational
and experimental data is falsely equated with signif-
icant P, high in-fit r2, and low AIC values (Mac Nally
et al. 2018). The results of many of these studies are
contextualized in terms of informing process-based
models without recognition that the basis of the
statistical approaches used is incongruent with this
aim. Without greater awareness, reasonable criticisms
of approaches such as hierarchical mixed models,
which are suited to causative statistical inference with
multi-scale data (Soranno et al. 2014; Wagner et al.
2016; Dixon Hamil et al. 2016), result in naive
recommendations that they be replaced with ANOVA
designs given ease of specification and hence likeli-
hood of determining accurate P values (e.g. as in
Arnqvist 2020). Instead, when the goal is to generate
knowledge to improve the ability to project temporal
changes in emergent macrosystem patterns, the bio-
geosciences need to move wholesale into the ‘post
P < 0.05 era’ deemed essential for good practice in
causative statistical inference (Wasserstein et al.
2019).
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Triangulation of study approaches

An increase in the use of causative statistical inferen-
tial approaches will be effective only when partnered
with study designs tailored to identify controls and
their conditional effect sizes. This combined approach
can then meet both structural and parameterization
needs of process-based models. That is, there is a
requirement to identify controls and the size of their
effects under different conditions. Meeting these twin
objectives to advance macrosystem biogeochemical
knowledge will require multiple empirical
approaches, where the advantages of different
approaches can be used to compensate, to a certain
extent, for the caveats of another approach. This
assertion runs counter to recent calls in microbial
ecology (e.g. Prosser 2020) for a renewed focus on the
‘basic scientific method’. We suggest that narrow
adoption of only the deductive approach is poorly
suited to advancing knowledge of how microbes
influence emergent patterns in SOM. Instead, we see
the need for ‘triangulation’ (Munafo and Davey Smith
2018), a philosophy of practice that argues for the
necessity of multiple approaches to tease out causation
from complex, environmental data where there is a
plethora of correlated, putative controls.

The challenge of identifying causation is further
complicated in macrosystem biogeochemistry by the
conditionality in space and time of the effect sizes of
any one control. Long-term, observational networks
that span variation within the macrosystem, and which
take common measurements for multiple variables,
can help to quantify how effect sizes change as context
changes (Soranno et al. 2019). These needs are being
met, for example, through the continental spatial scale
and 30-year extent of the National Ecological Obser-
vatory Network (NEON). Those data being generated
capture spatial and temporal macrosystem patterns in
biogeochemical processes, stocks and their controls.
The temporal extent required to generate a robust
understanding of controls is, however, an open
question. Time-series analyses suggest multiple dec-
ades of data as a potential minimum for explaining
population transitions to new states (Bestelmeyer et al.
2011). If similar timescales apply for understanding
SOM turnover, the fact the first data were available
across the 47 NEON terrestrial sites between 2016 and
2018 means the utility of these data for evaluating
temporal macrosystem projections may not be fully

realized for > 20 years. Whether true or not, long-
term, observational networked data have high external
validity, in that they document ‘true’ emergent
macrosystem patterns (Naeem 2001; Bradford and
Reynolds 2006). Hence, they provide those data
required to evaluate how model structural and param-
eter assumptions, as well as projections, match with
observations.

The correlated and conditional nature of such
observational data mean that they have low internal
validity. That is, the investigator has low confidence
that the controls and their effect sizes can be identified
unambiguously (Naeem 2001; Bradford and Reynolds
2006). Experiments across the same networks are
therefore essential for teasing out causation and can
generate information in the nearer-term, across mul-
tiple contexts, that can be used to develop and refine
biogeochemical models ahead of the availability of
longer-term data (Bestelmeyer et al. 2011; Jian et al.
2020). ‘Context-awareness’ has been employed in
applied ecosystem science for many decades (Ziliak
2019) and continues today with experimental net-
works (e.g. Keuskamp et al. 2013; Hodapp et al. 2018).
The need for networked experiments is amplified for
understanding how microbes influence macrosystem
biogeochemical patterns given the embeddedness of
microbial functional effects within known controls.
For example, as in Fig. 1, spatial effects of climate on
decomposition may conflate direct effects on organ-
ism metabolic rates with indirect effects that operate
via selection for microbial traits. Controlled lab and
field experiments can identify such embedded causa-
tion (e.g. Glassman et al. 2018; Hawkes et al. 2020).

Controlled experiments have been effective for
revealing functional differences among microbial
communities, yet relatively little attention has been
paid to quantifying conditional sizes of microbial
effects. These parameter estimates are required for use
in process-based models to query the magnitude of
microbial influence on emergent macrosystem pat-
terns. To robustly quantify effect sizes, we need
experiments that vary multiple controls, even if we are
interested in a singular control. For example, Milcu
et al. (2018) in a multi-lab comparison of microcosms
across Europe found that the effect of the control of
interest was more reproducible across labs when
variation was introduced in non-target controls. The
investigators concluded that deliberate introduction of
controlled variation in non-target controls decreased
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the likelihood that responses to the control of interest
were influenced by unaccounted lab-specific factors.
Introducing controlled variation ‘swamped out’
effects of uncontrolled variation, making the effect
of the control of interest more similar among labs. We
see the need to build on this approach, which relied on
significance tests and commonality in the grand mean
of the control of interest across labs. Instead, given
conditionality in the identity and effect sizes of
controls, we see regression designs as more relevant
where the conditional effect size of the control of
interest (e.g. microbial community composition) is
determined at multiple, experimentally-imposed
levels of other controls (e.g. moisture and mineral-
ogy). These designs are more labor-intensive but will
yield more robust microbial effect sizes.

Networked experiments can avail of these insights
by varying non-target controls in a manner that reflects
their observed variability in each sub-macrosystem
context (Smith and Peay 2020). In designing such
networks, a challenge will be to identify the scales at
which controls change across space and time (Mou-
quet et al. 2015). For example, Keiser et al. (2016)
showed that controls on soil nitrification rates across
multiple sub-watersheds depended on forest distur-
bance history. When plots across all sub-watersheds
were considered, two controls emerged as important.
However, their effect sizes changed and additional
controls emerged when only disturbed or only undis-
turbed watersheds were considered. Historical contin-
gencies may therefore generate pronounced
conditionality in controls on soil biogeochemical
processes even at spatial scales of a few kilometers.
Such results highlight the need for multi-scale
research, where study extent is systematically varied,
to test the robustness of structural and parameter
assumptions to the scale of inquiry. When the
generated information is strongly scale sensitive, as
in the Keiser et al. (2016) example, the results further
highlight the need to consider how the scale of
inference relates to the desired scale of projection.

With process-based models as a synthesis tool,
structural and parameter knowledge from controlled
experiments can be represented and tested against
networked, multi-scale, measurements. Potentially,
longer-term data may reveal an uncoupling of embed-
ded microbial effects from other controls (Fig. 1), but
such possibilities will depend on how closely micro-
bial community function tracks correlated controls
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such as climate. Nevertheless, by representing
microbes as controls within models, we can evaluate
potential consequences of such uncoupling on SOM
turnover at macrosystem scales. Relatively recent
computational advances mean that integration of these
multiple data streams with models can be direct. For
example, instead of using parameter estimates
informed by data, parameters can be directly estimated
for differential-equation models in a manner that
permits comparison of models with different struc-
tures (Hoffman and Gelman 2014; Betancourt 2018).
Hence, it is feasible to directly compare model
structures and resulting parameter estimates that
represent assumptions of scale-invariant versus -
dependent microbial control, as well as the possibility
that both assumptions hold true within different sub-
macrosystem contexts. To avail of these computa-
tional advances, models need to be developed that
have stocks and processes that empiricists can directly
measure (but see Waring et al. 2020). This develop-
ment has begun (Abramoff et al. 2018) and demands
from empiricists multi-scale, data streams from net-
worked observations and experiments to both inform
model assumptions and evaluate projections.

Variance biogeochemistry

Although we have been using multi-scale to refer to
the need to evaluate how spatial and temporal extent
influences conclusions about controls and their effect
sizes, there is also a need to consider how the grain (i.e.
the spatial or temporal resolution of a single observa-
tion) of measurement or analysis affects our under-
standing of macrosystem biogeochemical patterns.
Firstly, microbes respond to their local environment
and evidence is accumulating that there is high, local-
scale variation (e.g. sub-meter to tens of meters) in the
identity and magnitude of controls on soil biogeo-
chemical processes (Waring et al. 2016; Bradford et al.
2017; Faber et al. 2018; Nunan et al. 2020). Further,
temporal changes in macroclimate can be uncoupled
from changes in microclimate (Lembrechts and Lenoir
2020; Zellweger et al. 2020), meaning that our
understanding of changing controls can be strongly
dependent on the grain at which they are measured.
Secondly, structural and parameter assumptions can
depend on the spatial and temporal grain at which
SOM stocks, fluxes and their controls are measured
(Ruel and Ayres 1999; Bradford et al. 2014; Adhikari
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et al. 2020). Thirdly, although issues with use of
aggregated data have been appreciated in ecosystem
ecology for years (Rastetter et al. 1992; Luo et al.
2013), much of biogeochemical understanding is still
derived from the analysis of site-mean data (Tomczyk
et al. 2020; Wilson and Gerber 2020). For example,
regression analyses of climatic and litter controls on
SOM process rates from continental networks typi-
cally use site-mean data for both controls and response
variables (Aerts 1997; Cornwell et al. 2008; Currie
et al. 2010). The use of means collapses variation and
increases > values (Bradford et al. 2016a; Adhikari
et al. 2020), which leads to false confidence in the
inferred causative relationships. More importantly,
measurements of variables at a single, aggregated
grain can lead to false inferences about the identity and
effects sizes of controls (e.g. Schmitz 2010; Meyer
et al. 2010).

We see the need for a shift in the field from a focus
on the mean toward a practice that we refer to as
‘variance biogeochemistry’. Such a shift would be
consistent with shifts in related fields, such as
community ecology, where false inferences have
driven research that eschews species-level means for
local-level, individual data (Clark 2010; Bolnick et al.
2011; Urban et al. 2012). That structural and param-
eter inferences about the drivers of system change can
be dependent on the grain of observation and analysis
is not surprising. There are numerous mathematical
explanations for why relationships between mean
values (i.e. group averages) of two variables may
obscure or misrepresent true relationships. These
explanations are often referred to as the ‘ecological
inference fallacy’. Some of the best-known underlying
instances of this fallacy are Jensen’s Inequality and
Simpson’s Paradox, which show respectively that
environmental variance and interacting factors can
shape patterns and processes in nature that are
independent of average conditions (Ruel and Ayres
1999; Denny 2017).

For example, Jensen’s Inequality shows that vari-
ance in the X variable for an accelerating or deceler-
ating function, can lead to average results of the
function that differ from the results inferred from the
underlying X-Y relationship. That is, the average of a
function is not necessarily the same as the function of
the average. We can then expect that moisture control
on SOM decomposition rates, for instance, may not be
accurately captured by correlations of site means

given that moisture tends to have high within-site
variability. Work to inform soil sensor designs at the
NEON sites across the U.S. showed that variation in
soil moisture within a site was high, with ~ 100
spatial points required at most sites to provide a
reasonable estimate of the site mean (Loescher et al.
2014). At any one point within a site, then, moisture is
likely to differ markedly from the site mean.

To test whether such high within-site variation in
well-established controls on SOM dynamics might
change inferences from among-site means, Bradford
et al. (2017) ran a climate gradient study looking at
early-stage decomposition of two grass litters at six
sites. Litterbags were arrayed across transects to
capture within-site heterogeneity in microenviron-
mental conditions, which were measured for each
litterbag. They analyzed decomposition rates using
site-mean versus plot-level data on putative controls.
Consistent with the NEON results, moisture varied
markedly within each site and hence site means were a
poor surrogate for plot-level moisture conditions. In
turn, the moisture—decomposition relationship was
strongly scale-dependent: there was a pronounced
moisture—decomposition relationship for the plot-
level data but a weak group-level relationship esti-
mated from the site-means. Such observations show
that patterns emerging from among-site comparisons
of controls, when expressed as site means, can fail to
represent the true control-SOM relationship. Simi-
larly, Ruel and Ayres (1999) showed how conclusions
about the response of respiration to temperature can
deviate increasingly from the true value as variation in
temperature around the mean value increases. The
grain of observation (or analysis) therefore has the
potential to strongly influence conclusions about the
causative relationships operating between microbes
and other controls on SOM dynamics.

In particular, if the traits of soil microbial commu-
nities are shaped by the environmental regime, then
collecting fine-scale data to accurately capture varia-
tion in environmental conditions is necessary to
expand interpretation beyond emergent, coarser-scale
relationships that can obscure or alter mechanistic
interpretations (Robinson 1950; Levin 1992; Gelman
et al. 2007; Firn et al. 2019; but see McGill 2019).
Similar challenges related to grain of observation
equally apply to the analysis of microbial communities
themselves (Naylor et al. 2020). For example, future
macrosystem SOM dynamics are likely to emerge
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from shifting trait abundances and interactions within
microbial communities (Fukami 2015; Maynard et al.
2017; Smith and Peay 2020), so traits alone are
unlikely to capture all the necessary attributes of
communities that influence ecosystem stocks and
processes (van der Plas et al. 2020). Further, the
extent to which niche breadth, trait variation and
dispersal influence the persistence of functional lega-
cies within microbial communities is largely unknown
(Baym et al. 2016; Maynard et al. 2019; Sorensen and
Shade 2020). Yet evidence is accumulating that the
legacies persist under altered climate regimes for at
least several years (Hawkes et al. 2020). Collectively,
it seems reasonable to conclude that use of commu-
nity-mean trait values is likely to obscure our ability to
explain spatial patterns in the functional capabilities of
microbial communities and how they will shift
temporally (Dickie et al. 2012; Wright and Sutton-
Grier 2012; Funk et al. 2017).

Reconsideration of how observational grain shapes
our causative understanding of SOM dynamics also
has implications for how we synthesize those data
arising from biogeochemical studies. In this paper we
suggest synthesis via process-based, biogeochemical
models. We do this in part because of the pitfalls
inherent to the ever-increasing adoption of formal
meta-analyses for synthesis. Formal meta-analyses in
biogeochemistry (and most fields) analyze the mean
effect sizes of controls, making their causative inter-
pretation vulnerable to inference fallacies arising from
phenomena such as Jensen’s Inequality and Simpson’s
Paradox. Even the emerging use of meta-regression
does nothing to circumvent these data aggregation
issues (Deeks et al. 2020; Spake et al. 2020). Meta-
analysis is therefore a questionable choice for
causative statistical inference aimed at developing
structural and parameter knowledge that can then be
used to inform process-based models used for tempo-
ral macrosystem projections. Worryingly, then, there
has been a move toward adoption of standards (e.g.
PRISMA by the PLoS family of journals, Moher
2009), intended for meta-analysis of randomized,
controlled-trial, mean data, as the required reporting
guidelines for all meta-analyses. We suggest that the
definition of meta-analysis should be broader, as a
synthesis of individual observations from multiple
studies, with means used for supplemental analyses to
investigate scale-dependent outcomes (see Spake et al.
2020). An expanded definition is feasible given the
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trend to deposit individual data in open-access repos-
itories when work is published. Far too many authors
are still failing to deposit their data, and one conse-
quence of this failure is the continued reliance on
synthesis of aggregated data and the potentially
fallacious understanding its analysis yields.
Regardless of the historical reasons as to why
‘mean biogeochemistry’ is so pervasive in SOM
science, theory on inference and mathematical proofs
rigorously support the expectation that data aggrega-
tion can change the identity, effect size and even the
sign of controls. The establishment of macroscale
ecological networks will help redress data limitations
for macrosystem science (e.g. Soranno et al. 2014; Fei
et al. 2016). When coupled with advances in micro-
instrumentation, -omic technologies, integration of
remote sensing with field samples, and data science
(e.g. Isaac et al. 2020; Kearney et al. 2020; Naylor
et al. 2020; Chadwick et al. 2020), they present an
opportunity to examine the influence of ‘data-grain’
on our understanding of microbial effects on emergent
macrosystem patterns. There will not be a single,
correct grain (Rose et al. 2017; Wutzler et al. 2020). At
the same time, we recognize that the simple action of
taking a soil core aggregates many microenviron-
ments, meaning that from a practical perspective we
commonly start with aggregated data. We are not
therefore suggesting that every microenvironment be
isolated, but instead simply that more attention be paid
to asking when, for example, consolidating soil cores
might alter our interpretation of causative variables.
Further, we recognize that reductionist, fine-grained
measurements may fail to adequately explain emer-
gent macroscale patterns (Blankinship et al. 2018;
McGill 2019), highlighting the need for a combination
of approaches to unravel the complexity by which
microbial processes affect SOM dynamics at this
scale. Relatedly, if reliable projection is the end goal,
we need to ascertain the extent to which data can be
aggregated, while retaining the same causative inter-
pretation, if heterogeneity and complexity are to be
represented in process-based models (Fisher and
Koven 2020). Yet we believe that increasing scale-
awareness in biogeochemistry will pave the way for
variance biogeochemistry as an effective practice that
will help to quantify microbial controls on emergent
patterns of SOM dynamics at macrosystem scales.
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Fig. 3 A suggested set of four overarching research practices
necessary to advance and refine causal understanding of how
microbial controls influence macrosystem patterns in soil
organic matter dynamics. Integration of the practices is argued
to be necessary to robustly identify and quantify microbial
community controls. Each side of the triangle represents one
broad empirical practice, with the arrow emerging from the
triangle illustrating how process-based models can be used to
synthesize knowledge gained from the three empirical practices.
The use of process-based models for synthesis is intended to

Conclusions

Ecosystem biogeochemical models that operate at
only one scale of integration are unlikely to incorpo-
rate mechanisms properly (Agren et al. 1991). Yet
structural and parameter assumptions in models are
commonly based on empirical work conducted and/or
analyzed at a single, aggregated scale. We present
evidence that the predominance of ‘mean biogeo-
chemistry’ obfuscates causative understanding. For
microbial controls on emergent SOM dynamics, it
likely falsely reinforces the assumption of spatial
invariance and hence of functional equivalence among
soil microbial communities (Fig. 1). To build

causal knowledge to
refine to which
model projections
are most sensitive

formalize causative understanding generated by the empirical
work and to identify knowledge gaps (by generating competing
hypotheses) to which macrosystem projections are most
sensitive, thereby guiding further empirical research (depicted
by the arrow returning from models to the empirical triangle).
We suggest that such a coordinated set of practices is required to
rapidly and effectively build confidence in future macrosystem
projections of SOM dynamics relevant to adapting to and
mitigating major environmental issues, such as carbon cycle-
climate feedbacks and soil degradation

confidence in projections of macrosystem SOM
dynamics will then take more than representation of
microbes as controls in soil biogeochemical models.
Empiricists will need to adopt a suite of practices
(Fig. 3), to resolve how microbes shape emergent
macrosystem SOM patterns, that are suited to identi-
fying and quantifying correlated controls that exert
their influence conditionally in space and time.

We suggest that one of the practices should be
much greater adoption of statistical approaches tai-
lored primarily for identifying the conditional func-
tional form and effect sizes of controls. A shift toward
causative statistical inference will be impeded by the
current overreliance on a limited number of metrics,
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such as P and r* values. However, the beginnings of a
move in STEM more generally toward presentation
and analysis of individual observations, given issues
of interpreting causation from aggregated data (e.g.
Weissgerber et al. 2015), suggests the statistical-
significance barrier is far from impenetrable.

Triangulation will also need to be widely practiced
given what is termed the ‘partial observability’
problem by philosophers of ecology (Sarkar 2016).
The problem specifies that it is difficult to estimate
parameters accurately in complex systems. One of the
main reasons for the difficulty is the embedded
correlation typical of controls on SOM dynamics,
such as climate or litter quality and functional
differences among microbial communities (Fig. 1).
Correlation can be uncoupled—at least partially—
through longer-term, networked, observational and
controlled experimental work. We also see potential
for microbial trait and community composition
research to reveal when controls are likely operating
directly on microbial metabolism and indirectly
through selection for different phenotypes and organ-
ismal interactions. Overall, however, we assert that for
complex systems causality will only be identified by
systematically revealing cause-and-effect relation-
ships using evidence gleaned from different
approaches to design, execution, and analysis of
research (Munafo and Davey Smith 2018).

For the third practice, we suggest the need for
greater consideration of variance, where the focus is
on individual observations, or disaggregated data, and
when and where aggregation is justified. This need
addresses a range of challenges in macrosystem
biogeochemical science, which fall under the ‘com-
plexity’ and ‘uniqueness’ problems that describe,
respectively, the conditional nature of controls on
emergent system behaviors and their historical con-
tingencies (Sarkar 2016). These problems highlight
the need for multi-scale research to investigate how
context, study extent, and measurement and analysis
grain influence causative understanding. In particular,
variance biogeochemistry as a practice recognizes that
quantification of fine-scale variation is likely neces-
sary to identify controls, and their true effect sizes, on
microbially-mediated biogeochemical processes.

The philosophical problem of ‘structural uncer-
tainty’ in ecology, where differences in theoretical
assumptions make enormous predictive differences
(Sarkar 2016), helps to explain why we suggest that
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research integrating the three empirical practices
should be synthesized and informed through a focus
on building confidence in projections from process-
based models. As such, we build on previous recom-
mendations for macrosystem research to start with a
conceptual model (Soranno et al. 2014), by suggesting
that the concepts be formalized through process-based
models (Fig. 3). Our recommendation will permit
multiple, competing hypotheses to be formalized at
the outset of the research. Model pipelines and
ensembles can collectively represent the conditional,
contingent and only partially-observed controls and
parameter estimates to identify those assumptions to
which model projections are most sensitive. Those
assumptions can then be examined through empirical
work following the three overarching practices we
identify and then refined in model representations. We
suggest that doing so will advance causative under-
standing of microbial controls on emergent macrosys-
tem patterns in SOM, while building confidence in
projections of phenomena such as carbon cycle-
climate feedbacks. As such, we foresee that a local-
scale lens focused on microscale organisms has strong
potential to yield macroscale understanding of SOM
dynamics relevant to addressing global-scale, societal
problems.
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