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ABSTRACT

As Human-Robot Interaction becomes more sophisticated, mea-

suring the performance of a social robot is crucial to gauging the

effectiveness of its behavior. However, social behavior does not

necessarily have strict performance metrics that other autonomous

behavior can have. Indeed, when considering robot navigation, a

socially-appropriate action may be one that is sub-optimal, result-

ing in longer paths, longer times to get to a goal. Instead, we can

rely on subjective assessments of the robot’s social performance by

a participant in a robot interaction or by a bystander. In this paper,

we use the newly-validated Perceived Social Intelligence (PSI) scale

to examine the perception of non-humanoid robots in non-verbal

social scenarios. We show that there are significant differences be-

tween the perceived social intelligence of robots exhibiting SAN

behavior compared to one using a traditional navigation planner

in scenarios such as waiting in a queue and group behavior.

CCS CONCEPTS

• Human-centered computing → Empirical studies in HCI;

User studies; Empirical studies in interaction design.
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1 INTRODUCTION

Robots can employ navigation behavior that considers social factors

(such as personal space) in addition to common performance met-

rics (e.g., goal distance or path deviation) in order to improve how

it is perceived by those around it. This consideration of social infor-

mation is called Socially-Aware Navigation (SAN). Typically, social

navigation behavior is evaluated using performance metrics that

don’t completely consider how people perceive the behavior of the
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robot. It can be hard to evaluate the SAN behavior as many actions

that a robot can take to be more socially conscious would make

the robot perform worse (more time to get to a goal, a longer path)

than traditional navigation planners. Since such social behavior is

for the benefit of the people around the robot, it is important to

assess how we as humans perceive the robot from a social context.

Measuring the resultant performance of the robot system is a key

challenge. Robot navigation behavior can typically be evaluated

using objective performance metrics, such as time taken to goal,

smoothness of movement, deviation from planned paths, efficiency,

etc. [9, 16, 22]. However, socially-appropriate behavior often results

in lower performance on these metrics in order to act in a socially-

appropriate manner. Therefore, instruments to measure the social

performance of a robot’s actions is required. One way to compara-

tively evaluate SAN behavior is to assess the social intelligence of

the robot. Social intelligence is defined as the ability to successfully

interact or communicate with others to accomplish goals [10] and

to navigate social environments [4].

When evaluating a robot, several metrics already exist for exam-

ining how a robot’s behavior affects its perception. Commonly-used

survey instruments examine either positive [6] or negative [18]

feelings about a robot. However, some of these scales do not drive

at a concept that is demonstrated by socially-aware behavior, social

intelligence. Our perceptions of robots with SAN are measured im-

precisely by the current survey instruments used in HRI research.

Common constructs, such as Intelligence may refer to many aspects

of intelligence, not merely social intelligence. We evaluate whether

a newly-validated Perceived Social Intelligence (PSI) instrument [4]

can be utilized to differentiate bystander responses to SAN behavior

when compared to a traditional navigation planner.

In this paper, we extend prior work on socially-aware navigation

planning [3] by measuring how people perceive the social intelli-

gence of a robot as it navigates in multiple scenarios. We provide a

quantitative understanding of how the social intelligence of robots

is perceived with SAN compared to a traditional model of navi-

gation. Assessing the perceived social intelligence of robots with

SAN improves their applications in the real-world and how they

interact/navigate around humans in a variety of social settings.

2 BACKGROUND

As social beings, we have a common understanding of what be-

haviors are appropriate for shared human-human interactions. If a

robot can abide by these boundaries, it could give the impression

that it knows the rules well enough to respect them. The adoption

of socially assistive robots can suffer if the robots do not follow

social norms that people value [17]. One open question for socially-

aware navigation is, “How do we evaluate social mapping/navigation
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videos showing robot trajectories generated by our SAN planner [3]

showing a human-robot interaction using animated agents. Recent

work details the real-world validation and technical details of the

optimization-based SAN planner [3].

Our goal in this work was to create experimental scenarios where

participants were able to observe the interactions of humans and

robots and quantitatively compare their behavior, which is compli-

cated for several reasons. It can be challenging to create a controlled

experiment for interpersonal interaction. A person interacting with

a robot can behave in ways the robot does not expect. It is not easy

to create a natural environment that also controls the necessary

experimental variables. Finally, it can be difficult for someone partic-

ipating in interaction to note their contemporaneous feelings about

interaction as it is happening. We developed an experiment where

a bystander observes overhead views of robots and humans inter-

acting and rate the resultant robot behavior. Here, we outline the

scenarios we chosewhere the participant could be a bystander to the

human-robot interaction, which allowed participants to perceive

the robot’s social intelligence based on the interaction provided

(socially-aware vs. traditional navigation).

Perceived Social Intelligence (PSI) measures can be administered

as a long-form (80 items) or short-form (20 items) questionnaire, or

users can select relevant items as per their needs [5]. To measure so-

cial intelligence, we use the PSI short form. This short-form consists

of 20 statements having to do with measuring the robot’s social

intelligence. It would make sense that if observers relate social-

awareness in the navigation to social intelligence, the following

hypothesis will be supported:

Hypothesis: Participants who observe a socially-aware navigation

planner will perceive the robot as more socially intelligent than

one that is utilizing a traditional navigation planner.

3.1 Experiment Design

To test the above hypothesis, we asked participants to view videos

of simulated robot movements near humans and environmental

features relevant to the navigation task. These videos were render-

ings of the robot and person’s positions on a white background

(see Figure 1). The figures are rendered as outlines of people or

robots, thus simplifying the scene for the viewer. This overhead

view also removed considerations of interaction features, like facial

expressions or gestures, thus controlling only movement effects.

We asked participants to rate the robot’s movement for each video

for their perception of social intelligence (PSI).

There were three simulation scenarios for each navigation cate-

gory: Socially-Aware navigation and Traditional navigation. This

between-subjects design allowed participants to be randomly as-

signed to one of these two categories. The experiment was dis-

tributed through the online Qualtrics survey platform and partici-

pants were given the PSI short form [4] immediately after watching

each video. At the beginning of the survey, we asked participants

for their age, gender, and career/field of study. The next sections

describe the simulated scenarios the participants viewed.

3.1.1 Waiting in a �eue. In the waiting in a queue scenario, the

simulated robot demonstrates socially-aware navigation by joining

the queue behind the last person in that queue (see Figure 1). In the

traditional navigation scenario, the robot cuts to the front of the

queue, cutting off those already in the line.

3.1.2 Joining a Group. In this scenario, the simulated robot with

socially-aware navigation joins in the group by completing the

“O" formation [13] (see Figure 1). Interacting groups typically form

O-formations, participants of the group tend to conform to it, and

others tend to respect it. The simulated robot approaches the sim-

ulated person closest to the outside before joining the group. The

traditional navigation robot joins in the group by cutting into the

group’s center, getting close to the other humans, and not account-

ing for a group setting’s social norms.

3.1.3 Art Gallery. In this scenario, the robot with socially-aware

navigation approaches the human and oriented itself to the side

of the “art" or item on the wall so as to “present" to the human

(see Figure 1). However, the robot with the traditional navigational

planner crossed the human’s personal space orienting itself in front

of the human and in front of the “art" or item on the wall.

3.2 Participants

We recruited 70 participants (25 Female, 43 Male, 1 Agenderflux,

and 1 Non-Binary). The age range was from 18-65 with a mean of

28. One participant was omitted from the data set due to the failure

of answering all questions in the Group scenario PSI rating. Each

participant was randomly assigned to one of the two interaction

conditions, socially-aware navigation, or traditional navigation.

4 RESULTS

A Shapiro-Wilk test was used in R [21] to determine data normal-

ity. Two out of the three conditions were normally distributed;

therefore, an ANOVA was run for the normally distributed condi-

tions (Queue and Group). A Kruskal-Wallis test was used for the

non-normally distributed data for the Art scenario.

After conducting an ANOVA on the Queue scenario, there was

a statistically significant difference between PSI ratings of robots

with socially-aware navigation compared to traditional navigation

(F(1,67)= 10.32, p<0.01). Figure 2 shows the significant difference

between the socially-aware (SAN) and traditional (TRA) navigation

groups for PSI ratings. Robots with SAN were rated significantly

higher on the PSI compared to the traditional navigation.

An ANOVA showed a statistically significant difference between

PSI ratings in the Group scenario. Robots with socially-aware navi-

gation were rated as significantly more intelligent on the PSI than

robots who demonstrated the traditional navigation (F(1,67)= 12.46,

p<0.001). Figure 2 shows the significant difference in PSI ratings

for the SAN and TRA groups.

There was no statistical significance after conducting a Kruskal-

Wallis on the Art scenario. The PSI of a robot with SAN was rated

similarly to a robot’s ratings with the traditional model of naviga-

tion (Chi-squared= 0.35, p>0.05). Figure 2 shows the similarities

between PSI ratings for the SAN and TRA navigational groups.

5 DISCUSSION

The findings largely support the hypothesis that participants will

rate a simulated agent higher if exhibiting socially-aware navigation

behavior than behavior typical of a traditional planner. The distinct
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