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Decentralized Localization in Homogeneous Swarms
Considering Real-World Non-Idealities

Hanlin Wang and Michael Rubenstein

Abstract—This letter presents a decentralized algorithm that
allows a swarm of identically programmed agents to cooperatively
estimate their global poses using local range and bearing measure-
ments. The design of our algorithm explicitly considers the phase
asynchrony of each agent’s local clock, moreover, the execution of
our algorithm does not require each agent to actively keep the same
neighbors over time. A theoretical analysis about the effect of each
agent’s sensing noise and communication loss is given, in addition,
we validate the presented algorithm via experiments running on a
swarm of up to 256 simulated robots and a swarm of 100 physical
robots. The results from the experiments show that the presented
algorithm allows each agent to estimate its global pose quickly and
reliably. Video of 100 robots executing the presented algorithm as
well as supplementary material can be found in [1] and [2].

Index Terms—Swarms, distributed robot systems, sensor
networks.

I. INTRODUCTION

LOCALIZATION plays an important role in swarm systems.
In many collective tasks, such as shape formation [3]–[5],

shepherding [6], and more [7], it is valuable to have each agent
know its pose in a global coordinate system.
Previous methods can be categorized into centralized meth-

ods [3], [8]–[10], and decentralized methods [11]–[21]. In
centralized methods, agents obtain their poses from a central
controller [8], [9], or a pre-setup external infrastructure [3], [10].
This type of method can work well in well-controlled environ-
ments, but cannot easily be deployed in unknown environments,
and suffer from thesingle point of failureproblem [22].
Decentralized methods, in contrast, are inherently more scal-

able and more robust to failures. Here, it is assumed that each
agent is able to communicate with nearby agents. In addition,
each agent can measure its distance [11]–[16], bearing [17],
[18], or both [19]–[21] relative to its neighbors. The agents
will estimate their global poses using the local communication
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Fig. 1. (Top) 100 Coachbot V2.0 robots are placed in three patterns; (Bottom)
The robots’ position estimates obtained via the proposed algorithm.

and relative measurements. Decentralized methods can be cat-
egorized into two types: progressive methods [12]–[14], [18],
[23] and concurrent methods [16]. In progressive methods, each
agent has two possible states: localized and unlocalized. The
unlocalized agents will localize themselves using the inter-agent
measurements and the pose estimates from their already lo-
calized neighbors, then, these unlocalized agents will become
localized agents and their pose estimates will later be used by
their unlocalized neighbors. It was shown in [12], [13], [23]
that with certain amount of pre-localized anchoring agents, it
is possible to accurately localize a densely placed swarm using
the local information only. However, each agent’s position error
will accumulate over its communication hops away from the
anchoring agents. In addition, this type of method requires an
additional phase to set certain agents as anchoring agents. The
beacon-free solutions are proposed in [14], [18]. In [14], agents
use inter-agent distance information to organizerobust quads
with their nearby agents. The adjacentrobust quadscan recover
their relative positions using the information from the set of
agents in common between two quads. However, it has not been
shown that this method can estimate agent’s orientation. The
work presented in [18] allows agents to estimate their orienta-
tion using the inter-agent bearing information, in addition, this
methods is also able to localize only a subset of the agents in
the swarm. However, the coordinate system established by this
method is scale-free, requiring an additional step to recover the
coordinate system’s scale [24].
Different from the progressive methods, in concurrent meth-
ods [16], [25], [26], agents do not explicitly hold a Boolean state
of being localized or unlocalized. Instead, all the agents will
constantly and cooperatively refine their pose estimates using
their local measurements. The concurrent methods are generally
more robust to sensing noise, in addition, these types of methods
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Fig. 2. Graphical illustration of the agent’s sensing capability. The red and
green arrow lines are each agent’ local coordinate frame, where red arrow line
is the x-axis.

are more robust to the unexpected external disturbances such as
the removal or the addition of the agents. One drawback for this
type of method is that, compared to the progressive methods, the
concurrent methods’ commutation cost is often more expensive,
as each agent needs to frequently exchange its pose estimates
with its neighbors.
In this letter, we present a fully decentralized concurrent

localization algorithm for localizing a swarm of identically pro-
grammed agents. We assume that each agent can talk to nearby
agents, and that when an agent receives a message, it can measure
the transmitter’s bearing and distance. The agents will estimate
their global poses by cooperatively minimizing the disagree-
ment between local measurements and their pose estimates. The
novelty of our algorithm is that: The design of our algorithm
explicitly considers the phase asynchrony of each agent’s local
clock, moreover, the execution of our algorithm does not require
each agent to actively keep the same neighbors over time, which
helps to avoid unnecessary communication overhead and makes
our algorithm more flexible. A theoretical analysis about the
effect of each agent’s sensing noise and communication loss is
given, in addition, the algorithm’s performance is thoroughly
investigated via experiments running on a swarm of up to 256
simulated agents as well as a swarm of 100 physical robots.
The results from those experiments show that our algorithm
is able to reliably localize the swarms with different sizes and
configurations.

II. PRELIMINARIES

In this section, we introduce the agent model used in the design
as well as the analysis of the algorithm, and formally state the
decentralized localization problem.

A. Agent Model

We assume that the agents are placed on a 2D plane. Each
agent holds a local coordinate frame where the local coordinate
frame’s origin is fixed on the center of the agent and the x-axis’
direction is aligned with the agent’s heading. We assume each
agent’s clock has the same frequency but can be asynchronous
in phase. In addition, it is assumed that each agent has a locally
unique ID. We assume each agent is able to broadcast messages
to all agents within its communication rangeR. Moreover, when
an agentaireceives a message from a neighboraj, the agentai
is able to sense the transmitteraj’s relative bearing angleBijand
the distancedij. See Fig. 2 for a graphical illustration of agent’s
sensing capabilities. One real-world example that fits our agent
model is the Bluetooth 5.1 AOA device [20].
In order to make our agent model more realistic, we assume

the inter-agent communication channel is lossy, that is: for
an agentai, when a nearby neighborajtransmits a message,
aiwill receive this message with a probability ofλ, where

0<λ<1. In addition, we assume the agent’s bearing and range
sensor is noisy, that is: letBijanddijbe agentaj’s actual
bearing angle and distance measured by agentai, respectively.
When agent aiattempts to measure those two quantities, the
actual measurements returned from the sensor will be two ran-
dom variablesB̂ij= Bij+ B2πandd̂ij=dij+ d, where
·2π:=·+2π

π−·
2π denotes the2πmodulus operator [27],

which is an operator that wraps an angle from the real space
to the interval(−π, π], andB∼N(0,σ

2
B),d∼N(0,σ

2
d)are

two independent zero-mean Gaussian random variables.

B. Problem Statement

Our task is to design an algorithm that estimates each agent’s
pose in a global frame using local information only. In our
algorithm, this task is achieved by forcing agents to constantly
and cooperatively refine their pose estimates to reduce the in-
consistency between their pose estimates and the local mea-
surements. The global pose estimation will occur when each
agent’s pose estimate becomes consistent with its local mea-
surements and its neighbors’ pose estimates. More formally, let
A=[a1,a2,...,an]be a set ofnagents, we use the undirected
graphG={A,E}to describe the network’s communication
topology. For a pair of agentsaiandaj,(i, j)∈Eiff they are
located in each other’s communication/sensing rangeR, and
for each agentai, the set of all the agents located in its com-
munication range is denoted asNi={aj|aj∈A,(i, j)∈E}.
To simplify the description and analysis of the algorithm, it is
assumed thatGis always connected. In addition, we assume
that each agent is stationary. Note that the assumption of each
agent being stationary is only for the sake of analysis, the actual
execution of our algorithm does not require this assumption. An
example of the algorithm working in the situation where the
swarm’s communication topology is dynamically changing is
shown in Section V-C. Each agentaiuses the vector[θix,θiy]and
vector[xi,yi]to describe its orientation estimate and position es-
timate, respectively, whereθi= arctan 2(θiy,θix)is the agent’s
orientation estimate, and[xi,yi]is the agent’s estimate of its xy
position. The agents will estimate their pose by cooperatively
solving the following two problems:
Problem 1:(Orientation Estimation): LetWijbe the true
orientation difference between two agentaiandaj, we define
the swarm’s orientation estimate errorfoas:

1

4
ai∈Aaj∈Ni

1

|Ni|

1

|Nj|

cos(Wij),−sin(Wij)

sin(Wij), cos(Wij)

θix

θiy
−
θjx

θjy

2

2

The task is to find each agentai’s orientation estimate[θ
x∗
i,θ

y∗
i]

that minimizes the objectivefoabove.
Problem 2:(Position Estimation): For each agentai,given
ai’s orientation estimateθi= arctan 2(θiy,θix), we define the
swarm’s position estimate errorfpas:

1

4
ai∈Aaj∈Ni

1

|Ni|

1

|Nj|

xi
yi
+dij

cos(Bij+θi)

sin(Bij+θi)
−
xj
yj

2

2

The task is: given each agent’s orientation estimate obtained
from problem 1, find each agentai’s position estimate[x

∗
i,y
∗
i]

that minimizes the objectivefpabove.
The objectivefoandfpcan be intuitively interpreted as
the normalized sum of the inconsistency between each pair of
agents’ pose estimates and their distance, orientation difference,
as well as bearings relative to each other.
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C. From Bearing Angle to Orientation Difference

One can see that in order to solve problem 1, each agent
aineeds to be able to measure nearby agentaj’s orientation
differenceWij. On the other hand, as stated in Section II-A,
agentaiis not able to measure the neighboraj’s orientation
difference directly. It was shown in [18] that, for two agents
aiandaj, given their bearing angles in the other’s local frame
BjiandBij, their orientation differenceWijcan be explicitly
written as:Wij= Bij−Bji+π2π.

III. APPROACH

As we briefly discussed in Section II-B, in our algorithm,
the agents will actively refine their pose estimates to minimize
the objectivefoandfp. When doing so, each agent will treat
the objectivefoand the objectivefpseparately: each agent
aiupdates its orientation estimate[θix,θiy]only according
to objectivefo(Algorithm 1, Line 20-21), and then uses the
obtained orientation estimate[θix,θiy]to calculate objectivefp
so as to update its position estimate[xi,yi](Algorithm 1, Line
22-24).
In the algorithm, each agent will consistently broadcast its

current pose estimate to the neighbors at a fixed frequency of
f(Algorithm 1, Line 28), meanwhile, at the same frequency,
it will periodically update its pose estimate using the messages
received (Algorithm 1, Line 10-26). For each agent, the message
received from another agent can be characterised by a 3-tuple

msg=(data,̂B,̂d), wheredatais the payload of the message,

B̂is the measurement of transmitter’s bearing angle, and̂dis the
measurement of transmitter’s distance. See Algorithm 1 for the
detailed pseudo code of the proposed algorithm, and below is a
detailed description of the main variables used in the algorithm:
•id:the agent’s id, which is locally unique;
•α, β: the variables to control the step size of the update of
the agent’s pose estimate;
•msg_buff:the buffer to store the messages received in the
latest1famount of time;

•last_check:the variable to record when was the last time
the agent transmitted a message;
•clock():the syscall that returns the time elapsed since the

program started;
•θix,θiy,xi,yi: the agentai’s pose estimate;
•echo_id, echo_B, echo_msg: the variables that assist the
agent to execute the “random echo” protocol so as to obtain its
own bearing angle measured in the other’s local frame;
•msg_out:the message to be transmitted;
•msg_in:a 3-tuple that contains the payload of received mes-
sage, the measurement of message’s transmitter’s bearing angle,
and the measurement of the message’s transmitter’s distance.
For each agent in swarm, every time when it receives a

message, it will store it in the buffermsg_buff(Algorithm 1
Line 31-32). Each agent will periodically process the messages
in buffermsg_buff(Algorithm 1, Line 9-26) and then empty
the buffer (Algorithm 1, Line 29) at a fixed frequency off.
When an agent aiattempts to update its orientation estimate
[θix,θiy], the first task is to measure the orientation differences
from its neighboraj. As stated in Section II-C, for an agentai,
the calculation of its orientation difference from its neighboraj
requires two measurements:B̂ij, which isaj’s bearing angle

measured byai, and̂Bji, which isai’s bearing angle measured

byaj. On the other hand, the second measurement̂Bjicannot be
obtained byaivia local sensing directly. In order to allow each
agent to obtain its own bearing angle measured by its neighbors,
the agents will cooperatively execute a “random echo” protocol:
for each agent in the swarm, every time when forgingmsg_out,
it will first uniformly and randomly select a messageecho_msg
in the buffermsg_buff, then embeds the id and the measurement
of bearing angle of thisecho_msg’s transmitter in themsg_out
(Algorithm 1, Line 11-13, Line 26). By cooperatively doing so,
each agentaiwill be able to obtain its own bearing angle mea-
sured by any neighborajwith a non-zero probability. See Fig. 3
for a minimal working example for this “random echo” protocol.
In this example, there are three agents involved. Recall that we
assume the agents’ clocks are asynchronous in phase, therefore,
from a global observer’s perspective, despite that each agent is
programmed to broadcast at the same frequency, they still might
transmit messages at different times, as shown in Fig. 3. Due
to the space constraints, in the example, we will only track the
agent 0’s behavior, which suffices to demonstrate the “random
echo” protocol as all the agents are identically programmed.
Att0andt1, agent 0 receives messages from agent 1 as well
as agent 2 and stores them in the buffermsg_buff(Algorithm 1,
Line 33). Att2, agent 0 generates a message and transmits it out.
When generating this message, agent 0 uniformly and randomly
selects a message in themsg_buff(which is the message from
agent 1 att2), and embeds the id as well as the measurement
of the bearing angle of this selected message’s transmitter in
the message to be transmitted (Algorithm 1, Line 11-13). This
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Fig. 3. (Left) Physical postion of agents: each disk represents an agent, the
number on the disk indicates the agent’s id, the dotted line connecting two agents
indicates that those two agents are located within each other’s communication
range. (Right) The horizontal colored arrow lines are agents’ local clocks
running from the left to the right. Each vertical dotted arrow line is a broadcast
event, which points from the transmitter to the receiver(s). Each filled box is a
transmitted message, the box’s color shows its transmitter. The array of unfilled
boxes attached to agent 0’s clock on the bottom shows the values of agent
0’s variablemsg_buffat different timest0,...,t5, each filled box inside the
msg_buffis a received message currently stored in agent 0’s buffermsg_buff.

transmitted message will allow the agent 1 to obtain its own
bearing angle measured by agent 0. Right after transmitting the
message, agent 0 will empty its buffermsg_buff. The agent 0’s
behaviors att3,t4andt5are almost the same ast0,t1andt2,
except that att5, it forges the message using the message from
agent 2 instead of the message from agent 1.
As we discussed before, in the algorithm, each agentaiuses

the messages in the buffermsg_buffto update its pose estimate
at a fixed frequency off(Algorithm 1, Line 9-29). To do so,
every1famount of time, each agentaiwill first uniformly and

randomly select a message in the buffermsg_buff, which is
denoted asmsg_selectedin the algorithm, then, it will check
if the value of the fieldecho_idinmsg_selectedmatches its
own id, i.e., if thismsg_selectedcontainsai’s bearing angle
measured by the other. If so,aiwill use the information in
msg_selectedto update its pose estimate (Algorithm 1, Line
16-26) and then empty the buffermsg_buff(Algorithm 1, Line
29). Otherwise,aiwill do nothing but empty the buffermsg_buff
directly (Algorithm 1, Line 29). Each time when agentaiupdates
its pose estimate (Algorithm 1, Line 25-26), the step size is
controlled by the variablesαandβ.

IV. THEORETICALRESULTS

In this section, we study how each agent’s sensing noise and
communication loss will affect the swarm’s behavior, and we
show that when the agent’s communication loss and sensing
noise is low, the swarm’s behavior can be approximated as the
unbiased stochastic gradient descent (SGD) on the objective
foandfp. In addition, we give analysis of the algorithm’s
complexity.

A. Analysis of the Swarm’s Behavior

First, we consider the swarm’s behavior from a global ob-
server’s perspective. Say there is a global observer holding a
clock that has the same frequency as each agent’s local clock.
This global observer will record every agent’s pose estimate at a
fixed frequencyf, which is the same as the frequency at which
each agent will attempt to update its pose estimate. By doing
so, this global observer will be able to capture all the changes
of each agent’s pose estimate. Please see [2] Section VII for the
formal proof of this conclusion.

Proposition 1:Letθkix,θ
k
iy,x

k
i,y

k
ibe agentai’s pose estimate

observed by the global observer at timek1f, the swarm’s behav-
ior can be described by the Algorithm 2 without loss of any
information.
Proof:Please see [2], Section VII.
Note that the objectivefoandfpare defined using the true

inter-agent relative bearing angles and distances, whereas in
reality, the actual measurements that each agent uses to update
its pose estimate will be corrupted by the sensing noise. Next,
we show how the sensing noise and the communication loss will
affect the swarm’s behavior.
Lemma 1:LetΘki=[θ

k
ix,θ

k
iy]be agentai’s orientation esti-

mate atkthiteration, in addition, let∂fo∂Θi
k
be the value of partial

derivative of objectivefowith respect toΘicalculated using
agents’ orientation estimates atkthiteration, we have:

E(Θk+1i −Θki)=−μα
∂fo
∂Θi

k

+γkΘ

In which:

μ=1−(1−λ)|Ni| (1)

γkΘ=
aj∈Ni

1−exp−σ2B{1−(1−λ)
|Nj|}

|Nj|
R(−Wij)Θ

k
j

−
(1−λ)|Nj|

|Nj|
Θki (2)

whereR(·)=
cos(·), −sin(·)

sin(·), cos(·)
is the rotation matrix con-

structed from the angle·
Proof:Please see [2], Section VIII.
Lemma 2:Assume the agents’ orientation estimates have
converged to a stable state. LetXki=[x

k
i,y

k
i]be agentai’s

position estimate atkthiteration, moreover, let
∂fp
∂Xi

k
be the value

of partial derivative of objectivefpwith respect toXicalculated
using agents’ position estimates atkthiteration, we have:

E(Xk+1i −Xki)=−μβ
∂fp
∂Xi

k

+γkX
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In which:

μ=1−(1−λ)|Ni| (3)

γkX=
aj∈Ni

1−exp −
σ2B
2 {1−(1−λ)

|Nj|}

2|Nj|
P(i, j)dij

+
(1−λ)|Nj|

|Nj|
{Xkj−X

k
i}(4)

whereP(i, j)=−
cos(Bij+θi)−cos(Bji+θj)

sin(Bij+θi)−sin(Bji+θj)
is the ma-

trix constructed from a pair of agentsaiandaj’s relative bearing
angles as well as their orientation estimates.
Proof:Please see [2], Section IX.
Lemma 1 and Lemma 2 suggest that at each iteration, in

expectation, each agent will update its pose estimate along a
direction that is slightly deviated from the negative gradient of
objectivefpandfo, with a step size that is slightly smaller than
the user-specified one. As we can see in Lemma 1 and Lemma
2, the depreciation factor of the step sizeμis introduced by
the agent’s communication loss, in other words, in expectation,
the communication loss will “shorten” the agent’s step size. In
addition, the communication loss’ effect will be reduced by
the agent’s degree. As toγΘ andγX (which are the deviation
of the expected update direction from the objective’s gradient
negative), according to the 2 and 4, they are a result of both the
communication loss and the sensing noise.
On the other hand, one can observe that, the bias of the update

direction, and the depreciation of the step size will super-linearly
decay over agent’s communication loss and sensing noise. This
suggests that, when communication loss and sensing noise are
reasonably small, the update direction biasγΘ,γX, and the
depreciation of the step sizeμwill become negligible.
Assumption 1:Each agentai’s degree|Ni|is not too low and
the packet loss rate1−λis not too high s.t.(1−λ)|Ni|≈0.
Assumption 2:The variance of agent’s bearing sensing noise

σ2Bis not too big s.t.exp{−
σ2B
2}≈1.

Remark:Assumption 1 and 2 are actually pretty mild. One can
consider a case where the packet loss rate1−λis 10% and the
lowest degree of any agent in the swarm is 2. In this case,(1−
λ)|Ni|=0.01≈0. For assumption 2, consider a case where each
agent’s bearing sensing noise has a std of 0.3 rad, which is around
the same as the std of the angle measurements of Bluetooth 5.1

devices [20]. In this case,exp−
σ2B
2 =exp{−0.045}≈1.

Theorem 1:If Assumption 1 and 2 hold, then the swarm’s be-
havior can be approximated as the unbiased stochastic gradient
descent on objectivefoandfp. Namely:

E(Θk+1i −Θki)≈−α
∂fo
∂Θi

k

,E(Xk+1i −Xki)≈−β
∂fp
∂Xi

k

Proof:Theorem 1 can be easily obtained by substituting

(1−λ)|Ni|with 1 and substitutingexp −
σ2B
2 with equation

1 in 1, equation 2, equation 3, and equation 4.
So far, we have shown that when communication loss and

sensing noise is reasonably small, the swarm’s behavior is
equivalent to the unbiased SGD on the objectivefoandfp.
In other words, in expectation, the algorithm allows the agents
to constantly reduce the disagreement between their pose esti-
mates and their local measurements, showing the algorithm’s
correctness.

B. Complexity

First, we study the algorithm’s memory complexity. It is
straight forward to examine that the memory to execute the
algorithm is dominated by the size of buffermsg_buff. Therefore,
for an agentai, the algorithm’s memory complexity isO(|Ni|),
where|Ni|is the number ofai’s neighbors.
Next, we investigate the algorithm’s computation complexity.
We assume that the complexity of querying a random number
generator isO(1), then, the cost to execute Algorithm 1 Line
8-32 isO(1). In addition, during a unit of time, each agentai
can receive at mostf|Ni|messages, that is, in a unit of time,
aiwill execute Algorithm Line 8-32 at mostf|Ni|times. Thus,
for an agentai, the computation complexity of the algorithm is
O(f|Ni|).
Lastly, given the fact that the length of each message ex-
changed amongst the agents isO(1), one can easily conclude
that the algorithm’s communication complexity, i.e., the amount
of data to be transmitted by each agent in a unit of time, isO(f).

V. EMPIRICALEVALUATION

In this section, we study the performance of proposed algo-
rithm empirically in a 100-robot swarm and in simulation.
To qualitatively evaluate the algorithm’s performance, we
introduce two metricsNOEE(normalized orientation estimate
error) andNPEE(normalized position estimate error), which
are the metrics to evaluate the error of agents’ orientation
estimates and position estimates, respectively. TheNOEEand
NPEEare defined as follows: we useθki=atan2(θ

k
iy,θ

k
ix)and

[xki,y
k
i]to denote agentai’s orientation estimate and position

estimate observed by the global observer atkthiteration, in
addition, we useθgiand[x

g
i,y

g
i]to denote agentai’s true pose

in a global coordinate system. At each iterationk, we first
calculate the rotation and translation that can match the agents’
estimated positions and their true positions the best, namely, find
θk∗∈(−π, π],t

k
∗∈R

2that minimize the following objective:

min
ai∈A

cos(θk∗), −sin(θ
k
∗)

sin(θk∗), cos(θk∗)

xki
yki
+tk∗−

xgi
ygi

2

2

Then, theNOEEandNPEEatkthiteration are defined as:

NOEEk=
1

n
ai∈A

|θki+θ
k
∗−θ

g
i2π|

NPEEk=
1

n
ai∈A

cos(θk∗),−sin(θ
k
∗)

sin(θk∗), cos(θk∗)

xki
yki
+tk∗−

xgi
ygi 2

wherenis the swarm size. TheNOEEis the normalized geodesic
distance between agents’ transformed orientation estimates and
their true orientations, andNPEEis the normalized Euclidean
distance between agents’ transformed position estimates and
their true positions.

A. Simulation

In simulation, the robot’s communication range is set to 0.3 m,
the robot’s communication frequencyfis set to 30 Hz. In each
test, we place the simulated robots in three patterns: the circle,
the shape “N,” and the random mesh. See Fig. 4 for a graphical
illustration of these three patterns. In the circle pattern,nrobots
are evenly distributed on on a circle. The circle’s radius is made
such that the distance between two adjacent robots is 0.25 m,
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Fig. 4. From left to right: the circle pattern, the shape “N” pattern, and the
random mesh pattern for a swarm of 35 robots. Each dot represents a robot, a
line connecting two robots indicates that those two robots are located within
each other’s communication range.

Fig. 5. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals at a confidence level of twoσ.The
color indicates the noise profile used in experiment: blue –σB=0.05rad,σd=
0.01 m; green –σB=0.1 rad,σd=0.02 m; red –σB=0.2 rad,σd=0.04 m.

in addition, each robot’s orientation is set to be such that: each
agent faces straight towards to the center of the circle. In the
shape “N” pattern, the robots’ positions form a “N” shape on
a grid, moreover, the distance between any pair of adjacent
robots is 0.2 m. In the random mesh configuration,nagents are
randomly placed in a0.25

√
nm×0.25

√
nm space, moreover,

when generating each robot’s position, we enforce the swarm’s
communication graph to be connected. In both shape “N” pat-
tern and random mesh pattern, we set each robot’s orientation
randomly. We use these three patterns to investigate the effect
of the swarm’s connectivity on the algorithm’s performance.
On average, in circle pattern, each agent has 2 neighbors; in
random mesh pattern, each agent has 4 neighbors; in shape
“N” pattern, each agent has 6 neighbors. In all tests, each robot
ai’s pose estimate is randomly initialized in a way thatx

0
i∼

U(−20,20),y0i∼U(−20,20),θ
0
i∼U(−π, π), whereU(a, b)

stands for uniform distribution between the interval(a, b).
In the first test, we study the effect of sensing noise on the

algorithm’s performance. In this test, a swarm of 100 sim-
ulated robots estimate their poses with a step size ofα=
β=0.2. The communication loss rate1−λis set to 0.1.
We test the algorithm’s performance with three noise pro-
files:σB=0.05rad,σd=0.01 m;σB=0.1 rad,σd=0.02 m;
andσB=0.2 rad,σd=0.04 m, whereσB,σdare the standard
deviations of robot’s bearing sensing noise and range sensing
noise, respectively. For each noise profile, 30 trials were run.
The results are shown in Fig 5. As we can see in the figure, for
all three patterns, the convergence rate of swarm’s pose estimate
is almost the same for different noise profiles. On the other
hand, as expected, the sensing noise will affect the accuracy
of the swarm’s pose estimate: bigger sensing noise will result in

Fig. 6. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals for a confidence level of twoσ.The
color indicates the swarm size used in the experiment: blue – 64; green – 128;
red – 256.

swarm’s pose estimate converging to a state with higher error.
Furthermore, one can see that compared the other two patterns,
sensing error will affect the circle pattern more significantly.
A second test studies the algorithm’s performance on different
swarm size. In this test, swarms of 64, 128, 256 robots estimate
their poses with a step size ofα=β=0.2. The communication
loss rate1−λis set to 0.1. In addition, the sensing noise is set
toσB=0.05 rad,σd=0.01 m. For each swarm size, 30 trials
were run. The results are shown in Fig. 6. Unsurprisingly, the
results from experiments suggests that for all three patterns, the
swarm size will affect both the convergence rate and the accuracy
of the swarm’s pose estimate: the larger the swarm size is, the
slower the swarm’s pose estimate will converge, and the higher
the swarm’s localization error will be.
In the third test, we study the effect of the step sizeαand
βon the algorithm’s performance. In this test, a swarm of 100
simulated robots estimate their poses using three different step
sizes:α=β=0.1,α=β=0.2, andα=β=0.3. The com-
munication loss rate1−λis set to 0.1. The noise profile used
in this test isσB=0.05 rad,σd=0.01 m. For each step size, 30
trials were run. The results are shown in Fig 7. As we can see in
the figure, a larger step size will enable the swarm’s pose estimate
to converge faster, at a cost of swarm’s pose estimate’s accuracy.
In other words, there is a trade off between the algorithm’s
convergence rate and localization error. As we can see in the
plots, for all three patterns, the step sizeα=β=0.2seems to
balance the convergence rate and localization error the best.
In the last test, we study the effect of agent’s communication
loss. In this test, a swarm of 100 simulated robots estimate their
poses with a step size ofα=β=0.2. The noise profile used in
this test isσB=0.05 rad,σd=0.01 m. We test the algorithm’s
performance with three different communication loss rates:
1−λ=0.1,1−λ=0.3, and1−λ=0.5. For each communi-
cation loss rate, 30 trials were run. The results are shown in Fig
8. As shown in the figure, unsurprisingly, the communication
loss will slow down the swarm’s convergence rate. In addition,
compared to the other two patterns, the communication loss will
affect the circle pattern more significantly. The reason is that: in
the circle pattern, the agent’s average degree is much lower than
the other two patterns. This observation confirms our finding in
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Fig. 7. Each colored solid line is the mean from 30 trials, and the colored
shade areas show the confidence intervals for a confidence level of twoσ.The
color indicates the step size used in experiment: blue –α=β=0.1; green –
α=β=0.2;red–α=β=0.3.

Fig. 8. Each colored solid line is the mean from 30 trials, and the colored shade
areas show the confidence intervals for a confidence level of twoσ. The color
indicates the communication loss rate used in experiment: blue –1−λ=0.1;
green –1−λ=0.3;red–1−λ=0.5.

Lemma 1 and Lemma 2 that, the effect of communication loss
can be reduced by the agent’s degree.
In all four tests, we can see that: compared to the other two pat-

terns, it takes much longer for the circle pattern to converge. One
possible explanation is that: givennagents, the circle pattern’s
communication diameter, i.e., the maximal pairwise inter-agent
communication hop, isO(n), whereas the random mesh pattern
and shape “N” pattern has a communication diameter ofO(

√
n).

The communication diameter essentially characterizes the cost
to spread an agent’s information across the entire swarm. The
larger the communication diameter is, the longer it will take to
spread a agent’s information across the swarm. As a result, the
larger communication diameter makes circle pattern converge
much slower than the others. In addition, the difference of each
pattern’s communication diameter can also be used to explain the
observation that the circle pattern has a higher localization error,
as the sensing error will accumulate over the communication
hop.

Fig. 9. The solid line is the mean from multiple trials, and the colored shade
areas show the confidence intervals for a confidence level of twoσ.

B. Experiments

In this section, we examined the algorithm’s performance
on a swarm of 100 Coachbot V2.0 robots [3]. Coachbot V2.0
is a differential driven mobile robot that is able to sense its
position and orientation in a global coordinate system. Note
that Coachbot V2.0 does not have a real bearing and range
sensor. In order to implement our algorithm, in experiments,
we embed the robot’s position in the transmitted data packet,
and the receiver can calculate the transmitter’s bearing and
distance by comparing its own pose with the position contained
in the received message. The limited communication range is
simulated in the same way as [3].
In the experiment, the robot’s communication frequencyfis
30 Hz, and the step size is set toα=β=0.2. The robots are
placed in three patterns: the rectangle pattern, the random mesh
pattern, and the shape “N” pattern. See Fig. 1 for a graphical
illustration of these three patterns. In the rectangle pattern, the
robots are densely placed on the perimeter of a rectangle, where
the distance between two adjacent robots is 0.15 m, and each
robot faces straight towards the center of the rectangle. The
robot’s communication range is set to 0.2 m in rectangle pattern
so as to make each robot’s degree to the consistent with the circle
pattern used in the simulation. The remaining two patterns are
the same as the ones used in the simulation, and in those two
patterns, the robot’s communication range is set to 0.3 m. For
the random mesh pattern and the shape “N” pattern, 15 trials
were run; for the rectangle pattern, 6 trials were run due to its
long convergence time. The results are shown in Fig 9.
In all the trials, the algorithm reliably converge to all the
robots accurately localizing themselves. For each pattern, its
convergence rate is approximately the same as the result we
obtained in the simulation. The random mesh pattern and the
shape “N” pattern can converge in less than a minute, while
it takes much longer for the rectangle pattern to converge. In
addition, one can see that, for random mesh pattern and the
shape “N” pattern, the average convergedNPEE, i.e., normalized
position error, is smaller than 2 cm, and the average converged
NPEEfor the rectangle pattern is around 5 cm. Given the fact
that the robot is in a disk shape with a diameter of 13 cm, it
can be concluded that, for all three patterns, the robots’ average
converged position error is smaller than the robot’s footprint, and
in the case of shape “N” pattern and the random mesh pattern,
much smaller.
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C. Example Use Case: Decentralized Robotic
Shape Formation

One desirable feature of our algorithm is that the execution of
our algorithm does not require each agent to actively keep the
same neighbors over time, or synchronize its local clock’s phase
with the others. This feature makes it possible for the algorithm
to work in the situations where the swarm’s communication
topology is dynamically changing. In this demonstration, 100
robots use our algorithm to execute the shape formation algo-
rithm presented in [3]. Different from the original version of
the algorithm presented in [3], where the agents need to acquire
their poses from a global position system, in this experiment, the
robots estimate their poses according to the local measurements
and the odometry. Initially, each robot stays stationary and
executes our algorithm to estimate its pose. Once the robot’s
pose estimate gets consistent with the local measurements and
its neighbors’ pose estimates, it starts to move to form the
shape. When the robot moves, it uses on-board odometry to
capture the change in its pose over time and updates its pose
estimate accordingly, at the same time, it also constantly refines
its pose estimate according to the local measurements using our
algorithm. The video of this experiment is shown in [1]. The
result shows that our algorithm successfully enabled the swarm
to replace the use of the global position system with the local
measurements.

VI. CONCLUSION

This letter presents a fully decentralized algorithm for localiz-
ing a swarm of identically programmed agents. The execution of
the presented algorithm does not require each agent to actively
keep the same neighbors over time, or synchronize its local
clock’s phase with the others. The theoretical analysis about the
effect of each agent’s sensing noise and communication loss is
given, in addition, the correctness and performance of the algo-
rithm was examined via the tests running on a swarm of up to 256
simulated robots, and 100 real robots. Extensive simulation trials
and real robot experiments show that the algorithm can localize
the swarms with different sizes and configurations quickly and
reliably. Furthermore, beyond the situations where the agents are
stationary, it was shown by a 100-robot experiment that when
cooperating with the robot’s on-board odometry, the presented
algorithm can also be used to localize the swarms where the
agents are dynamically moving.
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