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Mobile robots are increasingly populating homes, hospitals, shopping malls, factory floors, and other human
environments. Human society has social norms that people mutually accept; obeying these norms is an es-
sential signal that someone is participating socially with respect to the rest of the population. For robots to
be socially compatible with humans, it is crucial for robots to obey these social norms. In prior work, we
demonstrated a Socially-Aware Navigation (SAN) planner, based on Pareto Concavity Elimination Transfor-
mation (PaCcET), in a hallway scenario, optimizing two objectives so the robot does not invade the personal
space of people. This article extends our PaCcET-based SAN planner to multiple scenarios with more than
two objectives. We modified the Robot Operating System’s (ROS) navigation stack to include PaCcET in the
local planning task. We show that our approach can accommodate multiple Human-Robot Interaction (HRI)
scenarios. Using the proposed approach, we achieved successful HRI in multiple scenarios such as hallway
interactions, an art gallery, waiting in a queue, and interacting with a group. We implemented our method on
a simulated PR2 robot in a 2D simulator (Stage) and a pioneer-3DX mobile robot in the real-world to validate
all the scenarios. A comprehensive set of experiments shows that our approach can handle multiple interac-
tion scenarios on both holonomic and non-holonomic robots; hence, it can be a viable option for a Unified
Socially-Aware Navigation (USAN).
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1 INTRODUCTION

Social norms such as driving on the right or left side of the road (depending on the country one
lives in), turn-taking rules at four-way stops and roundabouts, holding doors for people behind us,
and maintaining an appropriate distance when interacting with another person (actual distance
depending on the type of interaction) are crucial in our day-to-day interactions. People use these
actions as signals that they are participants in the social order. Violating these principles is jarring
at best (i.e., a person becoming confused at another person’s behavior) and can provoke hostility
at worst (i.e., getting upset at someone for cutting in line).

As socially assistive robots (SAR) [21] are expected to play an essential role in a human-robot
collaborative environment, these robots taking roles while remaining unconstrained to such so-
cial norms is a growing concern in the robotics community. In the past decade, social and personal
robots have attained immense interest among researchers and entrepreneurs alike; the result is an
increase in the efforts both in industry and academia to develop applications and businesses in the
personal robotics space. Smart Luggage [18], showcased at 2018’s consumer electronics show
(CES), a robotic suitcase that will follow the owner during travel, demonstrates the commercial
viability of interpersonal navigation. Some companies and start-ups develop robotic assistants for
airports and shopping malls to assist people with directions and shopping experiences. Robot do-
mains, especially SAR, benefit from navigation, as such movement extends the robot’s reachable
service area. However, navigation, if not appropriately performed, can cause an adverse social
reaction [46]. In an ethnographic study where nurses in hospital settings interacted with an au-
tonomous service robot, one of the participants quoted the following statement:

“Well; it almost ran me over... I wasn’t scared... I was just mad... I've already been clipped by it. It
does hurt.”

Robots currently deployed in human environments have prompted adverse reactions from peo-
ple encountering them [13]. Some people are unwilling to interact with these robots, and some
even kicked them, demonstrating a very hostile attitude towards service robots. Incidents such
as these pose both challenges and opportunities for the human-robot interaction (HRI) re-
searchers; as a result, recent years have seen a tremendous growth of publication in areas related
to socially aware navigation such as human detection and tracking, social planner incorporating
social norms, and human-robot interaction studies to understand the problem from a human’s
perspective.

As seen from the examples so far [30, 46], SAR systems without social awareness can cause
problems in human environments. Following human societal social norms may help robots be
more accepted in homes, hospitals, and workplaces. Robots should not treat humans as dynamic
objects through their navigation behavior, as shown in our results in Figure 1. The figure illus-
trates a comparison between a traditional planner (green trajectory) that optimizes performance
(time, distance, etc.) and a socially aware planner (blue trajectory), which optimizes for social
norms along with performance metrics. The traditional planner treats both humans and objects
the same way (not maintaining enough distance around humans and objects); however, that is not
acceptable. It is acceptable to get close to an object, but a similar behavior around a person is not
acceptable.
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Fig. 1. The PaCcET local planner (blue, solid) compared with the traditional ROS local planner (green, dot-
ted), which does not account for social norms. The traditional planner generated a trajectory that is close to
both human and the object (black box), treating them alike. Our approach, the PaCcET-based SAN planner,
generated a trajectory that diverged around the human, thereby respecting the personal space of the human.

Socially Aware Navigation planners, including our method, considers the theory of proxemics
and other social norms such that the robot does not invade the space around the human. Proxemics
[28] codifies this notion of personal space; researchers interested in socially aware navigation
(SAN) are investigating methods to integrate the rules of proxemics into robot navigation behavior.

Our approach to SAN using PaCcET addresses the following limitations of the existing
approaches:

(1) Many current approaches depend on exocentric sensing, limiting the robot’s services to a
particular environment [20].

(2) Approaches may require a large amount of training data [1, 29, 34, 37, 48].

(3) The environment/scenario is a singleton, i.e., only a hallway, a room, and so on, is consid-
ered or considers only an approach behavior or a passing behavior [20].

(4) Planners are optimized for single or few objectives with linear combination or weighted
sum [22, 23].

This article builds on our previous work from Reference [25] and provides a comprehensive
evaluation of our SAN planner in multiple scenarios in both simulations and the real-world. We
extend our prior work by implementing our proposed method on a real robot with objectives such
as inter-personal distance, adherence to a social goal, activity space, and group proxemics and
providing a more diverse set of simulated environments and real-world scenarios for evaluation.
The remainder of this article is structured as follows: We implemented our proposed SAN method
on both holonomic and non-holonomic platforms. In the next section, we review related works. In
Section 3, we present our approach to SAN using PaCcET. In Section 4, we apply our method to
various scenarios in simulation and on a pioneer-3DX platform to validate the proposed approach.
Finally, in Section 5, we discuss our present and ongoing work.

2 RELATED WORK
2.1 Socially Aware Navigation

When localization and navigation were relatively new in the field of robotics, tour-guide robots
Rhino and Minerva [11, 12, 60] successfully navigated and gave museum tours for visitors. These
robots were some of the pioneering works in the field of robot navigation, which performed var-
ious navigation functions such as mapping, localization, collision avoidance, and path planning.
These robots also exhibited primitive navigation behaviors around people in a dynamic human
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environment. Robust long-term navigation in the indoor environment was demonstrated by
Marder et al. [42] when a PR2, a mobile manipulation robot, completed a 26.2-mile run in an
office environment. This state-of-the-art navigation technique (traditional planner) can generate a
collision-free path and maneuver a robot on that path to get to a goal. However, these algorithms
are not sophisticated enough to deal with social interactions while navigating in highly dynamic
human environments.

There is a rapidly growing HRI community that is addressing social navigation planners [20, 27,
38,50, 54, 61]. Most of the SAN research can be broadly classified (based on areas concerning social
navigation) into Planning, Perception, and Behavior Selection. Most of the work is concentrated in
the planning area (in turn classified into local planning and global planning). The solutions to SAN-
associated problems range from simple cost functions to more advanced deep neural networks; we
present some of them here.

Social Force Model (SFM) [31] is one of the popular approaches to SAN, which mimics human
navigation behavior. Building upon prior work, Ferrer et al. programmed a robot to obey the social
forces during navigation activities [22, 23]. The method also extends SFM to allow a robot to ac-
company a human while providing a method for learning the model parameters. Kivrak et al. [35]
also adopted SFM to be used as a local planner to generate a socially aware trajectory in a hallway
scenario. Silva et al. [56] took a shared effort approach to solve the human-robot collision avoid-
ance problem using Reinforcement Learning. Simulated results show that the approach enabled
the agents (human and robot) to avoid collisions mutually. Our proposed approach is validated not
in a single context, but multiple contexts such as hallway interactions, joining a group of people,
waiting in a line, and an art gallery interaction.

Dondrup et al. [17] proposed a combination of well-known sample-based planning and veloc-
ity costmaps to achieve socially aware navigation. The authors used a Bayesian temporal model
to represent the navigation intent of robot and human based on Qualitative Trajectory Calculus
and used these descriptors as constraints for trajectory generation. Alonso et al. [2] presented
an e-cooperative collision avoidance method in dynamic environments among interactive agents
(robots or humans). The method relies on reciprocal velocity obstacles, given a global path, to
compute a collision-free local path for a short duration. Turnwald et al. [62] presented a game-
theoretic approach to SAN utilizing concepts from non-cooperative games and Nash equilibrium.
This game theory-based SAN planner was evaluated against established planners such as re-
ciprocal velocity obstacles or social forces, and a variation of the Turing test was administered,
which determines whether participants can differentiate between human motions and artificially
generated motions. Aroor et al. [3] formulated a Bayesian approach to develop an online global
crowd model using a laser scanner. The model uses two new algorithms, CUSUM-A* (to track
the spatiotemporal changes) and Risk-A* (to adjust for navigation cost due to interactions with
humans), that rely on local observation to continuously update the crowd model. Unlike other
model-based approaches, our method does not require any training data to perform socially aware
navigation.

Okal et al. [48] presented a Bayesian Inverse Reinforcement Learning (BIRL)-based
approach to achieving socially normative robot navigation using expert demonstrations. The
method extends BIRL to include a flexible graph-based representation to capture the relevant
task structure that relies on collections of sampled trajectories. Kim et al. [34] presented an
Inverse Reinforcement Learning (IRL)-based framework for socially adaptive path planning
to generate human-like trajectories in dynamic human environments. The framework consists of
three modules: a feature extractor, a learning module, and a path planning module. Kretzschmar
et al. [37] proposed a method to learn policies from demonstrations to learn the model param-
eters of cooperative human navigation behavior that match the observed behavior concerning
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user-defined features. They used Hamiltonian Markov chain Monte Carlo sampling to compute
the feature expectations. To adequately explore the space of trajectories, the method relied on the
Voronoi graph of the environment from start to target position of the robot.

Human motion prediction is vital in SAN, as it allows the robot to plan and execute its motion
behaviors according to the predicted human motion. In contrast to traditional human trajectory
prediction approaches that use hand-crafted functions (social forces), Alahi et al. [1] proposed
an LSTM (Long Short-Term Memory) model that can observe general human motion and pre-
dict their future trajectories. Hamandi et al. [29] developed a novel approach using deep learning
(LSTM) called DeepMoTIon, trained over public pedestrian surveillance data to predict human
velocities. The DeepMoTIon method used a trained model to achieve human-aware navigation,
where the robots imitate humans to navigate in crowded environments safely.

Although SAN research is dominated by planning-related advancements, for a long-term HRI in
human environments, we need to understand how cooperative human navigation works. Psychol-
ogists and roboticists are looking into social cues and their effects on HRI to better understand the
socially aware navigation problem. Suvei et al. [57] investigated the problem of “how a robot can
get closer to people that it wants to interact with?” In a 2 X 2 between-subject study, the authors
investigated the effect of social gaze cues on the personal space invasion using a human-sized
mobile robot. The results from a 2 X 2 between-subjects experiment, with/without personal space
invasion and with/without a social gaze cue, indicate that social gaze did play a role in participants’
perceived safety of the robot. In another study, Tan et al. showed that bystanders and observers
of HRI felt safer around the robot than the actual interaction partner even though they both were
in very close proximity to the robot [59]. The authors justify the robot’s design by collecting the
responses of invited users evaluating the properties and appearance of the robot while interacting
with it. Rajamohan et al. [49], studied the role of robot height in HRI related to preferred interac-
tion distance. Subjective data showed that participants regarded robots more favorably following
their participation in the study. Moreover, participants rated the NAO most positively and the PR2
(Tall, with a fully expanded telescoping spine) most negatively.

2.2 Multi-objective Optimization

It is easy to think of a task as a single objective function, where there is a goal or cost function
that we are trying to either minimize or maximize. Ideally, this would always give the optimal
solution for a task; however, this is not always the case. More often than not, multiple variables
contribute to a cost function. An example of this is from basic economics, where there exists a
market for a widget. As the supply of this widget goes up, the demand decreases and vice versa.
This phenomenon would be known as a supply and demand curve where one objective is the
supply, and the other is the demand. In this case, the seller would want to find the optimal amount
of supply, such that demand provides the optimal amount of profit. If graphed, this supply and
demand curve, as shown in Figure 2, the points on the line would be Pareto-optimal points; no
point dominates any other. In this case, the seller is trying to maximize both objectives; therefore,
the hollow circles are the dominated points, as there exist solid circle points that are better in both
objectives. Typically, multiple Pareto-optimal points are forming a set, which is the solution type
that many multi-objective algorithms use [15].

Multi-objective optimization has already started to play a role in real-world applications [43].
Some examples of real-world multi-objective scenarios are high-speed civilian aircraft transporta-
tion [44], urban planning [4], and for designing trusses [14]. The trajectory planner used in this
article builds off of a pre-existing one that utilizes a multi-objective approach along with linear
combination [42].
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2.2.1 PaCcET. In some cases, optimizing a single objective does not yield the desired perfor-
mance, and therefore multiple objectives need to be considered when evaluating a policy’s fitness.
A standard method is to multiply a preset scalar value to each objective’s fitness score and then
add them all together. In some domains, this can lead to an optimal set of policies; however, in
some complicated domains, this method will yield sub-optimal policies. A solution to this is to use
a multi-objective tool, such as PaCcET, to evaluate policies on multiple objectives [64, 65] properly.
PaCcET works by first obtaining an understanding of the solution space and finding the Pareto-
optimal solutions. Next, PaCcET transforms the solution space and then compares each solution
giving a single fitness score representative of how well each solution performed in the transformed
space.

At a high level, PaCcET works by transforming the Pareto front in the objective space in a way
that it is forced to be convex. Transforming to objective space allows the linear combination of
transformed objectives to find a new Pareto-optimal point. PaCcET iteratively updates this trans-
formation to force non-explored areas of the Pareto front to be more highly valued than points
dominated by the Pareto front or points that are on the explored areas of the Pareto front.

PaCcET has seen a variety of applications: It has been used to extend the life of a fuel cell in
a hybrid turbine-fuel cell power generation system [16], the operation of the electrical grid on
naval vessels [52], the coordination of multi-robot systems [63], and for the efficient operation of
a distributed electrical microgrid [53], where a series of small power generation systems coordinate
to meet the demands of consumers. In each of these applications, it has been shown that PaCcET
functions at or above the solution quality of other techniques such as NSGA-II or SPEA2 [64], with
as low as one-tenth of the runtime.

For this project, PaCcET was used over other multi-objective tools because of its computational
speed [64], as shown in Figure 3. PaCcET was used to evaluate the possible trajectories developed
in the local planner. At each timestep, the sensor data is analyzed, and the desired features are
evaluated for each of the potential future trajectory points. PaCcET then uses the fitness values
for each feature of every future trajectory to develop the solution space and obtain the optimal
future trajectory. Since, at each timestep, future trajectories are developed independently, PaCcET
develops a brand new solution space at each timestep. By developing a new solution space at each
timestep, the local planner can be optimized in real-time.

3 METHOD

In this section, we detail our methodology of a socially aware navigation planner, the features or
objectives that we used to optimize the trajectories, and how PaCcET was implemented in the local
trajectory selection process. Figure 4 shows the overall high-level block diagram of the proposed
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Fig. 5. Navigation Planner — The navigation planner selects a short-term trajectory (green points represent
potential trajectory end-points) from the pool of possible trajectories (black points), optimized for adherence
to a long-term plan (blue line), obstacle avoidance, and progress toward a goal, and in the case of this article,
interpersonal distance.

approach. It is built on top of the well-established ROS navigation stack by modifying the local
planner using PaCcET. The overall function of the local trajectory planner at each timestep is
to generate an array of possible future trajectory points and evaluate each future trajectory point
based on a predefined feature set as shown in Figure 5. In previous work, the features were assumed
to have either no relationship or a simple linear relationship with one another; however, this is
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not always the case. Therefore, we need to consider the possibility that the features are dependent
on each other and have nonlinear relationships.

3.1 Features/Objectives

In the traditional navigation planner, the features extracted were each assigned their own cost (e.g.,
the path distance cost (Apqsp), the length that the robot has already traveled, the goal distance
cost (Agoar), the distance the robot is from the goal) [42]. The path distance will have a linear
relationship with the goal distance, since the change in one has a direct linear impact on the
other. Once each feature has a cost associated with it, each cost is multiplied by a pre-tuned scalar
and then added together, thus giving a linear combination, or weighted sum, in this case, the
cost function shown in Equation (1). We can think of this cost function as an objective, where
each possible future trajectory point has a cost or fitness associated with that objective. Since the
purpose is to minimize the overall cost function, the planner will take the best path possible that
minimizes the function, which in this case, will minimize both features.

cost(vy, Uy, vg) = a(Apath) + ,B(Agoal) (1)

This cost function has been adapted to include a heading difference (Apeqding) feature and an
occupancy (Aycc) cost feature, where the heading difference is the distance that the robot is from
the global path and the occupancy cost is the cost used to keep the robot from hitting something.
The same approach as in the previous cost function is taken in Equation (2). By taking a closer
look at just the heading difference and how that might affect the path distance or the goal distance,
it becomes less clear if there is only a linear relationship between the four. For example, if there
is an obstacle in the robot’s path, it will try and minimize goal distance by changing its heading,
thus increasing the heading feature cost. In turn, this also increases the path distance cost, though
this may or may not be linear.

COSt(Ux, Uy, U@) :a(Apath) + ﬁ(Agoal) + Y(Aheading)

+ 5(Aoce) @

Building upon prior work done in this area, we include socially aware navigation features such
as interpersonal distance (ID), distance from a group (GD), and distance from a social
goal (SGD). As a way to dissuade the robot from getting too close to a human, a cost function was
developed to penalize the robot at an exponential rate as the interpersonal distance decreases, as
seen in Equation (3) (for every human in the interaction scenario). Although we could penalize
the robot based on this at all times, it is not necessary if the interpersonal distance is so significant
that it would not be considered as a socially inappropriate distance. Therefore, the robot is only
penalized if the interpersonal distance is less than or equal to 1.5 meters. The interpersonal distance
threshold was chosen to be 1.5 meters to ensure that the robot remains in social space and does
not invade the personal space of the person [28].

IDs = e'/'P (3)

For the robot to not get too close to a group of people or not get in between them, we penalized
the robot based on GD whenever it is close to a group using Equation (4).

GDy = e'/9P (4)

Contrary to Equations (3) and (4), Equation (5) is akin to a reward to get closer to a social goal
rather than an actual goal. With this feature in place, the robot tends to reach a social goal for
a particular scenario while still adhering to the final goal location. For example, the social goal
for reaching the front of a desk when others are waiting in a line is the end of the line. So, the
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robot will reach the social goal first (end of the line) and eventually reaches the desk when it is the
robot’s turn.

SGDy = 5P (5)

Instead of adding these features’ cost into the previous cost function, as in Equation (2), we
assume that its relationship with other features might be nonlinear and therefore gets treated as
separate objectives. Since we know that the above cost function, Equation (2), works sufficiently
enough from previous work [42], we can treat it as its objective as well. Instead of optimizing just
one objective, we need to optimize multiple objectives, hence our multi-objective approach. Using
a multi-objective tool like PaCcET requires computational time, and, since this is intended to work
in real-time, any chance to improve the computation time should be utilized. Treating the first four
features used in the previous cost equation as a single objective not only speeds up this process but,
in turn, allows for the possibility to add even more features to our local trajectory planner. Using
PaCcET to do the multi-objective transformations, we essentially get a new cost function with a
PaCcET fitness denoted by Pr, which was modeled under the assumption of nonlinear relationships
between the objectives. Equation (6) shows how Py is a transformation function dependent on
multiple variables.

Py = T¢(Objy, Obji, . . . ., Objy) (6)

In this work, we are only interested in objectives such as interpersonal distance, distance from
a group, and distance from the social goal. The first objective is the original cost function (Equa-
tion (2)), which is the linear combination of the path distance, goal distance, heading difference,
and occupancy cost. The remaining objectives are the social features, such as: interpersonal dis-
tance, distance from social goal, and so on. Equation (7) shows the PaCcET fitness function with
our proposed objectives.

Py = Ty (cost(vy, vy, vg), IDf1, . . ., IDfy, GDy, SGDy), (7)

where ID¢, .. IDy, are the cost functions associated with interpersonal distance between n people
and the robot.

3.2 Trajectory Planning

The robot’s trajectory planning algorithm can be broken into three parts: the global planner, the
local planner, and low-level collision detection and avoidance. The global trajectory planner works
by using knowledge of the map to produce an optimal route given the robot’s starting position
and the goal position. The global path is created as a high-level planning task based upon the
robot’s existing map of the environment; this is regenerated every few seconds to take advantage
of shorter paths that might be found or to navigate around unplanned obstacles. The traditional
local planner’s role is to stay in line with the global path unless an obstacle makes it deviate from
the global path. The low-level collision detector works by stopping the robot if it gets too close
to an object. We use the traditional global trajectory planner and low-level collision detector [42]
and make adaptations to the local trajectory planner to incorporate interpersonal distance and
PaCcET.
Algorithm 1, Algorithm 2, and Algorithm 3 can be summarized as follows:

(1) Discretely sample the robot control space.

(2) For each sampled velocity (Vy, V, and Vp), perform a forward simulation from the robot’s
current state for a short duration to see what would happen if the sampled velocities were
applied. This is robot-specific, based on the footprint of the robot.

(3) Score the trajectories based on metrics.
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(a) Score each trajectory from the previous step for metrics such as distance to obstacles,
distance to a goal, and so on. Discard all the trajectories that lead to a collision in the
environment.

(b) For each of the valid trajectories, calculate the social objective fitness scores such as
interpersonal distance and other social features and store all the valid trajectories.

(4) Perform Pareto Concavity Elimination Transformation (PaCcET) on the stored tra-
jectories to get a PaCcET fitness score and sort the trajectories from lowest to highest

PaCcET fitness score.

(5) For a given timestep, grab the trajectory with index 0 from the sorted list of valid
trajectories.

Algorithm 1 shows the primary functions of the local trajectory planner and how the fu-
ture trajectory points were stored to be used with PaCcET. The trajectory planner is called ev-
ery timestep, which in this case, is every 0.1 second. Once the trajectory planner is called, the
Transform_Human_State function is called to transform human pose to the robot’s odometry ref-
erence frame, which allows the interpersonal distance corresponding to each possible trajectory
to be calculated in the Generate_Trajectory function. There are two methods of calculating the
possible trajectories. The first is assuming that the robot can only move forward, backward, and
turn. To produce the possible trajectories for this physical setup, we loop through every combina-
tion of a sample of linear velocities (V) and angular velocities (Vp) to generate trajectories. (For
a holonomic robot, a slight change in V; is also used to generate possible trajectories.) Once a
trajectory is created, we determine if it is valid based on the constraints for the first objective. For
example, trajectories that would make the robot hit a wall, obstacle, or human are not considered
strong trajectories and, therefore, will not be stored in the Store_Trajectory function. By not
storing these invalid trajectories, the speed at which PaCcET runs can be improved.

The second method assumes that the robot is capable of holonomic movement and can trans-
late with any V,, V,, Vy that are less than velocity limits. Given these movements, we again loop
through all the possible movements given the predefined number of V. samples, V,, samples, and
Vp samples. Again, if the trajectories are valid, then they are stored. Once all the valid trajectories
are stored for all possible movements, the Run_PaCcET function runs, giving back the best possible
trajectory, (7g), based on its multi-objective transformation process.

To run a multi-objective tool like PaCcET, each objective’s fitness needs to be calculated.
Algorithm 2 details the Generate_Trajectory function from Algorithm 1. The first function
that needs to be performed is the Calculate_State function, as the robot’s position and ve-
locity are used to determine the fitness values for the objectives. Using the state information
the Compute_Path_Dist, Compute_Goal_Dist, Compute_Occ_Cost, and Compute_Heading_Diff
functions are used to calculate the fitness values associated with the four pieces of the first ob-
jective. Using those fitness values, the first objective’s fitness is calculated by the Compute_Cost
function. Distance-based features such as interpersonal distance of each person, group distance,
and social goal distance are calculated, as shown in Algorithm 2 lines 8-10. Once all the objectives
have their fitness values, the trajectory along with the fitness values is returned to the local tra-
jectory planner algorithm, which saves all the valid trajectories and calls PaCcET Algorithm 3 to
output socially appropriate trajectories.

3.3 Integrating PaCcET

At the end of Algorithm 1, all the valid trajectories have been stored along with their objective
fitness scores in a vector of type trajectory. Algorithm 3 details the primary functions for
determining a single fitness value from multiple objectives. To run PaCcET, the objectives for
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ALGORITHM 1: Local Trajectory Planner Algorithm. The trajectory planner generates multiple
trajectories (T) given a number of Vy samples and Vy samples and calculates the independent cost for
each feature. The cost for each feature is based on the robots sensing of the human’s state (Hs) and the
robot’s state (Rg). At the end of a timestep, the best trajectory (7g) out of all valid trajectories (T) is
returned.

Input: Vi samples, Vy samples, Hg, R

Output: Best_Trajectory(7g)
1 for Each timestep do

2 Trans form_Human_State (Hg, Rs)

3 for Each Vy do

4 T« Generate_Trajectory(T, Hy)
5 if valid trajectory then

6 L Store_Trajectory (7°)

7 for Each Vy do

8 T« Generate_Trajectory(T, H)
9 if Valid Trajectory then

10 L Store_Trajectory (T°)
11 if Holonomic Robot then

12 T« Generate_Trajectory(T, Hs)
13 if Valid Trajectory then

14 L Store_Trajectory(7T")

15 Run_PaCcET (T)

16 | ReturnTg

each trajectory must be stored in a vector of type double, which is done in the Store_Objectives
function. Before running PaCcET’s primary functions, an instance of PaCcET must be cre-
ated. Next, the solution space and Pareto front are created by giving each trajectory to the
Pareto_Check function. Now that the Pareto front and its geometry have been calculated,
PaCcET can transform the solution space and give a single fitness value for each trajectory in
the Compute_PaCcET_Fitness function. Once each trajectory has its PaCcET fitness, they are
sorted from best to worst in the Sort_Trajectories function, which allows the function to not
only ascertain the best trajectory easily, but is also useful for debugging purposes. Algorithm 3
concludes by returning the best trajectory to the local trajectory planner algorithm.

3.4 Social Goal

Computing the social goal location is important, because often the actual goal location may not
be an appropriate location for interaction and explicitly commanding the social goal would not be
possible. A social goal can be defined as an appropriate location for a robot to involve in human-
robot interaction. For example, in a front desk-like scenario, the end of the line can be considered
social. For this work, the social goals for each interaction scenario were geometrically computed,
for O-formation scenario (joining a group), we fit a circle with the people in a group and find a
socially appropriate spot to join the group, as shown in Figure 6.

We found angles made by every person with the center of the formed circle using the law of
cosines: Equation (8), as shown below:

¢® = a® + b — 2ab * cos(9), (8)
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ALGORITHM 2: Generate Trajectory Algorithm. The generate trajectory function takes in an in-
stance of a trajectory (T) and the humans’ state (Hs) to compute the cost function for each feature. The
trajectory (T) is then returned to the local trajectory planner.
Input: T, H;
Output: T
1 S « Calculate_State(7")
2 path_dist < Compute_Path_Dist (S)
3 goal_dist « Compute_Goal_Dist (S)
4 occ_cost < Compute_Occ_Cost (S)
5 heading_dif f « Compute_Heading_Dif f (S)
6 cost < Compute_Cost(path_dist, goal_dist, occ_cost, heading_dif f)
7 for Each person do
8 L ID « Calculate_Interpersonal_Distance (Hs, S)

9 GD « Calculate_Group_Distance (Hs, S)
10 SGD « Calculate_Social_Goal_Distance (Hs, S)
11 Return Trajectory (77)

ALGORITHM 3: PaCcET Alogrithm. PaCcET (P), takes in the vector of valid possible trajectories T to
compute the multi-objective space and the PaCcET fitness (Py) for each trajectory.

Input: T

Output: 75
1 for Each trajectory do
2 L Store_Objectives(7T)
3 P « Initialize_PaCcET ()
4 for Each trajectory do
5 L Pareto_Check (7))

¢ for Each trajectory do
7 L Pr e« Compute_PaCcET _Fitness(7)

8 Sort_Trajectories(T)
9 Return 7g

HU = C'OSil[(ZR2 - D,’j)/ZRZ], (9)

where D;; is the Euclidean distance between person i, j, and R is the radius of the circle formed
by all the people in the group. Out of all the §;;’s, we pick one half of the widest angle as ap-
proach angle denoted by 8,. Now, joining a group problem (O-formation) boils doing to finding
the intersection of two circles, one formed by the people in the group and the other formed in the
wide-open sector with the center as the locations of either of the people making the widest sector.
The equations of the two circles to solve for are given as follows:

(x—h)*+ (y—k)* = R?, (10)

(x—hp)2 + (y—kp)2 =r? (11)

where (h, k) is the center of the circle formed by the group of people, (h,, k,) is the location of one
of the persons that formed the widest sector. The radius r in Equation (11) is obtained by solving
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Fig. 6. Figure illustrating the computation of social goal in the O-formation scenario. The red star represents
a goal that respects social norms.

Fig. 7. Figure illustrating the computation of social goal in waiting in a queue scenario. The red star repre-
sents the social goal.

for ¢ in Equation (8), where 6 = 0, a and b equals R, radius of the group formation. There are two
solutions when solving Equations (10) and (11), and we further filter one social goal from the two
solutions.

Similarly, we can fit a straight line as shown in Figure 7 for waiting in a queue scenario, and
social goal location would be the end of the line considering the personal space of the last person
in the line. Hence, in this case, the solution boils down to solving for the intersection of a line
and a circle. The equation of the line formed by the people can be found by fitting a line of form
y = mx + ¢ with the people’s locations. The circle formed using the last person’s location as the
center and a comfortable distance that the robot should maintain around the last person as the
radius is of the form (x — k)2 + (y — k)2 = r%. The two solutions to the line and circle intersection
can be obtained using quadratic roots, and the social goal is further filtered to the solution farthest
to the actual goal (desk).

The social goal calculation for Scenario 2 (art gallery) is hand-selected. Computing the social goal
in this scenario is beyond the scope of this article. The art-gallery scenario requires a perception
pipeline that can detect the location of the art on display, the area, and perimeter of the artwork to
compute a useful social goal location to interact with a person viewing the art or to determine the
activity zone to avoid traversing it. The social goal for Scenario 2 will be addressed in our ongoing
work on USAN; see Section 5.

In this section, we presented an in-depth illustration of our proposed PaCcET-based social plan-
ner, various cardinal objectives related to SAN, and methods to determine social goals using spatial
information such as locations of people. The next section, Section 4, presents the results of robots
performing appropriate navigation behaviors in simulation and real-world environments.

4 RESULTS

To validate our proposed approach, we considered four different scenarios, namely, a hallway
scenario, an art gallery scenario, forming a group, and waiting in a queue. All this was tested in
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(a) Stage, a 2D simulator. (b) Upgraded Pioneer 3DX robot.

Fig. 8. Platforms used to validate our proposed social planner.

simulation using the 2D simulator, Stage [26] on a machine with an Intel sixth-generation i7
processor @3.4 GHz, 32 GB of RAM. The simulated environment for each hallway experiment
was the second-floor hallway of the Scrugham Engineering and Mines building at the University
of Nevada, Reno. The map of the building used in the simulation was built using the gmapping
package for SLAM on the PR2. The simulated PR2 is comparable to the real-world PR2 for sensing
and movement capabilities and is using AMCL for localization on the map. The simulated PR2 uses
a 30-meter range laser scanner that is identical to the real PR2 robot’s laser scanner’s capability
and the humans in the simulation exhibit very simple motion behaviors. Follow-up scenarios are
simulated in a 25m X 25m open space in the stage environment, as shown in Figure 8(a). PR2
robot was simulated to run both traditional planner and our modified PaCcET based planner. In
Figure 8(a), the purple agent is the simulated PR2, and the rest of the agents are humans formed
as a group. For real-world validation, we used an upgraded Pioneer 3DX platform, shown in
Figure 8(b). The Pioneer robot that we used is equipped with an RPLIDAR-A3, a 30-meter range
laser scanner with a 360° field of view, and a webcam as sensors for perception. For detecting
people using a laser scanner, we used the work of Leigh et al. [40]. The robot’s computational
unit is also upgraded to a laptop with an Intel Core i7-7700HQ CPU @ 2.80 GHz X 8 processors,
16 GB RAM GeForce GTX 1050 Ti GPU with 4 GB of memory. The pioneer robot also uses AMCL
for localization on the map. The hallway scenarios on the real robot were validated in the same
location as the simulation experiments. Art gallery, waiting in line, and group formation scenarios
are validated in the lobby area (7m X 7m approx.) situated on the first floor of the Scrugham
Engineering and Mines building of University of Nevada, Reno.

4.1 Simple Scenario

The hallway scenario was divided into four sub-scenarios, namely, passing a stationary human,
passing a walking human in the same direction, an encounter with a human walking on the ap-
propriate side, and passing a walking human in the opposite direction.

In the first experiment, the simulated robot was tasked with getting to a goal while passing close
to a static simulated human. Figure 9(a) shows that when using the traditional planner, the robot
made sure to avoid a collision with the simulated human but did not consider any social distance.
The same will be the case for the other experiments as well, since the traditional planner does
not consider interpersonal distance into its cost function. The PaCcET-based planner did consider
interpersonal distance, and therefore the robot deviated from a more straight-lined path as a way
to satisfy the second objective. Once the threshold for the interpersonal distance was no longer an
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lated human passing on the appropriate side of a lated human walking on the inappropriate side of a
narrow hallway. narrow hallway in opposite direction.

Fig. 9. Simple two-objective optimization scenarios with a single simulated human. The simulated human
trajectory is shown using a dotted magenta line, trajectory of traditional planner is represented using a
dotted green lines (two lines to represent footprint of the simulated PR2) and PaCcET-based SAN trajectory
is represented using a solid blue line (two lines to represent footprint of the simulated PR2). Direction of
simulated human and PR2 are represented using arrows.

issue, the robot only needed to minimize the first objective; therefore, returning to a straight-line
path. It is worth noting that in all the conducted experiments, the robot also considered a wall as
an obstacle and was required to disregard trajectories that would lead to a collision, which is why
the robot refrained from deviating any further from the global trajectory.

The second experiment was developed to mimic a passing scenario where the robot has a set
goal but needs to pass by a simulated human who is traveling much slower in the same direction.
Figure 9(b) shows that the traditional trajectory planner merely made sure that a collision would
not take place as it tried to minimize its cost function. The PaCcET-based planner deviated from
its global trajectory to consider the interpersonal distance objective, then returned to the global
trajectory once the threshold for the interpersonal distance was no longer an issue.

Similar to the previous experiment, the third experiment involves both the simulated human
and robot moving; however, in this case, the simulated human is now moving at a normal walking
speed in the opposite direction of the robot—the robot and simulated human pass close to one
another but not close enough to cause a collision. Figure 9(c) shows that the traditional trajectory
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Fig. 10. Scenario 1: (real-world interaction) Pioneer robot encounters a stationary human standing in the
path of the robot in a hallway.

planner altered its path ever so slightly to ensure that a collision would not happen, where the
PaCcET-based trajectory planner not only ensured that a collision would not take place but also
considered interpersonal distance and provided the simulated human with additional space while
passing.

The previous experiments show that when using a PaCcET-based trajectory planner, interper-
sonal distance can be considered when selecting a local trajectory in both static and dynamic con-
ditions where a collision is not imminent. However, the case of a collision that would occur unless
either the simulated human or the robot moves out of the way also needs to be considered. This
experiment considers a simulated human who is not paying attention or unwilling to change their
course and walking directly towards the robot. Figure 9(d) shows that the traditional trajectory
planner was successful at avoiding the collision as expected; however, it did so while minimizing
its cost function as much as possible, which caused the robot to get very close to the simulated
human. When using the PaCcET-based trajectory planner, the robot not only avoided the collision
but also gave the simulated human additional space to satisfy the interpersonal distance objective.
It is worth noting that once the interpersonal distance threshold was no longer an issue, the robot
used its holonomic movement for a short time as a way to quickly minimize the heading difference
portion of the original cost function objective.

We extended hallway scenarios to the real-world by implementing our proposed approach on a
Pioneer 3DX robot and validating it in both static and dynamic environments. Figure 10 shows a
real-world hallway situation where a human is standing in the path of a robot that is attempting to
go down the hallway. The robot, when using the traditional planner, treated the human as a mere
obstacle and avoided a collision but violated the personal space rule of the human. However, our
approach using PaCcET-based local planning considered the stationary human’s personal space
using interpersonal distance objective and deviated from the global trajectory in such a way that
the personal space rule is obeyed. In Figure 10, the blue trajectory is generated by our proposed
approach, and the traditional approach generates the red trajectory.

Figure 11 shows a real-world hallway interaction like the previous one, but in this case, the
human is moving as opposed to a static human. In this experiment, the human is walking in the
opposite direction of the robot and also on the wrong side of the hallway. As one can observe,
the traditional planner (red trajectory) managed to avoid a collision with the human but went
very close to the person, thereby intruding into the human’s personal space. Our proposed ap-
proach not only avoided a collision but also maintained a safe distance while trying to avoid the
human walking on the wrong side of the hallway. Unlike the PR2, Pioneer is a non-holonomic
robot; hence, the holonomic behavior, as seen in Figure 9(d), is not seen in the real-world inter-
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Fig. 11. Scenario 1: (real-world interaction) Pioneer robot encounter a human walking in the opposite direc-
tion and on the side of the hallway.

action. It is worth noting that in Figures 10 and 11 the robot with PaCcET trajectory planner
showed signs of legibility of movements. In both these cases, the efforts of the robot trying to
clear the human’s personal space are clearly seen using our method as opposed to the traditional
planner.

4.2 Complex Scenarios

In the previous section, 4.1, we showed both in simulation and real-world that by just considering
one social feature, i.e., interpersonal distance, our approach was able to account for personal space
while navigating a hallway (with different maneuvers of a human partner). In this section, we will
see the results of our approach applied to complex social scenarios such as art gallery interactions
(Figure 12), waiting in a line (Figure 13) and joining a group of people (Figure 14). These scenarios are
representative of both human-human and human-environment interactions that occur in normal
social discourse.

Figure 12(a) shows the behavior of our social planner and traditional planner in an art gallery
situation (three objectives) in simulation. We considered an art-gallery scenario, but it can be
generalized to other similar scenarios like a tour-guide robot in a museum or an attraction. For
this scenario, we staged a human-robot interaction consisting of a robot presenting a piece of art
(hanging to a wall) to a human standing nearby. Both the traditional planner (red line) and the
SAN planner (blue line) were given the same goal (represented as a red star) and start (START)
locations. The traditional planner steered the robot to the goal location, cutting the standing
person from the back (inappropriate). However, the SAN planner steered the robot to a location
that is appropriate to present the details of the art to the human (social goal). The SAN planner
approached the social goal, leaving enough personal space based on the interpersonal distance
feature.

Art-gallery interactions are not always presenting the artwork on display. While navigating
an art gallery, one should consider the affordance and activity spaces between the artwork and
an individual looking at the art. Activity space is a social space linked to actions performed by
agents [41]. For example, the space between the subject and a photographer is an activity space,
and we humans generally avoid getting in the way of such activity spaces. Affordance space is
defined as a social space related to a potential activity provided by the environment [51]. In other
words, affordance spaces are potential activity spaces. An environment like an art gallery provides
numerous locations as affordance spaces (place in front of every piece of art is an affordance space).
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(c) Scenario 2 (real-world): Pioneer robot interacting
with a human in an art gallery where the robot with
SAN planner presents itself at a position appropriate
to talk about the art on display, the blue trajectory
is generated using the proposed SAN planner.

(d) Scenario 2 (real-world): Pioneer robot taking
onto account activity space in an art gallery where
the robot with SAN planner avoids going into the
activity space, represented by the blue trajectory.

Fig. 12. Validation results of Scenario 2 (art gallery) in both simulation and real-world.

When a visitor steps into one such affordance space, that space between the artwork and the
interacting human becomes activity space.

In Figure 12(b), we demonstrated an appropriate behavior around activity space in simulation
using our proposed SAN planner. For this scenario, we staged a human-robot interaction consisting
of a human interacting with a piece of artwork hanging to the wall. Both the traditional planner
(red line) and the SAN planner (blue line) were given the same goal (represented as a red star) and
start (START) locations. The traditional planner steered the robot to the goal but did not account
for the activity space, i.e., the robot traversed through the activity space (inappropriate). However,
the PaCcET-based SAN planner steered the robot to the goal location while avoiding the activity
space (appropriate social behavior). The social goal, while avoiding an activity zone, is not an end
goal where the robot would stop but is more like a social goal that acts as a way-point in reaching
the end goal.

Similarly, the two art gallery behaviors (presenting art and avoiding activity space) are imple-
mented and validated on a Pioneer robot, and the results are shown in Figure 12(c) and Figure 12(d)
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our proposed approach, leading the robot to join
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(d) Scenario 3 (real-world): Pioneer robot is joining a
line, formed in front of a doorway scenario. The tra-
ditional planner generated the red trajectory, guid-
ing the robot to a location besides the first person
(inappropriate), cutting the line. The blue trajectory,
our proposed approach, leading the robot to join
the line (appropriate).

Fig. 13. Validation results of Scenario 3 (waiting in a queue) in both simulation and real-world.

Figure 13(a) shows the behavior of our social planner and traditional planner in the waiting
in a queue situation (five objectives) in simulation. Here, we considered a front-desk interaction,
but this can be generalized to other similar social scenarios where a robot or a human is required
to form a line before reaching the goal. For example, social scenarios such as getting coffee from
a public coffee machine, taking an elevator, and so on. In this context, we staged a human-robot
interaction consisting of a robot that wants to interact with a front-desk representative of an
office building where other people were being served on a first-come-first-served basis. Both
the traditional planner (red line) and the SAN planner (blue line) were given the same goal
(represented as a red star) and start (START) locations. The trajectory planner tried to steer the
robot to the goal location and stopped at an inappropriate location (besides the person currently
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being served) as the traditional planner treated the human as an object. However, the SAN planner
steered the robot to an appropriate location, i.e., end of the line, positioning the robot behind the
last person (social goal), considering personal space as well.

Figures 13(b) and 13(c) show results with variations in scenario 3 (waiting in a queue). The vari-
ations are the locations of people and the orientation of the queue formed by them. Figures 13(b)
and 13(c) show that our method is robust. Figure 13(a) shows the behavior of our social planner
and traditional planner in the waiting in a queue situation (five objectives) in the real-world. Here,
considering a doorway social situation where we humans expect to go one after another and not
rush or cut the line. Both the traditional planner (red line) and the SAN planner (blue line) were
given the same goal (represented as a red star) and start (START) locations. The traditional trajec-
tory planner tried to steer the robot to the goal location and stopped at an inappropriate location
(beside the first person in front of the door). However, the SAN planner steered the robot to an
appropriate location, i.e., end of the line, positioning the robot behind the last person (social goal),
considering personal space as well.

Figure 14(a) shows the behavior of our social planner and traditional planner in Joining a group
situation in simulation. Here, we considered an HRI situation where the robot is required to join a
group of three people. However, this can be generalized to interact with more people. Both the tra-
ditional planner (red line) and the SAN planner (blue line) were given the same goal (represented
as a red star) and start (START) locations. The trajectory planner steered the robot to position it
at an awkward location (middle of an interacting group), as the traditional planner did not ac-
count for group proxemics and group dynamics. However, the SAN planner steered the robot to
an appropriate location, i.e., a vacant spot in the circle, considering group proxemics.

Figure 14(b) shows a variation in the open spot where the robot needs to join. In this case, the
open spot is in a tricky location, as the robot has to approach the group from the back. Our proposed
approach found a way around the group to the social goal. However, the traditional planner leads
the robot to the group’s center while getting in between two people (blue and green shirts).

Figure 14(c) not only differs in the size of the circle formed but also is a variation of O-formation
where the robot is leading the conversion opposing to joining a conversation. When joining a
group for discussion, we tend to maintain a uniform spacing between every member of a group;
whereas joining a group to lead the conversation, all the members of the group except the lead
squish together so the leader can make eye contact with all the members (with as little field of view
as possible). In this case, the traditional planner guides the robot to the center of the group, whereas
the proposed method guides the robot to a social goal location where the robot can effectively
interact with the group.

Figure 14(d) shows the results of our method implemented on a Pioneer robot executing an
appropriate social behavior of joining a group. Both the traditional planner (red line) and the SAN
planner (blue line) were given the same goal (represented as a red star) and start (START) locations.
The trajectory planner steered the robot to position it at an inappropriate location (the middle of
an interacting group), as the traditional planner did not account for group proxemics and group
dynamics. However, the SAN planner steered the robot to an appropriate location, i.e., a vacant
spot in the circle, considering group proxemics.

4.3 Comparison Results

We compare our optimization-based SAN approach with a recent inverse reinforcement learning-
based SAN method [36]. Kollmitz et al. [36] investigated force control as a natural means to teach
social trajectories to robots using inverse reinforcement learning trained using demonstrations.
The IRL method learned hallway passing through demonstrated trajectories. We used the hallway
passing scenario as a common task for all three planners, and the results for various metrics are
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(a) Scenario 4: The robot is joining a group where
the robot with SAN planner forms an O-formation
in order to interact with the group. The traditional
planner generates the red trajectory and places the
robot in the center of the group. Proposed SAN
planner generated the blue trajectory which leads
the robot to form an O-formation.
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(c) Scenario 4 (robot leading the group’s conver-
sation): The traditional planner generated the red
trajectory and placed the robot in the center of the
group. Proposed approach generated the blue trajec-
tory which leads the robot to form an O-formation
(appropriate).

15:21
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(b) Scenario 4 (change in group’s open spot): The
traditional planner generated the red trajectory and
placed the robot in the center of the group while
navigating between two people (inappropriate). Pro-
posed approach generated the blue trajectory which
leads the robot to form an O-formation (appropri-
ate).
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(d) Scenario 4 (real-world): Pioneer robot with SAN
planner is joining a group, forms an O-formation in
order to interact with them. The traditional planner
generates the red trajectory and places the robot
in the center of the group. Proposed SAN planner
generated the blue trajectory which leads the robot
to form an O-formation.

Fig. 14. Validation results of Scenario 4 (joining a group) in both simulation and real-world.

shown in Table 1 (average of five runs). The simulated task involves a robot passing a human in a
hallway, the length of the hallway scenario (straight-line distance) is kept at five meters, and the
robot meets a simulated human halfway through the hallway. We used the following metrics to

compare our work:

(1) Total distance: Total distance traveled by the robot to reach the goal.
(2) Time to reach goal: Total time taken to reach the goal location.
(3) Lateral distance maintained: The lateral distance maintained by the robot when passing

the human.

(4) No. of Proxemic intrusions: Number of times the robot intruded into the human’s per-

sonal space.
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Table 1. Comparison of Traditional Navigation, IRL-based Social Navigation, and Our Approach
on the Hallway Passing Scenario (Results Are Average of Five Runs)

| Metric Expected | Traditional IRL PaCcET |
Total distance (Dy) LOW 5.04m 5.21m 5.34m
Time to reach goal (t) LOW 13.2s 15.94s  14.36s
Lateral distance maintained (D;) HIGH 0.9m 1.01lm*  1.39m
No. of Proxemic Intrusions (N) LOW 5 0 0
Distance when robot deviated (Dg4) HIGH n/a 1.8m 1.5m

*The number of proxemic intrusions into personal space is considered 0 for IRL-based method even though
the IRL approach maintained an average lateral distance of 1.01 m only (the max range of personal space
according to Hall’s model of proxemics is 1.2 meters). This is because the participants trained the robot for
their comfortable distance; hence, we assume the robot did not intrude the personal zone (Proxemic theory
depends on many factors such as familiarity with robots).

(5) Distance when robot deviated: Distance from the human when the robots starts to devi-
ate. This metric may contribute to the legibility and predictability of a robot trajectory [5,
19].

It is evident from Table 1 that the traditional planner outperformed other social navigation
methods in terms of performance metrics such as distance traveled and time taken to reach the
goal. However, traditional navigation methods under-performed in terms of social metrics such as
lateral distance maintained, proxemic intrusions, and distance from a human when the robot started
to show deviation in its path. However, it is worth noting that it is acceptable for a social robot to
choose a performance-based sub-optimal path, as the quality of interaction takes precedence over
performance. The distance traveled by the IRL-based SAN method is less than the distance traveled
by our approach, and the difference is explained by the fact that our approach maintained a larger
lateral distance when passing a person. On the time to reach goal metric, our method performed
better, as our method is a modification of traditional navigation.

On social metrics, our method performed well on lateral distance maintained compared to the IRL
and traditional navigation methods. Our experiments show that our approach and IRL-based ap-
proach reported zero proxemic intrusions into personal space (max range of 1.2 meters). However,
it is worth noting that a person’s comfortable personal space with a robot depends on numerous
factors (both robot and human) such as gender, familiarity with robots [58]. The number of prox-
emic intrusions into personal space is considered zero for IRL-based method even though the IRL
approach maintained an average lateral distance of 1.01 m only (the max range of personal space
according to Hall’s model of proxemics [28] is 1.2 meters). This is because the participants trained
the robot for their comfortable distance; hence, we assume the robot did not intrude the personal
zone. On the other social metric (distance from which the robot started to deviate), the IRL-based
planner performed slightly better when compared to our approach, and we attribute this to the fact
that the IRL-based social navigation is a global planner, whereas our approach to social navigation
is at the local planning stage. Planning for social objectives with global planning happens at the
beginning of the planning task, whereas planning for social objectives at a local planning stage
happens as the robot is approaching a person. Hence, the IRL-based planner was able to deviate
when passing the person much earlier than our approach. It is worth noting that both the social
navigation methods outperformed the traditional planner, as the traditional planner did not even
deviate from its planned trajectory, as it passed the human very closely. Such deviations before
passing a person may lead to legibility and predictability of trajectories [19].
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5 DISCUSSION AND FUTURE WORK

With a series of experiments in simulation and with a real robot using a multi-objective optimiza-
tion tool like PaCcET at the local planning stage of navigation, we showed that social norms related
to proxemics could be addressed in a SAR system, which in turn can aid the acceptance of robots
in human environments. We showed that our approach could handle a simple, single-person in-
teraction in a hallway scenario. We also showed that our approach could handle sub-scenarios
(different types of interaction in a scenario) such as a stationary human in a hallway, passing be-
havior, and so on. Similarly, in an art-gallery situation, our methods showed that it is applicable
for sub-scenarios such as presenting artwork and avoiding activity zones. We demonstrated the
generalizability of our approach by introducing multiple humans in complex social scenarios with
multiple features such as interpersonal distances, group proxemics, activity zone, and social goal
distance (adherence to social goal). Finally, we showed that our modified local planner could adjust
to changes in scenarios such as the location of people, different line formations, and O-formations.

This work dealt with low-level decisions of which future trajectory points are better for the
given interaction scenario. One assumption in this work is that the robot has prior knowledge
of the ongoing interaction. We will extend this work using a knowledge graph approach [55],
implementing a high-level decision-making system that can select the crucial objectives for the
quality of HRI for an autonomously sensed scenario [5]. We will extend this work by validating
this system using its conformity to social metrics defined by the social parameters we discussed
and surveying the perception of social intelligence of the resultant behavior. We plan to utilize
not just the distance-based feature but also features related to orientation, such as heading angle,
heading difference between the robot and the people/group, and so on, along with features related
to the environment, such as the position of the agents (robot and people) in the environment (for
example, in a hallway, distance from the right side of the hallway) [54].

When examining the social impact of a SAN system, it is important that any instruments used
are properly assessing social intelligence. Kruse et al. [39] identified Comfort, Sociability, and Nat-
uralness as challenges that SAN planners should tackle in a collaborative human environment
[39]. We identified other challenges such as predictability, legibility, safety, acceptance, and so on,
and working on providing clear definitions and metrics/methods for measuring them. Perceived
Social Intelligence (PSI) is an important parameter we identified, which has importance in robot
motion in human environments. Social intelligence is the ability to interact effectively with others
to accomplish one’s goals [24]. Social intelligence is critically important for any robot that will
be around people, whether engaged in social or non-social tasks. Some aspects of robotic social
intelligence have been included in HRI research [10, 32, 45, 47], but current measures are brief and
often include extraneous variables. We designed a comprehensive instrument for measuring the
PSI of robots [7-9], which should more precisely measure the social impact of our approach on
people in the robot’s environment and people observing those interactions [6, 33].

6 CONCLUSION

We presented a novel approach to the socially aware navigation (SAN) problem at a local plan-
ning stage by transforming the Pareto front to an objective space (forced to be convex) using
Pareto Concavity Elimination Transformation (PaCcET) method. PaCcET was implemented
in local planning of well-established ROS navigation stack to deal with spatial communication at
a low-level planning stage. We validated the developed system both in simulation and on a mo-
bile robot to show the applicability of our proposed approach with multiple scenarios involving
multiple humans. A follow-up study will investigate the social aspect of the navigation behaviors
using scales that already exist and new scales that our group is currently investigating.
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