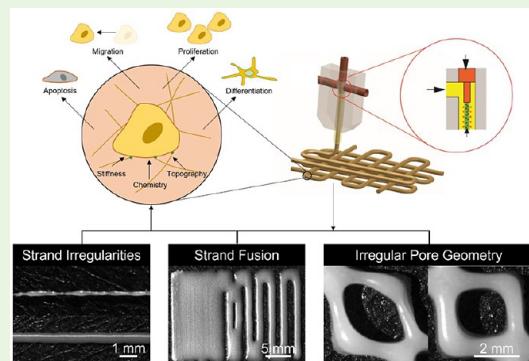


1 Extrusion-based 3D (Bio)Printed Tissue Engineering Scaffolds: 2 Process–Structure–Quality Relationships

3 Samuel Gerdes, Srikanthan Ramesh, Azadeh Mostafavi, Ali Tamayol,* Iris V. Rivero,*
4 and Prahalada Rao*

Cite This: <https://doi.org/10.1021/acsbiomaterials.1c00598>


Read Online

ACCESS |

Metrics & More

Article Recommendations

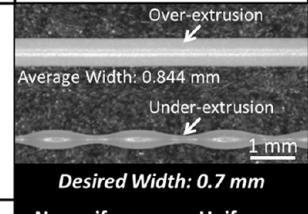
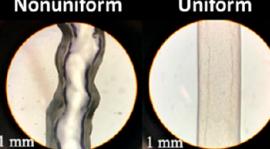
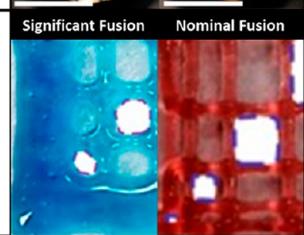
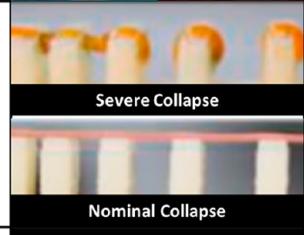
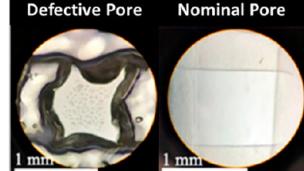
5 ABSTRACT: Biological additive manufacturing (Bio-AM) has emerged as a
6 promising approach for the fabrication of biological scaffolds with nano- to
7 microscale resolutions and biomimetic architectures beneficial to tissue
8 engineering applications. However, Bio-AM processes tend to introduce flaws
9 in the construct during fabrication. These flaws can be traced to material
10 nonhomogeneity, suboptimal processing parameters, changes in the (bio)-
11 printing environment (such as nozzle clogs), and poor construct design, all
12 with significant contributions to the alteration of a scaffold's mechanical
13 properties. In addition, the biological response of endogenous and exogenous
14 cells interacting with the defective scaffolds could become unpredictable. In
15 this Review, we first described extrusion-based Bio-AM. We highlighted the
16 salient architectural and mechanotransduction parameters affecting the
17 response of cells interfaced with the scaffolds. The process phenomena
18 leading to defect formation and some of the tools for defect detection are
19 reviewed. The limitations of the existing developments and the directions that the field should grow in to overcome said limitations
20 are discussed.

21 **KEYWORDS:** Bio-AM, scaffolds, defects, material rheology, 3D printing, tissue engineering

1. INTRODUCTION

22 Biological additive manufacturing (Bio-AM) has garnered
23 growing attention in recent years due to its potential to create
24 tissue engineering scaffolds with fine resolutions and
25 architectural features that mimic native tissue. Bio-AM
26 fabrication falls into two main categories: (1) bioprinting,
27 the printing of biomaterials that have been seeded with cells
28 and (2) 3D printing, the acellular deposition of biomaterials.
29 Within Bio-AM, there are several (bio)printing modalities:
30 extrusion-based, inkjet, stereolithography, and laser-assisted
31 (bio)printing, each featuring distinctive advantages and
32 limitations.

33 Among various 3D (bio)printing systems, extrusion-based
34 (bio)printing (EBB) has emerged as a popular platform both
35 from a research and application perspective. EBB is a
36 fabrication process based on applying pneumatic or mechanical
37 pressure to the (bio)ink in a syringe-like container to force it
38 out through a nozzle/tip. During extrusion, the print head is
39 moved around the print platform, controlling the deposition
40 pattern of the (bio)ink in 3D.¹ After deposition, the print
41 material should maintain its geometry to preserve the
42 architectural features of the fabricated scaffold. Unlike some
43 of the other (bio)printing methods, EBB is capable of
44 supporting all the primary forms of cross-linking; photo,






chemical, and thermal.^{2,3} An advantage of EBB systems is their
45 ability to fabricate fibrillar architectures with anisotropic
46 characteristics mimicking those observed in musculoskeletal
47 tissues.^{4–6}

48 Although EBB systems have inferior feature resolution in
49 comparison to their counterparts, these systems can fabricate
50 scaffolds with clinically relevant dimensions significantly faster
51 than other processes and are therefore amenable for scalability.
52 They also are very robust in the 3D (bio)printing of
53 multicomponent scaffolds as it is feasible to switch between
54 materials or cells during the (bio)printing process.^{7,8} EBB
55 systems have been developed to add extra levels of structural
56 complexity within the fabricated scaffolds. For example, with
57 coaxial nozzles, hollow filaments have been fabricated, allowing
58 for better transport of nutrients throughout the formed
59 scaffolds. Coaxial nozzles have also led to core–shell fibers,
60 which have realized a method of coculturing. In addition,
61

Received: May 3, 2021

Accepted: August 20, 2021

Table 1. Scaffold Defect Types, Sources, and Impacts Present in the Extrusion-Based (Bio)Printing Process

Defect	Example	Sources	Impact
Undesirable Strand Diameter		<ul style="list-style-type: none"> Suboptimal process parameters Gelation/crosslinking degree Material composition Material rheological properties 	<ul style="list-style-type: none"> Incorrect scaffold dimensionality Reduced resolution Strand fusion Pore closure
Non-homogeneous Strands		<ul style="list-style-type: none"> Suboptimal process parameters Gelation/crosslinking degree Material composition Material rheological properties 	<ul style="list-style-type: none"> Incorrect scaffold dimensionality Pore closure
Strand Fusion		<ul style="list-style-type: none"> Suboptimal process parameters Gelation/crosslinking degree Material rheological properties Scaffold design Material composition 	<ul style="list-style-type: none"> Pore closure Incorrect scaffold dimensionality
Strand Collapse		<ul style="list-style-type: none"> Suboptimal process parameters Gelation/crosslinking degree Scaffold design Material composition 	<ul style="list-style-type: none"> Inter-layer pore closure Insufficient print area for the next layer Incorrect scaffold dimensionality
Variability in Pore Geometry		<ul style="list-style-type: none"> Suboptimal process parameters Gelation/crosslinking degree Material composition 	<ul style="list-style-type: none"> Pore closure Incorrect scaffold dimensionality

Figures reproduced with permissions from the top to bottom row: ref 15, Copyright 2020, Mary Ann Liebert, Inc.; ref 16, Copyright 2019, American Chemical Society; ref 17, Copyright 2018, Multidisciplinary Digital Publishing Institute; ref 18, Copyright 2018, Elsevier; ref 16, Copyright 2019, American Chemical Society.

62 filaments with textured surfaces have been printed that can
 63 direct cellular organization. Further, structurally anisotropic
 64 fibrillar structures with aligned fibers have been shown to
 65 direct cellular organization, function, and migration.^{9–11} In
 66 unprinted fibrillar scaffolds created by Zhang et al., the fibers
 67 facilitate strong cell alignment in cardiomyocytes, likely due to
 68 the emulation of natural structures in muscular and nervous
 69 tissues.⁹ Because of the benefits of anisotropic fibrillar
 70 structures, fabrication methods have also been developed for
 71 EBB systems. Specifically, specialized Kenics static mixers were
 72 designed to mix two hydrogel streams to create internal
 73 microfilaments to aid in myoblast maturation.¹¹ EBB systems
 74 can also become portable if needed. Recently, hand-held EBB
 75 systems have been developed that allow direct *in vivo* printing
 76 of scaffolds.¹²

77 Despite the significant advancement of EBB systems in
 78 terms of their resolution, speed, compatible (bio)inks, and the
 79 level of achievable structural complexity, they are not perfect.
 80 In EBB systems, defects are determined as deviations of the
 81 physically (bio)printed scaffolds from the intended designs.
 82 Various defect types have been characterized (see Table 1) and

can originate from the printing process parameters, material composition, level of cross-linking, and other material or process-based variables. Notably, defects can also propagate other defect types, leading to major printability problems. Further, the effect of defects on material printability has been explored in extensively, but the impact of defects on cell response is not thoroughly researched in the literature. While printability analysis has been explored comprehensively elsewhere,^{8,13,14} this Review serves to broaden print quality discussions into biological, mechanical, and process quality topic areas in order to provide a more holistic assessment of (bio)printed tissue scaffold quality.

The structure of this Review is as follows: Section 2 summarizes the salient architectural and mechanotransduction parameters affecting the response of cells interfaced with the scaffolds. Section 3 elucidates the link between rheological properties of the material on flaws formation. Section 4 provides strategies used for modulating these rheological properties to ensure flaw-free fabrication. Section 5 summarizes research quantifying the effect of flaws on mechanical properties. Section 6 focuses flaws formed in the EBB process

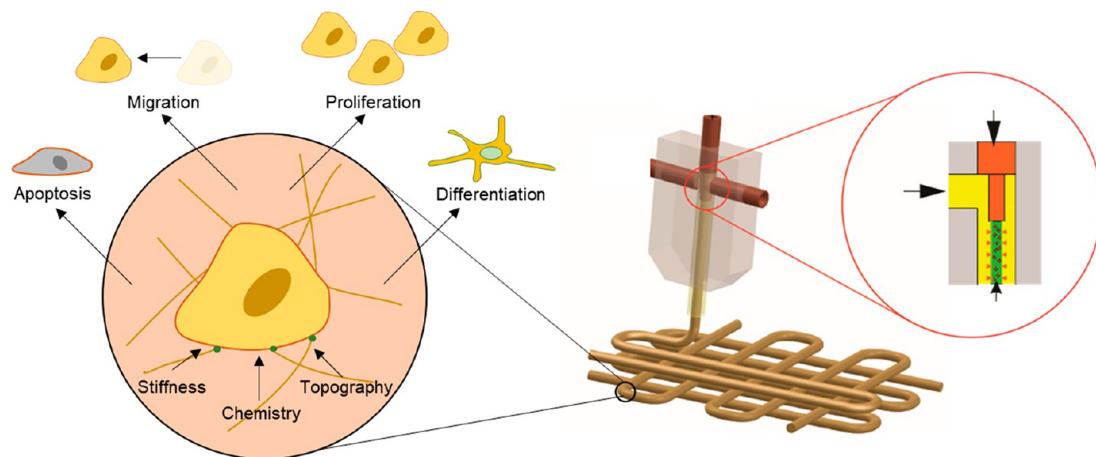


Figure 1. Mechanisms that cells interact with in 3D (bio)printed scaffolds and the biological effects of these interactions.

104 and discusses flaw mitigation strategies. Lastly, in [section 7](#), a
105 roadmap to overcome and mitigate the barriers caused by
106 defect formation is presented in the conclusions.

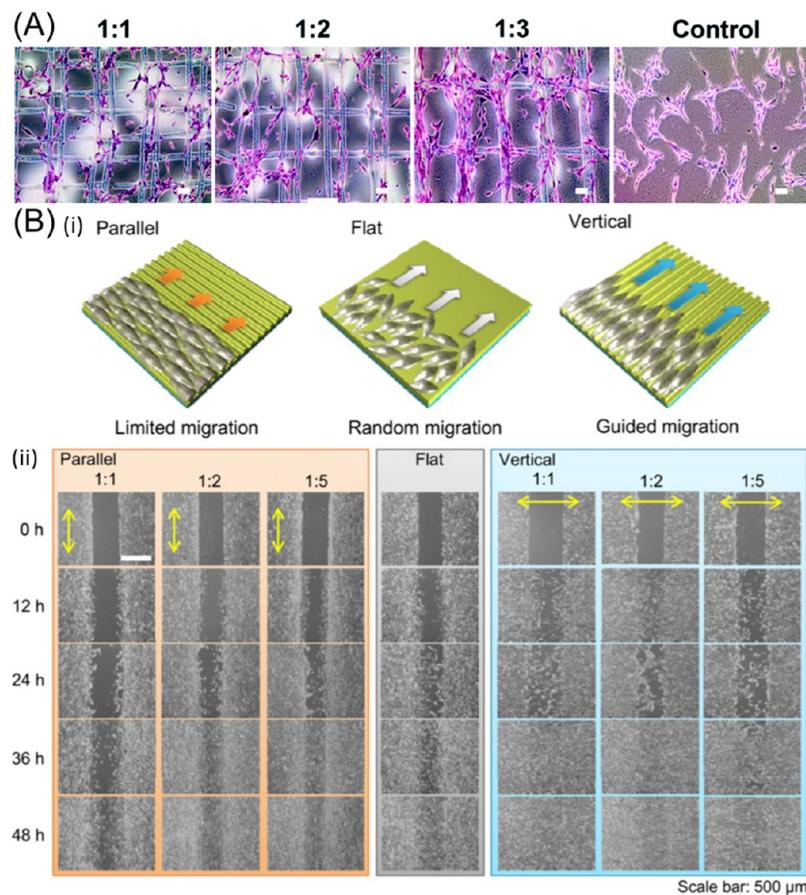
2. EFFECT OF GEOMETRICAL FEATURES AND 107 SCAFFOLD PHYSICOCHEMICAL PROPERTIES ON 108 CELLULAR FUNCTIONS

109 The native cell's environment in the body is a 3D hierarchical
110 multiscale construct consisting of large proteins, such as
111 collagen, laminin, and other molecules known as the
112 extracellular matrix (ECM).¹⁵ The ECM not only provides
113 structural and biomolecular support for cells but also assists in
114 keeping cells in contact with each other and generates a frame
115 for keeping cells together as a larger scale construct (tissue).
116 The type and concentration of macromolecules in the ECM
117 varies by tissue and defines the ranging mechanical properties
118 from soft to hard tissues.

119 The study of the ECM nano- and microstructures has
120 become more popular since the discovery that cells could sense
121 their environment and respond through contact guidance
122 phenomenon. Contact guidance refers to the cells sensing their
123 environment through membrane receptors and stress fibers
124 (actin bundles) and reacting to these signals by regulating their
125 morphology, migration, and function, which leads to tissue
126 organizations.^{16,17} Cell–ECM interactions could explain the
127 different behavior of cells in both *in vitro* and *in vivo*
128 situations.¹⁸ These observations have inspired researchers to
129 design the ECM mimicking materials and structures to provide
130 biological, chemical, topographical, and mechanical properties
131 similar to the cell's native environment to direct their response
132 (see [Figure 1](#)) in tissue-engineered scaffolds.^{19,20}

133 However, engineered tissue constructs do not capture the
134 sophisticated biological, chemical, and physical properties of
135 native tissues. In addition, small changes in the properties of
136 the scaffolds can affect cell response.²¹ For example, defects in
137 the continuity of the properties of the scaffolds can be
138 translated into a discontinuity in the response of the cultured
139 cells, negatively impacting the tissue function. This section
140 discusses the linkages between substrate topographical and
141 mechanical factors and the cellular responses regardless of the
142 fabrication process used for scaffold production. The
143 discussions in the next subsections serve as the basis for
144 future research on improving the predictability and regulating

145 cellular responses within the scaffolds formed with extrusion-
146 based (bio)printing.


2.1. Cell Response to Topographical Signals. Scaffold
147 surface topography is an essential cue to the endogenous or
148 exogenous cells interfaced with the construct. Cells respond to
149 topographical cues, and their response depends on several
150 factors, such as feature shape, size, depth, and cell type.^{22,23} A
151 considerable amount of literature has been published on the
152 effect of these topographical features on cell responses and is
153 reviewed comprehensively elsewhere.^{22,23} Generally, surface
154 patterns can be categorized into surfaces, grooves, tubes, fibers,
155 pits, pores, pillars, spherical and aspherical micro- to
156 nanotopographies. In this section, these surface topographies
157 that could affect cell responses, such as cell adhesion,
158 migration, proliferation, and differentiation are summarized.

2.1.1. Cell Adhesion. Integrin is a transmembrane receptor
160 protein that plays an important role in adhering cells to each
161 other and to the ECM.²⁴ Notably, any cell detectable changes
162 in the surface can affect integrin expression and cell adhesion
163 to the surface. One example of a cell detectable change is the
164 relationship between nanoscale surface random roughness and
165 cell adhesion. In rat neuron cell culturing experiments,
166 adhesion was maximized when the average surface roughness
167 (R_a) was between 20 and 100 nm.^{25,26}

A nanofibrous substrate, such as electrospun sheets, has also
169 demonstrated increased cell adhesion compared to flat
170 surfaces.^{27,28} Mainly, surfaces with grooves and ridges with
171 pitch dimensions of 400–1200 nm showed a higher ability for
172 cell attachment, and cells displayed higher shear resistance as a
173 result, as opposed to flat surfaces.²⁹

The study of nanoparticles and nanodots on substrate
175 surfaces revealed that the size and space between deposited
176 features has a consequential effect on cell attachment.^{30,31} 177
Goreham et al. created a gradient of nanotopography by
178 controlling the organization of nanoparticles with three
179 diameters of 16, 38, and 68 nm. Cultured osteoblast cells on
180 these substrates demonstrated that cell adhesion decreased
181 with increasing particle size, especially at a 68 nm diameter.³⁰

In another study, adhesive gold nanodots with <8 nm
183 diameter were created to facilitate one integrin bind per dot,
184 and dots were positioned at different spacings of 28, 58, 73,
185 and 85 nm.³¹ Cultured MC3T3-osteoblasts on these substrates
186 revealed that having ≥ 73 nm spaces between cells would
187 reduce the cell attachment due to a reduction in integrin
188 clusters and focal adhesion between cells and dots.³¹ Gulati et
189

Figure 2. Cell response to topographical signals. (A) Liu et al. examined different cell adhesion and alignment in response to different aspect ratios of printed filaments. Reproduced with permission from ref 45. Copyright 2017, The Royal Society of Chemistry. (B) Cell migration with respect to surface topographical features. (i) Schematic of cell migration behavior in response to surface nanogroove orientation. (ii) Microscopic images of cultured cells on three different surfaces, which facilitated or limited their migration. Reproduced with permission from ref 47. Copyright 2012, Elsevier.

190 al. 3D printed implants with nano- and microscale topography
191 to improve their surfaces, which increased cell attachment and
192 differentiation.³²

193 **2.1.2. Cell Morphology, Spreading, and Alignment.** After
194 cells adhere to the surface of the substrate, they adapt
195 themselves by changing their morphology, spreading, and
196 alignment. The effect of topography on cell behavior was
197 investigated by patterning nanoislands with three different
198 heights of 15, 35, and 95 nm on the substrate. By decreasing
199 the nanoisland height, cells tended to spread more on the
200 nanoisland features and showed organized cytoskeletal fibers,
201 especially at a 13 nm height.³³ In another group's research,
202 focused on mimicking the myocardium tissue structure, PEG
203 hydrogel nanoscale grids were made with width \times gap \times height
204 ranges between $150 \times 50 \times 200$ nm, and $800 \times 800 \times 500$ nm,
205 and rat myocytes were cultured on them. Cells were more
206 aligned on the patterned substrates than on flat substrates and
207 were also more spread on the larger patterns ($800 \times 800 \times 500$
208 nm).³⁴

209 To examine the effect of pit topographies on osteoblast cells,
210 Lim et al. prepared nanopit structures (14, 29, and 45 nm deep
211 pits) for culture with human fetal osteoblastic (hFOB).³⁵ Lim
212 et al. revealed that osteoblasts spread more on shallow pits (14
213 and 29 nm) than on the deeper pits (45 nm).³⁵ Moreover, cells
214 can be aligned along the grating axis direction based on the
215 topographical structure. Different diameters (30, 50, 70, and

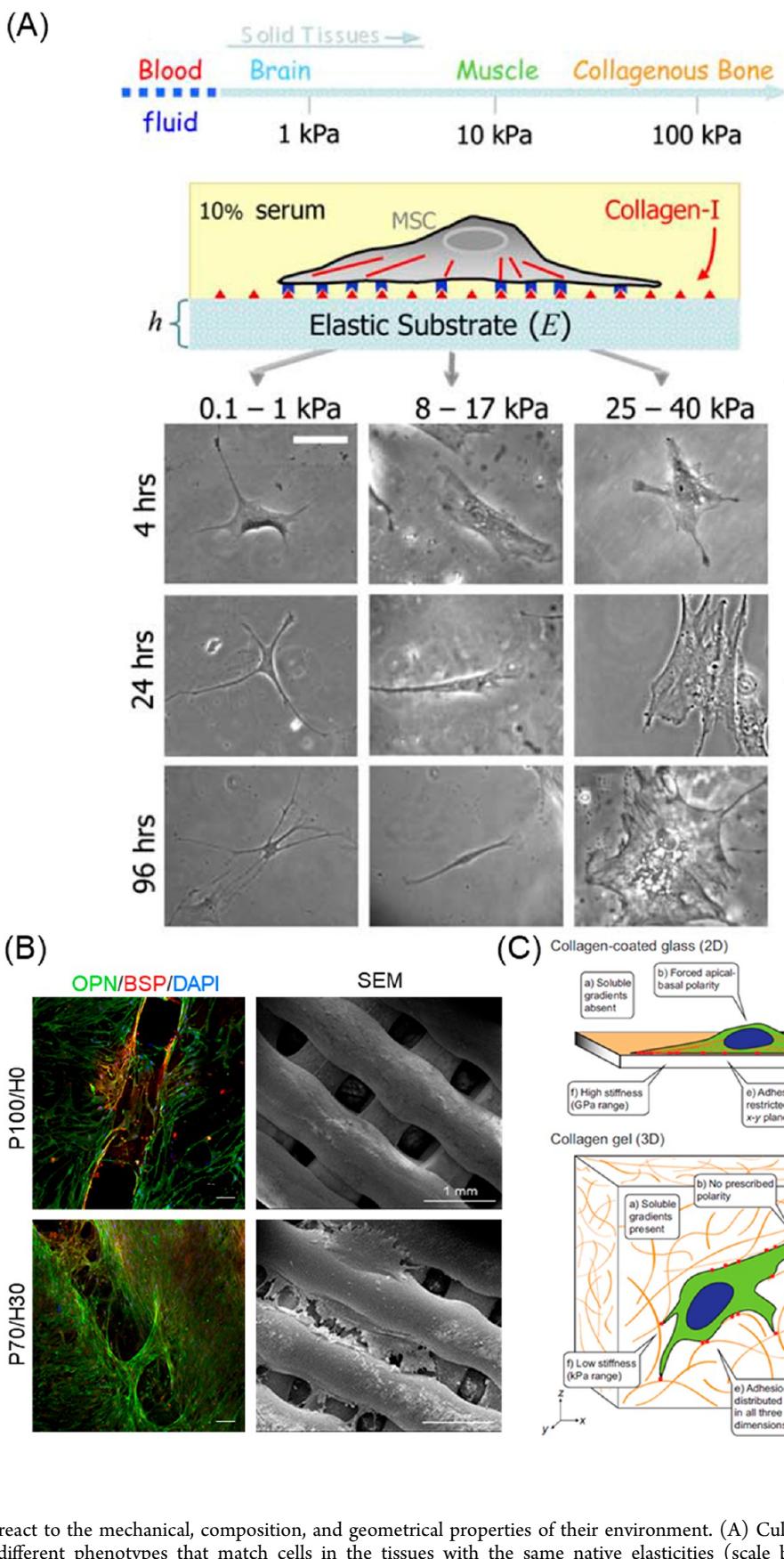
216 100 nm) of TiO₂ nanotube arrays were used to investigate
217 their effect on cell behavior. Cultured human mesenchymal
218 stem cells (hMSCs) on these arrays exhibited significant (10-
219 fold) elongation on the larger nanotubes (70 and 100 nm
219 diameter), which induced cells to differentiate into osteoblast-
220 like cells.³⁶

221 In another work, Kim et al. cultured hMSCs on nanogratings
222 with 250 nm width and proved that cells align to specific
223 patterns; however, cells cultured on the nanopatterned surface
224 displayed spread morphology. Furthermore, the aligned cells
225 on the patterned substrate expressed neurogenic and myogenic
226 markers.³⁷ Aligned electrospun fiber meshes with different
227 diameters (80–740 nm) have also been examined to evaluate
228 cell elongation along the fibers, and the results revealed that
229 the highest cell alignment happened on fibers with a diameter
230 larger than 100 nm.³⁸

231 In a pioneering study, human corneal epithelial cells were
232 cultured on substrates with nanoscale grooves of different sizes.
233 The study revealed that cell orientation could change by pitch
234 patterns.³⁹ While a perpendicular orientation of cells was
235 observed in patterns with a smaller pitch (400 nm), a parallel
236 orientation was observed by increasing the pitch sizes to 4000
237 nm. Also, cultured cells on the pitch sizes between 800 and
238 1600 nm displayed random orientations.³⁹ Bhuthalingam et al.
239 used a specialized 3D bioprinting technique consisting of
240 making etches on polystyrene with a sharpened needle and
241

242 depositing (bio)ink in the created grooves. Cultured cells
243 adhered to the substrate, proliferated, aligned, and differ-
244 entiated in the grooves in a predictable fashion.⁴⁰ In another
245 work, Liu et al. used electrohydrodynamic jet (E-jet) 3D
246 printing technology to print different aspect ratios of 1:1, 1:2,
247 and 1:3 from poly(lactic-co-glycolic acid) (PLGA) solution and
248 cultured fibroblast on the constructs to evaluate the cell
249 behaviors to the constructs.⁴¹ Liu et al.'s results indicated that
250 cells show different adhesion and alignment in regard to the
251 different aspect ratios (Figure 2A).⁴¹

252 **2.1.3. Cell Migration.** Cell migration is essential to
253 numerous physiological processes, such as skin cell renewal,
254 immune responses, stem cell homing, angiogenesis, and
255 morphogenesis.⁴² In examining the effect of surface topo-
256 graphical cues on cell migration, Kim et al. created nanogroove
257 surfaces with 550 nm width and spacings of 550, 1100, and
258 2750 nm. Cultured 3T3 cells on the patterned surfaces
259 demonstrated that cell migration speed was higher in surfaces
260 with 550–1100 nm spacing in comparison to 2750 nm.⁴³
261 Additionally, Kim et al. examined the effect of vertical and
262 parallel patterns on the migration speed of cells cultured on the
263 patterned surfaces. The results suggested that the migration
264 speed of cells was faster on the vertical patterns (Figure 2B).⁴³
265 Another study by Kim et al. showed that pattern density could
266 affect cell migration.⁴⁴ This study created a lattice pattern with
267 different local densities and cultured 3T3 fibroblasts on the
268 substrate. At first, it was observed that cells were attached to all
269 parts of the surface, but after 14 h passed, cells were moved
270 significantly toward the denser areas of the pattern.⁴⁴


271 The effect of asymmetric microgeometry on cell migration
272 was explored in a study by Mahmud et al. In the study,
273 different micropatterns such as connected-triangles and lines-
274 with-spikes ratchets were fabricated and cultured with different
275 cell lines, including cancer cells. Mahmud et al. revealed that
276 the geometrical patterns could induce cell polarization and
277 stimulate them to move forward or backward, depending on
278 their lineage.⁴⁵ To improve the native tissue-mimicking
279 capacity of ECM constructs, Prasopthum et al. 3D printed a
280 scaffold with ECM-like nanofibrous topography. MSCs
281 cultured on the structures showed an improved cell adhesion,
282 migration throughout the construct, and osteodifferentiation.⁴⁶

283 **2.1.4. Cell Proliferation.** Following cell adhesion and
284 morphology adaptation on a substrate, the rate of cell
285 proliferation will also be affected by the nano- and micro-
286 topographical surface structure. Surface roughness was
287 examined in a study by creating substrates with different
288 crystallinity ranges, followed by MC3T3 osteoblast-like cells
289 culture. The study indicated that the cell proliferation rate was
290 higher on surfaces with lower crystallinity and roughness on
291 their surfaces.⁴⁷ In another study, surfaces with six different
292 roughness values were made and were examined by culturing
293 3T3 murine fibroblasts on them.⁴⁸ Monitoring the cultured
294 cells revealed that, although cell adhesion was higher on
295 surfaces with $R_a \sim 50$ nm, the cell proliferation rate was higher
296 on surfaces with lower to moderate roughness ($R_a \sim 40$ nm).⁴⁸

297 Surface patterns, such as nanofibers (randomly or aligned
298 oriented), have higher support for cell adhesion and cell
299 proliferation rate.⁴⁹ Park et al. utilized TiO_2 nanotube's effects
300 on cells by vertically orienting these tubes with different
301 diameters as substrates for MSCs culture to explore surface
302 patterning effects. After 3 days, it was shown that cell
303 proliferation rate increased with decreasing nanotube diameter

(highest cell count at 15 nm diameter and the lowest at 100 nm diameter).⁵⁰

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
142

Figure 3. Cells react to the mechanical, composition, and geometrical properties of their environment. (A) Cultured MSCs on different elasticity ranges express different phenotypes that match cells in the tissues with the same native elasticities (scale bar is 20 μ m). Reproduced with permission from ref 69. Copyright 2006, Elsevier. (B) Scaffold composition can change cell behavior. 3D printed structures with and without hydroxyapatite enhanced hMSCs attachment and differentiation to osteoblasts. Reproduced with permission from ref 15. Copyright 2020, Mary Ann Liebert, Inc. (C) Cells sense different cues in 2D and 3D environments. Reproduced with permission from ref 80. Copyright 2012, The Company of Biologists.

366 While the majority of the results in literature have explored
367 the cell response on continuous topographies, defects
368 produced during the manufacturing process can locally change
369 scaffold topography. This abrupt change can affect cellular
370 organization and differentiation. The latter can be critical, as
371 the formation of a random cell lineage across a large defective
372 area can potentially compromise the overall biological function
373 of the entire tissue.

374 **2.2. Cell Mechanosensing (Mechanotransduction).**
375 The type of macromolecules and their concentration in the
376 ECM varies by tissue, which defines the ranging mechanical
377 properties from soft to hard tissues. Further, cells sense not
378 only the substrate topography but also sense and respond to
379 the stiffness of their environment.⁶¹ Generally, cells prefer to
380 grow on substrates with stiffness within their natural tissue
381 stiffness range. However, when it comes to 2D culture, most
382 cells prefer to adhere to stiffer surfaces. On the other hand, in
383 3D cultures, it would be easier for cells to anchor to a softer
384 structure.⁴² Importantly, changing the mechanical properties of
385 the substrate can direct cell migration. For example, substrates
386 with a gradient in their stiffness could direct cell migration
387 from the softer to the stiffer zones of the substrate in 2D
388 cultures.^{42,62}

389 Furthermore, it has been shown that the increase in force on
390 cancer cells is related to their migration and metastasis.⁶³ In
391 addition, it is acknowledged that stem cells could be directed
392 to differentiate to specific cell lineages by providing a substrate
393 of a similar stiffness to the cell line's tissue. For example, low
394 elastic moduli structures (<1 kPa) direct stem cell differ-
395 entiation to neural cells, medium elastic moduli (10 kPa) direct
396 differentiation to myogenic cells, and stiffer substrates (30–35
397 kPa) direct differentiation to osteogenic cells (Figure 3A).^{64,65}
398 Pan et al. showed that different cross-linking degrees
399 influence characteristics of the structure, such as the pore
400 size, mechanical properties, water absorption, and cell
401 behavior.⁶⁶ In many cases, with an increase in photo-cross-
402 linking time, the hydrogel becomes stiffer, and cells cannot
403 grow and expand sufficiently throughout the hydrogel.

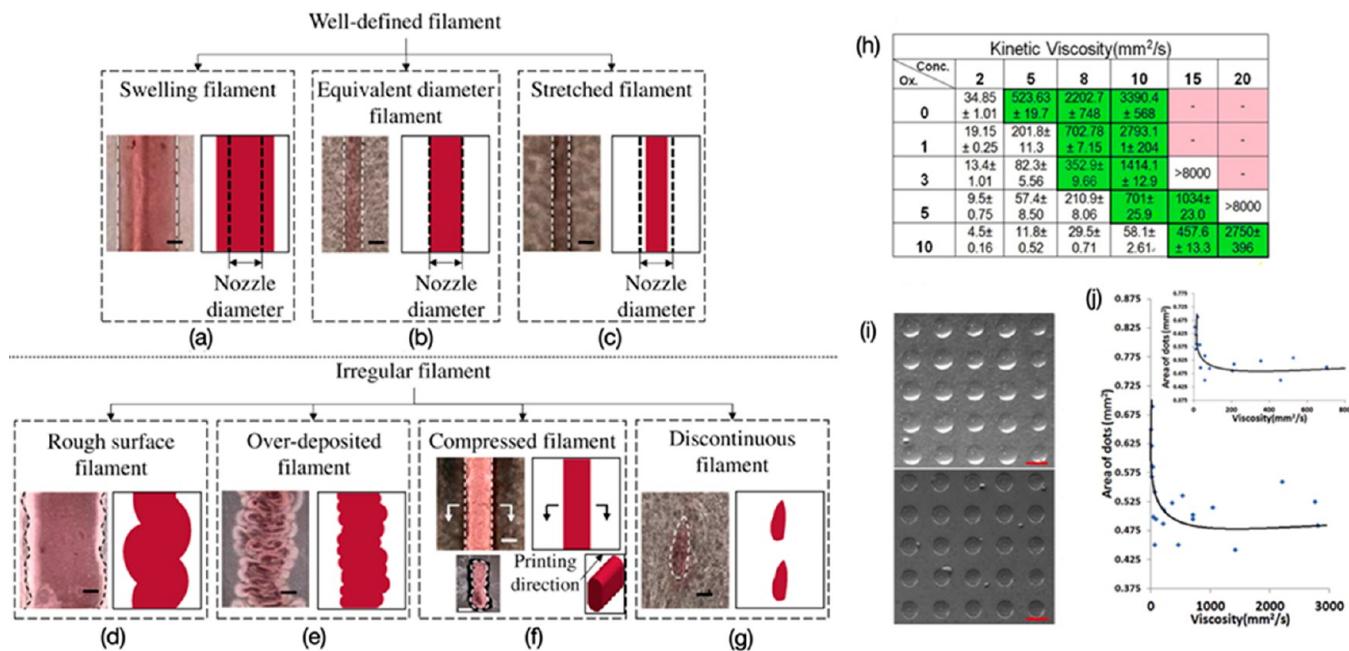
404 Changes in the localized stiffness and mechanical properties
405 of scaffolds can occur during various manufacturing processes.
406 For example, in stereolithography-based printing, the nonuni-
407 form exposure of light can significantly change the stiffness
408 throughout the scaffold. Similarly, during the extrusion of
409 composite materials, the clogging or accumulation of materials
410 in the nozzle area can result in a sudden change in the material
411 composition and a nonuniformity in the mechanical stiffness of
412 the scaffold. These can be translated into cellular responses
413 that differ from the designed function.

414 **2.3. Material Composition.** Cell binding receptors have a
415 high affinity to bind to macromolecules in their ECM, and
416 these bindings affect cells as a result. Researchers in tissue
417 engineering are trying to mimic cell bindings in their structures
418 using different materials in their composites. For instance,
419 integrin receptors have a high affinity for specific metal ions,
420 such as Ca^{2+} , Mg^{2+} , and Mn^{2+} , increasing cell attachment. In
421 Zhang et al.'s study, bone marrow stromal cells (BMSCs) were
422 cultured on different magnesium/calcium phosphate cement
423 composite ratios. The results proved that initial cell attachment
424 increased and cells differentiated to osteoblasts due to integrin
425 interaction with the composite component.⁶⁷

426 While the materials in a composite affect cell adhesion, their
427 distribution can affect cell spreading. The presence and
428 dispersion of ECM proteins, such as collagen, laminin, elastin,

and fibronectin, can significantly affect cell adhesion, spreading,⁴²⁹
and viability.⁶⁸ Moreover, materials with functional groups,⁴³⁰
such as $-\text{NH}_2$, $-\text{SO}_3\text{H}$, $-\text{COOH}$, epoxide, and $-\text{OH}$ can⁴³¹
increase the cell adhesion and spread by increasing the⁴³²
wettability and protein adsorption of the surface of the⁴³³
composite.⁶⁹⁴³⁴

435 It has been well-known that the use of specific growth⁴³⁵
factors (e.g., bone morphogenetic protein (BMP)-2) in⁴³⁶
composite structures can induce cell recruitment and differ-⁴³⁷
entiation to a specific lineage (e.g., osteoblasts).⁷⁰ Further-⁴³⁸
more, the presence of inorganic elements (e.g., calcium silicate⁴³⁹
and hydroxyapatite) in composites can direct the cell⁴⁴⁰
differentiation (e.g., osteoblasts) (Figure 3B).^{71,72} As a result,⁴⁴¹
changes in the composition of the scaffolds because the⁴⁴²
fabrication defects could affect the biological response.⁴⁴³
However, the impact of composition defects on tissue⁴⁴⁴
maturation is not well studied in the current literature.⁴⁴⁵


446 **2.4. Cells in Three-Dimensional Structures.** As⁴⁴⁶
discussed earlier, the native cell environment in the body is a⁴⁴⁷
3D multiscale construct, and understanding this complex⁴⁴⁸
environment is a growing need required for a better knowledge⁴⁴⁹
of cell responses in 3D environments (Figure 3C).⁷³ Many⁴⁵⁰
properties could be changed or added to 3D structures that⁴⁵¹
could affect cells, producing different responses than 2D⁴⁵²
cultures. Since cells adhere to their substrate partially in 2D⁴⁵³
culture and with most of their surface area in 3D cultures, this⁴⁵⁴
substantiates that geometry significantly impacts cell response.⁴⁵⁵

456 In one study, Ulrich et al. showed that by adding agarose to⁴⁵⁶
collagen, the elasticity of the gel increased and changed cell⁴⁵⁷
migration behavior from a mesenchymal manner to an⁴⁵⁸
amoeboid one.⁷⁴ Pore sizes and the degradation rate of the⁴⁵⁹
3D structure can also affect cell adhesion and migration. For⁴⁶⁰
example, faster migration will happen in structures with a⁴⁶¹
higher degradation rate. Furthermore, pore sizes equal to cell⁴⁶²
sizes (12 μm) expedite migration speed in comparison to pores⁴⁶³
smaller than cell sizes (7 μm) or larger than cells (17 μm).⁷⁵⁴⁶⁴
Another study revealed that cubical pores in a 3D structure⁴⁶⁵
enhanced MSC differentiation into osteoblastic cells over⁴⁶⁶
alternatively cylindrical-shaped pores.⁷⁶ In this way, by⁴⁶⁷
choosing the proper pore size and shape when designing 3D⁴⁶⁸
implant structures, cell migration, infiltration, and differ-⁴⁶⁹
entiation can be improved.⁴⁷⁰

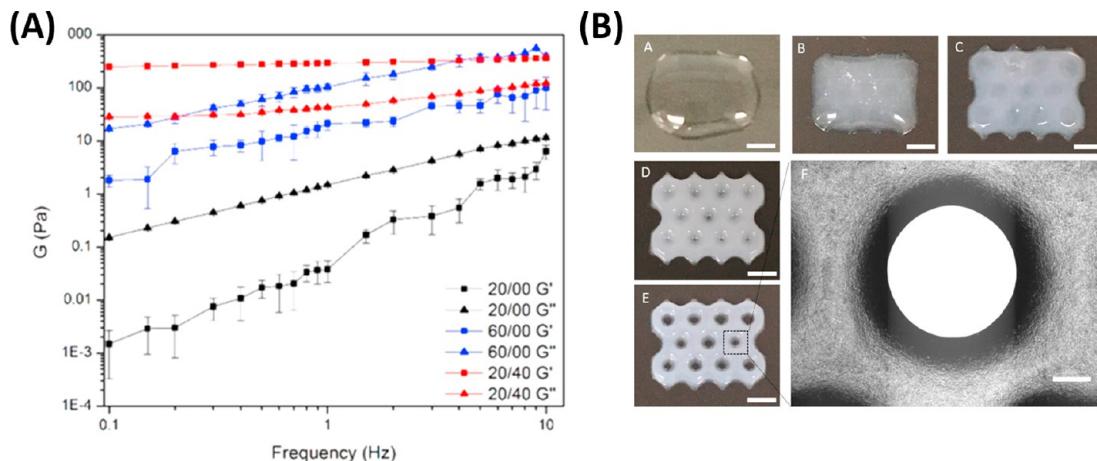
3. EFFECT OF MATERIAL RHEOLOGICAL PROPERTIES ON PRINTING RESOLUTION AND QUALITY

471 Since the success of extrusion-based (bio)printing, whether it⁴⁷²
be cellular or acellular, relies on the rheology of (bio)inks, any⁴⁷³
deviation from what is considered "ideal behavior" may cause⁴⁷⁴
problems during extrusion/deposition. Achieving a balance⁴⁷⁵
between performance and maintenance of healthy cellular⁴⁷⁶
environments is instrumental in creating functional engineered⁴⁷⁷
tissues. Synthetic or natural biomaterials^{77–80} may possess⁴⁷⁸
suitable rheology resulting in well-defined constructs but⁴⁷⁹
provide a suboptimal biological environment incapable of⁴⁸⁰
stimulating beneficial cell–substrate interactions.⁴⁸¹

482 On the other hand, ECM-mimicking biomaterials foster⁴⁸²
superior cell–substrate interactions but exhibit poor extrusion⁴⁸³
and depositional behavior in an unmodified state.^{81–85}⁴⁸⁴
Therefore, the (bio)printing performance of (bio)inks is⁴⁸⁵
often improved by modifying their rheological properties.⁴⁸⁶
Some popular strategies to tailor the flow behavior of (bio)inks⁴⁸⁷
include; modifying the (bio)printing environment,⁸⁶ the use of⁴⁸⁸
innovative (bio)ink formulations,⁸⁷ altering cross-linking⁴⁸⁹

Figure 4. Same set of process parameters for a set of (bio)inks with distinct viscosities can lead to either regular or irregular filaments depending on the degree of match between flow properties and process parameters (Scale bars: 200 μ m). Reproduced with permission from ref 102. Copyright 2017, Elsevier. (h–j) 5 \times 5 dot arrays used for comparing resolutions of different alginate formulations. Reproduced with permission from ref 103. Copyright 2014, Elsevier. As the viscosity of the ink increased, the area of the printed dot decreased.

mechanisms,⁸⁸ and the use of sacrificial materials.^{84,89} In this section, we describe the role of rheology in the generation of (bio)printing defects, along with strategies for modulating flow properties. Further reviews of biomaterial rheological properties can be found in the works of Malda et al.⁹⁰ and Ramesh et al.¹³


3.1. Viscosity. The nature of the polymeric network ultimately determines the viscosity of (bio)inks. Denser and heavier polymeric chains possess higher degrees of entanglement and offer resistance to deformational forces applied during extrusion.⁹¹ As a result, viscous (bio)inks maintain their shapes longer and support the weight of subsequent layers during deposition. However, dense networks restrict migration of cells,⁹² inhibit diffusion of nutrients and waste,^{93,94} and require higher forces for extrusion.^{95,96} Further, as solution viscosity rises, more shear stress will be exerted on encapsulated cells.⁹⁰ Therefore, balancing the benefits and limitations of high viscosity is essential. For instance, He et al. showed that the ideal viscosity for alginate/gelatin (bio)inks to achieve high resolution yet maintain cell function is in the range of 300–30 000 mPa·s.⁹⁷

(Bio)inks are expected to exhibit shear-thinning (decreasing viscosity with increasing shear rate) and thixotropic behavior (increasing viscosity upon removing the shear rate) to facilitate extrusion and resist spreading.⁹⁸ Further, the viscosity of the (bio)inks determines the pressure and speed required for extrusion. While appropriate process parameters will lead to the creation of well-defined filaments, a mismatch between (bio)ink viscosity and process parameters can result in irregular filaments (Figure 4a–g).⁹⁹ Jia et al. used dots as functional units to compare the resolution of different ink formulations with different viscosities (Figure 4h).¹⁰⁰ Jia et al.'s printed dot array (5 \times 5) showed examples of low and high printing resolution.¹⁰⁰ In Figure 4j, a plot dot areas versus

viscosity shows the direct relationship between printability and viscosity of alginate samples.¹⁰⁰

3.2. Yield Stress. The (bio)ink yield stress determines the minimum stress required to initiate flow. Yield stress plays a vital role in inhibiting phase separation of the (bio)ink and prevents undesirable leakage.¹⁰¹ While high viscosity can delay the collapse of printed structures, high yield strength can prevent the merging of deposited strands.⁹⁰ Ribeiro et al. studied the role of yield stress in determining print resolution by comparing the different concentrations of poloxamer hydrogels. With these experiments, Ribeiro et al. showed that constructs printed with high yield stress (bio)inks were mechanically stable and yielded distinct features.¹⁰² However, extremely high yield stress values can prevent the mixing of cells, and therefore, the yield stress needs to be tailored.

An emerging biofabrication approach, Freeform Reversible Embedding of Suspended Hydrogels (FRESH), allows soft biomaterials to be embedded in thermoreversible support baths at sizes ranging from a few millimeters to centimeters.¹⁰³ In FRESH bioprinting, the support bath needs to act like a Bingham plastic and behave as a rigid body at low shear stresses. This behavior is crucial in ensuring minimal resistance to a moving nozzle depositing biological materials. Through optimizing the yield stress of the support bath, complex structures mimicking the femur, branched arteries, embryonic hearts, and human brains have been printed. Using the FRESH approach, Lee et al. demonstrated the accurate printing of patient-specific cardiac ventricles with human cardiomyocytes.¹⁰⁴ Recently, Mirdamadi et al. demonstrated the large-scale 3D bioprinting of soft hydrogels using a compacted gelatin support bath material.¹⁰⁵ The high yield stress of the support bath used in FRESH holds (bio)inks in place until they are cured. Further, the bath must rapidly repair itself upon the removal of shear stress, returning to its former solid-like state, a trait known as thixotropy.¹⁰⁶

Figure 5. Effect of modulus on the (bio)printing performance of (bio)inks. (A, B) Wu et al. demonstrated that the storage modulus of the (bio)inks determined the pore-definition in a printed scaffold. In general, (bio)inks with higher storage modulus values produced liver-mimetic 3D honeycomb structures with the highest print accuracy. Reproduced with permission from ref 111. Copyright 2018, Elsevier.

559 **3.3. Dynamic Modulus.** The (bio)printing behavior of
560 (bio)inks is affected by dynamic modulus, which is made of
561 two components: (a) storage and (b) loss modulus. Storage
562 modulus is indicative of a material's ability to store energy, and
563 loss modulus is indicative of the tendency to dissipate energy.
564 Extrusion involves applying low and high-frequency deforma-
565 tions, so changes in the moduli during the application of force
566 can help identify suitable (bio)printing regimes.

567 (Bio)inks exhibit gel-like behavior when the storage
568 modulus exceeds the loss modulus and solution-like behavior
569 when the loss modulus is higher than the storage modulus. The
570 loss factor, a ratio of loss to storage modulus, is a valuable
571 predictor of printability and should be closely monitored to
572 control extrusion and gelation.¹⁰⁷ Further, the gelation status
573 of a (bio)ink at the time of extrusion also impacts the defect
574 occurrence.

575 For instance, when undergelled (loss modulus > storage
576 modulus), (bio)inks form temporary strands that merge with
577 adjacent strands immediately after their deposition and result
578 in poorly defined pores. In contrast, overgelled (storage > loss)
579 (bio)inks yield wrinkled and fractured filaments and cause
580 material discontinuity, which ultimately results in inferior
581 feature definition and poor mechanical performance. Gao et al.
582 demonstrated that the quality of printed constructs depends on
583 the ratio of loss to storage moduli.¹⁰⁷ Ratios between 0.25 to
584 0.45 led to consistent, well-defined constructs when printing a
585 combination of gelatin and alginate. The moduli of (bio)inks
586 are tailored by varying the polymer concentration during
587 process optimization (Figure 5A and B).^{85,108,109}

588 **3.4. Shear Stress.** Extrusion involves the application of
589 force to facilitate the flow of (bio)inks through nozzles. During
590 extrusion, the (bio)ink is sheared against the syringe and the
591 nozzle walls, which may lead to impaired cellular func-
592 tion.^{110,111} The magnitude of shear stress experienced by the
593 (bio)ink is directly proportional to viscosity and inversely
594 proportional to the nozzle diameter.^{112,113} High viscosity
595 (bio)inks (bio)printed with small nozzles give rise to high-
596 quality structures without dimensional defects. However, the
597 application of high shear to initiate and maintain the flow of
598 these (bio)inks might compromise cell viability. As a result, the
599 length of the printing nozzle needs to be diligently evaluated to
600 minimize cell death during extrusion.¹¹⁴ Maximum shear stress
601 in the nozzle has an exponential relationship with cell

viability.¹¹⁵ Among nozzles of different geometries, conical nozzles show only one location of high shear at the exit of the orifice compared to straight tip nozzles, which have high shear throughout the entire nozzle.¹¹⁶ Recently, Ho et al. showed that shear stress generated by EBB could be beneficially exploited to perform in situ transfection.¹¹⁷ Ho et al. demonstrated fibroblasts could be reprogrammed into neural crest-stem like cells by maintaining an average shear stress close to 190 Pa.¹¹⁷ The result is hypothesized to be due to shear stress from the printing process causing a transient membrane permeability required for transfection.¹¹⁷ The approach holds promise for drug screening and is an example of benefiting from the inevitable presence of shear stresses during extrusion printing. With increasing awareness about the detrimental effects of shear stresses on cellular function, research efforts focusing on tailoring rheological performance and predicting cellular response to extrusion forces have become integral to advancing (bio)printing research.

4. MODULATING RHEOLOGY OF (BIO)INKS

Tailoring the flow behavior of (bio)inks is of particular interest to tissue engineers. These efforts are geared toward achieving two objectives: (a) creating defect-free (bio)printed constructs and (b) maintaining a suitable biological environment for cells. The benefits of modulation strategies can only be fully assessed after analyzing the performance of (bio)inks on both fronts. Here, we provide an overview and discuss the effectiveness of the strategies proposed for altering the flow behavior of (bio)inks used in EBB. For further information on modulating hydrogel rheology, the review of Lee et al. discusses the topic in much greater depth.¹¹⁸ In addition, a summary table of the material design components discussed in this section can be seen in Table 2.

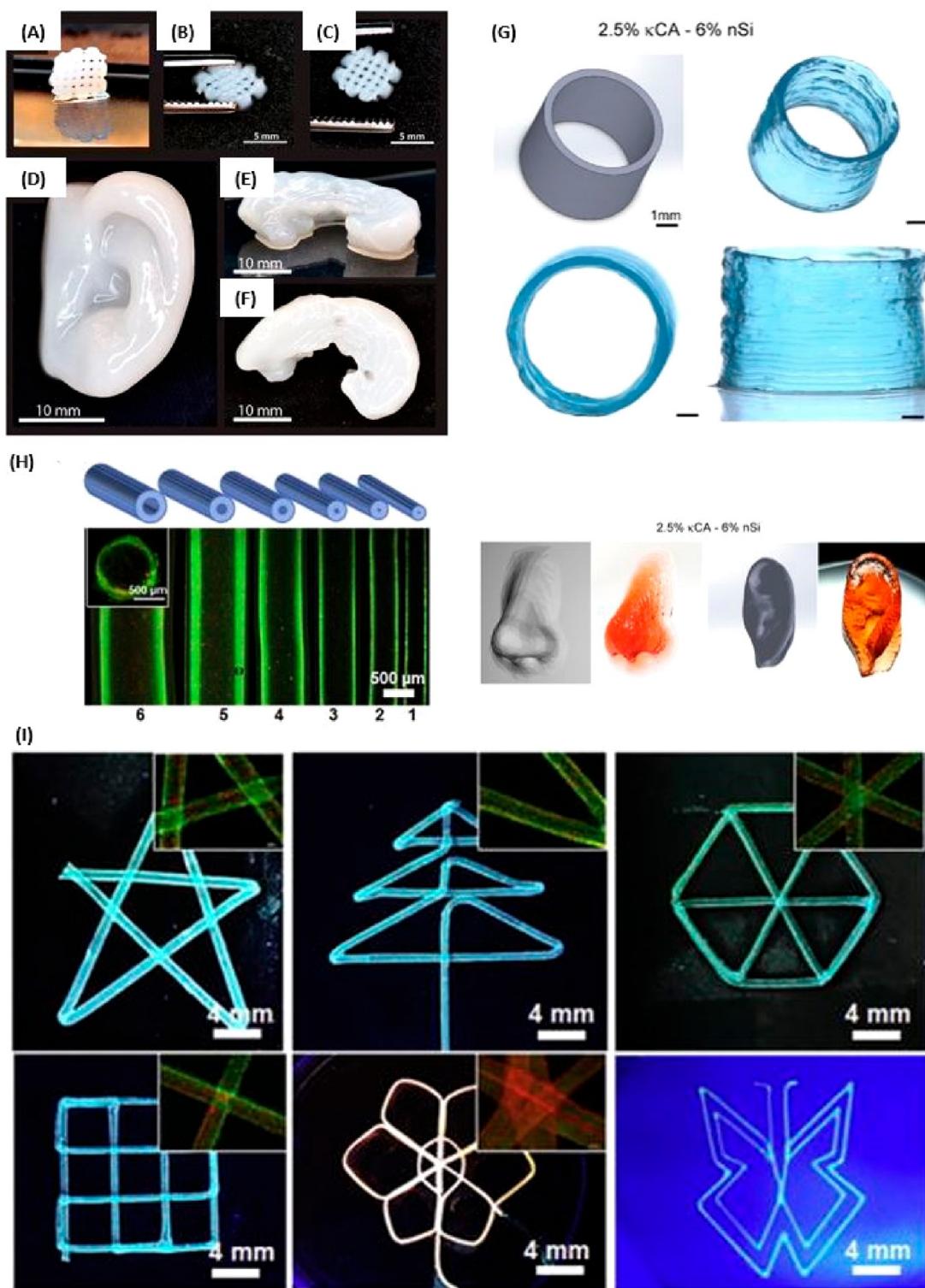

4.1. Modifying Concentration. The most common route to modulate the (bio)ink viscosity is to adjust polymer concentration. Increasing the polymer concentration can discourage droplet formation during extrusion and aid in the formation of filaments.⁹⁰ Bertassoni et al. demonstrated that higher concentrations (7–15%) of gelatin methacrylate (GelMA) provide better printability than lower GelMA concentrations.¹¹⁹ Lower concentrations (<7%) of the (bio)inks were not easily (bio)printed and failed to generate well-defined pores and uniform struts.

Table 2. Example Material Designs for Mechanical or Rheological Properties in Bio-AM

research group	material design	rheological and mechanical property	cell/tissue type	research highlights	ref
Schurman et al. (2011)	polycaprolactone (PCL)/sodium alginate (SA)	2% SA – low viscosity, poor control over porosity, poor mechanical properties PCL – improved stiffness	C20A4 cells for musculoskeletal regeneration	successfully used a hybrid printing approach for tailoring the mechanical properties of printed scaffolds	136
Zhang et al. (2017)	polycaprolactone (PCL)/polylactide-co-caprolactone (50:50; fibrin, gelatin, and hyaluronic acid)	PCL-SA – Young's modulus (6 MPa) six times greater than SA	bladder urothelial cells (UCs) and smooth muscle cells (SMCs) for urethral regeneration	spiral designs mimicked the Young's modulus, strain at break, and tensile stress of the native urethra	137
Ma et al. (2018)	decellularized extracellular matrix (dECM)/Gelatin methacryloyl (GelMA)	PCL – high stiffness (high tensile stress, low elasticity) dECM – tuned to mirror the native environment	HepG2 cells for cirrhotic liver models	cross-linked GelMA for different times to achieve proportionally different mechanical properties. HepG2 cells grown on stiffer scaffolds showed higher levels of apoptosis and CASP8, indicating the relevance of the tissue model	85
Kundu et al. (2015)	polycaprolactone (PCL)/sodium alginate (SA)	PCL – superior mechanical properties SA – low viscosity, ill-defined structures	chondrocytes, TGF/β	3D architecture and mechanical properties of PCL were combined with the bioactive SA to create hybrid scaffolds	138
Kolesky et al. (2016)	gelatin, fibrinogen cross-linked by thrombin and transglutaminase (TG)	TG – enzymatic cross-linker gives mechanical and thermal stability needed for long-term perfusion SA – poor pore retention	HMSCs, human neonatal dermal fibroblasts, HUVECs	3D vascularized tissues were perfused with growth factors for >6 weeks to differentiate MSCs into osteogenic lineage	139
He et al. (2016)	sodium alginate (SA)/gelatin	gelatin – improves mechanical strength, provides structural integrity until SA is cross-linked SA – easily modifiable by changing cross-linking chemistry	L929 mouse fibroblasts	hybrid hydrogel was used to print cell-laden structures, and the approach controls cross-linking without altering biocompatibility	97
Tan et al. (2015)	sodium alginate (SA)	SA – between 1.5 and 2% SA yielded sufficient viscosity for printing	endothelial cells	xanthan gum was used as an additive, improving the structural stability and allowing the printing of vertical tubular structures	140
Khalil et al. (2009)	sodium alginate (SA)	PCL – rigid structure	human AFSCs, chondrocytes, mouse C2C12 myoblasts	window of allowable shear stress values within which the viability of cells does not change was identified	141
Kang et al. (2016)	polycaprolactone (PCL)/(gelatin, fibrinogen, hyaluronic acid, glycerol)	capable of supporting load-bearing applications when used in high concentrations	primary fibrochondrocytes	patterning PCL in hydrogel scaffolds offered mechanical strength to the scaffold	142
Rhee et al. (2016)	collagen	high viscosity collagen can represent the dominant structures of skin tissue	fibroblasts, keratinocytes	heterogeneous 3D-printed constructs were generated with discrete domains possessing distinct mechanical properties	143
Lee et al. (2013)	collagen	PCL – can be applied to soft- and hard-tissue applications	acellular	constructed 3D tissue with dermal and epidermal compartments in a single structure by altering thermoplastic strand orientation and spacing different mechanical properties were produced	144
Huttmacher et al. (2001)	polycaprolactone (PCL)	GelMA – elastic moduli can be tailored by changing exposure time to UV light	HepG2, fibroblast cells	printing prepolymerized hydrogel fibers demonstrated the relationship between debonding and applied load	145
Bertassoni et al. (2014)	gelatin methacryloyl (GelMA)	possess sufficient yield strength in high concentrations	BMSCs	flexible cross-linking mode for stabilizing the mechanical integrity of bioprinted structures	120
Yin et al. (2018)	gelatin/gelatin methacryloyl	PEGTA – enhanced cross-linking, high mechanical strength	HUVECs, MSCs	specialized coaxial nozzles were used to print perfusable constructs	86
Jia et al. (2016)	gelatin methacryloyl/sodium alginate/polyethylene glycol-tetra-acrylate (PEGTA)	polyethylene glycol polymers – chain lengths are easily controlled to tune mechanical properties	murine fibroblasts (NIH 3T3), human hepatoma (HepG2 C3A)	tetraPAC-cross-linked sECMs outperformed PEGDA-cross-linked hydrogels with the same composition	146
Skardal et al. (2010)	hyaluronic acid/tetrahedral polyethylene glycol tetracylates (TetraPAC)-cross-linked synthetic extracellular matrices (sECMs)	nanocellulose – provides shear thinning behavior	bovine chondrocytes	straight nozzles displayed two areas of high shear, while the cylindrical nozzles had only one high shear area	116
Muller et al. (2017)	sodium alginate/nanocellulose	CNFs – imparts excellent physical and mechanical properties	NH3T3 cells	milled CNFs with low GelMA concentrations had printable viscosity and favorable mechanical strength	123
Shin et al. (2017)	cellulose nanofibril (CNFs)/gelatin methacryloyl (GelMA)				

Table 2. continued


research group	material design	rheological and mechanical property	cell/tissue type	research highlights	ref
Zhao et al. (2015)	sodium alginate (SA)/gelatin	SA – poor pore retention gelatin – improves mechanical strength, provides structural integrity until SA is cross-linked	A459 cells	storage modulus (<382 Pa) should be achieved to get a survival rate of 90% Determined rheological properties to be the sole influence on cell survival rate	147
Lee et al. (2018)	collagen/tannic acid (TA)	collagen – tunable mechanical and rheological properties	MC3T3 cells	compared to the cell-laden collagen scaffold without TA cross-linking, the scaffold with TA cross-linking was significantly enhanced in mechanical properties, while reasonable cellular activities were observed	148
Wilson et al. (2017)	K-carrageenan (kCa)/nanosilicate	kCA – shear thinning behavior	MC3T3-E1 cells	bionts possessed shear thinning characteristics and cross-linked under physiological temperature	122
Shim et al. (2012)	polycaprolactone (PCL)/sodium alginate (SA)	PCL – superior mechanical properties SA – easy to handle	osteoblasts, chondrocytes hMSCs	MtoBS enabled the dispensing of biomaterials to develop scaffolds for the regeneration of heterogeneous tissues short-term exposure to shear stress can have a long-term impact on cell behavior	149
Blaeser et al. (2016)	sodium alginate (SA)	SA – shear thinning behavior	hMSCs		110
Li et al. (2015)	polyptide DNA + DNA linker	DNA-hydrogels–nonswelling/shrinking, permeable to nutrients	AT-T20 cells	demonstrated the rapid formation of a supramolecular polypeptide-DNA hydrogel. The printed gels possessed high mechanical strength and nonswelling properties	150
Miranda et al. (2008)	tricalcium phosphate (TCP) and hydroxyapatite (HAp)	TCP/HAp – brittle materials, highly relevant compositional similarity to the bone	NA	robocasting of TCP and HAp inks. Immersion in simulated body fluid was used to modulate the mechanical properties of HAp scaffolds	151
Senatov et al. (2016)	polylactic acid (PLA)/hydroxyapatite (HAp)	PLA – shape memory effect for self-fitting	NA	PLA structures with a bioactive component HAp showed shape memory properties	152
Pfister et al. (2004)	polyurethane (PU)	PU – advantageous mechanical properties and tailorabile molecular structure	NA	compared scaffolds fabricated using 3D printing versus 3D bioplotting	153
Luo et al. (2017)	Sodium alginate (SA)/polyvinyl alcohol (PVA)	SA – prone to diffusion when used in low concentrations	BSA and BMP-2	macro-pores were controlled by 3D printing, while micropores were controlled by PVA concentration	154
Wu et al. (2016)	collagen/sodium alginate (SA)/gelatin	SA – maintains shapes and hardens upon cross-linking	human corneal epithelial cells	with the molar ratio of sodium citrate/SA, construct degradation time can be controlled	155
Temple et al. (2014)	polycaprolactone (PCL)	PCL – suitable for load-bearing applications because of superior mechanical properties	acellular printing	infill density of the scaffolds was varied to identify the best configuration to maximize cell growth and the uniformity of distribution	156
Lee et al. (2016)	polycaprolactone (PCL)/collagen	PCL – offers structural integrity	hepatocytes, HUVEC, lung fibroblasts	PCL framework protected the hydrogel from premature degradation and facilitated urea and albumin synthesis	157
Park et al. (2017)	low and high molecular weight (MW) sodium alginate	needs modification to offer good mechanical stability	NIH 3T3 fibroblasts	combination of high and low MW alginate in a ratio of 2:1 offers favorable printability and cell environment	135
Serra et al. (2013)	polylactic acid/calcium phosphate glass	Mechanical integrity and tailorable degradation	acellular	mechanical strength of orthogonal layer configuration was three times greater than the displaced double-layer design	158
Jakus et al. (2016)	polycaprolactone/polylactic acid	hyperelasticity	acellular	demonstrated high levels of elasticity capable of undergoing greater than 35% strain without failure	159
Bakarach et al. (2015)	poly(N-isopropylacrylamide) (PNIPAAm)/sodium alginate (SA)	PNIPAAm/SA – mechanically robust	acellular	demonstrated excellent printability, restricted swelling, and improved mechanical performance	160
Wilson et al. (2017)	Kappa-carrageenan (kCA)/Nanosilicate	kCa – viscosity enhancer	acellular	addition of kCA improved the shear-thinning and shape-retention property and resulted in the printing of highly structured constructs	122

Figure 6. Additives are commonly added to (bio)inks to improve (bio)printing performance. (A–F) Markstedt et al. used nanocellulose as an additive to improve the viscosity and shear-thinning behavior of low concentration alginate (bio)inks to produce high definitions structures cartilage regeneration. Reproduced with permission from ref 130. Copyright 2015, ACS Publications. (G) Wilson et al. added nanosilicates to kappa-carrageenan (bio)inks to produce complex structures. With increasing levels of nanosilicates, the viscosity recovery behavior of the (bio)inks was improved. Reproduced with permission from ref 125. Copyright 2017, ACS Publications. (H–I) Addition of PEGTA allowed for the creation of flawless perfusable structures. Reproduced with permission from ref 89. Copyright 2016, Elsevier.

643 Yin et al. showed that the concentration of gelatin and
 644 GelMA in the hybrid hydrogels created the difference between
 645 inconsistent, unprintable, and printable hydrogels.¹²⁰ Lower
 646 concentrations of gelatin (0–2%) and GelMA (0–10%)

647 showed signs of longitudinal instability at the nozzle outlet 648 and caused spindle-shaped filaments. The high concentration 648 (bio)inks containing gelatin (6–10%) and GelMA (>20%) 649 were viscous and formed wrinkled filaments. An ideal 650

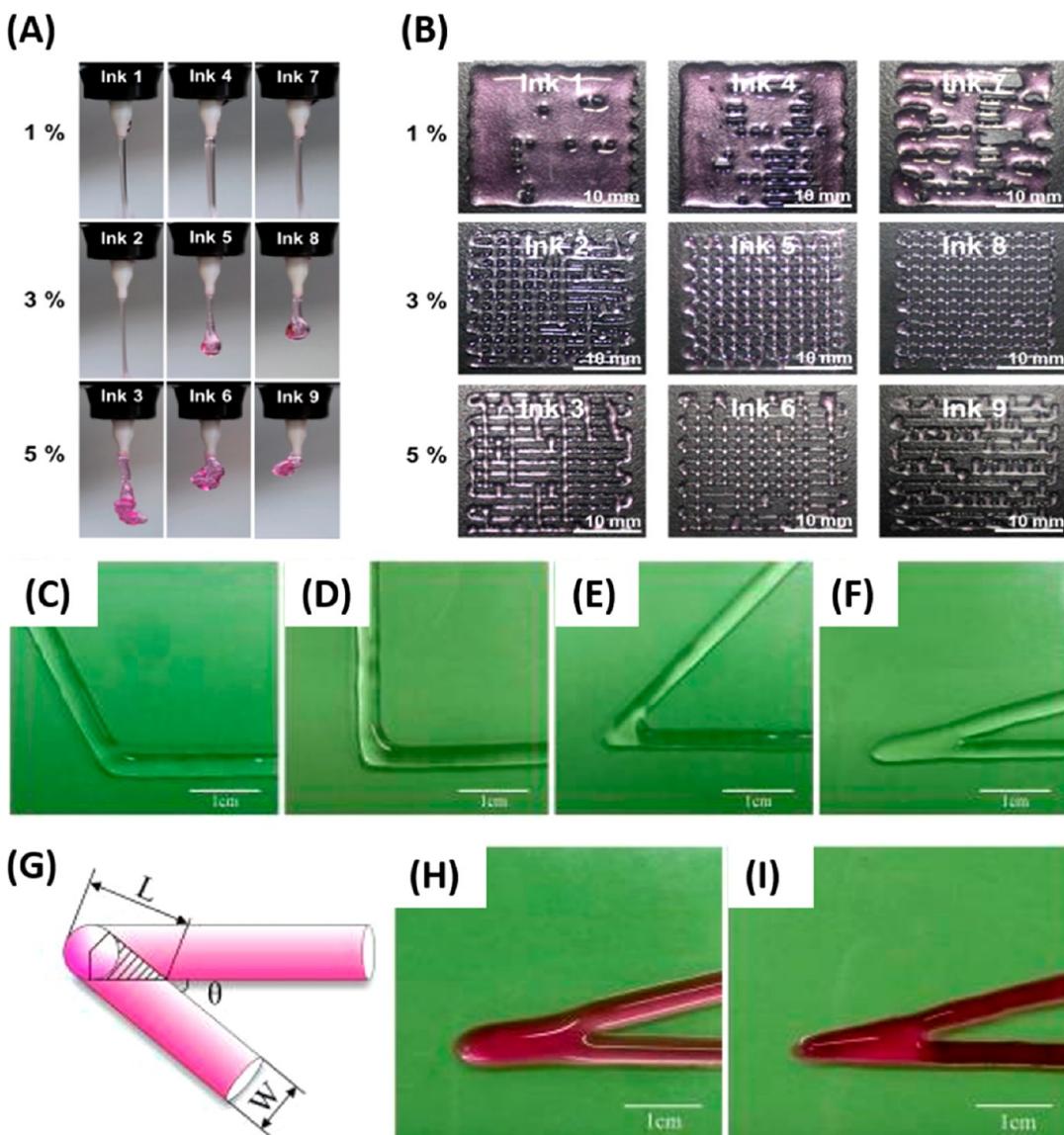
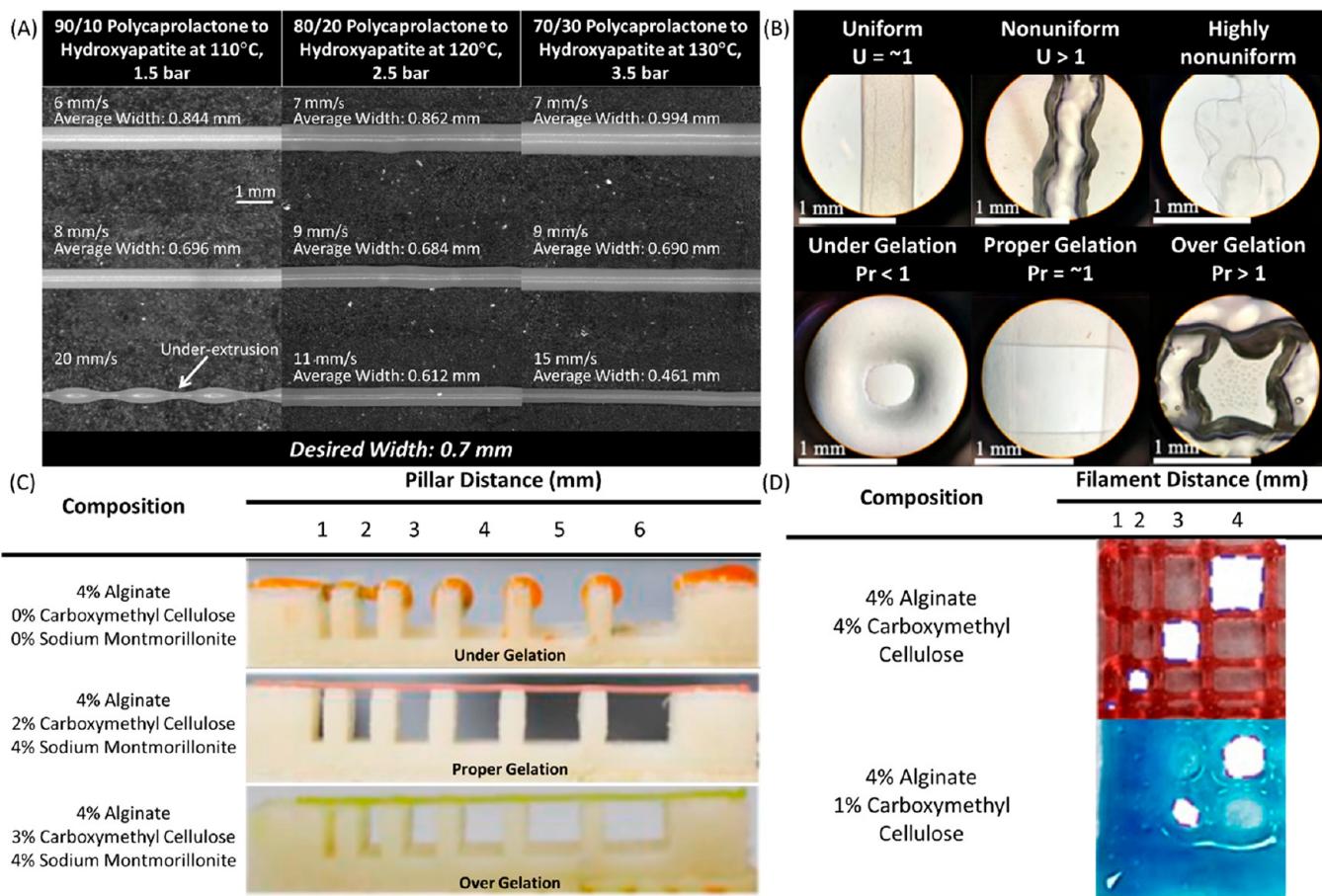


Figure 7. Dual cross-linking strategies are effective at providing mechanical stability during (bio)printing. (A) Yin et al. developed the strategy for 3D bioprinting of low-concentration cell-laden GelMA (bio)inks by adding gelatin. The 5% GelMA (bio)inks with gelatin were successfully extruded into stable 3D constructs using a two-step thermal/photo-cross-linking strategy. Reproduced with permission from ref 123. Copyright 2018, ACS Publications. (B) Tamayol et al. presented an innovative approach for making sacrificial polymer templates that can be used for creating complex 3D constructs for various applications. Reproduced with permission from ref 87. Copyright 2015, John Wiley & Sons, Ltd.

concentration of 5% GelMA and 8% gelatin was chosen as it yielded structures with dimensions close to the target and provided interconnected grid structures without internal pore collapse. Although increasing the polymer concentration can provide stable filaments, an unchecked increase in concentration can negatively affect the cellular environment by inhibiting oxygen and nutrient diffusion. Therefore, the use of

high molecular weight polymers in moderate concentrations has been cited as an optimal approach.¹²¹

4.2. Use of Additives. A popular approach to tailor the viscosity-related behavior of (bio)inks is to use additives, such as nanocellulose, carrageenan, hyaluronic acid, gellan gum, etc.^{118,122–125} Tan et al. improved the viscosity of low-concentration alginate hydrogel by including xanthan gum.¹²⁶ The formulation's apparent viscosity increased from 30 Pa·s at


Figure 8. Blending of different hydrogels can result in printable ink with suitable rheological behavior. (A, B) Park et al. demonstrated that the molecular weight of the blended hydrogels could influence printing performance. Low molecular weight gels possess low viscosity and cause fusion defects, while high molecular weight gels possess high viscosity and cause difficulties during extrusion. Reproduced with permission from ref 138. Copyright 2017, Elsevier. Other than attaining viscosity in the ideal range, He et al. (C–I) showed that two other strategies could avoid nonuniform extrusion. The first method is avoiding the sharp angle in the printing path generation. However, the sharp line could not be avoided when printing sharp structures. The second method is reducing the extrusion rate in this area from the standard extrusion to halved extrusion. Reproduced with permission from ref 100. Copyright 2016, Elsevier.

1% additive to greater than 50 Pa·s at 3%. At lower concentrations of xanthan gum, the tubular structures became increasingly out-of-roundness because of inadequate viscosity and became unstable due to insufficient extrusion at higher concentrations. At 2% xanthan gum, the hydrogel yielded tubular constructs that matched the predesigned roundness.

Of the multitude of additives reported to impart shear-thinning behavior, nanofibrillated cellulose (NFC) and Laponite have been widely used because of their remarkable viscosity-enhancing and shape-retention properties even at low concentrations (Figure 6A–G).^{122,127–129} In a study involving alginate-NFC (bio)inks, Muller et al. reported the dramatic improvement in printability of low-concentration alginate without altering its cross-linking performance.¹¹⁶ The concentration of additives must be tailored to not interfere with cross-linking and must not increase the density of the polymeric

network to avoid hindering oxygen diffusion. In another study, 2% poly(ethylene glycol)-tetra-acrylate (PEGTA) was used as an additive to alginate/GelMA solutions. The improved printability was likely due to the branching of the PEG molecules, which provided the mechanical stability required to generate flaw-free perfusable constructs with hollow interiors (Figure 6H–I).⁸⁶

4.3. Crosslinking Strategies. Thixotropic (bio)inks recover their viscosity after extrusion but need further stabilization, which is achieved by cross-linking the construct. Exposure to a chemical cross-linker,¹³⁰ changes in temperature,¹³¹ or ultraviolet (UV) light are some of the well-tested cross-linking strategies in biofabrication.¹³² Nevertheless, none of these strategies are instantaneous, requiring the completion of a chemical reaction, which provides enough time for defect propagation (i.e., the collapse of tubular structures, strand

Figure 9. Print defects in biological additive manufacturing. (A) Gerdes et al. demonstrated the effects of material composition and print parameters (such as temperature, extrusion pressure, and print velocity) on strand width. Reproduced with permission from ref 15. Copyright 2020, Mary Ann Liebert, Inc. (B) Soltan et al. evaluated strand and pore geometry defects in alginate dialdehyde/gelatin hydrogels due to gelation. Reproduced with permission from ref 16. Copyright 2019, American Chemical Society. (C) Habib et al. printed on a specialized mount (consisting of set overhang distances) with alginate/carboxymethyl cellulose/sodium montmorillonite hydrogels, showing material composition's role in strand collapse. Reproduced with permission from ref 18. Copyright 2018, Elsevier. (D) Habib et al. illustrated strand fusion testing in alginate/carboxymethyl cellulose composites (where the dotted boundary denotes the edge of a pore) by printing a gradient of interfilament distances. Reproduced with permission from ref 17. Copyright 2018, Multidisciplinary Digital Publishing Institute.

fusion, curving of edges, etc.). In that regard, there has been an increase in innovative cross-linking strategies capable of balancing quality and cellular health.

For instance, Yin et al. employed two-step gelation to bioprint high-fidelity gelatin/GelMA constructs containing bone marrow stem cells (BMSCs) (Figure 7A).¹²⁰ The inclusion of gelatin allowed the thermal cross-linking of the printed structure, which helped with the mechanical stability of the extruded (bio)ink until the photopolymerization reaction was completed. The dual cross-linking strategy allowed the utilization of low-concentration GelMA solutions, which would otherwise possess poor processability. In a contrasting approach, Ouyang et al. developed a hyaluronic acid (HA)-based hydrogel that was first cross-linked using UV light then thermally stabilized at 37 °C.¹³³ The cross-linking strategy allowed the printing of HA-based systems without other additives or hydrogels for improved mechanical stability. Coaxial printing allows the simultaneous printing of a hydrogel and a cross-linker solution to print low viscosity solutions with improved stability.^{80,86}

In another study, Tamayol et al. demonstrated a robust approach using alginate as a sacrificial polymer template (Figure 7B).⁸⁴ The alginate-based sacrificial template could be

used to fabricate fibers from many bioactive hydrogels (gelatin, GelMA, poly(vinyl alcohol), agarose, poly((ethylene glycol) diacrylate), and Tamayol et al. further demonstrated the wet spinning and direct writing of the sacrificial network. The entrapped polymer within the alginate template was subsequently cross-linked and formed an independent polymeric network. The use of such a sacrificial template enabled the creation of complex, multimaterial frameworks for tissue regeneration applications.

4.4. Multicomponent Hydrogels. The rheology of hydrogels is modified by blending them with other hydrogels. Multicomponent formulations benefit from the synergistic effects of mixing chemically, morphologically, and functionally different solutions.¹³⁴ For instance, Park et al. investigated the rheology of combinations of low (1.43×10^5 g/mol) and high (3.5×10^5 g/mol) molecular weight (MW) alginate gels.¹³⁵ These alginate gels demonstrated a strong correlation between MW and the flow behavior of the hydrogels. The low MW alginate solutions flowed more readily, while high MW solutions possessed superior shape-retention. Low MW alginate-containing (bio)inks possessed insufficient viscoelastic properties resulting in merging defects. On the other hand, (bio)inks containing increased amounts of high MW alginate

744 offered little control over extrusion and provided poor feature
745 definition. Park et al. also formulated an optimized (bio)ink
746 consisting of 3% (w/v) alginate (Ink 2) (1:2 low:high MW
747 alginate), which provided excellent flow behavior and
748 printability (Figure 8A and B).¹³⁵

749 In another study, hybrid hydrogels consisting of alginate and
750 gelatin were created.⁹⁷ To formulate a gel with a desirable
751 viscosity of 300–30 000 cps, that does not require high
752 pressures and has good shape retention; gel viscosities (at 37
753 °C) from a series of alginate–gelatin (alginate, 1–5% (w/v);
754 gelatin, 2–10% (w/v)) mixtures were compared. A combina-
755 tion of 2.5% alginate and 8% gelatin was chosen for bioprinting
756 scaffolds with fibroblasts. He et al. also showed that, despite
757 having suitable viscosity, the extrusion rate at the corners had
758 to be reduced to half of the original rate to achieve defect-free
759 sharp corners (Figure 8C–I).⁹⁷

5. DEFECTS CAUSED BY SUBOPTIMAL PRINTING PARAMETERS

761 As discussed above, scaffold fabrication is an intricate balancing
762 act between favorable cellular response and suitable material
763 properties. Further complicating this balance is the (bio)-
764 printing process itself, which introduces numerous process
765 parameters that need proper management. These process
766 parameters (such as pressure, temperature, speed, strand
767 spacing, etc.) are intimately tied to construct quality, and
768 incorrect settings can lead to severe print defects that could
769 influence the cell response, the mechanical properties of the
770 scaffold, or both.

771 As a result, a material's process parameters typically undergo
772 optimization to minimize the occurrence of strand diameter
773 imperfections, unwanted strand fusion, strand collapse, and
774 pore geometry defects. While material composition, cross-
775 linking degree, surface topography, and cell distribution are
776 important parameters that can deviate from the intended
777 design, tools for detecting their imperfections have not been
778 researched. Therefore, in the following section, geometrical
779 defects will be examined regarding their propagation,
780 evaluation, and prevention.

781 **5.1. Imperfections in Homogeneity of Strand Diam-
eter.** In 3D (bio)printing, process resolution is of high
783 importance, as it indicates the smallest feature size the
784 (bio)printing setup (printer type, material, print parameters,
785 etc.) is capable of fabricating. In EBB, the resolution is directly
786 tied to strand diameter, and an increase in needle diameter is
787 considered a decrease in print resolution.¹⁶⁴ However, strand
788 diameter is also influenced by process parameters such as
789 pressure, temperature, and print speed.⁷² Therefore, improper
790 strand diameter is the symptom of improper process
791 conditions, leading to strands larger or smaller than the
792 targeted diameter or discontinuous line fragments. Further-
793 more, pressure is a very important consideration among the
794 process conditions, as a material's flow rate is proportional to
795 the applied pressure.^{161–165}

796 Further, the applied pressure must overcome the yield
797 threshold of the print material for consistent extrusion;
798 otherwise, discontinuous strands will be created.^{97,161–163}
799 Print speed is also a significant influencer of strand diameter,
800 where strand diameter is inversely related to print speed (see
801 Figure 9A).^{72,164} The impact of print speed is also dependent
802 on the pressure being used, as changes in print speed have a
803 more pronounced effect in high-pressure applications.^{72,164}
804 Further, if the print speed is too high for the current flow rate,

805 the generation of discontinuous strands is possible.^{72,164}
806 Finally, the cross-linking degree can influence strand diameter,⁸⁰⁷
807 as under-cross-linked material is susceptible to spreading.^{162,163}
808 While strand diameter is an essential indicator of strand quality,⁸⁰⁹
809 it is only half of the picture. To fully assess strand quality, it is also essential to consider a strand's uniformity, or
810 how closely its path aligns with the theoretical deposition.⁸¹¹

812 Evaluation of strand diameter comes in the form of postprint
813 microscopy or optical imaging followed by image anal-
814 ysis.^{161–165} Because these measurements are done through
815 postprint processing, errors will only be evident after the print
816 has been concluded, potentially resulting in a loss of time and
817 resources. In strand uniformity detection, strand length is
818 compared to its theoretical length through **equation 2**.¹⁶¹
819 Uniform strands ($U = 1$) feature approximate lengths to the
820 theoretical model, and nonuniform strands ($U > 1$) feature
821 significantly meandering paths, deviating from the ideal strand
822 length (see Figure 9B).¹⁶¹

823 The prevention of strand diameter defects is primarily done
824 by optimizing the process parameters for a specific materi-
825 al.^{72,97,164,166} For example, using a set temperature, pressure
826 can be held constant while print velocity is varied or vice versa,
827 and the strand diameters can be observed (see Figure
828 9A).^{72,164,166} In thermoplastic or materials without cell
829 encapsulation, the most desirable parameter arrangements
830 yield both high resolution and consistency. In contrast, cell
831 encapsulated hydrogels must be optimized to maximize print
832 resolution and minimize shear stress during extrusion to
833 reduce the detrimental effects of shear stress on cell viability.¹⁶⁴

834 **5.2. Unwanted Strand Fusion.** Strand fusion refers to
835 material spreading during the cross-linking or solidification
836 phase after fabrication, resulting in the combination of adjacent
837 strands and pore obstruction. Throughout the (bio)printing
838 process, the newly deposited strands are not yet in their final
839 state and require a cross-linking or cooling phase. During this
840 intermediate phase, the material's rheological properties are
841 critical. Specifically, the material viscosity dictates material
842 spreading and the capacity to support the scaffold geometry
843 while (bio)printing.¹⁶² Further, material viscosities can be
844 sorted into three categories: <300, $\leq 100\,000$, and $>100\,000$ cP.¹⁶²
845 Of these categories, materials in the <300 cP range
846 cannot properly retain their shape after fabrication.¹⁶²

847 Additionally, the degree of cross-linking after the cross-
848 linking process is vitally important to the strand's stability. In
849 suboptimal cross-linking, the print material is more fluid and
850 subsequently more apt to spread.^{162,163} Naturally, undesirable
851 print material viscosity or cross-linking degree leaves strands
852 susceptible to spreading, leading to strand fusion (see Figure
853 9D).

854 The evaluation of strand fusion is in the form of postprint
855 imaging coupled with image analysis.^{102,162,163} While current
856 strand fusion detection is done after the conclusion of a print,
857 this allows strand fusion to compound throughout the print,
858 resulting in an unusable print. As a result, in-process sensing of
859 strand fusion would be a valuable development allowing for the
860 detection, prevention, or even the remediation of this defect.⁸⁶⁰

861 Through the works of Habib et al., the connection between a
862 print material's rheology and its predisposition toward strand
863 fusion was made by examining fusion between parallel strands
864 at set spacings.^{162,163} By looking into several hydrogel
865 compositions, quantifying the material spread (diffusion rate)
866 and printability, the works show that compositions with high
867 viscosities at low shear stress had lower diffusion rates and
867

868 higher printability values.^{162,163} Similarly, Ribeiro et al. 869 fabricated snaking architectures with set interstrand gaps and 870 observed the severity of fusions between adjacent strands.¹⁰² In 871 the method presented by Ribeiro et al., the minimal interstrand 872 gap resulting in similar strand and turnaround section widths 873 was the critical distance below which there is significant strand 874 and pore fusion.¹⁰² An alternative method is to observe the 875 average strand width to nozzle size ratio, otherwise known as 876 the “spreading ratio”.¹⁶⁷ Notably, these methods do not take a 877 strand’s as-deposited state into account, making them 878 insensitive to whether spreading results from improper process 879 parameters, material viscosity, or a combination of the two. 880

5.3. Strand Collapse. During the (bio)printing of porous 881 geometries, pores are created as intentional void spaces within 882 a layer and open spaces between the layers. The later vertical 883 void spaces between layers require material to be placed across 884 gaps in the previous layer. While (bio)printing over this 885 overhang, it is possible for strands to maintain their shape, 886 deflect, or breakdown entirely. This deflection or breakdown 887 phenomenon is referred to as strand collapse and is dependent 888 upon the print material’s properties and the gap distance.^{162,163} 889 In hydrogel-based (bio)printing, the material’s gelation is 890 predominantly responsible for the ability to print over 891 gaps.^{162,163} When the extrusion exhibits a droplet-like flow, it 892 signifies that under-gelation is occurring, and the material is in 893 a more fluid state than in ideal gelation, leading to more severe 894 strand collapse (see Figure 9C).^{162,163} Comparatively, proper 895 gelation can span reasonable gap sizes with minimal collapse 896 (see Figure 9C).^{162,163}

897 The determination of the occurrence and severity of strand 898 collapse is mostly with postprint imaging.^{162,163} Collapse 899 severity can be quantified using equation 1, where the collapse 900 factor (C_f) is the percent difference in the deflected area (A_a^c) 901 versus the theoretical area under the strand (A_t).¹⁶² Naturally, 902 the higher the collapse factor, the more significant the 903 difference between the actual and theoretical vertical pore 904 area, signifying a higher degree of collapse severity. Addition- 905 ally, strand collapse can be quantified by the angle of the 906 strand’s deflection at the suspended strand’s edge.¹⁰²

$$C_f = \frac{(A_t^c - A_a^c)}{A_t^c} \times 100\% \quad (1)$$

907 To mitigate the risk of strand collapse, it is necessary to not 908 print over large gaps. However, gap distances large enough to 909 facilitate strand collapse differ depending on the print 910 material.^{102,162,163} Therefore, it is necessary to experimentally 911 determine the maximum gap a material can span with little to 912 no deflection. To this end, a platform with specially distanced 913 pillars is used, simulating several print scenarios.^{102,162,163} 914 Habib et al.’s works show that the chosen pillar distances are 1, 915 2, 3, 4, 5, and 6 mm, while Ribeiro et al. used distances of 1, 2, 916 4, 8, and 16 mm.^{102,162,163} The material’s critical gap distance 917 can be determined through this method or with the collapse 918 factor or deflection angle.^{14,102,162,163} This critical gap distance 919 can be defined as the largest distance that a strand can be 920 printed over without significant deflection. The critical gap 921 distance can then be used to design prints with gaps smaller 922 than or equivalent to the critical gap distance and largely 923 mitigate the risk of strand collapse.

924 **5.4. Variability in Pore Geometry.** During the (bio)- 925 printing process, small defects or the material’s properties may 926 cause nonuniformities or otherwise poor printability. (Bio)- 927

928 printing with a material and process parameter combination 929 that displays large variability in strand diameter leads to the 930 formation of nonuniform strands. As a result, nonuniform 931 strands demonstrate edges that meander significantly, leading 932 to a longer strand length than the theoretical length from the 933 print design.¹⁶¹ Further, nonuniform strands can alter the 934 print’s pore geometry from its theoretical shape (see Figure 934 9B).¹⁶¹ Additionally, if the print material is in a more fluid 935 state, it may be more predisposed to cohesion to previous 936 layers, resulting in a change in pore geometry (see Figure 9B 937 and D).^{115,163} In multilayered constructs, meandering strands 938 or material spread can lead to pore size reduction or even 939 obstruction.

940 The detection of pore geometry and printability issues 941 occurs through postlayer or postprint imaging, followed by 942 image analysis for quantification of these defects.^{115,161,163,168} 943 However, because detection is currently only in postprocess- 944 ing, there is no feedback during the process. As a result, the 945 current means of prevention centers around optimizing process 946 parameters and material properties to maximize print accuracy.

947 Pore quality quantification from postprint imaging is done 948 through two main methods. First, intentional pore geometries 949 can be quantified compared to their ideal geometry with 950 equation 3 for circularity or equation 4 for square geo- 951 metries.^{14,115,161,163} These equations yield a value of 1 for near- 952 perfect circles and squares, respectively. Second, overall print 953 accuracy can be assessed using equation 5, relating the actual 954 area taken up by the deposited strands to the theoretical design 955 area.¹⁶⁸

$$U = \frac{\text{length of printed strand}}{\text{length of the theoretical straight strand}} \quad (2)$$

$$\text{circularity} = \frac{4\pi \times \text{enclosed area}}{\text{enclosed perimeter}^2} \quad (3)$$

$$\text{square printability} = \frac{\text{enclosed perimeter}^2}{16 \times \text{enclosed area}} \quad (4)$$

$$\text{print accuracy} = \left[1 - \frac{|\text{printed area} - \text{theoretical area}|}{\text{theoretical area}} \right] \times 100\% \quad (5)$$

961 Process optimization is currently used to reduce these 962 defects. In this approach, several variables, such as material 963 composition, cross-linking condition, filament to filament 964 distance, etc., can be varied to find a combination that yields 964 the best quality.^{115,161,163,168} For the analysis of strand 965 uniformity and pore geometry, a perpendicularly opposed 966 square grid design was used.^{115,161} From a single layer of the 967 print, strand uniformity can be determined by measuring the 968 side lengths of a strand and using equation 2, with nonideal 969 strands returning values in excess of $U = 1$.¹⁶¹ In this way, 970 strand uniformity can indicate that the pore quality of 971 subsequent layers may be less than desirable, should the 972 current meandering strands persist throughout the print.

973 After two perpendicularly placed layers, the grid of square 974 pores is formed. Assessment is then conducted using equation 975 3 for circularity (yielding $\pi/4$ for a perfect square) or equation 976 4 (yielding 1 for a perfect square).^{115,161,163} In either case, 977 values that significantly differ from those targets indicate 978 suboptimal printability, such as the circular or jagged 979 geometries shown in Figure 9B.^{115,161,163} Upon the completion 980

981 of a print, the print accuracy may be determined through
982 equation 5 to compare the printed area with the designed
983 area.¹⁶⁸ Naturally, print accuracy has a maximum of 100%, and
984 lower accuracies indicate suboptimal material or process
985 parameters.

6. EFFECTS OF FLAWS ON MECHANICAL PROPERTIES OF PRINTED CONSTRUCTS

987 Naturally occurring tissues of the human body are primarily
988 composite materials, possessing varying load-bearing capabili-
989 ties. As a result, (bio)printed scaffolds must play a crucial role
990 in providing suitable stiffness and mechanical signals to the
991 cells to regulate their growing environment. The *in vivo*
992 function of tissue-engineered scaffolds can be tailored by
993 controlling properties, such as Young's modulus, toughness,
994 and strength.¹³⁶

995 The mechanical properties of implanted scaffolds are
996 expected to closely match the mechanical properties of the
997 surrounding tissues to achieve optimal clinical outcomes. For
998 instance, bone scaffolds with weaker mechanical properties
999 (<2–12 MPa compressive strength)¹⁶⁹ than the surrounding
1000 tissues can undergo premature mechanical failure.^{170,171} In
1001 contrast, scaffolds stronger than the surrounding tissue shield
1002 the tissues from external loads, thus promoting tissue
1003 resorption.^{170,171}

1004 Similarly, if stiffer scaffolds than native tissue are used to
1005 treat soft tissue injuries (example native tissue stiffnesses; brain
1006 ~100 Pa, liver ~400 Pa, muscle ~10 kPa),¹⁷² severe fibrosis
1007 and a lack of tissue integration can occur. Thus, an ongoing
1008 goal of tissue engineering is to fabricate spatially controlled,
1009 heterogeneous patterns of pores throughout engineered
1010 scaffolds to mimic differences in mechanical requirements
1011 throughout the tissue.

1012 The blending of several hydrogels has been increasingly used
1013 to develop (bio)inks, the biological and mechanical properties
1014 of which can be custom-tailored according to different
1015 requirements.^{84,86} Naturally, reducing the concentration of a
1016 constituent, such as alginate from alginate/GelMA, will reduce
1017 the mechanical strength of the printed structure.^{84,86} In the
1018 case of using a single hydrogel, the concentration of the
1019 hydrogel can directly be altered to achieve suitable mechanical
1020 properties. For instance, Rhee et al. observed that by increasing
1021 the concentration of the collagen hydrogel from 20 mg/mL,
1022 the equilibrium modulus was increased to 30 kPa.¹⁴³ For
1023 reference, the actual human meniscus is around 75–125
1024 kPa.¹⁷³

1025 However, while increasing hydrogel concentration can
1026 positively impact the mechanical strength, the change can
1027 negatively impact cell survivability and hydrogel printability. In
1028 the work of Bertassoni et al., a connection between elastic
1029 modulus and printability was proposed; below 1 kPa gels were
1030 unprintable; between 1.2 and 2.6 kPa was variable printability;
1031 above 2.6 kPa gels printed reproducibly. Bertassoni et al. also
1032 investigated the maximum load required for the piston to
1033 debond the hydrogel from the glass capillary and initiate
1034 dispensing. Generally, with a higher concentration of gels, the
1035 debonding required high loads.

1036 In another study, Gerdes et al. investigated the occurrence of
1037 defects in a PCL/HAp matrix.⁷² Several compositions of PCL/
1038 HAp were tested (70/30, 80/20, and 90/10 by PCL to HAp
1039 weight ratio). Further, a 60/40 composition was proved
1040 unviable because of its high viscosity, preventing extrusion
1041 even under the machine's highest temperature and pressure

1042 settings.⁷² An *in situ* imaging system was utilized to assess the
1043 printability and geometric quality of the 3D printed scaffolds.
1044 Outside of printing, mechanical testing was conducted to
1045 determine material rheology and compressive moduli under
1046 different print parameters. Results from the mechanical testing
1047 showed trends of increasing viscosity with higher concentra-
1048 tions of HAp (negatively affecting printability) and the
1049 formation of less resilient scaffolds.⁷² In addition, the *in situ*
1050 layer images suggested that defects propagated from improper
1051 printing can significantly lower the mechanical properties of
1052 3D printed scaffold structures.⁷²

1053 This research vector requires thorough understanding to
1054 further develop due to the intimate relationship between flaws
1055 and the decreased mechanical and biological performance of
1056 (bio)printed scaffolds.
1056

7. CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH

1057 Bio-AM has emerged as a promising tool in regenerative
1058 medicine to solve various unmet medical needs. EBB has been
1059 the most popular Bio-AM strategy and has been extensively
1060 studied and utilized by various research groups. It is now
1061 widely accepted that the chemical, physical, and biological
1062 properties of the used (bio)inks and the formed scaffolds affect
1063 the biological outcome. For example, the printing quality
1064 depends on the rheological properties of the (bio)inks and the
1065 involved cross-linking process. Despite significant progress in
1066 the study of Bio-AM-based scaffolds in regenerative medicine
1067 applications, their translation into clinical practice has been
1068 limited. One of the critical areas most overlooked in the
1069 research efforts is the reproducibility of Bio-AM processes.
1070 Reproducibility is essential for assessing the suitability and
1071 safety of the products by regulatory agencies, such as the US
1072 Food and Drug Administration (FDA). Therefore, it is
1073 expected that more attention will be devoted to understanding
1074 material and architectural flaws and their production during
1075 Bio-AM processes. In addition, the effect of these flaws on the
1076 biological processes is not well explored. Furthermore, it is
1077 expected for research efforts to clarify the acceptable levels of
1078 defects that minimize negative impacts on the biological
1079 outcome.
1080

1081 The limited literature on the quality assessment of Bio-AM
1082 products and processes has focused on geometric integrity and
1083 resolution. Further work is also required to quantify defects in
1084 material composition, cellular concentration, and functional-
1085 ization. In-process monitoring is currently focused on geo-
1086 metric integrity, neglecting the urgent need for *in situ* cell
1087 viability assessment. Our study demonstrated that there is
1088 currently no means of modeling fundamental process
1089 phenomena, such as distortion, cross-linking, and the layer-
1090 wise deposition of materials. Research efforts in this area are
1091 expected to pave the way to form Bio-AM scaffolds by design
1092 to meet the application requirements.
1092

1093 The translation of (bio)printed scaffolds requires systems
1094 that their function is predictable. For example, the scaffolds
1095 should seamlessly fit the defect site. Small geometrical changes
1096 may make the surgical procedure very challenging. In addition,
1097 defects can change the mechanical properties of the scaffolds
1098 and in specific applications this can be detrimental for their
1099 use. In most tissue engineering efforts, there is little control
1100 over the system post implantation and thus any unwanted
1101 structural, compositional, or biological flaws can lead to
1102 postsurgical complications.
1102

1103 Another critical need for successful translation of Bio-AM
1104 tools is the lack of in situ process correction. In addition, the
1105 nondestructive characterization of Bio-AM constructs beyond
1106 the use of reporter cells is an urgent and unaddressed need.
1107 One of the emerging areas of Bio-AM is in situ and in vivo
1108 printing of scaffolds.^{174,175} Researchers have developed many
1109 portable and stationary printers to enable direct printing in
1110 patients' bodies.^{12,176,177} Currently, there are no quality control
1111 tools for these strategies, and this area is expected to be the
1112 subject of several research projects.

1113 ■ AUTHOR INFORMATION

1114 Corresponding Authors

1115 **Ali Tamayol** — *Department of Mechanical and Materials*
1116 *Engineering, University of Nebraska-Lincoln, Lincoln,*
1117 *Nebraska 68588-0526, United States; Department of*
1118 *Biomedical Engineering, University of Connecticut Health*
1119 *Center, Farmington, Connecticut 06269, United States;*
1120 orcid.org/0000-0003-1801-2889; Email: atamayol@uchc.edu

1122 **Iris V. Rivero** — *Department of Industrial and Systems*
1123 *Engineering, Rochester Institute of Technology, Rochester,*
1124 *New York 14623, United States; Department of Biomedical*
1125 *Engineering, Rochester Institute of Technology, Rochester,*
1126 *New York 14623, United States; Email: rao@unl.edu*

1127 **Prahalada Rao** — *Department of Mechanical and Materials*
1128 *Engineering, University of Nebraska-Lincoln, Lincoln,*
1129 *Nebraska 68588-0526, United States; Email: iris.rivero@rit.edu*

1131 Authors

1132 **Samuel Gerdes** — *Department of Mechanical and Materials*
1133 *Engineering, University of Nebraska-Lincoln, Lincoln,*
1134 *Nebraska 68588-0526, United States*

1135 **Srikanthan Ramesh** — *Department of Industrial and Systems*
1136 *Engineering, Rochester Institute of Technology, Rochester,*
1137 *New York 14623, United States*

1138 **Azadeh Mostafavi** — *Department of Mechanical and Materials*
1139 *Engineering, University of Nebraska-Lincoln, Lincoln,*
1140 *Nebraska 68588-0526, United States*

1141 Complete contact information is available at:

1142 <https://pubs.acs.org/10.1021/acsbiomaterials.1c00598>

1143 Notes

1144 The authors declare no competing financial interest.

1145 ■ ACKNOWLEDGMENTS

1146 Financial support from the National Science Foundation (NSF
1147 CMMI-1719388, CMMI-1739696, and CMMI-1752069), the
1148 National Institutes of Health (AR073822), the University of
1149 Nebraska-Lincoln, and Nebraska Tobacco Settlement Bio-
1150 medical Research Enhancement Funds are gratefully acknowl-
1151 edged. Specifically, the concept of in situ imaging for process
1152 monitoring and assessing the effect of process conditions on
1153 quality of deposits in 3D (bio)printing of biomaterials was
1154 funded through CMMI-1739696 (Program Officer: Dr. Bruce
1155 Kramer).

1156 ■ REFERENCES

1157 (1) Zhang, B.; Luo, Y.; Ma, L.; Gao, L.; Li, Y.; Xue, Q.; Yang, H.;
1158 Cui, Z. 3D Bioprinting: An Emerging Technology Full of
1159 Opportunities and Challenges. *Bio-Design Manuf.* **2018**, *1* (1), 2–13.

(2) Farzin, A.; Miri, A. K.; Sharifi, F.; Faramarzi, N.; Jaber, A.; Mostafavi, A.; Solorzano, R.; Zhang, Y. S.; Annabi, N.; Khademhosseini, A.; Tamayol, A. 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis. *Adv. Healthcare Mater.* **2018**, *7* (24), 1800702.

(3) Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.-H. 3D Bioprinting for Engineering Complex Tissues. *Biotechnol. Adv.* **2016**, *34* (4), 422–434.

(4) Faramarzi, N.; Yazdi, I. K.; Nabavina, M.; Gemma, A.; Fanelli, A.; Caizzone, A.; Ptaszek, L. M.; Sinha, I.; Khademhosseini, A.; Ruskin, J. N.; Tamayol, A. Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. *Adv. Healthcare Mater.* **2018**, *7* (11), 1701347.

(5) Zhu, K.; Shin, S. R.; van Kempen, T.; Li, Y.-C.; Ponraj, V.; Nasajpour, A.; Mandla, S.; Hu, N.; Liu, X.; Leijten, J.; Lin, Y.-D.; Hussain, M. A.; Zhang, Y. S.; Tamayol, A.; Khademhosseini, A. Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. *Adv. Funct. Mater.* **2017**, *27* (12), 1605352.

(6) Ostrovidov, S.; Salehi, S.; Costantini, M.; Suthiwanich, K.; Ebrahimi, M.; Sadeghian, R. B.; Fujie, T.; Shi, X.; Cannata, S.; Gargioli, C.; Tamayol, A.; Dokmeci, M. R.; Orive, G.; Swieszkowski, W.; Khademhosseini, A. 3D Bioprinting in Skeletal Muscle Tissue Engineering. *Small* **2019**, *15* (24), 1805530.

(7) Byambaa, B.; Annabi, N.; Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Jia, W.; Kazemzadeh-Narbat, M.; Shin, S. R.; Tamayol, A.; Khademhosseini, A. Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. *Adv. Healthcare Mater.* **2017**, *6* (16), 1700015.

(8) Gillispie, G.; Prim, P.; Copus, J.; Fisher, J.; Mikos, A. G.; Yoo, J.; Atala, A.; Lee, S. J. Assessment Methodologies for Extrusion-Based Bioink Printability. *Biofabrication* **2020**, *12* (2), 022003.

(9) Zhang, S.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton, R.; Mantei, J. R.; Aparicio, C.; de la Cruz, M. O.; Stupp, S. I. A Self-Assembly Pathway to Aligned Monodomain Gels. *Nat. Mater.* **2010**, *9* (7), 594–601.

(10) Prince, E.; Kumacheva, E. Design and Applications of Man-Made Biomimetic Fibrillar Hydrogels. *Nat. Rev. Mater.* **2019**, *4* (2), 99–115.

(11) Samandari, M.; Alipanah, F.; Majidzadeh-A, K.; Alvarez, M. M.; Trujillo-de Santiago, G.; Tamayol, A. Controlling Cellular Organization in Bioprinting through Designed 3D Microcompartmentalization. *Appl. Phys. Rev.* **2021**, *8* (2), 021404.

(12) Russell, C. S.; Mostafavi, A.; Quint, J. P.; Panayi, A. C.; Baldino, K.; Williams, T. J.; Daubendiek, J. G.; Hugo Sánchez, V.; Bonick, Z.; Trujillo-Miranda, M.; Shin, S. R.; Pourquie, O.; Salehi, S.; Sinha, I.; Tamayol, A. In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. *ACS Appl. Bio Mater.* **2020**, *3* (3), 1568–1579.

(13) Ramesh, S.; Harrysson, O. L. A.; Rao, P. K.; Tamayol, A.; Cormier, D. R.; Zhang, Y.; Rivero, I. V. Extrusion Bioprinting: Recent Progress, Challenges, and Future Opportunities. *Bioprinting* **2021**, *21*, No. e00116.

(14) Schwab, A.; Levato, R.; D'Este, M.; Piluso, S.; Eglin, D.; Malda, J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. *Chem. Rev.* **2020**, *120* (19), 11028–11055.

(15) Alves, N. M.; Pashkuleva, I.; Reis, R. L.; Mano, J. F. Controlling Cell Behavior Through the Design of Polymer Surfaces. *Small* **2010**, *6* (20), 2208–2220.

(16) Wolf, K.; Müller, R.; Borgmann, S.; Bröcker, E.-B.; Friedl, P. Amoeboid Shape Change and Contact Guidance: T-Lymphocyte Crawling through Fibrillar Collagen Is Independent of Matrix Remodeling by MMPs and Other Proteases. *Blood* **2003**, *102* (9), 3262–3269.

(17) Weiss, P. Experiments on Cell and Axon Orientation in Vitro: The Role of Colloidal Exudates in Tissue Organization. *J. Exp. Zool.* **1945**, *100* (3), 353–386.

(18) Elkhoury, K.; Russell, C. S.; Sanchez-Gonzalez, L.; Mostafavi, A.; Williams, T. J.; Kahn, C.; Peppas, N. A.; Arab-Tehrany, E.; Tamayol, A. Soft-Nanoparticle Functionalization of Natural Hydro-

1229 gels for Tissue Engineering Applications. *Adv. Healthcare Mater.* **2019**,
1230 8 (18), 1900506.

1231 (19) Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni,
1232 L. E.; Cha, C.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.;
1233 Khademhosseini, A. 25th Anniversary Article: Rational Design and
1234 Applications of Hydrogels in Regenerative Medicine. *Adv. Mater.*
1235 **2014**, 26 (1), 85–124.

1236 (20) Mohamed, M. A.; Fallahi, A.; El-Sokkary, A. M. A.; Salehi, S.;
1237 Akl, M. A.; Jafari, A.; Tamayol, A.; Fenniri, H.; Khademhosseini, A.;
1238 Andreadis, S. T.; Cheng, C. Stimuli-Responsive Hydrogels for
1239 Manipulation of Cell Microenvironment: From Chemistry to
1240 Biofabrication Technology. *Prog. Polym. Sci.* **2019**, 98, 101147.

1241 (21) Fallahi, A.; Yazdi, I. K.; Serex, L.; Lesha, E.; Faramarzi, N.;
1242 Tarlan, F.; Avci, H.; Costa-Almeida, R.; Sharifi, F.; Rinoldi, C.;
1243 Gomes, M. E.; Shin, S. R.; Khademhosseini, A.; Akbari, M.; Tamayol,
1244 A. Customizable Composite Fibers for Engineering Skeletal Muscle
1245 Models. *ACS Biomater. Sci. Eng.* **2020**, 6 (2), 1112–1123.

1246 (22) Bettinger, C. J.; Langer, R.; Borenstein, J. T. Engineering
1247 Substrate Topography at the Micro- and Nanoscale to Control Cell
1248 Function. *Angew. Chem., Int. Ed.* **2009**, 48 (30), 5406–5415.

1249 (23) Gui, N.; Xu, W.; Myers, D. E.; Shukla, R.; Tang, H. P.; Qian, M.
1250 The Effect of Ordered and Partially Ordered Surface Topography on
1251 Bone Cell Responses: A Review. *Biomater. Sci.* **2018**, 6 (2), 250–264.

1252 (24) Kanchanawong, P.; Shtengel, G.; Pasapera, A. M.; Ramko, E.
1253 B.; Davidson, M. W.; Hess, H. F.; Waterman, C. M. Nanoscale
1254 Architecture of Integrin-Based Cell Adhesions. *Nature* **2010**, 468
1255 (7323), 580–584.

1256 (25) Que, L.; Topoleski, L. D. T. Surface Roughness Quantification
1257 of CoCrMo Implant Alloys. *J. Biomed. Mater. Res.* **1999**, 48 (5), 705–
1258 711.

1259 (26) Khan, S. P.; Auner, G. G.; Newaz, G. M. Influence of Nanoscale
1260 Surface Roughness on Neural Cell Attachment on Silicon. *Nano-
1261 medicine* **2005**, 1 (2), 125–129.

1262 (27) Pelipenko, J.; Kocbek, P.; Govedarica, B.; Rošić, R.;
1263 Baumgartner, S.; Kristl, J. The Topography of Electrospun Nanofibers
1264 and Its Impact on the Growth and Mobility of Keratinocytes. *Eur. J.
1265 Pharm. Biopharm.* **2013**, 84 (2), 401–411.

1266 (28) Pelipenko, J.; Kocbek, P.; Kristl, J. Critical Attributes of
1267 Nanofibers: Preparation, Drug Loading, and Tissue Regeneration. *Int.
1268 J. Pharm.* **2015**, 484 (1), 57–74.

1269 (29) Karuri, N. W.; Liliensiek, S.; Teixeira, A. I.; Abrams, G.;
1270 Campbell, S.; Nealey, P. F.; Murphy, C. J. Biological Length Scale
1271 Topography Enhances Cell-Substratum Adhesion of Human Corneal
1272 Epithelial Cells. *J. Cell Sci.* **2004**, 117 (15), 3153–3164.

1273 (30) Goreham, R. V.; Mierczynska, A.; Smith, L. E.; Sedev, R.;
1274 Vasilev, K. Small Surface Nanotopography Encourages Fibroblast and
1275 Osteoblast Cell Adhesion. *RSC Adv.* **2013**, 3 (26), 10309–10317.

1276 (31) Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.;
1277 Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of
1278 Integrin Function by Nanopatterned Adhesive Interfaces. *ChemPhys-
1279 sChem* **2004**, 5 (3), 383–388.

1280 (32) Gulati, K.; Prideaux, M.; Kogawa, M.; Lima-Marques, L.;
1281 Atkins, G. J.; Findlay, D. M.; Losic, D. Anodized 3D-Printed
1282 Titanium Implants with Dual Micro- and Nano-Scale Topography
1283 Promote Interaction with Human Osteoblasts and Osteocyte-like
1284 Cells. *J. Tissue Eng. Regener. Med.* **2017**, 11 (12), 3313–3325.

1285 (33) Dalby, M. J.; Riehle, M. O.; Johnstone, H. J. H.; Affrossman, S.;
1286 Curtis, A. S. G. Polymer-Demixed Nanotopography: Control of
1287 Fibroblast Spreading and Proliferation. *Tissue Eng.* **2002**, 8 (6),
1288 1099–1108.

1289 (34) Kim, D.-H.; Lipke, E. A.; Kim, P.; Cheong, R.; Thompson, S.;
1290 Delannoy, M.; Suh, K.-Y.; Tung, L.; Levchenko, A. Nanoscale Cues
1291 Regulate the Structure and Function of Macroscopic Cardiac Tissue
1292 Constructs. *Proc. Natl. Acad. Sci. U. S. A.* **2010**, 107 (2), 565–570.

1293 (35) Lim, J. Y.; Dreiss, A. D.; Zhou, Z.; Hansen, J. C.; Siedlecki, C.
1294 A.; Hengstebeck, R. W.; Cheng, J.; Winograd, N.; Donahue, H. J. The
1295 Regulation of Integrin-Mediated Osteoblast Focal Adhesion and Focal
1296 Adhesion Kinase Expression by Nanoscale Topography. *Biomaterials*
1297 **2007**, 28 (10), 1787–1797.

1298 (36) Oh, S.; Brammer, K. S.; Li, Y. S. J.; Teng, D.; Engler, A. J.;
1299 Chien, S.; Jin, S. Stem Cell Fate Dictated Solely by Altered Nanotube
1300 Dimension. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, 106 (7), 2130–2135.

1301 (37) Teo, B. K. K.; Wong, S. T.; Lim, C. K.; Kung, T. Y. S.; Yap, C.
1302 H.; Ramagopal, Y.; Romer, L. H.; Yim, E. K. F. Nanotopography
1303 Modulates Mechanotransduction of Stem Cells and Induces Differ-
1304 entiation through Focal Adhesion Kinase. *ACS Nano* **2013**, 7 (6), 1304
1305 4785–4798.

1306 (38) Chaurey, V.; Block, F.; Su, Y.-H.; Chiang, P.-C.; Botchwey, E.;
1307 Chou, C.-F.; Swami, N. S. Nanofiber Size-Dependent Sensitivity of
1308 Fibroblast Directionality to the Methodology for Scaffold Alignment.
1309 *Acta Biomater.* **2012**, 8 (11), 3982–3990.

1310 (39) Teixeira, A. I.; McKie, G. A.; Foley, J. D.; Bertics, P. J.; Nealey,
1311 P. F.; Murphy, C. J. The Effect of Environmental Factors on the
1312 Response of Human Corneal Epithelial Cells to Nanoscale Substrate
1313 Topography. *Biomaterials* **2006**, 27 (21), 3945–3954.

1314 (40) Bhuthalingam, R.; Lim, P. Q.; Irvine, S. A.; Agrawal, A.;
1315 Mhaisalkar, P. S.; An, J.; Chua, C. K.; Venkatraman, S. A Novel 3D
1316 Printing Method for Cell Alignment and Differentiation. *Int. J.
1317 Bioprinting*; Vol 1, 1 (2015)DO - 5765 2015.

1318 (41) Liu, T.; Huang, R.; Zhong, J.; Yang, Y.; Tan, Z.; Tan, W.
1319 Control of Cell Proliferation in E-Jet 3D-Printed Scaffolds for Tissue
1320 Engineering Applications: The Influence of the Cell Alignment Angle.
1321 *J. Mater. Chem. B* **2017**, 5 (20), 3728–3738.

1322 (42) Li, Y.; Xiao, Y.; Liu, C. The Horizon of Materiobiology: A
1323 Perspective on Material-Guided Cell Behaviors and Tissue Engineer-
1324 ing. *Chem. Rev.* **2017**, 117 (5), 4376–4421.

1325 (43) Kim, H. N.; Hong, Y.; Kim, M. S.; Kim, S. M.; Suh, K.-Y. Effect
1326 of Orientation and Density of Nanotopography in Dermal Wound
1327 Healing. *Biomaterials* **2012**, 33 (34), 8782–8792.

1328 (44) Kim, D.-H.; Seo, C.-H.; Han, K.; Kwon, K. W.; Levchenko, A.;
1329 Suh, K.-Y. Guided Cell Migration on Microtextured Substrates with
1330 Variable Local Density and Anisotropy. *Adv. Funct. Mater.* **2009**, 19
1331 (10), 1579–1586.

1332 (45) Mahmud, G.; Campbell, C. J.; Bishop, K. J. M.; Komarova, Y.
1333 A.; Chaga, O.; Soh, S.; Huda, S.; Kandere-Grzybowska, K.;
1334 Grzybowski, B. A. Directing Cell Motions on Micropatterned
1335 Ratchets. *Nat. Phys.* **2009**, 5 (8), 606–612.

1336 (46) Prasopthum, A.; Shakesheff, K. M.; Yang, J. Direct Three-
1337 Dimensional Printing of Polymeric Scaffolds with Nanofibrous
1338 Topography. *Biofabrication* **2018**, 10 (2), 025002.

1339 (47) Smith, A. M.; Paxton, J. Z.; Hung, Y.-P.; Hadley, M. J.; Bowen,
1340 J.; Williams, R. L.; Grover, L. M. Nanoscale Crystallinity Modulates
1341 Cell Proliferation on Plasma Sprayed Surfaces. *Mater. Sci. Eng., C*
1342 **2015**, 48, 5–10.

1343 (48) Gentile, F.; Medda, R.; Cheng, L.; Battista, E.; Scopelliti, P. E.;
1344 Milani, P.; Cavalcanti-Adam, E. A.; Decuzzi, P. Selective Modulation
1345 of Cell Response on Engineered Fractal Silicon Substrates. *Sci. Rep.*
1346 **2013**, 3 (1), 1461.

1347 (49) Hoveizi, E.; Ebrahimi-Barough, S.; Tavakol, S.; Nabiuni, M.
1348 Vitro Comparative Survey of Cell Adhesion and Proliferation of
1349 Human Induced Pluripotent Stem Cells on Surfaces of Polymeric
1350 Electrospun Nanofibrous and Solution-Cast Film Scaffolds. *J. Biomed.
1351 Mater. Res., Part A* **2015**, 103 (9), 2952–2958.

1352 (50) Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and
1353 Vitality: TiO₂ Nanotube Diameter Directs Cell Fate. *Nano Lett.* **2007**,
1354 7 (6), 1686–1691.

1355 (51) Janson, I. A.; Kong, Y. P.; Putnam, A. J. Nanotopographic
1356 Substrates of Poly (Methyl Methacrylate) Do Not Strongly Influence
1357 the Osteogenic Phenotype of Mesenchymal Stem Cells in Vitro. *PLoS
1358 One* **2014**, 9 (3), e90719.

1359 (52) Rebollar, E.; Frischauf, I.; Olbrich, M.; Peterbauer, T.; Hering,
1360 Preiner, J.; Hinterdorfer, P.; Romanin, C.; Heitz, J. Proliferation of
1361 Aligned Mammalian Cells on Laser-Nanostructured Polystyrene.
1362 *Biomaterials* **2008**, 29 (12), 1796–1806.

1363 (53) Han, G.; Müller, W. E. G.; Wang, X.; Lilja, L.; Shen, Z. Porous
1364 Titania Surfaces on Titanium with Hierarchical Macro- and
1365 Mesoporosities for Enhancing Cell Adhesion, Proliferation and
1366 Mineralization. *Mater. Sci. Eng., C* **2015**, 47, 376–383.

1367 (54) Tanaka, T.; Suzuki, Y. Spatial Control of Cell Attachment, 1368 Proliferation, and Differentiation Using Ion-Beam Induced Thin 1369 Films. *Appl. Surf. Sci.* **2014**, *310*, 31–35.

1370 (55) Lim, S. H.; Liu, X. Y.; Song, H.; Yarema, K. J.; Mao, H.-Q. The 1371 Effect of Nanofiber-Guided Cell Alignment on the Preferential 1372 Differentiation of Neural Stem Cells. *Biomaterials* **2010**, *31* (34), 1373 9031–9039.

1374 (56) Yim, E. K. F.; Pang, S. W.; Leong, K. W. Synthetic 1375 Nanostructures Inducing Differentiation of Human Mesenchymal 1376 Stem Cells into Neuronal Lineage. *Exp. Cell Res.* **2007**, *313* (9), 1377 1820–1829.

1378 (57) Dang, J. M.; Leong, K. W. Myogenic Induction of Aligned 1379 Mesenchymal Stem Cell Sheets by Culture on Thermally Responsive 1380 Electrospun Nanofibers. *Adv. Mater.* **2007**, *19* (19), 2775–2779.

1381 (58) Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; 1382 Herzyk, P.; Wilkinson, C. D. W.; Oreffo, R. O. C. The Control of 1383 Human Mesenchymal Cell Differentiation Using Nanoscale Symme- 1384 try and Disorder. *Nat. Mater.* **2007**, *6* (12), 997–1003.

1385 (59) Abadi, P. P. S. S.; Garber, J. C.; Behzadi, S.; Hill, M. J.; 1386 Tresback, J. S.; Heydari, T.; Ejtehadi, M. R.; Ahmed, N.; Copley, E.; 1387 Aghaverdi, H.; Lee, R. T.; Farokhzad, O. C.; Mahmoudi, M. 1388 Engineering of Mature Human Induced Pluripotent Stem Cell- 1389 Derived Cardiomyocytes Using Substrates with Multiscale Top- 1390 graphy. *Adv. Funct. Mater.* **2018**, *28* (19), 1707378.

1391 (60) Kilian, K. A.; Bugarija, B.; Lahn, B. T.; Mrksich, M. Geometric 1392 Cues for Directing the Differentiation of Mesenchymal Stem Cells. 1393 *Proc. Natl. Acad. Sci. U. S. A.* **2010**, *107* (11), 4872–4877.

1394 (61) Discher, D. E.; Janmey, P.; Wang, Y. Tissue Cells Feel and 1395 Respond to the Stiffness of Their Substrate. *Science (Washington, DC, 1396 U. S.)* **2005**, *310* (5751), 1139–1143.

1397 (62) Petrie, R. J.; Yamada, K. M. At the Leading Edge of Three- 1398 Dimensional Cell Migration. *J. Cell Sci.* **2012**, *125* (24), 5917–5926.

1399 (63) Koch, T. M.; Münster, S.; Bonakdar, N.; Butler, J. P.; Fabry, B. 1400 3D Traction Forces in Cancer Cell Invasion. *PLoS One* **2012**, *7* (3), 1401 e33476.

1402 (64) Liu, W.; Lipner, J.; Xie, J.; Manning, C. N.; Thomopoulos, S.; 1403 Xia, Y. Nanofiber Scaffolds with Gradients in Mineral Content for 1404 Spatial Control of Osteogenesis. *ACS Appl. Mater. Interfaces* **2014**, *6* 1405 (4), 2842–2849.

1406 (65) Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix 1407 Elasticity Directs Stem Cell Lineage Specification. *Cell* **2006**, *126* (4), 1408 677–689.

1409 (66) Pan, T.; Song, W.; Cao, X.; Wang, Y. 3D Biplotting of 1410 Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of 1411 Crosslinking Degree and Pore Architecture on Physicochemical 1412 Properties. *J. Mater. Sci. Technol.* **2016**, *32* (9), 889–900.

1413 (67) Zhang, J.; Ma, X.; Lin, D.; Shi, H.; Yuan, Y.; Tang, W.; Zhou, 1414 H.; Guo, H.; Qian, J.; Liu, C. Magnesium Modification of a Calcium 1415 Phosphate Cement Alters Bone Marrow Stromal Cell Behavior via an 1416 Integrin-Mediated Mechanism. *Biomaterials* **2015**, *53*, 251–264.

1417 (68) Dubin-Thaler, B. J.; Giannone, G.; Döbereiner, H.-G.; Sheetz, 1418 M. P. Nanometer Analysis of Cell Spreading on Matrix-Coated 1419 Surfaces Reveals Two Distinct Cell States and STEPs. *Biophys. J.* 1420 **2004**, *86* (3), 1794–1806.

1421 (69) Arima, Y.; Iwata, H. Effect of Wettability and Surface 1422 Functional Groups on Protein Adsorption and Cell Adhesion Using 1423 Well-Defined Mixed Self-Assembled Monolayers. *Biomaterials* **2007**, 1424 *28* (20), 3074–3082.

1425 (70) Lee, J. H.; Shin, Y. C.; Jin, O. S.; Kang, S. H.; Hwang, Y.-S.; 1426 Park, J.-C.; Hong, S. W.; Han, D.-W. Reduced Graphene Oxide- 1427 Coated Hydroxyapatite Composites Stimulate Spontaneous Osteo- 1428 genic Differentiation of Human Mesenchymal Stem Cells. *Nanoscale* 1429 **2015**, *7* (27), 11642–11651.

1430 (71) Li, H.; Xue, K.; Kong, N.; Liu, K.; Chang, J. Silicate 1431 Bioceramics Enhanced Vascularization and Osteogenesis through 1432 Stimulating Interactions between Endothelia Cells and Bone Marrow 1433 Stromal Cells. *Biomaterials* **2014**, *35* (12), 3803–3818.

1434 (72) Gerdes, S.; Mostafavi, A.; Ramesh, S.; Memic, A.; Rivero, I. V.; 1435 Rao, P.; Tamayol, A. Process–Structure–Quality Relationships of 1436 Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaf- 1437 folds. *Tissue Eng., Part A* **2020**, *26* (5–6), 279–291.

1438 (73) DeForest, C. A.; Anseth, K. S. Advances in Bioactive Hydrogels 1439 to Probe and Direct Cell Fate. *Annu. Rev. Chem. Biomol. Eng.* **2012**, *3* (1), 1440 421–444.

1441 (74) Ulrich, T. A.; Jain, A.; Tanner, K.; MacKay, J. L.; Kumar, S. 1442 Probing Cellular Mechanobiology in Three-Dimensional Culture with 1443 Collagen–Agarose Matrices. *Biomaterials* **2010**, *31* (7), 1875–1884.

1444 (75) Peyton, S. R.; Kalcioğlu, Z. I.; Cohen, J. C.; Runkle, A. P.; Van 1445 Vliet, K. J.; Lauffenburger, D. A.; Griffith, L. G. Marrow-Derived Stem 1446 Cell Motility in 3D Synthetic Scaffold Is Governed by Geometry 1447 along with Adhesivity and Stiffness. *Biotechnol. Bioeng.* **2011**, *108* (5), 1448 1181–1193.

1449 (76) Ferlin, K. M.; Prendergast, M. E.; Miller, M. L.; Kaplan, D. S.; 1450 Fisher, J. P. Influence of 3D Printed Porous Architecture on 1451 Mesenchymal Stem Cell Enrichment and Differentiation. *Acta 1452 Biomater.* **2016**, *32*, 161–169.

1453 (77) Baker, B. M.; Chen, C. S. Deconstructing the Third 1454 Dimension—How 3D Culture Microenvironments Alter Cellular 1455 Cues. *J. Cell Sci.* **2012**, *125* (13), 3015–3024.

1456 (78) Müller, M.; Becher, J.; Schnabelrauch, M.; Zenobi-Wong, M. 1457 Nanostructured Pluronic Hydrogels as Bioinks for 3D Bioprinting. 1458 *Biofabrication* **2015**, *7* (3), 035006.

1459 (79) Wu, D.; Yu, Y.; Tan, J.; Huang, L.; Luo, B.; Lu, L.; Zhou, C. 3D 1460 Bioprinting of Gellan Gum and Poly (Ethylene Glycol) Diacrylate 1461 Based Hydrogels to Produce Human-Scale Constructs with High- 1462 Fidelity. *Mater. Des.* **2018**, *160*, 486–495.

1463 (80) Ghorbanian, S.; Qasameh, M. A.; Akbari, M.; Tamayol, A.; 1464 Juncker, D. Microfluidic Direct Writer with Integrated Declogging 1465 Mechanism for Fabricating Cell-Laden Hydrogel Constructs. *Biomed. 1466 Microdevices* **2014**, *16* (3), 387–395.

1467 (81) Lee, W.; Debasitis, J. C.; Lee, V. K.; Lee, J.-H.; Fischer, K.; 1468 Edminster, K.; Park, J.-K.; Yoo, S.-S. Multi-Layered Culture of Human 1469 Skin Fibroblasts and Keratinocytes through Three-Dimensional 1470 Freeform Fabrication. *Biomaterials* **2009**, *30* (8), 1587–1595.

1471 (82) Duarte Campos, D. F.; Blaeser, A.; Korsten, A.; Neuss, S.; Jäkel, 1472 J.; Vogt, M.; Fischer, H. The Stiffness and Structure of Three- 1473 Dimensional Printed Hydrogels Direct the Differentiation of 1474 Mesenchymal Stromal Cells Toward Adipogenic and Osteogenic 1475 Lineages. *Tissue Eng., Part A* **2015**, *21* (3–4), 740–756.

1476 (83) Kolesky, D. B.; Homan, K. A.; Skilar-Scott, M. A.; Lewis, J. A. 1477 Three-Dimensional Bioprinting of Thick Vascularized Tissues. *Proc. 1478 Natl. Acad. Sci. U. S. A.* **2016**, *113* (12), 3179–3184.

1479 (84) Tamayol, A.; Najafabadi, A. H.; Aliakbarian, B.; Arab-Tehrany, 1480 E.; Akbari, M.; Annabi, N.; Juncker, D.; Khademhosseini, A. Hydrogel 1481 Templates for Rapid Manufacturing of Bioactive Fibers and 3D 1482 Constructs. *Adv. Healthcare Mater.* **2015**, *4* (14), 2146–2153.

1483 (85) Ma, X.; Yu, C.; Wang, P.; Xu, W.; Wan, X.; Lai, C. S. E.; Liu, J.; 1484 Koroleva-Maharajh, A.; Chen, S. Rapid 3D Bioprinting of 1485 Decellularized Extracellular Matrix with Regionally Varied Mechanical 1486 Properties and Biomimetic Microarchitecture. *Biomaterials* **2018**, *185*, 1487 310–321.

1488 (86) Jia, W.; Gungor-Ozkerim, P. S.; Zhang, Y. S.; Yue, K.; Zhu, K.; 1489 Liu, W.; Pi, Q.; Byambaa, B.; Dokmeci, M. R.; Shin, S. R.; 1490 Khademhosseini, A. Direct 3D Bioprinting of Perfusionable Vascular 1491 Constructs Using a Blend Bioink. *Biomaterials* **2016**, *106*, 58–68.

1492 (87) Shi, L.; Carstensen, H.; Höglz, K.; Lunzer, M.; Li, H.; Hilborn, 1493 J.; Ovsianikov, A.; Ossipov, D. A. Dynamic Coordination Chemistry 1494 Enables Free Directional Printing of Biopolymer Hydrogel. *Chem. 1495 Mater.* **2017**, *29* (14), 5816–5823.

1496 (88) Wüst, S.; Godla, M. E.; Müller, R.; Hofmann, S. Tunable 1497 Hydrogel Composite with Two-Step Processing in Combination with 1498 Innovative Hardware Upgrade for Cell-Based Three-Dimensional 1499 Bioprinting. *Acta Biomater.* **2014**, *10* (2), 630–640.

1500 (89) Bertassoni, L. E.; Cecconi, M.; Manoharan, V.; Nikkhah, M.; 1501 Hjortnaes, J.; Cristina, A. L.; Barabaschi, G.; Demarchi, D.; Dokmeci, 1502 M. R.; Yang, Y.; Khademhosseini, A. Hydrogel Bioprinted Micro- 1503 channel Networks for Vascularization of Tissue Engineering 1504 Constructs. *Lab Chip* **2014**, *14* (13), 2202–2211.

1505 (90) Malda, J.; Visser, J.; Melchels, F. P.; Jüngst, T.; Hennink, W. E.;
1506 Dhert, W. J. A.; Groll, J.; Hutmacher, D. W. 25th Anniversary Article:
1507 Engineering Hydrogels for Biofabrication. *Adv. Mater.* **2013**, *25* (36),
1508 5011–5028.

1509 (91) Gudapati, H.; Dey, M.; Ozbolat, I. A Comprehensive Review
1510 on Droplet-Based Bioprinting: Past, Present and Future. *Biomaterials*
1511 **2016**, *102*, 20–42.

1512 (92) Chen, N.; Zhu, K.; Zhang, Y. S.; Yan, S.; Pan, T.; Abudupataer,
1513 M.; Yu, G.; Alam, M. F.; Wang, L.; Sun, X.; Yu, Y.; Wang, C.; Zhang,
1514 W. Hydrogel Bioink with Multilayered Interfaces Improves Dis-
1515 persibility of Encapsulated Cells in Extrusion Bioprinting. *ACS Appl.*
1516 *Mater. Interfaces* **2019**, *11* (34), 30585–30595.

1517 (93) Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.;
1518 Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and Bioprinting
1519 Technologies to Make Heterogeneous and Biomimetic Tissue
1520 Constructs. *Mater. Today Bio* **2019**, *1*, 100008.

1521 (94) Zwanzig, R.; Harrison, A. K. Modifications of the Stokes–
1522 Einstein Formula. *J. Chem. Phys.* **1985**, *83* (11), 5861–5862.

1523 (95) Saunders, R. E.; Gough, J. E.; Derby, B. Delivery of Human
1524 Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing.
1525 *Biomaterials* **2008**, *29* (2), 193–203.

1526 (96) Dababneh, A. B.; Ozbolat, I. T. Bioprinting Technology: A
1527 Current State-of-the-Art Review. *J. Manuf. Sci. Eng.* **2014**,
1528 DOI: [10.1115/1.4028512](https://doi.org/10.1115/1.4028512).

1529 (97) He, Y.; Yang, F.; Zhao, H.; Gao, Q.; Xia, B.; Fu, J. Research on
1530 the Printability of Hydrogels in 3D Bioprinting. *Sci. Rep.* **2016**, *6* (1),
1531 29977.

1532 (98) Skardal, A. Perspective: “Universal” Bioink Technology for
1533 Advancing Extrusion Bioprinting-Based Biomanufacturing. *Bioprinting*
1534 **2018**, *10*, No. e00026.

1535 (99) Jin, Y.; Chai, W.; Huang, Y. Printability Study of Hydrogel
1536 Solution Extrusion in Nanoclay Yield-Stress Bath during Printing-
1537 Then-Gelation Biofabrication. *Mater. Sci. Eng., C* **2017**, *80*, 313–325.

1538 (100) Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.;
1539 Visconti, R. P.; Trusk, T. C.; Yost, M. J.; Yao, H.; Markwald, R. R.;
1540 Mei, Y. Engineering Alginate as Bioink for Bioprinting. *Acta Biomater.*
1541 **2014**, *10* (10), 4323–4331.

1542 (101) Paxton, N.; Smolan, W.; Böck, T.; Melchels, F.; Groll, J.;
1543 Jungst, T. Proposal to Assess Printability of Bioinks for Extrusion-
1544 Based Bioprinting and Evaluation of Rheological Properties
1545 Governing Bioprintability. *Biofabrication* **2017**, *9* (4), 044107.

1546 (102) Ribeiro, A.; Blokzijl, M. M.; Levato, R.; Visser, C. W.;
1547 Castilho, M.; Hennink, W. E.; Vermonden, T.; Malda, J. Assessing
1548 Bioink Shape Fidelity to Aid Material Development in 3D
1549 Bioprinting. *Biofabrication* **2018**, *10* (1), 014102.

1550 (103) Hinton, T. J.; Jallerat, Q.; Palchesko, R. N.; Park, J. H.;
1551 Grodzicki, M. S.; Shue, H.-J.; Ramadan, M. H.; Hudson, A. R.;
1552 Feinberg, A. W. Three-Dimensional Printing of Complex Biological
1553 Structures by Freeform Reversible Embedding of Suspended Hydro-
1554 gels. *Sci. Adv.* **2015**, *1* (9), No. e1500758.

1555 (104) Lee, A.; Hudson, A. R.; Shiawski, D. J.; Tashman, J. W.;
1556 Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A.
1557 W. 3D Bioprinting of Collagen to Rebuild Components of the Human
1558 Heart. *Science (Washington, DC, U. S.)* **2019**, *365* (6452), 482–487.

1559 (105) Mirdamadi, E.; Tashman, J. W.; Shiawski, D. J.; Palchesko, R.
1560 N.; Feinberg, A. W. FRESH 3D Bioprinting a Full-Size Model of the
1561 Human Heart. *ACS Biomater. Sci. Eng.* **2020**, *6* (11), 6453–6459.

1562 (106) Ning, L.; Gil, C. J.; Hwang, B.; Theus, A. S.; Perez, L.; Tomov,
1563 M. L.; Bauser-Heaton, H.; Serpooshan, V. Biomechanical Factors in
1564 Three-Dimensional Tissue Bioprinting. *Appl. Phys. Rev.* **2020**, *7* (4),
1565 041319.

1566 (107) Gao, T.; Gillispie, G. J.; Copus, J. S.; PR, A. K.; Seol, Y.-J.;
1567 Atala, A.; Yoo, J. J.; Lee, S. J. Optimization of Gelatin–Alginate
1568 Composite Bioink Printability Using Rheological Parameters: A
1569 Systematic Approach. *Biofabrication* **2018**, *10* (3), 034106.

1570 (108) Wu, Y.; Lin, Z. Y.; Wenger, A. C.; Tam, K. C.; Tang, X. 3D
1571 Bioprinting of Liver-Mimetic Construct with Alginate/Cellulose
1572 Nanocrystal Hybrid Bioink. *Bioprinting* **2018**, *9*, 1–6.

1573 (109) Banerjee, A.; Arha, M.; Choudhary, S.; Ashton, R. S.; Bhatia,
1574 S. R.; Schaffer, D. V.; Kane, R. S. The Influence of Hydrogel Modulus
1575 on the Proliferation and Differentiation of Encapsulated Neural Stem
1576 Cells. *Biomaterials* **2009**, *30* (27), 4695–4699.

1577 (110) Blaeser, A.; Duarte Campos, D. F.; Puster, U.; Richtering, W.;
1578 Stevens, M. M.; Fischer, H. Controlling Shear Stress in 3D
1579 Bioprinting Is a Key Factor to Balance Printing Resolution and
1580 Stem Cell Integrity. *Adv. Healthcare Mater.* **2016**, *5* (3), 326–333.

1581 (111) Ning, L.; Betancourt, N.; Schreyer, D. J.; Chen, X. 1582 Characterization of Cell Damage and Proliferative Ability during
1583 and after Bioprinting. *ACS Biomater. Sci. Eng.* **2018**, *4* (11), 3906–
1584 3918.

1585 (112) Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak,
1586 F.; Leong, K. W.; Zhao, X. 3D Printing of Highly Stretchable and
1587 Tough Hydrogels into Complex, Cellularized Structures. *Adv. Mater.*
1588 **2015**, *27* (27), 4035–4040.

1589 (113) Nair, K.; Gandhi, M.; Khalil, S.; Yan, K. C.; Marcolongo, M.;
1590 Barbee, K.; Sun, W. Characterization of Cell Viability during
1591 Bioprinting Processes. *Biotechnol. J.* **2009**, *4* (8), 1168–1177.

1592 (114) Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.;
1593 Dubruel, P. The 3D Printing of Gelatin Methacrylamide Cell-Laden
1594 Tissue-Engineered Constructs with High Cell Viability. *Biomaterials*
1595 **2014**, *35* (1), 49–62.

1596 (115) Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of Bioink
1597 Properties on Printability and Cell Viability for 3D Bioplotting of
1598 Embryonic Stem Cells. *Biofabrication* **2016**, *8* (3), 035020.

1599 (116) Müller, M.; Özürk, E.; Arlov, Ø.; Gatenholm, P.; Zenobi-
1600 Wong, M. Alginate Sulfate–Nanocellulose Bioinks for Cartilage
1601 Bioprinting Applications. *Ann. Biomed. Eng.* **2017**, *45* (1), 210–223.

1602 (117) Ho, L.; Hsu, S.-H. Cell Reprogramming by 3D Bioprinting of
1603 Human Fibroblasts in Polyurethane Hydrogel for Fabrication of
1604 Neural-like Constructs. *Acta Biomater.* **2018**, *70*, 57–70.

1605 (118) Lee, S. C.; Gillispie, G.; Prim, P.; Lee, S. J. Physical and
1606 Chemical Factors Influencing the Printability of Hydrogel-Based
1607 Extrusion Bioinks. *Chem. Rev.* **2020**, *120* (19), 10834–10886.

1608 (119) Bertassoni, L. E.; Cardoso, J. C.; Manoharan, V.; Cristino, A.;
1609 L.; Bhise, N. S.; Araujo, W. A.; Zorlutuna, P.; Vrana, N. E.;
1610 Ghaemmaghami, A. M.; Dokmeci, M. R.; Khademhosseini, A. Direct-
1611 Write Bioprinting of Cell-Laden Methacrylated Gelatin Hydrogels.
1612 *Biofabrication* **2014**, *6* (2), 024105.

1613 (120) Yin, J.; Yan, M.; Wang, Y.; Fu, J.; Suo, H. 3D Bioprinting of
1614 Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA)
1615 Bioinks with a Two-Step Cross-Linking Strategy. *ACS Appl. Mater.*
1616 *Interfaces* **2018**, *10* (8), 6849–6857.

1617 (121) You, F.; Eames, B. F.; Chen, X. Application of Extrusion-
1618 Based Hydrogel Bioprinting for Cartilage Tissue Engineering. *Int. J.*
1619 *Mol. Sci.* **2017**, *18*, 1597.

1620 (122) Wilson, S. A.; Cross, L. M.; Peak, C. W.; Gaharwar, A. K.
1621 Shear Thinning and Thermo-Reversible Nanoengineered Inks for 3D
1622 Bioprinting. *ACS Appl. Mater. Interfaces* **2017**, *9* (50), 43449–43458.

1623 (123) Shin, S.; Park, S.; Park, M.; Jeong, E.; Na, K.; Youn, H. J.;
1624 Hyun, J. Cellulose Nanofibers for the Enhancement of Printability of
1625 Low Viscosity Gelatin Derivatives. *BioResources* **2017**, *12* (2),
1626 DOI: [10.15376/biores.12.2.2941-2954](https://doi.org/10.15376/biores.12.2.2941-2954).

1627 (124) AnilKumar, S.; Allen, S. C.; Tasnim, N.; Akter, T.; Park, S.;
1628 Kumar, A.; Chattopadhyay, M.; Ito, Y.; Suggs, L. J.; Joddar, B. The
1629 Applicability of Furfuryl-Gelatin as a Novel Bioink for Tissue
1630 Engineering Applications. *J. Biomed. Mater. Res., Part B* **2019**, *107*
1631 (2), 314–323.

1632 (125) Kesti, M.; Müller, M.; Becher, J.; Schnabelrauch, M.; D’Este,
1633 M.; Eglin, D.; Zenobi-Wong, M. A Versatile Bioink for Three-
1634 Dimensional Printing of Cellular Scaffolds Based on Thermally and
1635 Photo-Triggered Tandem Gelation. *Acta Biomater.* **2015**, *11*, 162–
1636 172.

1637 (126) Tan, E. Y. S.; Yeong, W. Y. Concentric Bioprinting of
1638 Alginate-Based Tubular Constructs Using Multi-Nozzle Extrusion-
1639 Based Technique. *Int. J. Bioprinting* **2015**, *1* (1), No. 01003.

1640 (127) Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.;
1641 Hägg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with
1641

1642 Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering
1643 Applications. *Biomacromolecules* 2015, 16 (5), 1489–1496.

1644 (128) Nguyen, D.; Hägg, D. A.; Forsman, A.; Ekholm, J.;
1645 Nimkingratana, P.; Brantsing, C.; Kalogeropoulos, T.; Zaunz, S.;
1646 Concaro, S.; Brittberg, M.; Lindahl, A.; Gatenholm, P.; Enejder, A.;
1647 Simonsson, S. Cartilage Tissue Engineering by the 3D Bioprinting of
1648 IPS Cells in a Nanocellulose/Alginate Bioink. *Sci. Rep.* 2017, 7 (1),
1649 658.

1650 (129) Martínez Ávila, H.; Schwarz, S.; Rotter, N.; Gatenholm, P. 3D
1651 Bioprinting of Human Chondrocyte-Laden Nanocellulose Hydrogels
1652 for Patient-Specific Auricular Cartilage Regeneration. *Bioprinting*
1653 2016, 1–2, 22–35.

1654 (130) Irvine, S. A.; Agrawal, A.; Lee, B. H.; Chua, H. Y.; Low, K. Y.;
1655 Lau, B. C.; Machluf, M.; Venkatraman, S. Printing Cell-Laden Gelatin
1656 Constructs by Free-Form Fabrication and Enzymatic Protein
1657 Crosslinking. *Biomed. Microdevices* 2015, 17 (1), 16.

1658 (131) Censi, R.; Schuurman, W.; Malda, J.; di Dato, G.; Burgisser, P.
1659 E.; Dhert, W. J. A.; van Nostrum, C. F.; di Martino, P.; Vermonden,
1660 T.; Hennink, W. E. A Printable Photopolymerizable Thermosensitive
1661 p(HPMAM-Lactate)-PEG Hydrogel for Tissue Engineering. *Adv.
1662 Funct. Mater.* 2011, 21 (10), 1833–1842.

1663 (132) Skardal, A.; Zhang, J.; McCoard, L.; Xu, X.; Oottamasathien,
1664 S.; Prestwich, G. D. Photocrosslinkable Hyaluronan-Gelatin Hydro-
1665 gels for Two-Step Bioprinting. *Tissue Eng., Part A* 2010, 16 (8),
1666 2675–2685.

1667 (133) Ouyang, L.; Highley, C. B.; Rodell, C. B.; Sun, W.; Burdick, J.
1668 A. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with
1669 Secondary Cross-Linking. *ACS Biomater. Sci. Eng.* 2016, 2 (10),
1670 1743–1751.

1671 (134) Jia, X.; Kiick, K. L. Hybrid Multicomponent Hydrogels for
1672 Tissue Engineering. *Macromol. Biosci.* 2009, 9 (2), 140–156.

1673 (135) Park, J.; Lee, S. J.; Chung, S.; Lee, J. H.; Kim, W. D.; Lee, J. Y.;
1674 Park, S. A. Cell-Laden 3D Bioprinting Hydrogel Matrix Depending on
1675 Different Compositions for Soft Tissue Engineering: Characterization
1676 and Evaluation. *Mater. Sci. Eng., C* 2017, 71, 678–684.

1677 (136) Schuurman, W.; Khristov, V.; Pot, M. W.; van Weeren, P. R.;
1678 Dhert, W. J. A.; Malda, J. Bioprinting of Hybrid Tissue Constructs
1679 with Tailorable Mechanical Properties. *Biofabrication* 2011, 3 (2),
1680 021001.

1681 (137) Zhang, K.; Fu, Q.; Yoo, J.; Chen, X.; Chandra, P.; Mo, X.;
1682 Song, L.; Atala, A.; Zhao, W. 3D Bioprinting of Urethra with PCL/
1683 PLCL Blend and Dual Autologous Cells in Fibrin Hydrogel: An in
1684 Vitro Evaluation of Biomimetic Mechanical Property and Cell Growth
1685 Environment. *Acta Biomater.* 2017, 50, 154–164.

1686 (138) Kundu, J.; Shim, J. H.; Jang, J.; Kim, S. W.; Cho, D. W. An
1687 Additive Manufacturing-Based PCL-Alginate-Chondrocyte Bioprinted
1688 Scaffold for Cartilage Tissue Engineering. *J. Tissue Eng. Regener. Med.*
1689 2015, 9, 1286.

1690 (139) Kolesky, D. B.; Homan, K. A.; Skylar-Scott, M. A.; Lewis, J. A.
1691 Three-Dimensional Bioprinting of Thick Vascularized Tissues. *Proc.
1692 Natl. Acad. Sci. U. S. A.* 2016, 113, 3179.

1693 (140) Tan, E. Y. S.; Yeong, W. Y. Concentric Bioprinting of
1694 Alginate-Based Tubular Constructs Using Multi-Nozzle Extrusion-
1695 Based Technique. *Int. J. Bioprinting* 2015, DOI: 10.18063/
1696 IJB.2015.01.003.

1697 (141) Khalil, S.; Sun, W. Bioprinting Endothelial Cells With Alginate
1698 for 3D Tissue Constructs. *J. Biomech. Eng.* 2009, DOI: 10.1115/
1699 1.3128729.

1700 (142) Kang, H. W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala,
1701 A. A 3D Bioprinting System to Produce Human-Scale Tissue
1702 Constructs with Structural Integrity. *Nat. Biotechnol.* 2016, 34, 312.

1703 (143) Rhee, S.; Puetzer, J. L.; Mason, B. N.; Reinhart-King, C. A.;
1704 Bonassar, L. J. 3D Bioprinting of Spatially Heterogeneous Collagen
1705 Constructs for Cartilage Tissue Engineering. *ACS Biomater. Sci. Eng.*
1706 2016, 2 (10), 1800–1805.

1707 (144) Lee, V.; Singh, G.; Trasatti, J. P.; Björnsson, C.; Xu, X.; Tran,
1708 T. N.; Yoo, S.-S.; Dai, G.; Karande, P. Design and Fabrication of
1709 Human Skin by Three-Dimensional Bioprinting. *Tissue Eng., Part C*
1710 2014, 20 (6), 473–484.

145 (145) Hutmacher, D. W.; Schantz, T.; Zein, I.; Ng, K. W.; Teoh, S. 1711
1712 H.; Tan, K. C. Mechanical Properties and Cell Cultural Response of
1713 Polycaprolactone Scaffolds Designed and Fabricated via Fused
1714 Deposition Modeling. *J. Biomed. Mater. Res.* 2001, 55 (2), 203–216. 1714
1715 (146) Skardal, A.; Zhang, J.; Prestwich, G. D. Bioprinting Vessel-like
1716 Constructs Using Hyaluronan Hydrogels Crosslinked with Tetrahe- 1716
1717 dral Polyethylene Glycol Tetracrylates. *Biomaterials* 2010, 31 (24), 1717
1718 6173–6181.

1719 (147) Zhao, Y.; Li, Y.; Mao, S.; Sun, W.; Yao, R. The Influence of
1720 Printing Parameters on Cell Survival Rate and Printability in
1721 Microextrusion-Based 3D Cell Printing Technology. *Biofabrication* 1721
1722 2015, 7 (4), 045002.

1723 (148) Lee, J. U.; Yeo, M.; Kim, W. J.; Koo, Y. W.; Kim, G. H. 1723
1724 Development of a Tannic Acid Cross-Linking Process for Obtaining
1725 3D Porous Cell-Laden Collagen Structure. *Int. J. Biol. Macromol.* 1725
1726 2018, 110, 497.

1727 (149) Shim, J. H.; Lee, J. S.; Kim, J. Y.; Cho, D. W. Bioprinting of a
1728 Mechanically Enhanced Three-Dimensional Dual Cell-Laden Con- 1728
1729 struct for Osteochondral Tissue Engineering Using a Multi-Head 1729
1730 Tissue/Organ Building System. *J. Micromech. Microeng.* 2012, 22, 1730
085014.

1731 (150) Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, 1732
1732 Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R. R. Rapid Formation 1733
1733 of a Supramolecular Polypeptide-DNA Hydrogel for in Situ Three- 1734
1734 Dimensional Multilayer Bioprinting. *Angew. Chem., Int. Ed.* 2015, 54, 1735
3957.

1736 (151) Miranda, P.; Pajares, A.; Saiz, E.; Tomsia, A. P.; Guiberteau, F. 1737
1737 Mechanical Properties of Calcium Phosphate Scaffolds Fabricated by
1738 Robocasting. *J. Biomed. Mater. Res., Part A* 2008, 85A (1), 218–227. 1739
1739 (152) Senatov, F. S.; Nizaa, K. V.; Zadorozhnyy, M. Y.; Maksimkin, 1740
1740 A. V.; Kaloshkin, S. D.; Estrin, Y. Z. Mechanical Properties and Shape 1741
1741 Memory Effect of 3D-Printed PLA-Based Porous Scaffolds. *J. Mech.
1742 Behav. Biomed. Mater.* 2016, 57, 139.

1743 (153) Pfister, A.; Landers, R.; Laib, A.; Hübner, U.; Schmelzeisen, 1744
1744 R.; Mülhaupt, R. Biofunctional Rapid Prototyping for Tissue- 1745
1745 Engineering Applications: 3D Bioplotting versus 3D Printing. *J.
1746 Polym. Sci., Part A: Polym. Chem.* 2004, 42 (3), 624–638.

1747 (154) Luo, Y.; Luo, G.; Gelinsky, M.; Huang, P.; Ruan, C. 3D 1748
1748 Bioprinting Scaffold Using Alginate/Polyvinyl Alcohol Bioinks. *Mater.
1749 Lett.* 2017, 189, 295–298.

1750 (155) Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting 1751
1751 Three-Dimensional Cell-Laden Tissue Constructs with Controllable 1752
1752 Degradation. *Sci. Rep.* 2016, 6 (1), 24474.

1753 (156) Temple, J. P.; Hutton, D. L.; Hung, B. P.; Huri, P. Y.; Cook, 1754
1754 C. A.; Kondragunta, R.; Jia, X.; Grayson, W. L. Engineering 1755
1755 Anatomically Shaped Vascularized Bone Grafts with HASCs and 1756
1756 3D-Printed PCL Scaffolds. *J. Biomed. Mater. Res., Part A* 2014, 102 1757
1757 (12), 4317–4325.

1758 (157) Lee, J. W.; Choi, Y. J.; Yong, W. J.; Pati, F.; Shim, J. H.; Kang, 1759
1759 K. S.; Kang, I. H.; Park, J.; Cho, D. W. Development of a 3D Cell 1760
1760 Printed Construct Considering Angiogenesis for Liver Tissue 1761
1761 Engineering. *Biofabrication* 2016, 8, 015007.

1762 (158) Serra, T.; Planell, J. A.; Navarro, M. High-Resolution PLA- 1763
1763 Based Composite Scaffolds via 3-D Printing Technology. *Acta 1764
1764 Biomater.* 2013, 9 (3), 5521–5530.

1765 (159) Jakus, A. E.; Rutz, A. L.; Jordan, S. W.; Kannan, A.; Mitchell, 1766
1766 S. M.; Yun, C.; Koube, K. D.; Yoo, S. C.; Whiteley, H. E.; Richter, C. 1767
1767 P.; Galiano, R. D.; Hsu, W. K.; Stock, S. R.; Hsu, E. L.; Shah, R. N. 1768
1768 Hyperelastic “Bone”: A Highly Versatile, Growth Factor-Free, 1769
1769 Osteoregenerative, Scalable, and Surgically Friendly Biomaterial. *Sci.
1770 Transl. Med.* 2016, 8, 358ra127.

1771 (160) Bakarich, S. E.; Gorkin, R.; Panhuis, M. i. h.; Spinks, G. M. 4D 1772
1772 Printing with Mechanically Robust, Thermally Actuating Hydrogels. 1773
1773 *Macromol. Rapid Commun.* 2015, 36, 1211.

1774 (161) Soltan, N.; Ning, L.; Mohabatpour, F.; Papagerakis, P.; Chen, 1775
1775 X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde- 1776
1776 Gelatin Scaffolds. *ACS Biomater. Sci. Eng.* 2019, 5 (6), 2976–2987. 1777

1778 (162) Habib, A.; Khoda, B. Development of Clay Based Novel
1779 Hybrid Bio-Ink for 3D Bio-Printing Process. *J. Manuf. Process.* **2019**,
1780 38, 76–87.

1781 (163) Habib, A.; Sathish, V.; Mallik, S.; Khoda, B. 3D Printability of
1782 Alginate-Carboxymethyl Cellulose Hydrogel. *Materials* **2018**, 11, 454.

1783 (164) Webb, B.; Doyle, B. J. Parameter Optimization for 3D
1784 Bioprinting of Hydrogels. *Bioprinting* **2017**, 8, 8–12.

1785 (165) Cheng, Z.; Cui, M.; Shi, Y.; Qin, Y.; Zhao, X. Fabrication of
1786 Cell-Laden Hydrogel Fibers with Controllable Diameters. *Micro-
1787 machines* **2017**, 8, 161.

1788 (166) Thattaruparambil Raveendran, N.; Vaquette, C.; Meinert, C.;
1789 Samuel Ipe, D.; Ivanovski, S. Optimization of 3D Bioprinting of
1790 Periodontal Ligament Cells. *Dent. Mater.* **2019**, 35 (12), 1683–1694.

1791 (167) Daly, A. C.; Critchley, S. E.; Rencsok, E. M.; Kelly, D. J. A
1792 Comparison of Different Bioinks for 3D Bioprinting of Fibrocartilage
1793 and Hyaline Cartilage. *Biofabrication* **2016**, 8 (4), 045002.

1794 (168) Giuseppe, M. Di; Law, N.; Webb, B.; Macrae, R. A.; Liew, L.
1795 J.; Sercombe, T. B.; Dilley, R. J.; Doyle, B. J. Mechanical Behaviour of
1796 Alginate-Gelatin Hydrogels for 3D Bioprinting. *J. Mech. Behav.
1797 Biomed. Mater.* **2018**, 79, 150–157.

1798 (169) De Witte, T.-M.; Fratila-Apachitei, L. E.; Zadpoor, A. A.;
1799 Peppas, N. A. Bone Tissue Engineering via Growth Factor Delivery:
1800 From Scaffolds to Complex Matrices. *Regen. Biomater.* **2018**, 5 (4),
1801 197–211.

1802 (170) Wu, T.; Yu, S.; Chen, D.; Wang, Y. Bionic Design, Materials
1803 and Performance of Bone Tissue Scaffolds. *Materials* **2017**, 10, 1187.

1804 (171) Hutmacher, D. W. Scaffolds in Tissue Engineering Bone and
1805 Cartilage. *Biomaterials* **2000**, 21 (24), 2529–2543.

1806 (172) Wells, R. G. Tissue Mechanics and Fibrosis. *Biochim. Biophys.
1807 Acta, Mol. Basis Dis.* **2013**, 1832 (7), 884–890.

1808 (173) Sweigart, M. A.; Zhu, C. F.; Burt, D. M.; deHoll, P. D.;
1809 Agrawal, C. M.; Clanton, T. O.; Athanasiou, K. A. Intraspecies and
1810 Interspecies Comparison of the Compressive Properties of the Medial
1811 Meniscus. *Ann. Biomed. Eng.* **2004**, 32 (11), 1569–1579.

1812 (174) Mostafavi, A.; Abudula, T.; Russell, C. S.; Mostafavi, E.;
1813 Williams, T. J.; Salah, N.; Alshahrie, A.; Harris, S.; Basri, S. M. M.;
1814 Mishra, Y. K.; Webster, T. J.; Memic, A.; Tamayol, A. In Situ Printing
1815 of Scaffolds for Reconstruction of Bone Defects. *Acta Biomater.* **2021**,
1816 127, 313.

1817 (175) Quint, J. P.; Mostafavi, A.; Endo, Y.; Panayi, A.; Russell, C. S.;
1818 Nourmahnad, A.; Wiseman, C.; Abbasi, L.; Samandari, M.; Sheikhi,
1819 A.; Nuutila, K.; Sinha, I.; Tamayol, A. In Vivo Printing of
1820 Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries.
1821 *Adv. Healthcare Mater.* **2021**, 10, 2002152.

1822 (176) Ma, K.; Zhao, T.; Yang, L.; Wang, P.; Jin, J.; Teng, H.; Xia, D.;
1823 Zhu, L.; Li, L.; Jiang, Q.; Wang, X. Application of Robotic-Assisted in
1824 Situ 3D Printing in Cartilage Regeneration with HAMA Hydrogel: An
1825 in Vivo Study. *J. Adv. Res.* **2020**, 23, 123–132.

1826 (177) Urciuolo, A.; Poli, I.; Brandolino, L.; Raffa, P.; Scattolini, V.;
1827 Laterza, C.; Giobbe, G. G.; Zambaiti, E.; Selmin, G.; Magnussen, M.;
1828 Brigo, L.; De Coppi, P.; Salmaso, S.; Giomo, M.; Elvassore, N.
1829 Intravital Three-Dimensional Bioprinting. *Nat. Biomed. Eng.* **2020**, 4
1830 (9), 901–915.