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Robotic social intelligence is increasingly important. However, measures of human social intelligence omit ba- 

sic skills, and robot-specific scales do not focus on social intelligence. We combined human robot interaction 

concepts of beliefs, desires, and intentions with psychology concepts of behaviors, cognitions, and emotions 

to create 20 Perceived Social Intelligence (PSI) Scales to comprehensively measure perceptions of robots with 

a wide range of embodiments and behaviors. Participants rated humanoid and non-humanoid robots inter- 

acting with people in five videos. Each scale had one factor and high internal consistency, indicating each 

measures a coherent construct. Scales capturing perceived social information processing skills (appearing to 

recognize, adapt to, and predict behaviors, cognitions, and emotions) and scales capturing perceived skills 

for identifying people (appearing to identify humans, individuals, and groups) correlated strongly with social 

competence and constituted the Mind and Behavior factors. Social presentation scales (appearing friendly, 

caring, helpful, trustworthy, and not rude, conceited, or hostile) relate more to Social Response to Robots 

Scales and Godspeed Indices, form a separate factor, and predict positive feelings about robots and wanting 

social interaction with them. For a comprehensive measure, researchers can use all PSI 20 scales for free. 

Alternatively, they can select the most relevant scales for their projects. 
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1 INTRODUCTION 

Social intelligence is defined as the ability to interact effectively with others to accomplish your 
goals [Ford and Tisak 1983 ]. Social intelligence is critically important for social robots that interact 
and communicate with people [Dautenhahn 2007 ]. For example, a social robot may be expected 
to teach to, learn from, and collaborate with people. Such tasks are easier if the robot can process 
the social context and react with appropriate social behavior. Even when robots are deployed in 
non-social roles or engaged in non-social tasks, social intelligence nevertheless helps robots be 
effective. For example, if robots are annoying, people sometimes kick, punch, or want to damage 
them [Brščić et al. 2015 ; Mutlu and Forlizzi 2008 ]. Although it will be a long time before robots 
exhibit true social intelligence, existing robots can nonetheless create the perception of social in- 
telligence, which itself facilitates human robot interaction (HRI). 

Many scales have been designed to measure the social intelligence of humans (e.g., Agran et al. 
[ 2016 ], Danielson and Phelps [ 2003 ], Frankovsky and Birknerova [ 2014 ], Riggio [ 1989 ], Silvera 
et al. [ 2001 ], and Tahiroglu et al. [ 2014 ]). In theory, these scales could be adapted to rate the social 
intelligence of robots. However, these scales omit basic skills that are essential for smooth social 
interactions, because most humans (including children) have these skills. For example, almost all 
humans understand that other people have thoughts, emotions, and behaviors; can distinguish 
humans from non-humans; know that people are individuals; and remember their previous inter- 
actions with specific people. Most robots do not have these basic skills, and the robots that do can 
legitimately be considered to have higher social intelligence. Thus, scales designed to measure so- 
cial intelligence in humans are missing many essential basic skills that are important to evaluate 
in robots. 

Even when a particular skill seems relevant to robots, the particular items that are used to mea- 
sure that skill in humans are often not usable with robots. For example, the Social Skills Survey 
[Agran et al. 2016 ] refers to making objectionable gestures, something that would not pertain to a 
robot lacking limbs. Given that social intelligence is relevant to many different types of robots, a 
measure of social intelligence in robots should ideally be applicable to a wide variety of embodi- 
ments and behaviors. It should not assume that a robot has any particular type of body or is able 
to engage in any particular behavior. For example, the items should be applicable both to robots 
that can move, pick up objects, and speak, and to robots without those capabilities. Moreover, the 
items should not assume that the robot has any particular cognitive or emotional capacities. For 
example, the items should be applicable both to robots that have visual, audio, and speech pro- 
cessing abilities, and to those that do not. Because many of the items on human social intelligence 
measures are irrelevant to targets that lack humanoid bodies or functionalities, it is impossible to 
adequately adapt the items for use with robots. 

Given the importance of social intelligence for successful HRI, several aspects of social intelli- 
gence have been included in scales designed to assess robots. These scales include Likability and 
Perceived Intelligence [Bartneck et al. 2009 ]; Perceived Sociability, Perceived Adaptivity, Trust, 
and Anxiety [Heerink et al. 2010 ]; Welcome, Appealing, and Unobtrusive [Moshkina 2012 ]; and 
Pleasure and Warmth [Ho and MacDorman 2010 ]. However, these scales often include material 
that goes beyond social intelligence. For example, Trust [Heerink et al.] measures whether the 
user would trust the robot’s advice and also whether the user would follow that advice; Anxiety 
[Heerink et al.] measures both whether the robot is scary and whether the user would be afraid 
of breaking the robot; and Perceived Intelligence [Bartneck et al.] includes many abilities beyond 
social intelligence. In addition, a robot might be considered likable, unobtrusive, and safe for 
reasons besides its social intelligence. Moreover, existing scales for robots do not capture many 
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important aspects of social intelligence, such as the ability to identify and recognize humans. 
Thus, existing HRI scales cannot adequately measure perceptions of robotic social intelligence. 

Given the limitations of existing measures to assess the perceived social intelligence of robots, a 
new measure was needed. Therefore, our goal was to create a comprehensive measure of perceived 
robot social intelligence, including more basic social intelligence concepts and skills than can be 
found in the human social intelligence literature, which can be applied to a range of robotic em- 
bodiments and behaviors. See the test manual by Barchard et al. [ 2018 ] for information about the 
methods we used to select areas to study and methods we used to draft items. Researchers could 
use our entire set of 20 scales if they needed a comprehensive measure of robot social intelligence, 
or they could select the specific scales that are most relevant to their own research questions. 

In this article, we explain how our 20 scales conceptually measure various aspects of robot social 
intelligence. We then evaluate the factor structure and internal consistency reliability of each scale, 
examine the relation of these new scales to overall social intelligence and to existing robot rating 
scales (likability, perceived intelligence, etc.), examine the relation of these new scales and the 
existing robot perception scales to how robots make people feel and whether people want contact 
with the robots, and compare five different robot videos using our 20 scales. We conclude that the 
new Perceived Social Intelligence (PSI) Scales provide unique information that is not captured by 
current robot rating scales and can distinguish between robot videos that suggest different levels 
of social intelligence. 

1.1 Our Conceptualization of Social Intelligence 

We created 20 scales (see the Appendix for scale definitions and items) that measure perceived 
social intelligence in four different ways. First, our scales provide an overall measure of perceived 
social competence. This overall assessment gauges the extent to which the robot appears to have 
strong social skills in general. While separate measurement of the components of social compe- 
tence will often be beneficial, sometimes a measure of overall social intelligence will be sufficient. 
In addition, an overall assessment can be useful for understanding how the different components 
impact overall perceptions of robots. 
Second, our scales measure whether robots appear able to identify people in three different ways: 

to detect human presence, to distinguish individuals from each other, and to determine which peo- 
ple are together. Identifying people in these ways could allow robots to have increasingly refined 
interactions. Detecting human presence could allow robots to keep appropriate social distance and 
to initiate interactions. For example, a robot might weave through furniture to cross a room, then 
stop a few feet away from a woman and say hello. Recognizing individuals could allow robots to 
use previous interactions (such as user preferences and previous conversations) to adapt their be- 
havior. For example, the robot might address the woman by name and ask if she is ready to go to 
lunch. Determining which people are together could allow robots to avoid disrupting ongoing so- 
cial interactions (e.g., not walking between her and her friend) and to generalize from one person 
to another (e.g., asking if her friend would like to accompany them). 
Third, the scales measure whether robots appear to have nine information processing abilities 

related to people. In HRI, there are fundamental concepts of beliefs, desires, and intentions (e.g., 
Davis and Ramulu [ 2017 ] and Georgeff and Lansky [ 1987 ]). In psychology, there are somewhat 
similar concepts of behaviors, cognitions, and emotions (e.g., Weiten [ 2017 ]). We believe these 
two approaches can be integrated. We conceptualize desires as part of emotions, beliefs as part of 
cognitions, and the ability to infer someone’s intentions as predictions of their behaviors. This led 
us to nine information processing abilities related to people. Thus, we measure the extent to which 
robots appear able to (1) recognize, (2) adapt to, and (3) predict (a) human behaviors, (b) human 
cognitions (including beliefs), and (c) human emotions (including desires). 
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Recognizing, adapting to, and predicting human behaviors are the most fundamental aspects of 
social intelligence. Imagine a robot is attempting to help a man with arthritis make lunch. First, 
the robot might attempt to discern what the man is doing: that he has removed two pieces of bread 
from a bag and placed a jar on the counter. Next, the robot might adapt its behavior based upon 
its perception of what the man does. If the man says, “Please open that,” the robot might reach for 
the jar and open it. Finally, the robot might attempt to predict what the man will do next. If the 
robot predicted the man would use the jar it just opened, it might push the jar back towards the 
man without needing to be asked, leaving the man free to attend to other things. Thus, recogniz- 
ing, adapting to, and predicting human behaviors could allow robots to work cooperatively and 
smoothly with people. 

Recognizing, adapting to, and predicting human cognition could also aid effective social inter- 
action. If a tutoring robot could recognize why a child got a math problem wrong, it could adapt 
its feedback appropriately. Similarly, if it could predict concepts that are likely to cause a child 
confusion, it could forestall that confusion by focusing on common misconceptions. 

Recognizing, adapting to, and predicting human emotions can help build and maintain relation- 
ships. If a robot could recognize emotions, it could adapt its behavior. For example, if a caregiver 
robot noticed that a person was crying, it could ask what was wrong. Perhaps the person spilled 
food on themselves. If the robot could predict that the person will want to change their clothes, 
it could fetch clean clothes for the person, without the person needing to provide explicit instruc- 
tions. Thus, if robots can adjust their behavior based upon how people feel and what they want, 
they can build personal connections and increase the likelihood that the people they are caring for 
will listen to and respond to their suggestions. 

Fourth, our scales measure seven aspects of social presentation, the ability to appear to be a 
desirable social partner: someone who is friendly, helpful, caring, and trustworthy, and who is 
not rude, conceited, or hostile. Being trustworthy [Parales-Quenza 2006 ] and having a prosocial 
attitude are key components of social intelligence [Marlowe 1986 ]. Robots are perceived as more 
friendly if they engage in acts of social intelligence such as mimicry and praise [Kaptein et al. 
2011 ], and friendliness facilitates interpersonal connections [Albrecht 2004 ]. Moreover, social in- 
telligence predicts cooperative behavior [Kinga and Ibolya 2013 ]. Thus, if a robot seems to be a 
desirable social partner, this will likely increase the frequency and duration of HRI and increase 
human cooperation and compliance, thus assisting the robot in accomplishing its goals in social 
interactions. Note, however, that we are not simply measuring if a robot is liked. Presenting oneself 
as a desirable social partner might lead to being liked, but being liked is influenced by many things 
besides social intelligence, such as appearing somewhat human-like, but not too human-like [Ho 
and MacDorman 2010 ]. 

2 METHOD 

2.1 Participants 

Participants were recruited using Amazon’s online marketplace MTurk for a two-hour study pay- 
ing $15. Because previous research has sometimes found cultural differences in perceptions of 
robots (e.g., Kamide and Arai [ 2017 ]), for this first study of the PSI Scales, we restricted data col- 
lection to a single country: the United States. We used two methods to limit participants to the 
United States: We used both MTurk (which requires a United States Social Security number to reg- 
ister) and Qualtrics (whose location screening is based upon IP addresses). We took this joint data 
screening approach because prior research suggests that some MTurk workers provide fraudulent 
social security numbers to pretend that they are in the United States and because IP screening ser- 
vices are not sufficient to effectively screen for location [Dennis et al. 2019 ]. Indeed, in our study 
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10 MTurk workers were given access to our study website by MTurk, but were rejected by Qualtrics 
because they were located outside the United States. 

To further improve data quality, we restricted participants to MTurk workers who had com- 
pleted at least 500 tasks and had a minimum acceptance rate of 95%, based on Peer et al. [2014] 
finding that these participants provide significantly better data: They are more likely to pass at- 
tention checks, provide data with higher internal consistency reliability, score lower on measures 
of response bias due to socially desirable responding, better replicate well-established anchoring 
effects, and are less likely to mark the mid-point of scales. In addition, we assigned each partici- 
pant a qualification to ensure that they could not complete the study more than once. With these 
restrictions, 313 people with MTurk Worker IDs accessed the webpage for our study. 
To ensure that participants would be able to view the online videos properly, we also screened 

the devices they used. They had to use a computer (not a cell phone), and they had to prove they 
could hear audio: They were presented with one of 10 sounds (e.g., chicken, train, dog) and had 
to identify which sound it was. Four of our participants initially failed this audio check, but then 
returned to the study, passed the audio check, and completed the study. Finally, we screened out 
11 participants who did not complete the ratings for all five videos. Given our multiple screen- 
ing methods, we are confident in the quality of our final participants. In addition, we screened 
individual data points thoroughly; see below. 
This screening resulted in a final sample of 296 adults (145 female, 150 male). They ranged in 

age from 19 to 72 (mean 37.39, SD 11.50). When asked to select one of the following six categories, 
80.4% identified as White, 7.1% as African-American, 5.1% as Asian, 4.1% as Hispanic, 0.3% as Native 
American, and 3.0% as other. The vast majority (97.6%) reported speaking English as their first 
language. 
Participants had an average of five robot-related experiences in the last year (including both real 

and fictional robots), but rated themselves as having relatively little familiarity with real robots 
(mean 30.51/100, range 28.92–31.17). 

2.2 Procedure 

Participants completed the study online. After consenting to participate, participants completed 
questions about their demographics and their background with robots. Next, participants viewed 
five videos showing interactions between humans and robots. For each video, they completed 
several measures regarding their impressions of the robot. No time limit was given for the study 
and participants were allowed to take breaks. Finally, participants were debriefed and compensated 
for their time. 

2.3 Materials 

Five videos (1–3 minutes long) depicting HRI were selected to represent a wide range of robot social 
intelligence. We received permission from the videos’ authors to both use and edit these videos 
for the current study. The videos were shown in the following order. Robovie (a large humanoid 
robot) asks a woman to lie about seeing an aquarium on her tour of a research lab; the woman 
agrees and is shown lying to the robot’s supervisor [Kahn et al. 2015 ]. NAO (a small humanoid 
robot) performs community service for shoplifting batteries, apparently to no effect, as the NAO 

then steals batteries from a friend’s bike light, resulting in a crash [De Greeff et al. 2014 ]. A robotic 
ottoman encourages people to put their feet up and cues them that it wants to leave [Sirkin et al. 
2015 ]. PR2 (a large, boxy, humanoid robot) works cooperatively with two different people to stack 
blocks in specific patterns, adjusting its behavior based upon unexpected human behaviors [Devin 
et al. 2017 ]. Dragonbot (a small, fluffy, toy dragon robot) takes turns telling stories with children 
and creating visual depictions of the stories on an iPad [Kory 2014 ]. Thus, the videos showed 
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robots with a variety of body types and physical abilities, acting in a variety of ways in a variety 
of contexts. 

2.4 Measures 

2.4.1 Background Information. 

2.4.1.1 Demographic variables. Participants completed items requesting their gender, age, first 
language, length of time they had been speaking English, and comfort with reading, writing, speak- 
ing, and listening to English, and asking whether they identified as White, African-American, 
Asian, Hispanic, Native-American, or other. 

2.4.1.2 Familiarity with real robots. Mimicking the procedure used by Sung et al. [ 2009 ], we 
asked participants to rate their familiarity with 12 real robots selected from the robot hall of fame 
( w w w.robothalloffame.org ). For each robot, we provided the name, the manufacturer, and an im- 
age. We asked participants to rate their familiarity with each robot using a five-point scale, 1 = not 
at all familiar , 2 = slightly familiar , 3 = moderately familiar , 4 = very familiar , and 5 = extremely 

familiar . 

2.4.1.3 Broad experience with robots. To measure previous experience with robots, we used the 
five-item measure from MacDorman et al. [ 2009 ]. These items ask participants how often they 
have read or watched robot-related materials, attended robot-related events, had physical contact 
with robots, and built or programmed robots. Most items include both real robots and fictional 
ones; for example, they do not distinguish between reading comics and journal articles, or between 
watching documentaries and science fiction movies. 

2.4.2 Ratings of the Robot in Each Video. After watching each video, participants completed 
several rating scales about that robot. 

2.4.2.1 Perceived Social Intelligence (PSI) Scales. The PSI Scales were designed to measure the 
extent to which robots are perceived as possessing the 20 aspects of social intelligence described 
above. To facilitate the use of our scales, we wrote items using the International Personality Item 

Pool (IPIP [Goldberg et al. 2006 ]) third-person format. The IPIP is a public domain set of 3000 +
items, available at http://ipip.ori.org/ , that can be used for free and adapted as needed. 
While many existing IPIP items are relevant to social intelligence, few could be used to mea- 

sure the perceived social intelligence of robots. Many IPIP items are not relevant to robots (e.g., 
referring to friends), many assume social/intellectual skills that few or no current robots have (e.g., 
having emotions or episodic memories), and many assume certain body types or functions (e.g., 
being able to hear, speak, or move). Therefore, most of our items were newly created, so that they 
would apply to a wide range of robots. To ensure adequate content coverage, we drafted dozens of 
items for each of the 20 concepts. Then, we selected the best six items based upon their apparent 
relevance to the construct and the clarity of their phrasing. The Appendix provides a complete list 
of all scales, abbreviations, and definitions; see the Appendix. As shown there, all items use a five- 
point agreement scale to indicate how well the statement describes a particular robot: 1 = Strongly 
Disagree , 2 = Disagree , 3 = Neutral , 4 = Agree , and 5 = Strongly Agree . For detailed information 
about how to administer and score the PSI Scales, see the test manual [Barchard et al. 2018 ]. 

In this current study, to partially reduce possible order effects and carry-over effects in our study, 
we presented the 120 PSI items in a different order for each of the five robot videos. 

2.4.2.2 Desire for social interaction. To assess whether participants desire social interaction with 
the robot, we designed a five-point agreement scale that participants used to indicate if they would 
like to meet this robot, be friends with this robot, live with this robot, and work with this robot. 
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2.4.2.3 Emotional reactions. To assess the emotional reactions of participants to the robots, we 
used an eight-item measure based upon Lövheim’s [ 2012 ] adaptation of Tomkin’s [ 1962 1963 1981 
1991 ] theory of affect. We asked participants the extent to which the robot made them feel en- 
joyment, fear, surprise, shame, anger, distress, interest, and disgust, using a five-point scale where 
1 = Not at all , 2 = Slightly , 3 = Moderately , 4 = Very , and 5 = Extremely . 

2.4.2.4 Social Response to Robots Semantic Differential Scales. Participants completed four scales 
from the Social Response to Robots Semantic Differential Scales [Moshinka 2012 ]: Welcome, Ap- 
peal, Unobtrusiveness, and Naturalness. Each item was presented on a five-point scale, with one 
adjective anchoring the low end of the scale and another adjective anchoring the high end of the 
scale, for example, Unwelcome—Welcome, Boring—Interesting, Annoying—Inoffensive, and Fake—
Natural. Positive adjectives were consistently placed on the right. Each scale was prefaced with 
the phrase “This robot is”. 

2.4.2.5 Godspeed Indices. Participants completed two of the Godspeed Indices [Bartneck et al. 
2009 ]: Likability (first four items) and Perceived Intelligence. We omitted the last item from the 
Likability Scale because it overlapped with Moshinka’s Welcome Scale. Once again, each item was 
presented on a five-point scale, with one adjective anchoring the low end of the scale and another 
adjective anchoring the high end of the scale, for example, Unfriendly—Friendly, Unintelligent—
Intelligent. Positive adjectives were consistently placed on the right. Each scale was prefaced with 
the phrase “This robot is.”

2.5 Data Screening 

Data were carefully screened in SPSS to prevent participants who were univariate or multivariate 
outliers from having undue influence on the results. To identify univariate outliers for each of the 
120 PSI items, we calculated z-scores for each response, as recommended by Tabachnick and Fidell 
[ 2019 ]. We identified 324 of the 178,800 responses (0.18%) as outliers because they had z-scores 
greater than 3.29, corresponding to a p -value of .001. Tabachnick and Fidell [ 2019 ] recommend 
moving univariate outliers to make them less deviant. Following this advice, we moved each outlier 
one point closer to the mean for that item. For example, if the mean on the five-point scale was 
1.78 and scores of 5 were identified as outliers, those scores were changed to 4. 

To identify participant-robot combinations that were multivariate outliers within each of the 20 
PSI Scales, we calculated Mahalanobis distances. Across the 20 PSI Scales, between 0.7% and 5.3% of 
participant-robot combinations were multivariate outliers, as evidenced by Mahalanobis distances 
that exceeded the chi-squared critical value corresponding to a p -value of .001. As suggested by 
Tabachnick and Fidell [ 2019 ], these participant-robot pairs were deleted from the analyses for 
those scales. 

2.6 Item Selection 

The purpose of our study was to select items for the 20 PSI Scales and evaluate the quality of those 
final scales. For each scale, we selected the best four items. To do this, we used two analyses. First, 
we conducted exploratory factor analyses within each of the 20 scales to identify items that were 
strongly associated with the constructs being measured. To determine the number of factors, we 
conducted a parallel analysis [Cota et al. 1993 ; Horn 1965 ]. To implement the parallel analyses, we 
used the psych package [Revelle 2018] in R [R Core Team 2017 ] with the RStudio interface [RStudio 
Team 2016 ]. Seventeen scales had just one factor (as planned). For those scales, we selected items 
that had strong relations with that factor. Three scales had two correlated factors (i.e., AC, CON, 
and CAR). For those scales, we selected items that had large salient relations with the largest fac- 
tor and/or the orthogonalized general factor. Second, we used item response theory to select the 
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items that provided the most information for discriminating between respondents. Item informa- 
tion curves were calculated using the mirt package [Chalmers 2012 ] in R with Samejima’s [ 1969 ] 
graded response model. We selected items that provided the most information, as evidenced by 
information curves that were tall and wide. When a scale had more than four items with high fac- 
tor coefficients and high information, we selected items that provided unique content to increase 
validity, and we included at least one reverse-coded item to reduce the influence of acquiescence 
response bias. 

In addition to selecting the best four items for each of the 20 PSI Scales, we also selected the 
best single item for each based upon the factor analysis results. These 20 items constitute a short 
form that can measure all aspects of social intelligence in a concise format. 

Recognizing that gender may impact perceptions of social others, we additionally considered 
whether there exist differences in men and women’s responses to the PSI scales. Gender differ- 
ences appear across a range of topics related to social intelligence, including implicit beliefs about 
acceptable emotion expression in childhood [Thomassin and Seddon 2019 ], beliefs about the im- 
pact of body appearance on social standing [Wang et al. 2019 ], and perceptions of threat and 
attractiveness based on facial expressions [Hester 2019 ]. Men and women also differ in how they 
perceive technology. For example, a study in Austria found that women participants have more 
positive attitudes towards new health or support devices, while men have more positive attitudes 
towards new communication and entertainment devices [Halmdienst et al. 2019 ]. Given that men 
and women sometimes have different perceptions, we compared the variance-covariance matrices 
for men and women for each of the 20 scales using Box’s M. For most scales, there were no signifi- 
cant differences, indicating that the above item selections would apply equally to men and women. 
For three scales (HST, IH, and CON), there were statistically significant differences between men 
and women. However, these differences were negligible. HST and IH each had one factor for both 
men and women, with salient factor coefficients for all items. CON had two factors for both men 
and women, with the same items on each factor for the two genders. Therefore, for all 20 scales, 
we recommend the same best four items and the same best single item for men and women. 

3 RESULTS 

3.1 Evaluating the �ality of the Full PSI Scales 

3.1.1 Internal Consistency. To determine if each of the 20 PSI Scales measures a coherent con- 
struct, we checked how many constructs underlie each scale using exploratory factor analysis and 
we measured internal consistency reliability using coefficient alpha. Three separate exploratory 
factor analysis methods – parallel analysis [Cota et al. 1993 ; Horn 1965 ], the minimum average 
partial test (MAP test [Velicer 1976 ]), and the scree plot [Cattell 1966 ]—all showed that each PSI 
Scale has only a single underlying factor. Moreover, coefficient alpha [Cronbach 1951 ] showed that 
each scale has strong internal consistency (range .75–.94, average .86). See Table 1 . We conclude 
that the 20 PSI Scales each measure a single coherent construct. 

The two PSI total scores also had strong internal consistency. See the top two rows in Table 1 . 
However, these total scores would not be expected to have just a single factor (see the section 
below on the exploratory factor analysis). 

The four Social Response to Robots Semantic Differential Scales and the two Godspeed Indices 
also had strong internal consistency (range .89–.96, average .93). See bottom section of Table 1 . 

3.1.2 Relations with among the PSI Scales. The 20 PSI Scales had meaningful inter-scale corre- 
lations. See Table 2 . Being perceived as rude, conceited, and hostile had negative correlations with 
most other scales (1 of these 51 correlations was positive but negligible). The remaining scales 
consistently had positive inter-correlations. Scales that measure conceptually related content had 
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Table 1. Internal Consistencies of the Robot Perception Scales 

Scale 
Coefficient Alpha 

[95% confidence interval] 
PSI Scales 

Short Form Total .93 [.92, .93] 

Long Form Total .96 [.95, .96] 

Social Competence .92 [.91, .93] 

Identifies Humans .83 [.81, .84] 

Identifies Individuals .94 [.94, .95] 

Identifies Social Groups .85 [.84, .86] 

Recognizes Human Behaviors .84 [.82, .85] 

Adapts to Human Behaviors .89 [.88, .90] 

Predicts Human Behaviors .83 [.81, .84] 

Recognizes Human Cognitions .86 [.85, .87] 

Adapts to Human Cognitions .80 [.78, .82] 

Predicts Human Cognitions .91 [.90, .92] 

Recognizes Human Emotions .90 [.89, .91] 

Adapts to Human Emotions .88 [.87, .89] 

Predicts Human Emotions .88 [.87, .89] 

Friendly .82 [.80, .83] 

Helpful .88 [.87, .89] 

Caring .84 [.83, .86] 

Trustworthy .90 [.89, .90] 

Rude .85 [.83, .86] 

Conceited .75 [.73, .77] 

Hostile .87 [.86, .88] 
Social Response to Robots Semantic Differential Scales 

Welcome .96 [.96, .97] 

Appeal .93 [.93, .94] 

Unobtrusiveness .89 [.88, .90] 

Naturalness .92 [.92, .93] 

Godspeed Index 
Likability .96 [.96, .96] 

Perceived Intelligence .92 [.91, .92] 

strong correlations, as expected. However, many inter-scale correlations were small (54 of the 190 
correlations were less than .40 in absolute value), demonstrating that these scales are measuring 
several distinct constructs. 

3.1.3 Relations with Existing Robot Perception Scales. The 20 PSI Scales correlated in meaningful 
ways with the four Social Response to Robots Scales and the two Godspeed Indices. See Table 3 . For 
example, the PSI Helpful and Trustworthy Scales had strong positive correlations with Likability 
and Welcome. All of the other relations were also in the expected directions, and correlations were 
usually moderate to strong. 

The PSI Long Form total, Short Form total, and Social Competence Scale had their strongest 
correlations with Perceived Intelligence, Appeal, and Naturalness. This suggests that the PSI Scales 
are indeed measuring perceived social intelligence, and that appearing socially intelligent makes a 
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Table 2. Correlations among the 20 PSI Scales 

Socially 
Competent 

Identifies 
Humans 

Identifies 
Individuals 

Identifies 
Social 
Groups 

Recognizes 
Human 

Behaviors 

Adapts to 
Human 

Behaviors 

Predicts 
Human 

Behaviors 

Socially 
Competent 

1.00 

Identifies 
Humans 

.46 ** 1.00 

Identifies 
Individuals 

.74 ** .43 ** 1.00 

Identifies 
Social 
Groups 

.69 ** .36 ** .78 ** 1.00 

Recognizes 
Human 
Behaviors 

.45 ** .68 ** .43 ** .39 ** 1.00 

Adapts to 
Human 
Behaviors 

.53 ** .54 ** .42 ** .49 ** .78 ** 1.00 

Predicts 
Human 
Behaviors 

.69 ** .50 ** .61 ** .65 ** .61 ** .67 ** 1.00 

Recognizes 
Human 
Cognitions 

.77 ** .39 ** .73 ** .76 ** .55 ** .60 ** .76 ** 

Adapts to 
Human 
Cognitions 

.78 ** .43 ** .67 ** .69 ** .52 ** .65 ** .76 ** 

Predicts 
Human 
Cognitions 

.73 ** .27 ** .68 ** .76 ** .38 ** .48 ** .75 ** 

Recognizes 
Human 
Emotions 

.83 ** .39 ** .77 ** .78 ** .43 ** .50 ** .73 ** 

Adapts to 
Human 
Emotions 

.81 ** .34 ** .74 ** .76 ** .37 ** .48 ** .69 ** 

Predicts 
Human 
Emotions 

.78 ** .35 ** .72 ** .78 ** .41 ** .51 ** .81 ** 

Friendly .75 ** .46 ** .56 ** .48 ** .42 ** .52 ** .54 ** 

Helpful .49 ** .47 ** .31 ** .29 ** .59 ** .67 ** .51 ** 

Caring .74 ** .37 ** .61 ** .59 ** .36 ** .48 ** .59 ** 

Trust- 
worthy 

.49 ** .29 ** .26 ** .24 ** .38 ** .52 ** .41 ** 

Rude −.45 ** −.45 ** −.26 ** −.17 ** −.41 ** −.50 ** −.37 ** 

Conceited −.27 ** −.36 ** −.07 ** −.00 −.26 ** −.36 ** −.21 ** 

Hostile −.24 ** −.39 ** −.06 * .02 −.29 ** −.36 ** −.18 ** 

(Continued ) 
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Table 2. Continued 

Recognizes 
Human 

Cognitions 

Adapts to 
Human 

Cognitions 

Predicts 
Human 

Cognitions 

Recognizes 
Human 
Emotions 

Adapts to 
Human 
Emotions 

Predicts 
Human 
Emotions 

Recognizes 
Human 
Cognitions 

1.00 

Adapts to 
Human 
Cognitions 

.80 ** 1.00 

Predicts 
Human 
Cognitions 

.83 ** .78 ** 1.00 

Recognizes 
Human 
Emotions 

.83 ** .83 ** .83 ** 1.00 

Adapts to 
Human 
Emotions 

.81 ** .81 ** .80 ** .90 ** 1.00 

Predicts 
Human 
Emotions 

.83 ** .82 ** .89 ** .88 ** .84 ** 1.00 

Friendly .60 ** .67 ** .53 ** .67 ** .65 ** .59 ** 

Helpful .488 ** .58 ** .40 ** .45 ** .44 ** .42 ** 

Caring .67 ** .73 ** .65 ** .76 ** .76 ** .69 ** 

Trust- 
worthy 

.44 ** .53 ** .38 ** .44 ** .43 ** .39 ** 

Rude −.31 ** −.47 ** −.25 ** −.35 ** −.36 ** −.30 ** 

Conceited −.15 ** −.31 ** −.08 ** −.19 ** −.22 ** −.13 ** 

Hostile −.10 ** −.26 ** −.03 −.13 ** −.16 ** −.08 ** 

Friendly Helpful Caring Trustworthy Rude Conceited Hostile 

Friendly 1.00 

Helpful .68 ** 1.00 

Caring .78 ** .65 ** 1.00 

Trust- 
worthy 

.65 ** .78 ** .68 ** 1.00 

Rude −.61 ** −.74 ** −.60 ** −.70 ** 1.00 

Conceited −.46 ** −.60 ** −.46 ** −.62 ** .81 ** 1.00 

Hostile −.44 ** −.60 ** −.40 ** −.56 ** .84 ** .80 ** 1.00 

* p < .05. ** p < .001. 

robot more desirable and seem more human-like. The PSI Scales that assess apparent information 
processing abilities and the apparent ability to identify people had their highest correlations with 
these same three scales, hinting that these skills may be the core of social intelligence. 
In contrast, the PSI social presentation scales had strong correlations with Likability, Welcome, 

and Appeal. This suggests that the social presentation scales successfully measure whether robots 
are seen as desirable social partners. The social presentation scales also had strong correlations 
with Perceived Intelligence, suggesting either that having good social presentation skills is rec- 
ognized as requiring intelligence or, at least, that the robots that seemed to have strong social 
presentation skills in this study also happened to seem smart. 
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Table 3. Correlations of the PSI Scales with the Other Robot Perception Scales 

PSI Scale 
Social Response to Robots Scale Godspeed Index 

R 2 

Welcome Appeal 
Unobtrus- 
iveness 

Naturalness Likability 
Perceived 
Intelligence 

Long Form Total .59** .64** .33** .60** .64** .71** .62** 

Short Form Total .57** .63** .33** .59** .63** .69** .59** 

Overall 

Social Competence .44** .59** .16** .61** .51** .62** .54** 

Identifying People .26 .40 .05 .44 .29 .42 

Identifies Humans .30** .35** .09** .28** .32** .39** .19** 

Identifies Individuals .26** .45** .04 .53** .31** .46** .37** 

Identifies Social Groups .21** .39** .03 .50** .24** .42** .33** 

Information Processing Ability .40 .49 .19 .52 .41 .56 

Recognizes Human Behaviors .36** .40** .26** .30** .33** .50** .26** 

Adapts to Human Behaviors .49** .48** .38** .38** .49** .61** .39** 

Predicts Human Behaviors .39** .48** .18** .52** .37** .57** .40** 

Recognizes Human Cognitions .37** .49** .19** .59** .38** .58** .45** 

Adapts to Human Cognitions .49** .56** .24** .55** .53** .63** .49** 

Predicts Human Cognitions .32** .46** .12** .56** .34** .50** .39** 

Recognizes Human Emotions .39** .54** .12** .60** .44** .55** .47** 

Adapts to Human Emotions .40** .53** .13** .59** .45** .54** .45** 

Predicts Human Emotions .35** .48** .11** .58** .37** .53** .65** 

Social Presentation .59 .48 .42 .33 .67 .54 

Friendly .55** .58** .25** .48** .64** .57** .50** 

Helpful .64** .51** .49** .34** .68** .61** .53** 

Caring .56** .57** .30** .53** .65** .59** .52** 

Trustworthy .64** .51** .50** .37** .68** .61** .53** 

Rude −.67** −.50** −.49** −.30** −.76** −.59** .61** 

Conceited −.55** −.35** −.48** −.16** −.63** −.42** .45** 

Hostile −.51** −.31** −.45** −.13** −.62** −.39** .43** 

R 2 .54** .46** .40** .43** .68** .59** —

* p < .05. ** p < .001. The average absolute correlations for each group of scales is presented in the subsection header row. 

The statistical significance of these averages was not assessed. 

All types of PSI Scales had their smallest correlations with Unobtrusiveness, which was the 
only scale to have non-significant correlations. Thus, being perceived as intrusive is not strongly 
related to being perceived as socially intelligent. However, Unobtrusiveness did have moderate 
relations with social presentation: Being seen as intrusive makes a robot less desirable as a social 
partner. 

To determine if the PSI Scales provide new information beyond the existing robot perception 
scales, we examined the relations between the PSI Scales and other measures of robot perceptions 
by regressing the PSI Scales and the other scales on each other. First, we used the 20 PSI Scales 
to predict the Social Response to Robots Scales and Godspeed Indices. Then, we used the Social 
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Response to Robots Scales and Godspeed Indices to predict the 22 PSI Scales (the 20 original scales 
and the Long Form and Short Form totals). 

The PSI Scales were able to predict the Social Response to Robots Scales and Godspeed Indices. 
As shown by the last row of Table 3 , the PSI Scales predicted large portions of the variance in all 
of these scales. The smallest portion was for the Unobtrusiveness Scale, but the PSI Scales still ac- 
counted for 40% of its variance (corresponding to a multivariate correlation of .62). Impressively, 
the PSI Scales accounted for roughly two-thirds of the variance in the Likability Index (corre- 
sponding to a multivariate correlation of .82). Thus, the PSI Scales cover much of the content that 
is included in the Social Response Scales and Godspeed Indices, but these latter scales still provide 
some unique information. 
Similarly, the Social Response to Robots Scales and Godspeed indices were able to predict the 

PSI Scales. As shown by the last column of Table 3 , these scales accounted for roughly half of the 
variance in the PSI social presentation scales and almost half of the variance in several PSI infor- 
mation processing scales. Impressively, these scales predicted almost two-thirds of the variance in 
the Predicts Human Emotions Scale (corresponding to a multivariate correlation of .79). However, 
three PSI Scales were not well-predicted: Identifies Humans ( R 

2 
= .19), Identifies Social Groups 

( R 
2 
= .33), and Recognizes Human Behaviors ( R 

2 
= .26). Thus, the PSI Scales capture important 

abilities that are not covered by the Social Response to Robots Scales and Godspeed Indices. 

3.1.4 Exploratory Factor Analysis. To better understand the relations among the robot percep- 
tion scales, we conducted an exploratory factor analysis using all 26 robot perception scales: the 
20 PSI Scales, the four Social Response to Robots Scales, and the two Godspeed Indices. We de- 
termined that there were three factors based upon parallel analysis, the MAP test, the scree test, 
and interpretability. Parallel analysis suggested three factors, the MAP test suggested four, and 
the scree test suggested either two or five factors. We concluded there were probably three or four 
factors because these three methods are all typically accurate to within one factor, but parallel 
analysis and the MAP test are usually the most accurate [Velicer et al. 2000 ]. We chose to examine 
the three-, four-, and five-factor solutions because conclusions are more likely to be distorted if re- 
searchers use too few factors than if they use too many factors [Fabrigar et al. 1999 ]. For each factor 
solution, we selected the optimal rotation based upon the number of complex scales (fewer is bet- 
ter), the number of hyperplanar coefficients (more is better), and the extent of correlation among 
the factors (smaller is better). We rejected the resulting five-factor solution because it included a 
factor that overlapped substantially with the other factors (this factor had salient coefficients only 
for variables that also fell on other factors). Of the remaining solutions, the three-factor was the 
most interpretable from a substantive standpoint and is therefore shown in Table 4 . 
We named these three factors Behavior, Mind, and Social Presentation. The Behavior factor 

included the three scales related to behavior, the ability to identify humans, and the tendency to 
be helpful. We interpret this factor as the tendency of the robot to coordinate its behaviors with 
humans in a helpful manner. The Mind factor included each of the six scales related to cognitions 
and emotions. The Social Presentation factor included each of the scales that were designed to 
measure social presentation skills, as well as all of the Godspeed Indices (Likability and Perceived 
Intelligence) and three of the Social Response Scales (Welcome, Unobtrusiveness, and Appeal). 

Several noteworthy findings occurred. Identifies Humans fell on the same factor as the three 
behavior scales, rather than the factor where Identifies Individuals and Identifies Groups fell. 
Helpfulness had a secondary relation with the Behavior factor. Predicts Human Behavior had its 
largest relation with the Mind factor, rather than the factor where the Recognizes Human Behav- 
iors and Adapts to Human Behaviors Scales fell. Social Competence fell on the Mind factor. Finally, 
Naturalness fell on the Mind factor. We will explore these findings in the Discussion section. 
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Table 4. Exploratory Factor Analysis of the 

26 Robot Perception Scales 

Scale 
Factor 

h 2 
1 2 3 

PSI Recognizes Human Behaviors .85 .13 .06 .85 

PSI Identifies Humans .77 .08 .08 .69 
PSI Adapts to Human Behaviors .64 .25 .24 .75 
PSI Recognizes Human Emotions .03 .92 .05 .89 

PSI Predicts Human Emotions .06 .92 −.03 .87 
PSI Predicts Human Cognitions .01 .91 −.04 .81 
PSI Adapts to Human Emotions −.04 .91 .10 .85 
PSI Identifies Social Groups .11 .87 −.19 .77 
PSI Recognizes Human Cognitions .19 .83 −.01 .83 
PSI Identifies Individuals .14 .81 −.11 .71 

PSI Socially Competent .08 .80 .17 .80 
PSI Adapts to Human Cognitions .17 .75 .19 .81 
SRRS Naturalness −.10 .67 .19 .50 
PSI Caring −.08 .67 .46 .78 
PSI Predicts Human Behaviors .40 .65 .01 .76 

PSI Friendly .07 .53 .47 .68 
GI Likability −.10 .24 .84 .82 
PSI Rude −.18 −.02 −.83 .82 
PSI Conceited −.12 .16 −.83 .71 
PSI Hostile −.21 .24 −.81 .72 
SRRS Welcome −.07 .21 .79 .72 

PSI Trustworthy .03 .22 .74 .70 
SRRS Unobtrusiveness −.03 −.07 .70 .46 
PSI Helpful .34 .15 .65 .77 
SRRS Appeal −.07 .47 .52 .59 
GI Perceived Intelligence .11 .43 .52 .65 

Factor 1 1.00 .33 .30 
Factor 2 1.00 .27 
Factor 3 1.00 

Salient pattern matrix coefficients are in boldface. h 2 = communality. PSI = 

Perceived Social Intelligence. SRRS = Social Response to Robots Scale. GI = 

Godspeed Indices. Factor 1 = Behavior. Factor 2 = Mind. Factor 3 = Social 

Presentation. 

The four-factor solution was similar to the three-factor solution. The first two factors remained 
the same: They measured Social Information Processing Abilities and Coordinating Behaviors with 
Humans. The third factor divided into two: one for the PSI Scales (which used Likert-type items) 
and one for the Social Response to Robots Scales and Godspeed Indices (which used semantic 
differential scales)—though the Likability Index was related to both of these factors. These two 
factors had their highest correlations with each other. Given that the four-factor solution did not 
make substantive distinctions between the scales (only methodological ones), we prefer the three- 
factor solution. 
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3.1.5 How People Feel About the Robots. To determine if the 28 robot perception scales (i.e., the 
20 individual PSI Scales, the two PSI total scores, the four Social Response to Robots Scales, and 
the two Godspeed Indices) are related to how respondents feel about robots, we correlated these 
scales with desire for social interaction with the robots and with positive and negative feelings 
about the robots. See Table 5 . 
Every one of the 26 robot perception scales correlated significantly with Desire for Social Inter- 

action and Positive Feelings. The correlations were highest for the Social Response Scales, God- 
speed Indices, and PSI social presentation scales. For example, respondents were more likely to 
want to interact with the robot and feel positively about the robot if they perceived it as appeal- 
ing, likable, and caring. The Social Response to Robots Scales and Godspeed Indices tended to have 
larger correlations with Desire for Social Interaction and Positive Feelings than the PSI scales—
even than the PSI social presentation scales. 
Most of the robot perception scales also correlated significantly with Negative Feelings about the 

robot. Once again, the correlations were highest for the Social Response Scales, Godspeed Indices, 
and PSI social presentation scales; however, the correlations were smaller than they had been 
for the Desire for Social Interaction and Positive Feelings Scales. Respondents were most likely 
to have negative feelings if they perceived the robot as hostile, conceited, rude, and not likable. 
Overall social competence, information processing ability, and the ability to identify people had 
only small and often non-significant relations with Negative Feelings. 

3.1.6 Relation with Overall Social Competence. To determine whether each of the 26 robot per- 
ception scales can be considered a measure of perceived social competence, we correlated the PSI 
Social Competence Scale with each of the remaining PSI Scales and with the four Social Response 
to Robots Scales and the two Godspeed Indices. See the last column of Table 5 . Every one of the 
26 robot perception scales had a statistically significant correlation with Social Competence. The 
PSI information processing abilities and identifying people abilities had the largest correlations. 
Social Competence was most closely related to the apparent ability to deal effectively with human 
emotions and cognitions, to identify individuals, and to appear friendly and caring. Interestingly, 
being rude, conceited, and hostile had negative correlations with Social Competence, as might 
be expected, but these correlations were smaller than the correlations for the positive social pre- 
sentation skills (appearing friendly, caring, helpful, and trustworthy). This suggests that rudeness 
may often be seen as a matter of incompetence rather than poor intentions: It takes both good 
intentions and skill to be a competent social partner. 
The Social Response to Robots Scales and Godspeed Indices typically had moderate correlations 

with Social Competence, indicating that they are measuring related constructs but not social in- 
telligence itself. The one exception was Unobtrusiveness, which had a low correlation with Social 
Competence. 

3.1.7 Distinguishing Between Robots. The purpose of the PSI Scales is to allow researchers to 
evaluate the social intelligence of robots, allowing researchers to pinpoint the effects of different 
robot bodies, behaviors, and contexts. Therefore, to determine if the robot perception scales can 
distinguish between robots who, based upon their actions, seem to vary in their social intelligence, 
we used multi-level modeling to compare the average scale scores for the robots in the five videos, 
after controlling for differences across participants. Specifically, we used the lme4 package [Bates 
et al. 2012 ] in R to complete linear mixed effects analyses with random intercepts for each partici- 
pant (as recommended by Dixon [ 2008 ]), using maximum likelihood estimation (as recommended 
by Luke [ 2016 ]). Both the Short Form and Long Form total scores, every individual PSI Scale, ev- 
ery Social Response to Robots Scale, and both Godspeed Indices were able to make distinctions 
between the five robot videos. See Table 6 . 
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Table 5. Correlations of the Robot Perception Scales with the Criterion Variables 

Robot Perception Scale 
Desire for 
Social 

Interaction 

Positive 
Feelings 

Negative 
Feelings 

Social 
Competence 

PSI Scale 

Long Form Total .55** .47** −.10** —

Short Form Total .56** .46** −.10** —

Overall 

Social Competence .42** .43** .01 —

Identifying People .27 .31 .10 .63 

Identifies Humans .24** .26** −.10** .46** 

Identifies Individuals .28** .33** .09** .74** 

Identifies Social Groups .29** .34** .12** .69** 

Information Processing Ability .41 .39 .05 .71 

Recognizes Human Behaviors .31** .28** −.06* .45** 

Adapts to Human Behaviors .42** .35** −.12** .53** 

Predicts Human Behaviors .41** .40** .02 .69** 

Recognizes Human Cognitions .40** .39** .07* .77** 

Adapts to Human Cognitions .47** .42** −.04 .78** 

Predicts Human Cognitions .41** .38** .07* .73** 

Recognizes Human Emotions .42** .43** .04 .83** 

Adapts to Human Emotions .43** .42** .00 .80** 

Predicts Human Emotions .40** .41** .06* .78** 

Social Presentation .48 .32 .27 .49 

Friendly .49** .41** −.11** .75** 

Helpful .55** .36** −.22** .49** 

Caring .55** .43** −.11** .74** 

Trustworthy .56** .34** −.24** .49** 

Rude −.46** −.29** .34** −.45** 

Conceited −.39** −.19** .39** −.27** 

Hostile −.36** −.20** .45** −.24** 

Social Response Scale .62 .45 .27 .44 

Welcome .62** .45** −.27** .44** 

Appeal .65** .61** −.10** .59** 

Unobtrusiveness .43** .22** −.23** .16** 

Naturalness .48** .49** .10** .61** 

Godspeed Index .56 .43 .23 .57 

Likability .58** .40** −.30** .51** 

Perceived Intelligence .54** .46** −.15** .62** 

* p < .05. ** p < .001. The average absolute correlations for each group of scales is presented in the subsection 

header row. The statistical significance of these averages was not assessed. 
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Table 6. Mean Scores on the Robot Perception Scales 

Scale 
Dragonbot 
Stories 

Robovie 
Aquarium 

PR2 
Stacking 

NAO 

Stealing 
Ottoman 
Feet up 

χ
2 (4) 

PSI Scale 

Short Form Total 74 .62 b 75 .09 b 63 .38 a 62 .86 a 60 .90 a 420 .41** 

Long Form Total 298 .08 c 295 .76 c 253 .45 b 250 .95 b 242 .77 a 406 .54** 

Social Competence 15 .04 c 14 .68 c 10 .36 a 12 .24 b 9 .77 a 536 .88** 

Identifies Humans 17 .22 c 17 .17 c 16 .38 b 15 .87 a 16 .18 ab 111 .60** 

Identifies Individuals 14 .55 d 16 .08 e 10 .32 b 13 .78 c 8 .92 a 721 .75** 

Identifies Social Groups 11 .51 b 13 .35 d 9 .70 a 12 .47 c 9 .33 a 409 .98** 

Recognizes Human Behavior 16 .04 c 15 .66 bc 16 .81 d 15 .24 b 14 .49 a 157 .12** 

Adapts to Human Behavior 15 .18 bc 14 .57 b 15 .78 c 13 .13 a 13 .01 a 195 .85** 

Predicts Human Behaviors 13 .37 c 13 .56 c 12 .29 b 12 .06 b 11 .25 a 118 .55** 

Recognizes Human Cognitions 12 .63 c 13 .28 c 11 .18 b 11 .65 b 8 .94 a 382 .67** 

Adapts to Human Cognitions 13 .63 c 14 .01 c 11 .26 ab 11 .59 b 10 .66 a 315 .63** 

Predicts Human Cognitions 11 .37 c 12 .03 d 8 .85 a 10 .32 b 8 .31 a 344 .53** 

Recognizes Human Emotions 13 .41 c 13 .79 c 9 .18 a 11 .82 b 9 .46 a 489 .90** 

Adapts to Human Emotions 12 .76 c 12 .93 c 8 .81 a 11 .10 b 8 .68 a 504 .16** 

Predicts Human Emotions 12 .36 c 12 .70 c 9 .44 a 11 .10 b 9 .02 a 339 .82** 

Friendly 16 .24 d 14 .92 c 12 .15 a 12 .72 b 12 .43 ab 465 .64** 

Helpful 16 .50 d 14 .52 b 15 .29 c 11 .68 a 13 .95 b 410 .11** 

Caring 14 .14 b 14 .30 b 10 .12 a 10 .43 a 10 .45 a 512 .28** 

Trustworthy 15 .33 d 12 .85 c 13 .25 c 9 .26 a 12 .14 b 538 .02** 

Rude 5 .96 a 6 .54 b 7 .81 c 10 .77 e 8 .51 d 540 .02** 

Conceited 6 .77 a 7 .77 b 7 .97 bc 10 .97 d 8 .39 c 430 .42** 

Hostile 5 .38 a 5 .85 ab 6 .21 bc 9 .12 d 6 .52 c 424 .92** 

Social Response to Robots Scale 

Welcome 22 .78 d 20 .36 c 19 .18 b 16 .21 a 18 .77 b 316 .53** 

Appeal 21 .66 c 19 .84 b 16 .53 a 17 .36 a 17 .17 a 263 .92** 

Unobtrusiveness 17 .78 c 17 .08 c 19 .53 d 14 .89 a 15 .85 b 212 .48** 

Naturalness 15 .95 e 14 .88 d 11 .38 b 13 .08 c 10 .03 a 389 .67** 

Godspeed Index 

Likability 18 .54 d 17 .44 c 14 .81 b 12 .37 a 15 .05 b 510 .06** 

Perceived Intelligence 20 .08 c 19 .94 c 18 .97 b 15 .33 a 15 .33 a 428 .73** 

** p < .001. Superscripts that are different denote means that are significantly different ( p < .05). 

The two robots that spoke (Robovie and Dragonbot) obtained the best score on most of the 
robot perception scales. The two remaining humanoid robots (PR2 and NAO) obtained the next 
best scores, with the robotic ottoman obtaining the worst scores on most scales. There were a few 

exceptions to this general pattern. First, the PR2 robot that cooperatively stacked blocks obtained 
the highest scores for recognizing and adapting to human behavior and for being unobtrusive. 
Second, the robotic ottoman was rated as more helpful, trustworthy, welcome, likable, and unob- 
trusive than the NAO that shoplifted and stole from a friend. 

3.2 Evaluating the �ality of the PSI Short Form 

To evaluate the quality of the 20-item PSI Short Form, we completed four analyses. First, to evaluate 
whether the Short Form is an adequate substitute for total scores from the complete set of PSI 
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Scales, we correlated total scores from the Short Form with total scores over all 80 items. It had 
a nearly perfect correlation ( r = .98, p < .001). Second, to evaluate whether the Short Form total 
scores can be interpreted as an overall measure of social intelligence, we correlated its total scores 
with social competence (calculated as the sum of the three Social Competence items that were not 
included on the Short Form). This correlation was very strong ( r = .82, p < .001). Third, to evaluate 
internal consistency reliability, we calculated coefficient alpha. It was excellent (coefficient alpha 
= .93). Finally, to determine if the Short Form could distinguish robots that appear more socially 
intelligent from robots that appear less socially intelligent, we compared the Short Form scores 
across the five videos included in this study. Mirroring the results for the Long Form, the dishonest 
Robovie and the story-telling Dragonbot had the highest perceived social intelligence, the block- 
stacking PR2 and the shoplifting NAO had the next highest, and the robotic ottoman had the lowest 
perceived social intelligence. 

4 DISCUSSION 

4.1 The Current Study 

4.1.1 Scale Design. Measuring social intelligence in robots is critical to research on HRI and 
thus to the integration of robots in public, private, and work settings. However, no robot social 
intelligence measures exist. Existing measures of people’s perceptions of robot abilities do not 
target social intelligence specifically. Measures of human social intelligence examine skills that 
are too advanced to be relevant to current or near-future robots and assume that the target being 
rated has humanoid features and functions. Therefore, we created 20 new scales to measure a wide 
range of social intelligence abilities in robots. 

We sought to create cohesive scales that could reliably discriminate the perceived social ability 
of different robots. For each scale, we therefore drafted items that would be applicable to many 
different kinds of robots in many different contexts. We selected items that had high factor anal- 
ysis coefficients (indicating that they are measuring a coherent construct) and good information 
(indicating that they can distinguish raters who perceive a particular robot as socially intelligent 
from raters who perceive a particular robot as not socially intelligent). Each of the resulting 20 
four-item PSI Scales has good internal consistency and a single factor, thus indicating that each 
scale measures a single coherent concept. 

The 20 PSI Scales were related to each other in meaningful ways. Scales that measured concep- 
tually related content had strong positive correlations, and being perceived as rude, conceited, and 
hostile had negative correlations with most other scales. However, many inter-scale correlations 
were small, demonstrating that these scales are measuring several distinct constructs. 

4.1.2 Similarities Between the Robot Perception Scales. This study included five robots that 
acted in a variety of ways in a variety of contexts to demonstrate a wide range of social intelligence. 
Importantly, the PSI Scales, Social Response to Robot Scales, and Godspeed Indices tended to rank 
the robots in the five videos in the same way: The robots that spoke obtained the highest scores 
and the robotic ottoman obtained the lowest scores. The exceptions to this general trend reinforce 
the validity of all these scales. For example, the PR2 robot had the highest scores on the Adapting 
to Human Behavior Scale, which makes sense given that it changed the blocks it was using after 
its human partner left to talk on the phone, and the NAO robot had the highest scores on the Rude, 
Conceited, and Hostile Scales, and the lowest scores on the Welcome and Likability Scales, which 
makes sense given that it was the only robot to engage in criminal activity. Thus, respondents ap- 
pear to be making fine distinctions between the robots in the videos based upon the specific qual- 
ities they are being asked to evaluate, rather than responding to all items based upon their global 
impressions of each robot. These findings support the quality and usefulness of all the scales. 
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The PSI Scales, Social Response to Robots Scales, and Godspeed Indices all had significant rela- 
tions with overall social intelligence and were able to predict positive and negative feelings about 
the robots and desire for social interaction with the robot. The convergence of these results sup- 
ports the quality of all three sets of scales. Moreover, these findings tell us that people like socially 
intelligent robots and want to spend more time with them. 
Furthermore, each of the PSI Scales could be predicted from the Social Response to Robots Scales 

and Godspeed Indices, and each of the Social Response to Robots Scales and Godspeed Indices 
could be predicted from the PSI Scales. Some of these relations were very strong. For example, the 
PSI Scales predicted roughly two-thirds of the variance in the Likability Index (corresponding to 
a multivariate correlation of .82, which represents a large portion of its reliable variance). The PSI 
social presentation scales, in particular, had substantial overlap with the Social Response to Robots 
Scales and Godspeed Indices. For example, robots were considered more likable and welcome if 
they were less rude and more helpful. Furthermore, the PSI social presentation scales, Godspeed 
Indices, and almost all of the Social Response to Robots Scales grouped together on a single factor. 
We labeled this factor Social Presentation and consider it to be an important part of social intel- 
ligence in robots. Social presentation is the ability of the robot to appear to be a desirable social 
partner, a valuable skill that is assessed by all three sets of scales. 
The overlap with the Social Response to Robots Scales and Godspeed Indices was not limited 

to the PSI social presentation scales. The Social Response to Robots Scales and Godspeed Indices 
were able to predict roughly two-thirds of the variance in the Predicts Human Emotions Scale 
(corresponding to a multivariate correlation of .79, which accounts for a large portion of its reli- 
able variance). The largest correlations with Predicts Human Emotions were for the Naturalness 
Scale and Perceived Intelligence Index. Thus, robots that appear to predict human emotions seem 

the most human-like and the most intelligent. Of the skills we assessed in this study, predicting 
emotions is likely perceived as one of the most challenging and thus may be the one that most 
closely marks whether a robot was acting like a human. In summary, the large meaningful rela- 
tions between the PSI Scales, Social Response to Robots Scales, and Godspeed Indices support the 
validity and usefulness of all these scales. 

4.1.3 Differences Between the Robot Perception Scales. Despite their similarities, each of the 
three sets of scales also provide unique information. The PSI social information processing scales 
and identifying people scales capture the core of social intelligence. These scales had large corre- 
lations with overall social competence and had only small to moderate correlations with positive 
feelings and desire for social interaction, indicating that they are measuring perceived skills , not 
just the tendency to make a good impression. These scales formed two factors. The Behavior fac- 
tor focuses on the recognition of, adaptation to, and prediction of behavior, the ability to identify 
humans, and the tendency to be helpful. We interpret this factor as the robot’s tendency to appear 
to helpfully coordinate its behaviors with humans. The Mind factor focuses on social information 
processing skills related to cognitions and emotions, the ability to identify individuals and groups, 
and overall social competence. We interpret this factor as measuring the robot’s apparent ability to 
understand and interact with people’s minds. These two factors, Behavior and Mind, are clearly in 
line with our original definition of social intelligence: the ability to interact effectively with others 
to accomplish one’s goals [Ford and Tisak 1983 ]. 
Two PSI social presentation scales—Friendly and Caring—acted similarly to the PSI social infor- 

mation processing scales. They had some of the highest correlations with overall social compe- 
tence and fell on the Mind factor. Perhaps social intelligence is a prerequisite for being perceived 
as friendly and caring: If a robot has poor social intelligence, people cannot tell if it has good 
intentions. 
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The remaining PSI social presentation scales, the Social Response to Robots Scales, and the God- 
speed Indices appear to measure constructs that are related to social intelligence, but not social 
intelligence itself. They formed a separate factor (labelled Social Presentation) and had only moder- 
ate correlations with social competence. Thus, being welcoming and likable are somewhat separate 
from interacting effectively with people. These scales had high correlations with positive feelings 
about the robot and desire for social interaction, suggesting that social presentation may be criti- 
cal to adoption and use of robots. However, these high correlations also suggest that these scales 
are strongly influenced by overall positive impressions. This conclusion is in line with Ho and 
MacDorman’s [ 2010 ] analysis of the Godspeed indices (of which Likability and Perceived Intelli- 
gence were used in our study): The Likability Index correlated highly with the Anthropomorphism 

(.73), Animacy (.74), and Perceived Intelligence Indices (.71), suggesting that these indices do not 
distinguish between the specific constructs of interest and overall positive appraisal. 

The 26 robot perception scales were not able to predict negative feelings as well as they were 
able to predict positive feelings and desire for social interaction. Most of the robot perception scales 
assess positive qualities that make people enjoy the robots and want to spend time with them. Only 
the PSI Rude, Conceited, and Hostile Scales focus on negative qualities that make people dislike 
robots. The ability to measure these negative characteristics is thus a unique strength of the PSI 
Scales. 

The factor analysis results demonstrate that the PSI Scales, Social Response to Robots Scales, 
and Godspeed Indices each provide unique information. This conclusion is reinforced by the fact 
that the PSI Scales were often able to predict less than 50% of the variance in the Social Response 
to Robots Scales and Godspeed Indices, which in turn were able to account for less than one-third 
of the variance of some of the PSI Scales (such as the Identifies Humans, Identifies Social Groups, 
and Recognizes Human Behaviors Scales). 

The PSI Scales were least able to predict the Social Response to Robots Unobtrusiveness Scale. 
In addition, Unobtrusiveness had only a small correlation with overall social competence ( r = .16) 
and was the only scale to have non-significant (and near zero) correlations with some PSI Scales. 
This scale is measuring something different from the other scales we examined. 

Unobtrusiveness may have been hard to predict because of our study design. In our five videos, 
the robots almost always interacted with humans in a cooperative manner. There was very little 
intrusive behavior that might be perceived as annoying and unhelpful. However, in natural set- 
tings, intrusive and annoying behavior may be much more common. If so, the Unobtrusiveness 
Scale may have a stronger relation with overall social intelligence. Furthermore, robots with poor 
social skills may be perceived as interrupting people and interfering with their work. This may 
be particularly true of task-focused robots working around humans if they do not adjust their be- 
havior for different workflows and physical environments (e.g., Mutlu and Forlizzi [ 2008 ]). The 
Unobtrusiveness Scale is currently the only scale that measures this key perception, making this 
an important, unique contribution of the Social Response to Robots Scale. 

In summary, the PSI Scales, Social Response to Robots Scales, and Godspeed Indices have strong 
relations with each other and overall social competence, but each set of scales also captures unique 
perceptions about robots. Had we included all of the scales from the Social Response to Robots 
Scales and Godspeed Indices, further unique contributions would doubtless have been found. The 
area of perceptions of robots is broad, and all three sets of scales are helpful in capturing some parts 
of this domain. Researchers should use whichever scales best capture the parts of the domain in 
which they are most interested. 

4.1.4 What We Learned About the Social Intelligence of Robots. Examining the factor analytic 
relations between the 26 robot perception scales provides five insights into the nature of robot 
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social intelligence. First, the Behavior factor included a secondary relation for the Helpfulness 
Scale. Thus, when the five robots in this study coordinated their behaviors with humans, this 
coordination was primarily helpful. This makes sense. While it is possible for a robot (or human) 
to carefully time and execute its behaviors to hurt others (e.g., sticking out a foot to trip someone 
as they walk by), most behavioral coordination assists in the completion of cooperative endeavors 
(e.g., stacking blocks together, sharing stories with each other, or just passing each other in a 
hallway without colliding). 
Second, the Predicts Human Behaviors Scale had its largest relation with the Mind factor, not 

the Behavior factor. There is a maxim that the best predictor of future behavior is past behavior 
[Meehl 1986 ]. However, this maxim only appears to hold if the future behavior is the same as the 
past behavior: Through a sort of inertia (or momentum), people keep doing the same things they 
used to do. To predict that someone will do something different from what they are currently doing, 
we need to understand their thoughts and feelings, their goals and desires. 

Third, the Identifies Humans, Identifies Individuals, and Identifies Groups Scales did not all fall 
on the same factor. The Identifies Humans Scale fell on the Behavior factor. This suggests that the 
best way to identify humans is based on how they act. People walk, talk, open and close doors, and 
type on computers. Most office chairs do not. This explains why the Turing [ 1950 ] test is so difficult: 
It is people’s behaviors (rather than their ideas) that primarily mark them as human. In contrast, 
the Identifies Individuals Scale fell on the Mind factor, suggesting that the best way to identify 
specific people is based on their feelings and cognitions: While most people talk, different people 
say different things depending upon what they think and feel. Similarly, the Identifies Groups Scale 
fell on the Mind factor, suggesting that the best way to identify whether people are part of a social 
group is their cognitions and emotions: What usually joins people into a group is not that they 
all walk or all talk or all type on a computer, but that they share a political philosophy or like the 
same music. 
Fourth, the Social Response to Robots Naturalness Scale was the only non-PSI scale that did not 

have its strongest relation with the Social Presentation factor. Robots can be likable without being 
natural. Instead, this scale fell on the Mind factor. Participants rated the robots as more natural, 
human-like, conscious, lifelike, and animate if the robot seemed to be able to understand people’s 
thoughts and emotions. 
Fifth, the PSI Social Competence Scale fell on the Mind factor. This suggests that overall social 

competence is most closely related to the ability to interact smoothly with people’s minds: knowing 
and responding to what people think and feel. The Social Competence Scale did not fall on the 
Behavior factor and thus is less related to coordinating ones’ physical actions with others’ (which 
might be related more to a robot’s physical grace than its intellectual abilities). Finally, the Social 
Competence Scale did not fall on the Social Presentation factor, which suggests that a robot can 
be socially competent without being a particularly desirable social partner. For example, consider 
the shoplifting NAO robot: It was rated as more socially competent than two of the other robots, 
but less trustworthy and more rude, conceited, and hostile than any other robot. 

4.1.5 Evaluating the PSI Short Form. In addition to creating four-item scales to measure each 
of the 20 PSI constructs, we also created a short-form that includes the single best item from each 
of those 20 scales. This PSI Short Form had excellent psychometric properties. It had a nearly 
perfect correlation with the full-length form, a strong correlation with overall social competence, 
and excellent internal consistency. It also successfully distinguished between the overall social 
intelligence of the robots in the five videos, ordering the robots from highest to lowest in the 
identical order as the Long Form. We conclude that the 20-item Short Form provides an efficient 
and inclusive snapshot of overall social intelligence. 
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4.1.6 Limitations. Because of possible cultural differences in perceptions of social intelligence, 
this study was deliberately limited to participants from a single country, the United States. This lim- 
its our ability to generalize from the present findings. For example, Kamide and Arai [ 2017 ] found 
that participants in Japan are more comfortable with conventional (i.e., non-anthropomorphic) 
robots, while participants in the United States are more comfortable with robots that act like hu- 
mans [Kamide and Arai 2017 ]. Analogous differences may occur for perceived social intelligence. 
For example, in our study, robots were considered more desirable social partners (and aroused 
more positive feelings) if they seemed more natural and human-like, but this finding may not hold 
in all other countries. Therefore, future research should explore how perceptions of robots vary 
between and within groups and contexts. 

Additionally, there were five limitations with our study design that could usefully be corrected 
in future work. First, each video showed a unique robot in a unique context engaged in a unique 
narrative. This created a wide range of perceived social intelligence, but does not allow us to de- 
termine if it was the robots’ appearance, context, or behavior that most influenced its rated social 
intelligence. To separate the effects of robot appearance, context, and behavior, future research 
would need to vary these independently. Second, the five videos were shown in a fixed order for 
all participants. If comparisons among stimuli are the primary interest, future research should 
randomize the order of the videos to eliminate potential order effects. Third, the PSI items were 
presented in a unique order for each of the five videos. If comparisons among items or scales 
are of primary interest, future research should ideally randomize the order of the items for each 
participant to eliminate order effects, or if comparisons of items and scales are not of particu- 
lar interest, future research can keep the order the same for all participants, so that order ef- 
fects are the same for every stimuli being rated. Fourth, in our study, the robot perception scales 
were not able to predict negative feelings as well as they were able to predict positive feelings; 
this may have been because the robot videos selected for our study did not create many negative 
feelings among participants. If future researchers are particularly interested in negative feelings, 
they should ensure that their stimuli create a wide range of negative feelings in their partici- 
pants. Finally, asking participants about their demographics (e.g., sex and age) at the beginning 
of the study could have primed participants to answer according to stereotypes related to their 
demographics. Future research may benefit from asking demographic questions at the end of the 
study. 

4.2 Future Research 

Researchers can examine a wide variety of research questions using our scales. Researchers can 
examine how robot behaviors, robot bodies, and context influence perceived social intelligence. 
For example, how close should a robot approach a person with Alzheimer’s disease to be consid- 
ered friendly and trustworthy? If they act the same, is a fuzzy purple dragon perceived as more 
trustworthy than a shiny silver dog? When a hospital delivery robot announces its arrival, how 

do workflow and physical environment influence perceived rudeness [Mutlu and Forlizzi 2008 ]? 
Moreover, how do all of the above factors interact? Perhaps verbal announcements are considered 
ruder than screen displays in noisy environments, but friendlier in quite environments. 
Future research could also explore how people make their judgments. For example, if a 

robot greets a person by name, perhaps people will usually assume the robot recognizes them, 
remembers their previous interactions, and likes them. Similarly, if a robot uses appropriate eye 
contact, perhaps people will assume the robot is friendly and caring. Thus, certain key robot 
behaviors might lead people to attribute a wide range of skills and characteristics to the robot. One 
method of determining how people make their judgments would be to ask them directly. Another 
method would be to vary robot behaviors or bodies (or the information about robot behaviors and 
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bodies that people have access to) to determine how perceptions of social intelligence change. For 
example, when a NAO robot demonstrated that it understood that an experimenter had a false 
belief (justifying improved scores on Recognizing Human Cognition and Social Competence), 
participants also rated it higher on Adapts to Human Cognitions, Predicts Human Behavior, 
Predicts Human Behavior, and Identifies Individuals [Sturgeon et al. 2019 ]. 
Researchers can also examine relations with other variables. How does perceived social intelli- 

gence influence goal completion? (E.g., Does robot trustworthiness help a child learn vocabulary?) 
How is perceived social intelligence related to other cognitive and personality variables? (E.g., If a 
self-driving car is perceived (perhaps incorrectly) as being able to recognize and predict human be- 
haviors, will it be considered morally responsible for any accidents that occur?) Do these relations 
vary across countries or groups? 
Finally, perceived social intelligence may be equally important for artificial intelligence pro- 

grams (e.g., personal assistants, navigation systems, and voice-activated searches). Fortunately, 
we designed our items so that they do not assume the target has any particular form (e.g., a head, 
arms, or legs) or functions (e.g., hearing, speech, or motion detection). Therefore, researchers and 
developers are encouraged to consider whether these concepts and scales would be helpful for 
targets besides robots. 

5 CONCLUSION 

Robots are increasingly present in public, private, and occupational settings, and thus need to 
be able to interact smoothly with people. True robotic social intelligence is still a long way off. 
Nonetheless, to study and enhance HRI, roboticists need a method of measuring the extent to 
which robots are perceived as socially intelligent. The PSI Scales provide just such a measurement 
tool. For example, the PSI Scales have been used to evaluate robots executing social behaviors per- 
taining to navigation. A new socially aware navigation planner has been created (SAN [Banisetty 
et al. 2019 ]) that takes into consideration interpersonal distance with humans and social norms 
such as going to the end of a line of people and forming a circle when joining a group. Prior work 
on SAN used performance metrics such as path efficiency and distance travelled [Sebastian et al. 
2017 ], trajectory differences [Ramírez et al. 2016 ], and number of proxemic intrusions [Helbing 
et al. 2002 ]. However, these performance metrics only address the motion that a robot takes: Peo- 
ple’s perceptions of the robot’s navigation behavior were not examined. The PSI Scales bridge that 
gap. A preliminary study using the PSI Scales shows that a robot with traditional navigation is per- 
ceived as less socially intelligent than a robot with SAN in waiting in a queue and group formation 

scenarios [Honour et al. 2019 ]. 
Although the PSI Scales need to be examined in other cultures and with different stimuli, this 

study provides strong initial evidence that each scale measures a coherent construct and that the 
20 scales are distinct from each other. If researchers need a comprehensive measure of perceived 
social intelligence and also need to examine individual aspects of social intelligence, they can use 
the full set of 20 four-item scales. Alternatively, researchers can select individual scales or use the 
20-item short form to get brief, comprehensive assessment of people’s perceptions. The PSI items 
were designed to be versatile. They apply to a wide range of robot roles, behaviors, and contexts. 
They also apply to a wide range of robotic embodiments and could be applied to non-embodied 
artificial intelligence. 
Given the variety of research questions and study designs for which the PSI items could be 

used, we encourage researchers to use whichever PSI items are relevant to their own research 
goals. Most researchers will need only a few scales for any particular project. Moreover, they 
might only need a few items from those scales. To allow researchers to be explicit about which 
items and scales they used in their research, we hereby give test users permission to reproduce 
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items from the PSI Scales in scientific publications and other venues. The PSI Scales are located on 
the International Personality Item Pool website ( https://ipip.ori.org/newMultipleconstructs.htm ) 
and in the Appendix. These items can be freely used and adapted as needed. 

A APPENDIX 

A.1 Perceived Social Intelligence Scales 

Each PSI Scale contains four items. If multiple scales are being used, intermix the items. To calculate 
the total score for one of these 20 PSI Scales, first reverse score any items that have an R after the 
item number (e.g., reverse score = 6—original score), then average the four item scores. 

For each of the 20 PSI Scales, the single best item is given first. The PSI Short Form consists of 
these 20 items. To calculate the total score, first reverse score the items for the Rude, Conceited, 
and Hostile scales, then sum the 20 item scores. 

Social Information Processing 

Social Competence (SOC) – The robot appears to have strong social skills. 
This robot. . . 
1 is socially competent 
2 is socially aware 
3R is socially clueless 
4 has strong social skills 

Identifies Humans (IH) – The robot appears to detect human presence. 
This robot. . . 
1 notices human presence 
2R mistakes humans for inanimate objects 
3 knows when a human is nearby 
4R fails to notice when humans are around 

Identifies Individuals (II) – The robot appears to identify and recognize people as individuals. 
This robot. . . 
1 recognizes individual people 
2 remembers who people are 
3R cannot tell people apart 
4 remembers its shared history with each person 

Identifies Social Groups (IG) – The robot appears to discern which people are with each other. 
This robot. . . 
1 knows if someone is part of a social group 
2 knows which people are together 
3R ignores the fact that people are together 
4 figures out which people know each other 

Recognizes Human Behaviors (RB) – The robot appears to detect people’s behaviors. 
This robot. . . 
1 notices when people do things 
2 detects human movement 
3 can figure out what people are doing 
4 notices when people try to interact with it 
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Adapts to Human Behaviors (AB) – The robot appears to adapt its behavior appropriately based 
upon people’s behaviors. 
This robot. . . 
1 adapts effectively to different things people do 
2 appropriately changes what it is doing based on what others around it are doing 
3 knows how to react to what people do 
4 adapts its behavior based upon what others do 

Predicts Human Behaviors (PB) – The robot appears to anticipate people’s behavior. 
This robot. . . 
1 anticipates people’s behavior 
2 predicts human movements accurately 
3R has no idea what people are going to do 
4 knows how people will react to things it does 

Recognizes Human Cognitions (RC) – The robot appears to detect people’s thoughts and beliefs. 
This robot. . . 
1 can figure out what people think 
2 knows when people are missing information 
3 can figure out what people can see 
4 understands others’ perspectives 

Adapts to Human Cognitions (AC) – The robot appears to adapt its behavior appropriately based 
upon people’s thoughts and beliefs. 
This robot. . . 
1 adapts its behavior based upon what people around it know 

2R ignores what people are thinking 
3 selects appropriate actions once it knows what others think 
4 knows what to do when people are confused 

Predicts Human Cognitions (PC) – The robot appears to anticipate people’s thoughts and beliefs. 
This robot. . . 
1 anticipates others’ beliefs 
2 figures out what people will believe in the future 
3 knows ahead of time what people will think about certain situations 
4 anticipates what people will think 

Recognizes Human Emotions (RE) – The robot appears to detect people’s emotions. 
This robot. . . 
1 recognizes human emotions 
2R has trouble understanding what people are feeling 
3 notices people’s emotional reactions 
4 knows what people like 

Adapts to Human Emotions (AE) – The robot appears to adapt its behavior appropriately based 
upon people’s emotions. 
This robot. . . 
1 responds appropriately to human emotion 
2 knows what to do when a person is emotional 
3R acts the same regardless of how people feel 
4 is good at responding to emotional people 
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Predicts Human Emotions (PE) – The robot appears to anticipate people’s emotions. 
This robot. . . 
1 anticipates others’ emotions 
2R has no idea how people will feel in different situations 
3 knows ahead of time how people will feel about its actions 
4 knows what people are going to want in different situations 

Social Presentation 

Friendly (FRD) – The robot appears to enjoy social interactions. 
This robot. . . 
1 enjoys meeting people 
2 likes spending time with people 
3 is sociable 
4R prefers being alone 

Helpful (HLP) – The robot appears willing to assist in tasks. 
This robot. . . 
1 tries to be helpful 
2 is cooperative 
3 values cooperation over competition 
4 wants to help people 

Caring (CAR) – The robot appears to care about the well-being of others. 
This robot. . . 
1 cares about others 
2 is compassionate 
3 feels concern for people who are in distress 
4R feels little concern for others 

Trustworthy (TRU) – The robot appears deserving of trust. 
This robot. . . 
1 is trustworthy 
2 is honest 
3 is sincere 
4 is ethical 

Rude (RUD) R – The robot appears rude and disrespectful. 
This robot. . . 
1 is impolite 
2 is rude 
3R is respectful 
4R is nice to people 

Conceited (CON) R – The robot appears overly proud of itself or its abilities. 
This robot. . . 
1 thinks it is better than everyone else 
2 is self-centered 
3 is condescending 
4R is modest 
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Hostile (HST) R – The robot appears antagonistic and violent. 
This robot. . . 
1 tries to hurt people 
2 is violent 
3R is peaceful 
4 is mean to people 
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