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ABSTRACT 
 
Abnormal functional network connectivity has been related 
to nicotine addiction where similar patterns of dysfunction 
were found after applying dynamic or static connectivity 
methods. Further developments indicate that connectivity 
patterns might also exhibit a dysfunctional frequency 
spectrum. This work employs a quasi-stable time-varying 
functional connectivity framework to explore frequency 
effects related to nicotine use. Results suggest that nicotine 
abstinence in addicted subjects is linked to a frequency 
decrease of resting state connectivity fluctuations. This 
effect was found in one out of four quasi-stable connectivity 
states. 
 

Index Terms— Functional connectivity, fMRI, nicotine 
addiction. 
 

1. INTRODUCTION 
 
Allen et. al [1] described functional states as temporal lapses 
of functional connectivity during which the connectivity 
remained quasi-stable. The concept has been widely applied 
to whole brain analysis where the number of time-varying 
connectivity estimations is large. Detecting quasi-stable 
lapses of time is achieved using unsupervised machine 
learning methods such as clustering. Each cluster results in a 
quasi-stable functional connectivity pattern visually 
displayed as the cluster centroid. Centroids are estimated by 
the vector of average values from the members of the 
cluster. This way, each clustered element is associated with 
a given cluster resulting in a membership function. 
Membership values point to one of the centroids 
representing the connectivity pattern of the functional state.  

The assumption that centroids represent the predominant 
pattern of each state has become useful when interpreting 
the clustering results. This representation agrees with the 
concept of quasi-stable connectivity. However, little 
attention has been put to the relatively small connectivity 
fluctuations observed within the cluster. To include 
information from temporal fluctuations, one method that has 
been proposed is to cluster a concatenation of functional 
connectivity and its temporal derivatives [2]. The main 
contribution of this method is the unveiling of a new set of 

cluster patterns resurfacing from the derivatives showing 
patient-control differences [3, 4]. The inclusion of 
derivatives also revealed periodicity of functional 
connectivity at the multivariable level that is comparable to 
the behavior of dynamic systems [5]. This work explores 
changes in oscillatory frequency linked to nicotine. The 
study of this oscillatory behavior exhibited by functional 
connectivity can lead to a better description of resting state 
brain activity as well as provide newer features for brain 
illness biomarkers.  

The rest of this manuscript is organized as follows. 
Section 2 describes the smoker sample cohort and the 
methods employed in this work. Section 3 presents the main 
results. Section 4 discusses the observations made through 
the application of the methods employed. 
 

2. METHODS 
 

2.1. Sample Cohort 
 
The sample cohort for this study included 80 subjects (37 
females) with medium to high nicotine dependence assessed 
by the Fagerström Tolerance Questionnaire (FTQ). The 
FTQ scores ranged from 7 to 12. Smoking was avoided 3 h 
before scanning. Subjects age ranged from 19 to 54 with an 
average of 34.8 (standard deviation of 10.2). Subjects did 
not suffer from injury to the brain, brain-related medical 
problems, bipolar or psychotic disorders. A urinalysis test 
rejected the use of other drugs including marijuana. 
 
2.2. Preprocessing 
 
Resting state functional MRI data were collected on a 3T 
Siemens TIM Trio (Erlangen, Germany) scanner. 
Participants kept their eyes open during the 5-minute resting 
scan. Echo-planar EPI sequence images (TR = 2,000 ms, TE 
= 29 ms, flip angle = 75°) were acquired with an 8-channel 
head coil. Each volume consisted of 33 axial slices (64 × 64 
matrix, 3.75 × 3.75 mm2, 3.5 mm thickness, 1 mm gap). 
Resting state fMRI data were preprocessed using the 
statistical parametric mapping software (SPM; 
http://www.fil.ion.ucl.ac.uk/spm) [6] including slice-timing 
correction, realignment, co-registration and spatial 
normalization. Images were transformed to the Montreal 

http://www.fil.ion.ucl.ac.uk/spm


Neurological Institute standard space. The first five scans 
were discarded to allow for T1 equilibration. The DVARS 
method [7] was used to find spike regressors where the root 
mean square head movement exceeded 3 standard 
deviations. Time courses, with a size of 145 time steps, were 
orthogonalized with respect to i) linear, quadratic and cubic 
trends; ii) the 6 realignment parameters and iii) realignment 
parameters derivatives. The decision to pre-process these 
nuisances at this point is based on recent recommendations 
in the field [8]. The fMRI data were smoothed using a full-
width-at-half-maximum Gaussian kernel of size 6 mm. The 
data were then analyzed with Infomax based group 
independent component analysis (gICA) [9, 10] with 120 
and 100 components for the first and second decomposition 
levels respectively [11]. A total of N=39 gICA components 
were selected for further analysis. Each component points to 
a specific brain network with a corresponding time varying 
signal that we denote as the time course. In this resting state 
experiment, each gICA component is denoted a resting state 
network (RSN). RSN time courses were then filtered using a 
band-pass filter 0.01 to 0.15 Hz. 
 
2.3. Dynamic connectivity and derivatives 
 
The next step was to estimate a time varying functional 
connectivity from RSN time courses that we called the 
dynamic functional network connectivity (dFNC). The 
dFNC data was obtained using the average-sliding-time-
window-correlation (ASWC) approach [12] with nominal 
window (44 sec) and average (50 sec) lengths. Each subject 
had 98 dFNC time courses. Since the estimated ASWC data 
is of discrete nature, we employed discrete derivative 
techniques [3]. The first sample does not have a previous 
one, thus we utilize forward differences by subtracting the 
second sample from the first. Backwards difference was use 
for the last sample by subtracting this last one from the 
previous one. Any sample in the middle was processed 
using the central difference corresponding to the subtraction 
of the next sample minus the previous sample divided by 
two. The derivative was applied to the ASWC from each 
pair of RSNs. The next step in the dFNC pipeline is to apply 
clustering. We concatenated the ASWC and its temporal 
difference (estimated derivatives). For each time point there 
will be 741 (N(N-1)/2) ASWC values plus 741 (N(N-1)/2) 
derivatives. A total of 1482 (N(N-1)) values per time point 
were used for the clustering algorithm. 

 
2.4. Clustering 
 
Obtained dFNC data were clustered using the k-means 
clustering method with a correlation distance to obtain a 
finite set of dFNC states. Since the number of clusters k is a 
parameter that must be estimated before continuing, we used 
the Davies-Bouldin (DB) index to estimate the number of 
valid clusters as evidence suggests this is an efficient 
method of estimating k [13, 14]. We ran clustering with nine 

different values of k ranging from 2 to 10 and a DB index 
was estimated for each one. The optimal k is indicated in the 
DB index plot by its minimum shown in Figure 1 as k=6.   

Following the procedure previously suggested for 
derivatives in [5], we looked for possible similar cluster 
patterns. In particular, it is possible that a single large cluster 
is divided in two if derivates are included in the k-means. In 
that case the functional connectivity patterns should be 
highly similar, but with different derivatives. This is the 
case illustrated in Figure 2, where two pairs of centroids are 
highly correlated and their derivatives are of opposite sign. 
Figure 3 shows centroids which consist of a typical dFNC 
pattern and an additional derivative of dFNC pattern. Due to 
the similarities shown in Figure 2 we grouped clusters 1 and 
2 into a dynamic state denoted as State A. Clusters 3 and 4 
were also grouped as State B. Clusters 5 and 6 could not be 
grouped and were assigned one state each. 
 

 
Figure 1. The optimal number of clusters was obtained using the 
Davies-Bouldin (DB) index. The minimum DB index points to the 
optimal number of clusters as 6. 
 

 
Figure 2. Clusters were paired according an opposite pattern of the 
derivatives. The numeric pairing is divided in two, one for the 
dFNC data and one for derivatives. The dFNC parts of the 
centroids are correlated to establish their similarity. Paired dFNCs 
must exhibit a strong similarity. The derivative part shows strong 
correlations but opposite signs. These two characteristics do not 
apply to centroids 5 and 6. 

 
2.5. Oscillations  
 
One of the main explanations for the presence of clusters 
with opposite sign derivatives is the existence of 
oscillations. For example, during a lapse of time 
corresponding to State A, the membership function for the 
corresponding time will oscillate between cluster 1 and 
cluster 2. A similar example could be made of State B with 
clusters 3 and 4. Figure 4 show a single time course example 
for the two cases we described. Even though not all subjects 



show the same periodic patterns, the oscillations in Figure 4 
are relatively common and easy to find through dFNC data.  

For each state where oscillations exist (states A and B), 
we find the frequency with highest power. The frequency 
with maximum power in the example of Figure 4 
corresponds only to the left angular gyrus versus 
supplementary motor area. We repeated the same procedure 
for all 741 pairs of brain areas, averaged the frequency 
power spectrum and found the frequency with the maximum 
power for each subject. Note that in order to achieve for a 
given subjects, the corresponding membership function 
must include clusters 1 and 2. For this reason, not all 
subjects participated on the analysis of every state. Finally, 
we correlate the maximum frequency the FTQ score. 

 
 

 
Figure 3. Centroids for the k=6 k-mean clustering. Clusters with 
similar characteristics (see Figure 2) were grouped in four states: 
A, B, C and D. States A and B include two clusters each. 

 
3. RESULTS 

 
We performed a dwell time analysis for each cluster. The 

mean dwell time for all six clusters are [15.0, 17.3, 17.4, 
17.8, 12.7, 19.8] % for each cluster in order from 1 to 6. In 
this case, if a subject did not dwell in a given cluster then 
the estimation was set to zero. We obtained dwell times for 
each subject and correlated with the FTQ score without 
having a significant p-value. 

The next analysis focused on states instead of clusters. In 
this case we were looking for contiguous lapses of time 
where the same state is detected establishing a quasi-stable 
condition. Thus, only lapses of a stable state of 60 min or 
larger were allowed. States [A, B, C, D] had mean 
occupancy rates of [20.7, 21.8, 7.4, 7.2] % and none of the 
correlations with FTQ was significant. 

 
Figure 4. Examples of oscillatory behavior observed in the dFNC 
time course and reflected in the k-means membership. The time 
course corresponds to the ASWC between the left angular gyrus 
and the supplementary motor area. 

 
The last result was to correlate the main frequency, that 

where the frequency power spectrum achieved maximum 
value, with nicotine addiction. The correlations for the each 
state were [0.02, –0.42, –0.18, –0.13] where State B exhibit 
a significant correlation with p-value < 0.05. The correlation 
result is illustrated in Figure 5. 
 

 

 
Figure 5. Correlation between main frequency (millihertz) and 
nicotine addiction measured. Significant correlation was found in 
State B. 

4. DISCUSSION 
 
This work analyzed dynamic characteristics of dFNC from 
nicotine addiction subjects based on the frequency exhibited 
by different dFNC states. Quasi-stable functional states were 
acquired extending the concept of stability to allow for a 
quasi-stable oscillation within the time lapse a state last. 
While dwell time and occupancy rate measurements showed 
no relationship with addiction behavior, frequency analysis 
of these oscillations reveals a relationship between nicotine 
addiction and the oscillatory frequency.  



Previous studies in functional connectivity have found 
focalized connectivity changes pinpointing specific brain 
regions. Connectivity decreased between thalamus and 
putamen while increased within the default mode network 
(DMN) [15]. Several studies support the effect of nicotine 
on the DMN [16]. With respect to subcortical regions, the 
putamen was also an area related to nicotine addiction in 
dFNC [17]. Those dFNC results also showed that effects can 
be specific to a single dFNC state.  

Previous functional connectivity studies relied on 
differences between correlation strength. For this reason it 
difficult to compare results shown here with previous 
studies in fMRI. To the best knowledge of the authors, this 
is the first time the frequency of dynamic functional 
fluctuations within a dFNC state have been found to be 
related to nicotine addiction. Parallel evidence for the 
frequency reduction linked to nicotine has been reported for 
electroencephalogram data. Nicotine abstinence increases 
the power of the lower theta frequency when compared to 
higher alpha and beta frequencies [18]. Other studies show 
that nicotine administration causes a shift towards alpha 
frequencies [19]. It is possible that the 3 h abstinence period 
of the smokers started a shift towards lower frequencies 
reflected in the negative correlation between FTQ and main 
frequency from State B.  
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