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Abstract
Pathogen infection triggers complex signaling networks in
plant cells that ultimately result in either susceptibility or
resistance. We have made substantial progress in dissecting
many of these signaling events, and it is becoming clear that
changes in proteome composition and protein activity are
major drivers of plant-microbe interactions. Here, we highlight
different approaches to analyze the functional proteomes of
hosts and pathogens and discuss how they have been used to
further our understanding of plant disease. Global proteome
profiling can quantify the dynamics of proteins, post-
translational modifications, and biological pathways that
contribute to immune-related outcomes. In addition, emerging
techniques such as enzyme activity–based profiling, proximity
labeling, and kinase-substrate profiling are being used to
dissect biochemical events that operate during infection.
Finally, we discuss how these functional approaches can be
integrated with other profiling data to gain a mechanistic,
systems-level view of plant and pathogen signaling.

Addresses
Department of Plant Pathology and Microbiology, Iowa State University,
Ames, IA, 50014, USA

Corresponding authors: Walley, Justin W. (jwalley@iastate.edu);
Elmore, James M. (jmelmore@iastate.edu)
Current Opinion in Plant Biology 2021, 63:102061

This review comes from a themed issue on Cell signaling and gene
regulation

Edited by Hong Qiao and Anna N. Stepanova

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.pbi.2021.102061

1369-5266/© 2021 Elsevier Ltd. All rights reserved.

Keywords
Immune signaling, Plant pathogen, Proteomics, Posttranslational
modification.
Introduction
Proteins are the machines of the cell, driving nearly
every aspect of organismal growth, reproduction, and
stress responses. Although transcriptome analyses give a
good indication of what the cell can possibly do, proteome
analyses can yield a better picture of what the cell is
www.sciencedirect.com
doing at any given point in time. Mass spectrometry
(MS)-based, quantitative proteomics is essential to
understanding global changes in protein abundance and
how the diversity of protein posttranslational modifica-
tions (PTMs) contribute to plant responses to patho-
gens. Over time, the field of proteomics has evolved
from being primarily descriptive, generating lists of
proteins or PTMs, to more functional and quantitative

approaches that aim to understand the molecular
mechanisms that regulate cellular activities [1]. Func-
tional proteomics includes not only expression profiling
under perturbation but also quantifying PTMs, charac-
terizing the behavior of specific classes of proteins,
determining activated enzyme states, and identifying
and testing protein-protein interactions. These ap-
proaches can be integrated with other -omics data to
generate multilevel network models of plant function.
Thus, MS-based proteomics is a robust tool to not only
generate hypotheses but also to test them in sophisti-

cated ways not possible 10 years ago. In this review, we
describe recent technological advances that enable
functional proteomics and highlight their application
toward studying plant-pathogen interactions.
MS strategies
Many options exist for MS-based quantitative prote-
omics (Fig. 1a) [2]. Decisions on what strategies to use
are influenced by the specific biological question(s), and
the equipment/expertise available for sample analysis.
Researchers interested in global-scale proteome changes
during infection would likely choose an untargeted analysis
(also termed “discovery” or “shotgun”) approach to
quantify as many proteins as possible. For researchers
interested in accurate and precise quantification of the
behavior of a specific protein, small group of proteins or

specific PTM sites, a targeted analysis is preferred. In both
approaches, researchers can decide on how the data are
acquired and quantified, and these decisions will influ-
ence experimental design and sample processing.

Untargeted or discovery analysis: data-dependent
and data-independent acquisition
Traditionally, data-dependent acquisition (DDA) has
dominated untargeted proteomics (Fig. 1b). In DDA
mode, MS1 scans identify the 10e25 most abundant
peptide ions at each point of the chromatographic
gradient. These precursor ions are sequentially selected
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Strategies in quantitative mass spectrometry-based proteomics. (a) A general sample processing and analysis workflow for a quantitative liquid chro-
matography mass spectrometry (LC-MS) experiment. Optional steps are indicated in orange text. (b) In data-dependent acquisition (DDA), the most
abundant ions in MS1 scans during of the LC gradient are isolated individually and fragmented to generate MS2 spectra used for peptide identifications.
The semistochastic nature of ion selection results in variable coverage of peptide species from run to run. (c) In data-independent acquisition (DIA), mass-
to-charge (m/z) ranges are selected for fragmentation, yielding multiplexed MS2 spectra used for peptide identification and quantification. This approach
results in consistent measurements and more uniform sample coverage. (d) Label-free quantification relies on comparing peptide amounts across
different LC-MS runs. (e) Label-based quantification approaches, such as using isobaric mass tags, use chemical modifications to distinguish different
samples. Modification allows the mixing of different samples and co-analysis in the same LC-MS run. (f) Targeted MS quantification using selected- or
multiple-reaction monitoring (SRM/MRM) uses a triple quadrupole (Q-Q-Q) instrument to select specific precursor ions and measure specific fragment
ions. (g) Targeted MS quantification using parallel reaction monitoring (PRM) uses a hybrid quadrupole-orbitrap or Q-time of flight instrument to select
specific precursor ions, but all fragment ions are measured in the high-resolution mass analyzer.
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Proteomics for plant immune signaling Elmore et al. 3
and fragmented to acquire MS2 spectra. MS2 spectra in
DDA are mostly pure in that each corresponds to single
analyte (except in cases of chimeric spectra arising from
co-isolation of ions with similar m/z). MS2 spectra are
matched to a sequence database to identify specific
peptides with various search engines using spectrum-
centric scoring [3]. Recent advances in “open” search
algorithms that use a wide precursor mass tolerance

enhance our ability to identify PTMs and chemical
modifications that can be missed by traditional narrow
mass window searches [4]. A deep proteome survey of
Arabidopsis developmental stages and immune responses
to flg22, an immunogenic epitope of bacterial flagellin,
used open searches to estimate that phosphorylation
and acetylation each affect approximately 1.25% of the
total identified protein content [5]. Ion selection in
DDA is semistochastic and depends on the relative
abundance and ionization efficiency of co-eluting pep-
tides in the sample. Thus, usually the most abundant

peptides are identified consistently from run to run. As a
consequence, when analyzing a data set from multiple
DDA runs, missing values are often encountered, which
limits the statistical analysis of all identified proteins
across a study.

Data-independent acquisition (DIA) approaches have
emerged as a viable alternative to DDA (Fig. 1c). DIA-
MS exhibits high quantitative accuracy and good
coverage, even for low-abundance proteins, which alle-
viates the missing value problem [6]. Sequential Window

Acquisition of All Theoretical Mass Spectra (SWATH-
MS) is one of the most popular DIA methods [7]. In
SWATH-MS, all precursor ions in a narrow mass window
(e.g. 400e425 m/z) are selected for fragmentation,
yielding a highly multiplexed MS2 spectrum containing
product ions from all co-eluting precursors in that mass
window. The mass window is then shifted (i.e. 425e450
m/z, 450e475 m/z, etc.) in subsequent scans to cover the
mass range of most tryptic peptides. This cycle is
repeated over the course of the run to generate an un-
biased map of detectable peptides in the sample. DIA
data, as a result, are more consistent and reproducible

than DDA [7]. Identifying peptides from complex DIA
MS2 spectra can be challenging, and various peptide-
centric and spectrum-centric approaches have been
developed [6]. Some of these rely on using prior infor-
mation from DDA data in the form of spectral libraries,
but in silico generation of theoretical libraries and library-
free approaches are accelerating the adoption of DIA-MS
[6]. Another feature of DIA is the data can be queried
retroactively, meaning that as spectral libraries and algo-
rithms are developed, previous DIA results can be rean-
alyzed to increase protein quantification.

Recent studies have used DIA-MS to study plant-pathogen
interactions. SWATH-MS analysis of apoplastic fluid from
susceptible barley leaves infected with Pyrenophora teres f.
teres quantified over 1000 proteins and found strong
www.sciencedirect.com
upregulation of multiple classes of pathogenesis-related
(PR) proteins, including antifungal thaumatin-like PR-5
proteins [8]. This finding suggests that the fungus deploys
mechanisms to overcome the activities of these defense
proteins. A similar strategy identified over 2000 proteins
from tomato leaves at 4-, 8-, and 24-h after infection with
Pseudomonas syringae pv. tomato DC3000. Most of the detec-
ted changes occurred at 8 and 24 h, including a strong

upregulation in proteins associated with energy generation,
immune response, and redox processes and a down-
regulation of carbon fixation in the chloroplast [9]. SWATH-
MS also uncovered a downregulation of photosynthesis and
an increase in flavonoid and jasmonic acid biosynthesis
associated with rice resistance to leaffolder insect infesta-
tion [10]. As new mass spectrometers with enhanced res-
olution and scan speeds are introduced, DIA-MS has the
potential to overtake DDA-MS as the method of choice for
discovery-based proteomics.

Quantification and multiplexing in untargeted
proteomics: label-free and label-based approaches
Many researchers are interested in quantifying the molec-
ular changes that drive phenotypes such as disease resis-
tance or susceptibility. MS-based protein or peptide
quantification can be divided into label-free and label-based
approaches [11]. Label-free methods for DDA data include
MS1-based quantification of extracted ion chromatograms
(XICs) from precursor peptides (Fig. 1d), MS2 count-based

methods such as spectrum counting, and combinations of
both [12]. Peptides identified in label-free DIA data are
quantified using MS2 and/or MS1 XICs [6]. One key
consideration for label-free strategies is the inability to
multiplex samples can lead to run-to-run variability, which
can lower quantitative precision.

Label-based quantification strategies are designed
around the ability to multiplex, meaning that different
samples are chemically modified, combined, and co-
analyzed in the same liquid chromatography mass

spectrometry (LC-MS) run. This feature can eliminate
important sources of variability, greatly reduce missing
data, and substantially reduce demands on instrument
time. Stable isotope labeling by amino acids in cell
culture (SILAC) has been performed in plants, but their
autotrophic nature leads to incomplete incorporation of
heavy isotopes under most growth conditions [13]. An
alternative to SILAC to metabolically label proteins is to
use 15N labeling [13]. Most often, plant samples are
labeled at the peptide level using chemical labeling via
reductive dimethylation [14], isotope-coded affinity

tags [15], or isobaric mass tags, such as iTRAQ [16] or
TMT [17] (Fig. 1e). These strategies vary on the degree
of multiplexing that can be achieved and whether pep-
tides are quantified at the MS1 or MS2 level. Further-
more, the number of co-analyzed samples can be
extended by combining different types of labels [18]. In
addition to reducing variability, sample multiplexing can
substantially reduce instrument time, especially in
Current Opinion in Plant Biology 2021, 63:102061
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studies with hundreds of samples to be analyzed. In
general, MS2 level isobaric tag-based quantification is
highly precise but less accurate, especially for large fold
changes due to ratio compression, whereas label-free
XIC-based quantification yields less precise but more
accurate measurements [19,20].

Targeted quantification by reaction monitoring
MS-based targeted quantification strategies program
theMS to isolate and quantify a small group (usually less
than 100) of peptides. Selected- and multiple-reaction

monitoring (SRM/MRM) use a triple quadrupole (Q-
Q-Q) instrument to monitor and isolate specific,
preselected precursor ions in Q1 (Fig. 1f). Precursors are
then fragmented in Q2, and specific product ion XICs
are measured in Q3. This dual-stage filtering empowers
excellent sensitivity for quantifying even very low-
abundance peptides [21]. SRM/MRM assay develop-
ment can be resource intensive and requires the selec-
tion of proteotypic peptides, optimal transitions
(precursor ion pairs>fragment ion pairs), and validation
before quantitative experiments. Similar to SRM/MRM,

parallel reaction monitoring (PRM) uses the quadrupole
of Q-Orbitrap or Q-TOF instruments as a mass filter for
targeted precursors, but all generated fragment ions are
monitored in the high-resolution mass analyzer (Fig. 1g)
[22]. This obviates the need to pick specific transitions
up-front. In all cases, the use of isotopically labeled
synthetic peptides can assist method development,
validation, and quantification [23].

The power of MS-based targeted approaches lies in the
ability to quantify nearly any protein or PTM site using

short chromatographic gradients. Recent targeted ap-
proaches have characterized phosphorylation mecha-
nisms that regulate the NAPDH oxidase RBOHD
activity during pattern- and effector-triggered immune
(PTI/ETI) responses [24e26]. SRM identified antag-
onism between phospho- and acetyl-sites that regulate
activity of the immune receptor RRS1-R in Arabidopsis
[27]. SRM confirmed in planta BIK1-dependent phos-
phorylation of the calcium channel OSCA1.3 at serine
54, which is required for stomatal closure during PTI
[28]. Thus, targeted MS strategies can replace Western

blotting with custom antibodies and can speed confir-
mation of in vivo protein and PTM dynamics [29].
Functional proteomics approaches
Purify to probe proteins participating in particular
processes
Reducing sample complexity is useful for studying specific
aspects of plant-microbe interactions because it can boost
identifications of low-abundance plant and/or pathogen pro-
teins. This can be achieved by purifying specific proteins, or-
ganelles, or structures during sample preparation and/or two-
dimensional peptide chromatography during LC-MS. Affin-
ity purification/affinity enrichment (AP/AE) using antibodies
Current Opinion in Plant Biology 2021, 63:102061
or epitopes to purify target protein(s) of interest is useful to
not only quantify low-abundance proteins but also to identify
new PTM sites and interacting protein partners [30,31]. AE-
MS using an anti-all-WRKY antibody quantified the dy-
namics of the WRKY transcription factor family upon flg22
elicitation [32]. DeBlasio et al. used a similar strategy to
identify host proteins that associate withPotato leafroll virus and
used virus mutants to characterize subnetworks of protein-

protein interactions that control different stages of the viral
infection cycle [33e36].

Recent work has identified tissue-type and organelle-
specific dynamics during disease progression. Quanti-
tative analysis of purified tomato leaf nuclei revealed
hundreds of proteins whose abundance dynamically
changes during Phytophthora infection and led to the
identification of AT-Hook-Like DNA-binding proteins
as positive regulators of the immune response to
Phytophthora capsici [37]. Analysis of the barley leaf

epidermal proteome has characterized proteins that
modulate plant susceptibility to powdery mildew, which
infects only epidermal cells [38]. Fungal secretome an-
alyses have identified putative virulence factors [39],
and proteomics of apoplastic fluid has characterized
both pathogen and plant proteins that are secreted
during infection [40]. Recently, extracellular vesicles
from plants and pathogens have emerged as key medi-
ators of infection. Studies have revealed the identity of
the protein cargo contained within these secreted ves-
icles, including important immune-related proteins

from the plant side and virulence-associated proteins
from the pathogen [41e43]. These various pre-MS
enrichment strategies are critical to identify not only
specific plant organellar proteins for more focused
studies but can also enable the quantification of path-
ogen proteins that can be present at low levels in whole-
plant samples.

Proximity labeling
Proximity labeling is a relatively new technology for
determining protein-protein interactions and offers a
powerful approach to determine biochemical events
occurring during plant-microbe interactions. Proximity
labeling is complimentary to AP-MS strategies [30]. AP-
MS can capture high-affinity interactions but not weak
transient interactions and has low efficiency for recov-
ering membrane proteins [44]. Proximity labeling over-
comes these inherent limitations of AP-MS. Proteins of
interest are fused with a catalytic enzyme that, in the
presence of substrate, rapidly covalently tag proximal

proteins. The most commonly used enzymes are biotin
ligase variants (BioID, BioID2, TurboID, and mini-
TurboID) and ascorbate peroxidase (APEX), which both
result in biotinylation of proximal proteins [45e47].
However, because APEX requires the addition of toxic
H2O2 and biotin-phenol, biotin ligase variants are best
suited for in vivo studies. Finally, because of fast kinetics,
proximity labeling enables identification of weak and
www.sciencedirect.com
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transient interactors and is able to effectually recover
interactors of membrane proteins [48e52].

As proximity labeling is an emerging technique, it is just
beginning to shed light on interactors of proteins
involved in plant immune signaling. Conlan et al. used
BioID to identify proteins that interact with AvrPto, an
effector protein in P. syringae, to further elucidate plant

immune responses [53]. Das et al. used BioID to
identify transient interacting proteins to a tobacco
mosaic virus replicase [54]. Zhang et al. identified the
interacting proteins to N, a resistance protein that rec-
ognizes tobacco mosaic virus. They found the biotin
ligase variant TurboID to outperform BioID and
BioID2 and demonstrated the utility of TurboID for
identifying transient interactors of the N immune re-
ceptor. Among the N-interacting proteins, the E3
ubiquitin ligase UBR7 was shown to negatively regulate
N protein levels and N-mediated resistance to TMV

[55]. Proximity labeling will surely complement other
protein-protein interaction screens to generate more
complete host and hostemicrobe interactomes.

PTM profiling
Protein PTMs are covalent attachments of various
functional groups to specific amino acid residues. PTMs
can modulate enzyme activity, protein structure, and
interaction with other proteins, thus impacting protein
function and/or localization within the cell. MS-based
proteomics is currently the method of choice to iden-
tify and quantify PTMs at the proteome and individual
protein levels. The vast array of different PTMs and
potentially modified sites suggests a level of complexity

to protein regulation of which we are only scratching the
surface [56e58].

Phosphorylation has been the most intensively studied
PTM owing to its prevalent occurrence, relative ease in
purification of phosphopeptides, and the extensive
involvement of kinase signaling networks in plant im-
munity [59]. Refinements to phospho-enrichment
strategies, peptide separations, and MS technology
improvement have enabled the quantification of 10,000
to >30,000 phosphosites in a single study. Typically,

one- or multi-stage enrichment strategies using immo-
bilized metal-affinity or metal oxideeaffinity chroma-
tography are used to achieve comprehensive coverage of
phosphorylation events [60,61]. Recent large-scale
phosphoproteome analyses have uncovered dynamic
phosphorylation events during PTI and ETI that regu-
late plant immunity to pathogens [25,62]. Phospho-
proteomics combined with mutant analyses can reveal
direct and indirect targets of phosphosignaling cascades
[63]. Comparison of the cytoplasmic and chromatin-
associated phosphoproteomes of mitogen-activated

protein kinase (MAPK) knockout lines identified
shared and specific target proteins, including new
www.sciencedirect.com
kinases and chromatin-associated proteins that regulate
in immune signaling [64,65].

Large-scale profiling of other PTMs during plant-microbe
interactions is becoming more common. Enrichment of
acetylated and ubiquitinated peptides is typically
performed using antibody affinity-based enrichment [66e
69]. Recent studies have identified hundreds of

ubiquitin-modified proteins during PTI responses in rice
[70] and Arabidopsis [71]. In an alternate purification strat-
egy, Ma et al. used a genetically encoded tagged ubiquitin
protein and two-step purification to isolate ubiquitin-
conjugated proteins upon treatment with flg22 [72]. They
found many known immune proteins to be ubiquitinylated
during flg22 responses and identified receptor-like kinase
RKL1, ubiquitin-conjugating enzyme UBC13, and protea-
some component RPN8b as negative regulators of PTI re-
sponses [72]. Quantitative acetylome profiling of maize in
response to HC-toxin produced by Cochliobolus carbonum
revealed hyperacetylation of many proteins involved in
transcriptional regulation, including transcription factors,
co-repressors, and chromatin remodeling enzymes [67]. In
addition, several recent studies have identified thousands of
acetylated proteins in diverse plant pathogens, although the
impact of these PTMs on pathogenicity remains to be
studied [73e75]. Analysis of reversible cysteine oxidation in
Arabidopsis uncovered distinct, time-dependent patterns of
protein oxidation during ETI [76]. These and other studies
lay the foundation for understanding the functional roles of
specific PTMs and PTM cross-talk during plant-microbe

interactions.

Activity-based protein profiling
Activity-based protein profiling (ABPP) is a powerful
technique to characterize enzyme active states. ABPP
uses small-molecule tags that covalently bond to
enzyme active sites [77]. The tags are linked to various
reporter groups, such as fluorophores for gel-based
visualization, biotin for affinity-based purification, or
reactive azide or alkyne moieties for click-based reporter
additions. ABPP tags have been developed for a wide
variety of enzymes, including distinct subclasses of
cysteine proteases, proteasome subunits, serine hydro-
lases, vacuolar processing enzymes, glycosyl hydrolases,

and ATP-binding proteins [77].

Because ABPP probes label enzymes in their active
states, they are an excellent tool to survey functional
subproteomes of plants and pathogens. Franco et al.
identified global reprogramming of peroxidase and
serine protease activity in the phloem of citrus trees
infected with the citrus greening pathogen [78]. Com-
bined ABPP and abundance profiling of apoplastic fluid
from tomato revealed activation of the cysteine pro-
teases Rcr3 (Required for Cladosporium fulvum resistance

3) and Pip1 (Phytophthora inhibited protease 1), post-
translational activation of specific P69 subtilase serine
Current Opinion in Plant Biology 2021, 63:102061
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proteases, and a general inhibition of GDSL-lipases
during Ralstonia solanacearum infection [79]. Rcr3 and
Pip1 are related proteases that have differential roles in
immunity to fungal, oomycete, and bacterial pathogens
[80]. ABPP demonstrated that Rcr3 is processed in
planta by P69B and other host subtilases to convert it to a
catalytically active form [81]. ABPP of plant enzymes
can also identify pathogen virulence factors that inhibit

host immune-related enzymes [82]. Glycosidase activity
profiling revealed a strong decrease in Nicotiana
benthamiana b-galactosidase BGAL1 activity during P.
syringae infection and revealed the presence of small
inhibitor molecule produced by Pseudomonas during
infection [83]. Further investigation discovered a
mechanism by which BGAL1 contributes to plant im-
munity by hydrolyzing glycans decorating bacterial
flagellin, thus exposing it to host proteases that process
it to immunogenic peptides that are recognized by FLS2
RLKs in Nicotiana and Arabidopsis [83].

N-terminomics for protease substrate identification
In addition to profiling active proteases, identification of

protease targets is of key interest because proteolysis
acts at many levels of infection, including host immune
suppression, pathogen recognition, peptide hormone
signaling, priming, and the hypersensitive response
[84e86]. Recent efforts have exploited the ability of
diverse plant species to recognize the P. syringae effector
protease AvrPphB to engineer new disease resistance
specificities to unrelated pathogen proteases [87e89].
To apply this approach to new pathosystems, the target
cleavage sequence of pathogen proteases must be
identified.

Some of the most widely used methods to identify pro-
tease substrates include TAILs (terminal amine isotopic
labeling of substrates) [90], COFRADIC (combined
fractional diagonal chromatography) [91], and ChaFRA-
DIC (charge-based fractional diagonal chromatography)
[92]. All three methods rely on a first step to block or
label primary amines (exposed N-termini and lysines) at
the protein level, followed by enzymatic digestion, which
yields new primary amines that are subsequently
depleted from the sample. This negative selection step

enriches native protein N-termini and N-terminal pro-
teolytic products, which are analyzed via LC-MS. These
techniques can link host proteases with different
immune pathways, as well as identify effector protease
substrates, ultimately unraveling mechanisms of disease
resistance and susceptibility.

Kinase substrate identification and kinase signaling
networks
Kinase-signaling networks serve essential functions
during plant-microbe interactions. Protein microarrays
are one approach to uncover kinase substrates. Using
Current Opinion in Plant Biology 2021, 63:102061
protein microarrays, Popescu et al. were able to recon-
struct a signaling network comprised of 10 MAPKs and
570 putative substrates [93]. Another approach to
directly identify kinase substrates is multiplexed assay
for kinase specificity (MAKS) [94]. For MAKS, protein
extracts are incubated with a recombinantly produced
kinase. After incubation, the samples are multiplexed
using isobaric tags and analyzed by MS using standard

phosphoproteomic workflows. Thus, MAKS allows for
high-throughput proteome-wide identification of direct
kinase substrates, including substrates of the receptor-
like kinases LYK3 and NORK, which are required for
nodulation and arbuscular mycorrhizal associations in
Medicago truncatula [94]. A conceptually similar method
is kinase assay linked phosphoproteomics (KALIP 2.0),
where phosphopeptides are extracted from plant tissue,
dephosphorylated, and then incubated in vitro with re-
combinant kinases [95]. This method resulted in the
identification of 5,075 putative targets of nine kinases,

including MPK6 and CPK11, after incubation with the
elicitor flg22 [95].

Computational reconstruction of kinase-signaling net-
works from phosphoproteomics data sets offers another
approach to predict the relationship of kinases and po-
tential substrates. Activation sites of protein kinases are
regulated by phosphorylation in their activation loop (A-
loop) [96,97]. Because A-loop phosphorylation is
necessary for kinase activation, phosphosite intensity in
the A-loop can be used to infer kinase activity. Using this

information, various approaches have reconstructed
kinase signaling networks by correlating phosphosite
level with kinase activation state [98e100].

Looking ahead: integration of orthogonal data sets
for systems-level predictions
Host and pathogen signaling during infection is coordinated at
multiple molecular, temporal, and spatial scales. One key
challenge moving forward is to integrate different types of
functional proteomics data with orthogonal genome, inter-
actome, transcriptome, metabolome, and phenome informa-
tion to generate predictive models of the mechanisms
underlying disease resistance and susceptibility [101,102].
One issue is data from different sources can have disparate

properties. Current proteomics data lack the depth of most
transcriptome studies, and the “bottom-up” approach of
analyzing peptides can result in uncertainty in protein assign-
ments. Furthermore, the diversity of functional proteoforms
generated from the same protein-coding genemeans it is hard
to derive a single, protein-level measurement that can be
matched to a gene or transcript. In addition, different -omics
data can relate to each other in different ways, so there is no
“one size fits all” solution for data integration. There are a
multitude of available approaches, ranging from correlation/
cluster analyses and pathwaymapping tomachine learning and

mathematical modeling [101e103]. It has been shown that
www.sciencedirect.com
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the predictive power of gene regulatory networks can be
improved by combining transcription factor protein and
phosphosite abundance to predict target transcript regulation
[104]. Thus, true integrative analysis differs from parallel data
collection and interpretation and exploits the synergistic
properties of different data types to discover novel biological
relationships [105].

Integrated transcriptome, protein interactome, and
mutant analyses uncovered Arabidopsis protein sub-
networks that contribute to quantitative disease resis-
tance to Xanthomonas campestris [106]. Ding et al.
integrated transcriptomic data and Genome-Wide As-
sociation Study (GWAS) with enzyme assays, prote-
omics, and mutant analysis to elucidate the kauralexin
biosynthesis pathway that contributes to Fusarium stalk
rot resistance in maize [107]. Time-resolved, multio-
mics analyses revealed coordinated molecular changes in
Candidatus liberibacter asiaticuseinfected citrus trees

before the development of citrus greening symptoms
and identified biomarkers for early detection [108,109].
Sekiya et al. combined proteome and metabolome
measurements with weighted gene co-expression
network analysis in rust-resistant and rust-susceptible
eucalyptus to predict the protein modules that regulate
metabolites associated with immunity and disease
[110]. Nobori et al. integrated transcriptomic and pro-
teomic data of P. syringae isolated from wild-type and
mutant Arabidopsis to discover bacterial virulence
mechanisms that are suppressed by host salicylic acid

signaling [111]. These and other studies exemplify the
power of multiomics data integration to generate a
systems-level view of plant-microbe interactions.
Conclusion
The functional proteomics approaches described above
are just some of the technologies that are being applied
to gain new insights into diverse plant pathosystems.
Global proteome profiling during infection can identify
specific proteins, PTMs, and biological pathways that
contribute to disease resistance and susceptibility.
Activity-based profiling, proximity labeling, and kinase-

substrate profiling characterize specific immune
signaling subnetworks and pathogenic strategies that
operate during infection. One challenging, but exciting,
prospect is integrating these data with other -omic data
to associate molecular traits with each other and connect
mechanisms with immune outcomes. Together, these
systems approaches can guide breeding and engineering
efforts, leading to the development of disease-resistant
crops and improved global food security.
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