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Private and Hot-Pluggable Distributed Averaging
Israel L. Donato Ridgley , Randy A. Freeman , Member, IEEE , and Kevin M. Lynch , Fellow, IEEE

Abstract—Some distributed optimization applications
require privacy, meaning that the values of certain parame-
ters local to a node should not be revealed to other nodes
in the network during the joint optimization process. A spe-
cial case is the problem of private distributed averaging,
in which a network of nodes computes the global average
of individual node reference values in a distributed manner
while preserving the privacy of each reference. We present
simple iterative methods that guarantee accuracy (i.e., the
exact asymptotic computation of the global average) and
privacy (i.e., no node can estimate another node’s refer-
ence value). To achieve this, we require that the digraph
modeling the communication between nodes satisfy cer-
tain topological conditions. Our method is hot-pluggable
(meaning no reinitialization of the averaging process is
required when the network changes or a node enters or
leaves, when there is a communication or computation
fault, or when a node’s reference value changes); it does
not require an initial scrambling phase; it does not inject
noise or other masking signals into the distributed com-
putation; it does not require random switching of edge
weights; and it does not rely on homomorphic encryption.

Index Terms—Optimization algorithms, distributed con-
trol, network analysis and control.

I. INTRODUCTION

PRIVACY in distributed computation is becoming increas-
ingly important as more systems become decentralized.

Within systems such as the smart grid, smart transportation,
and smart healthcare, there is an obvious need to protect
user information from being revealed to other agents. In other
systems such as sensor networks deployed in sensitive envi-
ronments, there is a need to keep the information on each node
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private from other (potentially compromised) nodes. The par-
ticular example of distributed averaging studied in this letter is
a basic component of many distributed computations, and the
problem of maintaining privacy during distributed averaging
has received significant recent attention [1]–[14].

In this letter, we consider networks of honest-but-curious
nodes [6], [12] that cooperatively compute the global average
of their reference values. This means all nodes in the network
participate faithfully in the averaging algorithm but would like
to reconstruct the reference values of other nodes. We allow the
possibility of collusion, i.e., nodes sharing data not specified
by the algorithm, possibly over side channels.

One popular approach to private distributed averaging is
based on the concept of differential privacy from the database
literature (see [4], [9], [15] and the references therein). These
methods use added noise to obfuscate an individual’s contri-
bution to the computation and offer the potential to ensure
some level of privacy against any amount of collusion [15];
however, they also involve a trade-off between accuracy and
privacy [4]. Thus the differential privacy approach might not
be suitable for applications which require high accuracy.

Another natural approach to privacy employs homomorphic
encryption, wherein computations are performed on encrypted
data without the need for decryption. These methods add
computation and communication overhead that may not be
acceptable for low-power systems [5], and they are difficult to
extend to more general distributed optimization problems due
to the complexity of homomorphic operations beyond addition
(see [16] and the references therein).

Other approaches to distributed averaging that achieve
both accuracy and privacy put topological restrictions on the
digraph modeling the communication between nodes. Ours is
one such approach, but our topological restrictions are signifi-
cantly more relaxed than those appearing in previous work.
For example, if each node has at least two out-neighbors
and at least one of these is not colluding with other nodes,
then our method guarantees privacy. A similar condition is
used in [12] but for the more restrictive class of undirected
(i.e., symmetric) graphs. To achieve privacy under our relaxed
topological restrictions, we improve upon the state expansion
method in [12] by using the concept of the line digraph of
a given digraph [17]. Unlike the state expansion in [12], our
line digraph expansion does not result in a slower exponen-
tial convergence rate of the iterates (relative to the less private
unexpanded method).
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Many recent results are based on the standard averaging
protocol introduced in [18]. This standard protocol is not pri-
vate, as it requires nodes to communicate their reference values
to their neighbors at the initial update step. Several methods
have been proposed to modify this standard protocol so that it
preserves privacy by employing an initial phase that scrambles
the initial states of the nodes [6], [7], [11]. The related method
in [12] involves the scrambling of initial edge weights rather
than initial states. Other approaches employ masking, that is,
nodes transmit carefully chosen masked or noisy versions of
their states such that privacy is preserved and the effect of
the mask on the average vanishes in the limit [1]–[3], [8],
[10], [13]. None of these methods are hot-pluggable: if the
network changes or nodes enter or leave, if nodes’ reference
values change at some point in time, or if there is some fault
in communication or computation, then these algorithms must
start the computation over again from the beginning (and must
somehow coordinate to do so).

In contrast to all of this previous work, our method is hot-
pluggable, it does not require an initial scrambling phase, it
does not inject noise or other masking signals into the com-
putation, it does not require random switching of the edge
weights, and it does not use homomorphic encryption. It is
based on a simple method for dynamic average consensus
described in [19], and it builds on our previous work in [14].
For additional details about the base algorithm (including its
implementation, performance, capabilities, and extensions), we
refer the reader to [14], [19].

This letter uses the same base algorithm as in [14], but
simplifies the expanded algorithm (which provides enhanced
privacy guarantees) and improves its performance over the
version in [14]. Namely, by avoiding the internal edges used
in [14] and by privately initializing the references of the vir-
tual nodes, we are able to maintain privacy while achieving the
same convergence rate as in the base algorithm. In contrast, the
expanded algorithm in [14] has a strictly worse convergence
rate than the base algorithm. Also, we eliminate the average
degree computation, which speeds up the expanded algorithm
and reduces the amount of communication needed.

II. PRELIMINARIES AND MAIN RESULTS

A. Notation and Terminology

Given v ∈ R
n, we let diag(v) denote the n × n diagonal

matrix whose diagonal is v. We let ei denote the ith column
of the identity matrix I (with size determined by context).

We model a network of n agents participating in distributed
computation as a digraph G = (V, E), where V = {1, . . . , n} is
the ordered set of n nodes (or vertices) and E = {E1, . . . , Em}
is the ordered set of m directed edges (with each such edge
being an ordered pair of nodes). There exists an edge (i, j) ∈ E
(with tail i and head j) if and only if node i can send
information to node j, so that the edge direction corresponds
to the communication direction. The digraph has no self-
loops: even though a node can communicate with itself, this
internal communication is not modeled by the digraph. The
sets Nin

i ,Nout
i ⊂ V denote the sets of in- and out-neighbors of

node i (respectively). The head and tail matrices H and T for

G are the n × m matrices whose entries in row i and column
α are given by

Hiα =
{

1 when node i is the head of edge α

0 otherwise,
(1)

Tiα =
{

1 when node i is the tail of edge α

0 otherwise.
(2)

Note that Hᵀ1 = Tᵀ1 = 1, where 1 denotes the vector of all
ones (with size determined by context), and that THᵀ is the
unweighted adjacency matrix of G. The unweighted out-degree
of node i is δout

i = |Nout
i |, and the unweighted out-degree

matrix is � = diag(T1) = diag{δout
1 , . . . , δout

n }.
We let aij denote the weight on edge (i, j), with aij > 0 if

(i, j) ∈ E and aij = 0 otherwise. The weighted out-degree of
node i is dout

i = ∑n
j=1 aij, and the weighted out-degree matrix

is D = diag{dout
1 , . . . , dout

n }. The weighted out-Laplacian is

L = D − [aij]n×n (3)

where [aij]n×n is the n × n weighted adjacency matrix. Note
that L has zero row sums, i.e., L1 = 0. We use the edge order
to create a weight vector w ∈ R

m such that wk is the weight
on edge Ek. If we define W = diag(w) then the weighted
adjacency matrix for G is TWHᵀ, and we can rewrite (3) as
L = diag(Tw) − TWHᵀ.

B. Assumptions and Results

We suppose each node i in the digraph G has a constant
vector reference ri ∈ R

p, and we let rave = 1
n

∑n
i=1 ri denote

the global average.1 Each node is honest-but-curious [6], [12],
as defined in Section I; further, each node is either a conformist
or a colluder. Conformists wish to preserve the privacy of their
reference values and thus they only send and receive data as
specified by the averaging algorithm. Colluders do not care
about the privacy of their reference values and will share all
information they have with other colluders (possibly over side
channels not modeled by G) in order to infer the reference
values of others. Our main assumptions are as follows:
(A1) G is a strongly connected digraph, which has at least

three nodes and at least two of these are conformists.
(A2) Each node can send individual messages to each of its

out-neighbors without the other out-neighbors hearing
(in particular, each node i knows its out-neighbor set
Nout

i ).
(A3) For each conformist i, either

a) i has at least two out-neighbors, and at least one
of these is a conformist, or

b) for all j �= i there exists k ∈ {i} ∪ Nin
i such that:

i) if j is a conformist then k �∈ {j} ∪ Nin
j , and

ii) if j is a colluder then k �∈ {�} ∪Nin
� ∀ colluders

�.
(A4) Nodes have no prior information about the reference

values of other nodes.
Without assumption (A1) it is either trivial or impossible

to achieve both privacy and accuracy. Assumptions (A3)(a)

1Like many of the algorithms in [19], our algorithms are also able to
approximately track averages of slowly-varying references.
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and (A3)(b) describe two different local topological restric-
tions on the digraph G, but only one of these restrictions needs
to be satisfied for a given conformist i (there is an “or” between
these conditions, not an “and”). Also, some conformists might
satisfy (A3)(a) while others satisfy (A3)(b), i.e., the choice
between these two options need not be uniform. Note that
in [1], [3], [13] every conformist must satisfy (A3)(b) (so
that (A3)(a) is not an option); thus our topological restric-
tion (A3) is considerably weaker. Furthermore, (A3)(a) can be
verified locally if a given node trusts that at least one of its
out-neighbors is not a colluder. An example of a digraph G
satisfying (A3)(a) for each conformist is any complete digraph
with n ≥ 3 having at least two conformists. An example of
a digraph G satisfying (A3)(b) for each conformist is any
directed cycle graph with n ≥ 3 for which every conformist
is either in- or out-adjacent to another conformist.

In the next sections we present distributed, synchronous,
discrete-time algorithms to be run on each node such that
under assumptions (A1)–(A4) we achieve the following:
Accuracy: each node’s output signal converges exponentially

to the exact global average rave.
Privacy: if i is a conformist and j is some other node, then

for every vector ρ ∈ R
p there exist two differ-

ent overall algorithm trajectories that produce the
same data at node j but for which the associated
reference values ri differ by ρ.

We present two different algorithms, a simple base algo-
rithm that only guarantees privacy when each conformist
satisfies (A3)(b) and a slightly more complex expanded algo-
rithm that requires more communication between nodes but
that allows both options (A3)(a) and (A3)(b).

III. DISTRIBUTED AVERAGING WITH PRIVACY

A. The Base Algorithm

Each node i runs a local discrete-time system with input ui,
output yi, and internal state xi, all taking values in R

p+1. These
will all be functions of the discrete-time value t = 0, 1, 2, . . . .
At each time t, node i sends the vector aijxi[t] individually
to each of its out-neighbors j; likewise, it receives the vec-
tor akixk[t] from each of its in-neighbors k. It then uses this
received data to update its local signals as follows:

yi[t] = ui[t] − dout
i xi[t] +

∑
k∈Nin

i

akixk[t] (4)

xi[t + 1] = xi[t] + γyi[t]. (5)

Here γ is a global constant gain and all nodes in the digraph G
choose their outgoing weights so that the weighted out-degrees
satisfy the following:
(A5) γdout

i < 1 for every node i (or γdout
i ≤ 1 if it is known

that G is aperiodic).
These weight choices need not be private (see Remarks 3
and 4).

If we stack the vector signals by defining

u[t] =
⎡
⎢⎣

u1[t]
...

un[t]

⎤
⎥⎦ y[t] =

⎡
⎢⎣

y1[t]
...

yn[t]

⎤
⎥⎦ x[t] =

⎡
⎢⎣

x1[t]
...

xn[t]

⎤
⎥⎦, (6)

Fig. 1. The base algorithm for distributed averaging. Here 1
z−1 repre-

sents the transfer function of the delayed discrete-time integrator, i.e.,
the system whose current output is the sum of all of its past inputs.

then we can write the collection of all such updates (4)–(5) as

y[t] = u[t] − (LT ⊗ I)x[t] (7)

x[t + 1] = x[t] + γy[t]. (8)

Here L denotes the out-Laplacian in (3). A block diagram of
the global update equations (7)–(8) is shown in Fig. 1. Before
we specify how we choose the inputs ui, we give a generic
convergence result for this algorithm in Theorem 1. In the
statement of this result, the vector v ∈ R

n denotes the unique
vector satisfying LT v = 0 and 1ᵀv = 1. The Perron-Frobenius
theorem, together with (A1) and (A5), guarantees both the
existence and uniqueness of v and the property that all entries
in v are positive.

Theorem 1: If u[t] is a constant u, then

lim
t→∞ y[t] = y� = (v ⊗ 1T ⊗ I)u. (9)

Furthermore, y[·] converges exponentially with rate |λ|, which
is the second-largest magnitude eigenvalue of I − γLT .

Proof: The matrix I −γLT has a simple eigenvalue at 1 with
eigenvector v. It follows from (A5) and the Perron-Frobenius
theorem that all other eigenvalues of I −γLT lie strictly inside
the unit circle in the complex plane. From (7)–(8) we get

y[t + 1] = ((I − γLT ) ⊗ I)y[t]. (10)

If we express y[0] in terms of the eigenvectors of (I−γLT )⊗I,
then those not associated with eigenvalue 1 vanish exponen-
tially and there exists some vector η such that y[t] → v ⊗ η.
Furthermore, since 1ᵀ is a left eigenvector of LT , from (7) we
have that (1T ⊗ I)y[t] = (1T ⊗ I)u. Thus, η = (1T ⊗ I)u and the
result follows.

Now suppose each node i chooses a constant input as

ui[ · ] ≡
[

ri

1

]
∈ R

p+1. (11)

Then we conclude from Theorem 1 that its output yi will
converge exponentially to the constant

y�
i =

[
vi

∑n
j=1 rj

vin

]
, (12)

where vi denotes the ith component of the vector v (which
satisfies vi > 0). Thus by taking the ratio of the appropri-
ate values in y�

i , node i can compute the global average rave.
This approach is related to the “push-sum” or “ratio consen-
sus” methods for distributed averaging over directed graphs
(see [20] and the references therein).

Remark 1: According to Theorem 1, the final value of
the output y is independent of the initial state x[0]. This
is a key feature of the algorithm and is the mechanism by
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which privacy is possible without using any noise/masking,
weight switching, initial scrambling, or homomorphic encryp-
tion. This feature also makes the algorithm hot-pluggable, in
the sense that the algorithm will recover the correct average
after a transient due to changes to the network.

Remark 2: The base algorithm is not internally stable: even
though the output y converges, the state x does not. Indeed,
we see from the update equation (8) that x grows linearly
in t as y converges to a constant. Such linear growth may
cause numerical problems if the algorithm is run over long
time periods. As explained in [19], it is possible to modify
this base algorithm so that the output y still converges to the
desired value while x remains bounded, but at the price of
slower convergence.

B. Privacy for the Base Algorithm

In this section we show that the base algorithm guarantees
the privacy of the conformists’ reference values when each
conformist satisfies (A3)(b).

Each node can choose an arbitrary initial state x[0] in the
base algorithm, but this choice should not be made public and
it should be difficult for other nodes to obtain a good prior
estimate of it. For example, it might be drawn at random from
a distribution having infinite or undefined moments.

To analyze the privacy of the base algorithm, we rewrite the
dynamics (7)–(8) as[

x[t + 1]
u[t + 1]

]
= A

[
x[t]
u[t]

]
, A =

[
(I − γLT ) ⊗ I γI

0 I

]
. (13)

It is easy to show that for any k and any ϕ ∈ R
q, the vector[

ek ⊗ ϕ

LT ek ⊗ ϕ

]
(14)

is an eigenvector of A associated with the unit eigenvalue.
Suppose i is a conformist, let j be some other node, and

suppose (A3)(b) holds. Let ζj be the collection of all signals
available to j. We now construct a matrix Cj such that

ζj[t] = Cj

[
x[t]
u[t]

]
(15)

for all t. First suppose j is a conformist; then since j can
measure its own signals xj and uj, the top part of Cj looks like

[
eᵀj ⊗ I 0

0 eᵀj ⊗ I

]
. (16)

Also, if h ∈ Nin
j , then Cj includes blocks of the form

[
ahje

ᵀ
h ⊗ I 0

]
(17)

stacked underneath each other and underneath (16). Let k be
as in (A3)(b) so that k ∈ {i} ∪ Nin

i and k �∈ {j} ∪ Nin
j , i.e., so

that Lki �= 0 but Lkj = 0. It is straightforward to show that the
eigenvector (14) is in the null spaces of the matrices in (16)
and (17) and thus also in the unobservable subspace of the
pair (A, Cj). In addition, this eigenvector satisfies

[
0 eᵀi ⊗ I

][ ek ⊗ ϕ

LT ek ⊗ ϕ

]
= Lkiϕ. (18)

We also have

ui[t] = [
0 eᵀi ⊗ I

][x[t]
u[t]

]
, (19)

and it follows that there exist two trajectories of (13) that
produce the same measurements ζj[ · ] but for which the inputs
ui[ · ] differ by the constant offset Lkiϕ. Since Lki �= 0 and ϕ

is arbitrary, we conclude that node i keeps its input ui private
from node j.

Next suppose j is a colluder. Then the matrix Cj has
vertically stacked blocks of the form[

eᵀ� ⊗ I 0
0 eᵀ� ⊗ I

]
and

[
ah�eᵀh ⊗ I 0

]
(20)

for any colluder � (including � = j) and any h ∈ Nin
� . Let k be

as in (A3)(b) so that k ∈ {i} ∪Nin
i and k �∈ {�} ∪Nin

� for every
colluder �, i.e., so that Lki �= 0 but Lk� = 0 for every colluder �.
Again, it is straightforward to show that the eigenvector (14)
is in the null space of matrices of the form (20), and the proof
of privacy follows using the same argument as above. This
unobservability-based notion of privacy assumes nodes have
no prior information about the state being inferred, and thus we
require (A4). We can say more about the case in which (A4)
does not hold, but that is beyond the scope of this letter.

Remark 3: Since the privacy argument is based on a
standard unobservability analysis for the LTI system (13),
knowledge of the matrix A provides no advantage to curious
nodes wishing to reconstruct the unobservable state. In par-
ticular, the privacy result still holds when all nodes know the
entire Laplacian L.

Remark 4: If assumption (A3)(b) is violated for a node i
by a curious node j, then j can observe i’s reference value ri

with only knowledge of Nin
i and no knowledge of the relevant

edge weights. Node j can infer both the weights and ri in
O(β) iterations, where β is the number of unknown weights,
by exploiting the known form of the update equations in (4)
and (5).

IV. ENHANCED PRIVACY USING THE LINE DIGRAPH

A. The Line Digraph

The line digraph of a digraph G = (V, E) is the digraph
�G given by �G = (�V,�E), where the node set is �V = E and
the edge set �E ⊂ E × E is the set of all ordered pairs of
edges in E such that the head of the first edge is the tail
of the second one [17]. Fig. 2 depicts a digraph G in blue
along with its line digraph �G in pink. If we assign a linear
order to �E, then we can define the head and tail matrices �H
and �T for �G in a manner analogous to equation (1). One can
show that the unweighted adjacency matrix �T�Hᵀ for �G satisfies
�T�Hᵀ = HᵀT [21]. Given a weight vector w for G, one way
to define a weight vector �w for �G is �w = �Hᵀw, that is, the
weight we assign to an edge in �E is the w-weight of its head in
E. We will call such weights for �G the head-induced weights.
If we define �W = diag(�w), then the head-induced weighted
adjacency matrix for �G satisfies �T �W�Hᵀ = HᵀTW, and thus its
weighted out-Laplacian is �L = diag(HᵀTw) − HᵀTW.

If G is strongly connected, we say its weights are stochastic
when D1 = Tw = 1, that is, when dout

i = 1 for each i so that
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Fig. 2. A digraph G together with its line digraph expansion �G.

G corresponds to an irreducible Markov chain. In this case
the out-Laplacians L and �L (using the head-induced weights)
become

L = I − TWHᵀ and �L = I − HᵀTW. (21)

From [22] it is known that, if matrices A and B are the same
size, then the products ABᵀ and B AT have the same nonzero
eigenvalues. As a direct corollary, we conclude:

Lemma 1: If a strongly connected digraph G has stochas-
tic weights and if its line digraph �G has the associated
head-induced weights, then the eigenvalues of their Laplacian
matrices L and �L are identical (including multiplicities), except
possibly for the multiplicities of any eigenvalues at one.

An example of a stochastic weighting scheme is reciprocal-
degree weighting, where each edge (i, j) ∈ E has the weight
aij = 1/δout

i . These weights are such that TW = �−1T . Recall
that a digraph G = (V, E) is symmetric when (i, j) ∈ E if and
only if (j, i) ∈ E, or equivalently when its unweighted adja-
cency matrix THᵀ is symmetric. Likewise, a weighted digraph
is weight-symmetric when its weighted adjacency matrix
TWHᵀ is symmetric. Note that a symmetric digraph with
reciprocal-degree weights is generally not weight-symmetric;
nevertheless, its weighted out-Laplacian L has all real eigen-
values (we observe that L = �−1(� − THᵀ) from plugging
TW = �−1T into (21), and then use the fact that the product
of any positive semidefinite real matrix and any symmetric
real matrix has real eigenvalues).

B. The Expanded Algorithm

In the expanded algorithm, we first use G to construct the
line digraph �G with head-induced weights and then apply the
base algorithm to �G. We refer to the nodes and edges of �G
as virtual nodes and virtual edges as they will exist within
the nodes and edges of G itself. All virtual nodes having tail
i are internal to i in the sense that their updates will run on
i itself. The virtual edges of �G are implemented externally
over an existing edge in G, so that the expanded algorithm
uses precisely those communication links modeled by G itself.
Here, we make use of (A2) so that the virtual topology of �G
can run on top of the physical topology of G. Fig. 2 shows an

example of how the expanded digraph �G fits within G. Note
that �G remains strongly connected.

If the weights of G satisfy (A5), then those of �G also sat-
isfy (A5) and thus Theorem 1 holds for �G. If we choose
stochastic weights for G so that dout

i = 1 for each i, then
by Lemma 1 the matrices I − γL and I − γ�L have the same
spectra, except for multiplicities at 1 − γ. If 1 − γ ≤ |λ| for
all non-unity eigenvalues λ of I − γL (which will always be
the case if we choose γ to be sufficiently close to one), then
the update (7)–(8) will have the same exponential convergence
rate when applied either to G or to �G. Thus the expanded algo-
rithm will incur no penalty in its convergence rate relative to
the base algorithm.

Remark 5: If G is symmetric and we assign reciprocal-
degree weights, then L and �L have real eigenvalues and we can
solve for γ in closed form to optimize convergence speed and
implement accelerated versions of the algorithm (as described
in [19]). These techniques, however, require some knowledge
of bounds on the largest and second smallest eigenvalues of L.

Next, we assign an input value to each virtual node of �G
so that the base algorithm running on �G produces the correct
global average rave while maintaining privacy. We randomly
and privately initialize r(i,j) such that

∑
j∈Nout

i
r(i,j) = ri for

all i. Thus, the reference value of each node is encoded in the
sum over its virtual nodes’ reference values, and no individ-
ual virtual node contains any private information. The input
value u(i,j) that we assign to a virtual node (i, j) of �G and the
resulting limit of the outputs y�

(i,j) are

u(i,j)[ · ] ≡
[

r(i,j)

1/δout
i

]
and y�

(i,j) =
[

v(i,j)
∑n

j=1 ri

v(i,j)n

]
. (22)

The outputs y(i,j) will converge exponentially to the constant
y�
(i,j) analogous to (12), and we again take the ratio to recover

the global average.

C. Privacy for the Expanded Algorithm

In this section we show that the expanded algorithm guar-
antees the privacy of the conformists’ reference values when
each conformist satisfies either (A3)(a) or (A3)(b).

The expanded algorithm also has dynamics of the form (13),
but now we replace L with �L and label the stacked vector
components of the signals x[·] and u[·] as x(i,j)[·] and u(i,j)[·]
using the virtual node index (i, j).

Suppose i is a conformist, let j be some other node, and let
ζj in (15) be the collection of all signals available to j in the
expanded algorithm. First suppose j is a conformist; then the
matrix Cj consists of vertically stacked blocks of the form[

eᵀ(j,s)⊗ I 0
0 eᵀ(j,s)⊗ I

]
and

[
eᵀ(h,j) ⊗ I 0

]
(23)

for each virtual node (j, s) of �G and for all h ∈ Nin
j .

Suppose (A3)(a) holds; then i has at least two out-neighbors,
which means there exists a node k ∈ Nout

i such that k �= j.
It is possible that j can observe r(i,j); however, since (i, k) �∈
{(j, s)} ∪ Nin

(j,s) for any virtual node (j, s) of �G, the vector[
e(i,k) ⊗ ϕ

�Lᵀ
e(i,k) ⊗ ϕ

]
(24)

Authorized licensed use limited to: Northwestern University. Downloaded on March 16,2021 at 15:40:28 UTC from IEEE Xplore.  Restrictions apply. 



RIDGLEY et al.: PRIVATE AND HOT-PLUGGABLE DISTRIBUTED AVERAGING 993

is in the null space of the matrices in (23). Since it is an
eigenvector of A with the unit eigenvalue, it is in the unobserv-
able subspace of the pair (A, Cj). In addition, this eigenvector
satisfies

[
0

∑
σ eᵀ(i,σ )⊗ I

][ e(i,k) ⊗ ϕ
�Lᵀ

e(i,k) ⊗ ϕ

]
= �L(i,k)(i,k) · ϕ �= 0 (25)

Thus j cannot determine ri to within any arbitrary offset. Next
suppose (A3)(b) holds; then there exists k ∈ {i} ∪ Nin

i such
that k �∈ {j} ∪ Nin

j . Then for any ϕ ∈ R
q and any virtual node

(k, τ ) of �G, the vector[
e(k,τ ) ⊗ ϕ

�Lᵀ
e(k,τ ) ⊗ ϕ

]
(26)

is an eigenvector of A associated with the unit eigenvalue,
and again it is straightforward to show that (26) is in the null
spaces of the matrices in (23) and thus also in the unobserv-
able subspace of the pair (A, Cj). In addition, this eigenvector
satisfies

[
0 eᵀ(i,σ )⊗ I

][ e(k,τ ) ⊗ ϕ
�Lᵀ

e(k,τ ) ⊗ ϕ

]
= �L(k,τ )(i,σ ) · ϕ (27)

for all virtual nodes (i, σ ) of �G. If k �= i then we can choose
τ = i so that �L(k,τ )(i,σ ) < 0 for each σ , and it follows that
the sum of �L(k,τ )(i,σ ) over σ is nonzero. If k = i then we
choose τ = σ , �L(k,τ )(i,σ ) > 0; moreover, their sum over σ

is also nonzero. Thus, j again cannot determine any of the
inputs u(i,σ ) individually, nor their sum over σ , to within any
arbitrary offset.

Next suppose j is a colluder; then the matrix Cj has
vertically stacked blocks of the form[

eᵀ(�,s)⊗ I 0
0 eᵀ(�,s)⊗ I

]
and

[
eᵀ(h,�) ⊗ I 0

]
(28)

for any colluder � (including � = j), for any virtual node (�, s)
of �G, and for any h ∈ Nin

� . Suppose (A3)(a) holds; then i has a
conformist out-neighbor k, and it follows that (i, k) �∈ {(�, s)}∪
Nin

(�,s) for any virtual node (�, s) of �G internal to any colluder
�. Like before, r(i,j) may not be private, but it is straightforward
to show that the eigenvector (24) is in the null spaces of the
matrices in (28) and that it again satisfies (25). The proof of
privacy follows using the same argument as above. Finally,
suppose (A3)(b) holds; then there exists k ∈ {i} ∪ Nin

i such
that k �∈ {�} ∪ Nin

� for every colluder �. It is straightforward
to show that the eigenvector (26) is in the null spaces of the
matrices in (28), and the proof of privacy follows using the
same argument as those following (27).

V. SUMMARY AND FUTURE WORK

In this letter, we showed that a simple dynamic average
consensus algorithm guarantees accuracy and preserves pri-
vacy under relatively weak topological restrictions on the
communication digraph. In contrast to previous work, our
method is hot-pluggable, it does not require an initial scram-
bling phase, it does not inject noise or other masking signals
into the computation, it does not require random switch-
ing of the edge weights, and it does not use homomorphic
encryption.

We have implemented the base and expanded algorithms
and experimentally verified that the expanded algorithm con-
verges at the same rate as the base algorithm over a range
of graph types and sizes. As expected, the total number of
iterations to converge is typically larger in the expanded algo-
rithm due to the initial transient, but the duration of the initial
transient depends heavily on graph topology. For example, the
performance impact appears to be negligible on graphs with a
power law degree distribution. More work is needed to fully
understand the transient behavior.
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