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ABSTRACT

Abnormal functional network connectivity has been related
to nicotine addiction where similar patterns of dysfunction
were found after applying dynamic or static connectivity
methods. Further developments indicate that connectivity
patterns might also exhibit a dysfunctional frequency
spectrum. This work employs a quasi-stable time-varying
functional connectivity framework to explore frequency
effects related to nicotine use. Results suggest that nicotine
abstinence in addicted subjects is linked to a frequency
decrease of resting state connectivity fluctuations. This
effect was found in one out of four quasi-stable connectivity
states.

Index Terms— Functional connectivity, fMRI, nicotine
addiction.

1. INTRODUCTION

Allen et. al [1] described functional states as temporal lapses
of functional connectivity during which the connectivity
remained quasi-stable. The concept has been widely applied
to whole brain analysis where the number of time-varying
connectivity estimations is large. Detecting quasi-stable
lapses of time is achieved using unsupervised machine
learning methods such as clustering. Each cluster results in a
quasi-stable functional connectivity pattern visually
displayed as the cluster centroid. Centroids are estimated by
the vector of average values from the members of the
cluster. This way, each clustered element is associated with
a given cluster resulting in a membership function.
Membership values point to one of the centroids
representing the connectivity pattern of the functional state.
The assumption that centroids represent the predominant
pattern of each state has become useful when interpreting
the clustering results. This representation agrees with the
concept of quasi-stable connectivity. However, little
attention has been put to the relatively small connectivity
fluctuations observed within the cluster. To include
information from temporal fluctuations, one method that has
been proposed is to cluster a concatenation of functional
connectivity and its temporal derivatives [2]. The main
contribution of this method is the unveiling of a new set of

cluster patterns resurfacing from the derivatives showing
patient-control differences [3, 4]. The inclusion of
derivatives also revealed periodicity of functional
connectivity at the multivariable level that is comparable to
the behavior of dynamic systems [5]. This work explores
changes in oscillatory frequency linked to nicotine. The
study of this oscillatory behavior exhibited by functional
connectivity can lead to a better description of resting state
brain activity as well as provide newer features for brain
illness biomarkers.

The rest of this manuscript is organized as follows.
Section 2 describes the smoker sample cohort and the
methods employed in this work. Section 3 presents the main
results. Section 4 discusses the observations made through
the application of the methods employed.

2. METHODS
2.1. Sample Cohort

The sample cohort for this study included 80 subjects (37
females) with medium to high nicotine dependence assessed
by the Fagerstrom Tolerance Questionnaire (FTQ). The
FTQ scores ranged from 7 to 12. Smoking was avoided 3 h
before scanning. Subjects age ranged from 19 to 54 with an
average of 34.8 (standard deviation of 10.2). Subjects did
not suffer from injury to the brain, brain-related medical
problems, bipolar or psychotic disorders. A urinalysis test
rejected the use of other drugs including marijuana.

2.2. Preprocessing

Resting state functional MRI data were collected on a 3T
Siemens TIM Trio (Erlangen, Germany) scanner.
Participants kept their eyes open during the 5-minute resting
scan. Echo-planar EPI sequence images (TR = 2,000 ms, TE
=29 ms, flip angle = 75°) were acquired with an §-channel
head coil. Each volume consisted of 33 axial slices (64 x 64
matrix, 3.75 x 3.75 mm2, 3.5 mm thickness, | mm gap).
Resting state fMRI data were preprocessed using the
statistical ~ parametric =~ mapping  software  (SPM;
http://www.fil.ion.ucl.ac.uk/spm) [6] including slice-timing
correction, realignment, co-registration and spatial
normalization. Images were transformed to the Montreal
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Neurological Institute standard space. The first five scans
were discarded to allow for T1 equilibration. The DVARS
method [7] was used to find spike regressors where the root
mean square head movement exceeded 3 standard
deviations. Time courses, with a size of 145 time steps, were
orthogonalized with respect to i) linear, quadratic and cubic
trends; ii) the 6 realignment parameters and iii) realignment
parameters derivatives. The decision to pre-process these
nuisances at this point is based on recent recommendations
in the field [8]. The fMRI data were smoothed using a full-
width-at-half-maximum Gaussian kernel of size 6 mm. The
data were then analyzed with Infomax based group
independent component analysis (gICA) [9, 10] with 120
and 100 components for the first and second decomposition
levels respectively [11]. A total of N=39 gICA components
were selected for further analysis. Each component points to
a specific brain network with a corresponding time varying
signal that we denote as the time course. In this resting state
experiment, each glCA component is denoted a resting state
network (RSN). RSN time courses were then filtered using a
band-pass filter 0.01 to 0.15 Hz.

2.3. Dynamic connectivity and derivatives

The next step was to estimate a time varying functional
connectivity from RSN time courses that we called the
dynamic functional network connectivity (dFNC). The
dFNC data was obtained using the average-sliding-time-
window-correlation (ASWC) approach [12] with nominal
window (44 sec) and average (50 sec) lengths. Each subject
had 98 dFNC time courses. Since the estimated ASWC data
is of discrete nature, we employed discrete derivative
techniques [3]. The first sample does not have a previous
one, thus we utilize forward differences by subtracting the
second sample from the first. Backwards difference was use
for the last sample by subtracting this last one from the
previous one. Any sample in the middle was processed
using the central difference corresponding to the subtraction
of the next sample minus the previous sample divided by
two. The derivative was applied to the ASWC from each
pair of RSNs. The next step in the dFNC pipeline is to apply
clustering. We concatenated the ASWC and its temporal
difference (estimated derivatives). For each time point there
will be 741 (N(N-1)/2) ASWC values plus 741 (N(N-1)/2)
derivatives. A total of 1482 (N(N-1)) values per time point
were used for the clustering algorithm.

2.4. Clustering

Obtained dFNC data were clustered using the k-means
clustering method with a correlation distance to obtain a
finite set of dFNC states. Since the number of clusters k is a
parameter that must be estimated before continuing, we used
the Davies-Bouldin (DB) index to estimate the number of
valid clusters as evidence suggests this is an efficient
method of estimating k [13, 14]. We ran clustering with nine

different values of k ranging from 2 to 10 and a DB index
was estimated for each one. The optimal k is indicated in the
DB index plot by its minimum shown in Figure 1 as k=6.

Following the procedure previously suggested for
derivatives in [5], we looked for possible similar cluster
patterns. In particular, it is possible that a single large cluster
is divided in two if derivates are included in the k-means. In
that case the functional connectivity patterns should be
highly similar, but with different derivatives. This is the
case illustrated in Figure 2, where two pairs of centroids are
highly correlated and their derivatives are of opposite sign.
Figure 3 shows centroids which consist of a typical dFNC
pattern and an additional derivative of dFNC pattern. Due to
the similarities shown in Figure 2 we grouped clusters 1 and
2 into a dynamic state denoted as State A. Clusters 3 and 4
were also grouped as State B. Clusters 5 and 6 could not be
grouped and were assigned one state each.
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Figure 1. The optimal number of clusters was obtained using the
Davies-Bouldin (DB) index. The minimum DB index points to the
optimal number of clusters as 6.
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Figure 2. Clusters were paired according an opposite pattern of the
derivatives. The numeric pairing is divided in two, one for the
dFNC data and one for derivatives. The dFNC parts of the
centroids are correlated to establish their similarity. Paired dFNCs
must exhibit a strong similarity. The derivative part shows strong
correlations but opposite signs. These two characteristics do not
apply to centroids 5 and 6.

2.5. Oscillations

One of the main explanations for the presence of clusters
with opposite sign derivatives is the existence of
oscillations. For example, during a lapse of time
corresponding to State A, the membership function for the
corresponding time will oscillate between cluster 1 and
cluster 2. A similar example could be made of State B with
clusters 3 and 4. Figure 4 show a single time course example
for the two cases we described. Even though not all subjects



show the same periodic patterns, the oscillations in Figure 4
are relatively common and easy to find through dFNC data.

For each state where oscillations exist (states A and B),
we find the frequency with highest power. The frequency
with maximum power in the example of Figure 4
corresponds only to the left angular gyrus versus
supplementary motor area. We repeated the same procedure
for all 741 pairs of brain areas, averaged the frequency
power spectrum and found the frequency with the maximum
power for each subject. Note that in order to achieve for a
given subjects, the corresponding membership function
must include clusters 1 and 2. For this reason, not all
subjects participated on the analysis of every state. Finally,
we correlate the maximum frequency the FTQ score.
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Figure 3. Centroids for the k=6 k-mean clustering. Clusters with
similar characteristics (see Figure 2) were grouped in four states:
A, B, C and D. States A and B include two clusters each.

3. RESULTS

We performed a dwell time analysis for each cluster. The
mean dwell time for all six clusters are [15.0, 17.3, 17.4,
17.8, 12.7, 19.8] % for each cluster in order from 1 to 6. In
this case, if a subject did not dwell in a given cluster then
the estimation was set to zero. We obtained dwell times for
each subject and correlated with the FTQ score without
having a significant p-value.

The next analysis focused on states instead of clusters. In
this case we were looking for contiguous lapses of time
where the same state is detected establishing a quasi-stable
condition. Thus, only lapses of a stable state of 60 min or
larger were allowed. States [A, B, C, D] had mean
occupancy rates of [20.7, 21.8, 7.4, 7.2] % and none of the
correlations with FTQ was significant.
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Figure 4. Examples of oscillatory behavior observed in the dFNC
time course and reflected in the k-means membership. The time
course corresponds to the ASWC between the left angular gyrus
and the supplementary motor area.

The last result was to correlate the main frequency, that
where the frequency power spectrum achieved maximum
value, with nicotine addiction. The correlations for the each
state were [0.02, —0.42, —0.18, —0.13] where State B exhibit
a significant correlation with p-value < 0.05. The correlation
result is illustrated in Figure 5.
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Figure 5. Correlation between main frequency (millihertz) and
nicotine addiction measured. Significant correlation was found in
State B.

4. DISCUSSION

This work analyzed dynamic characteristics of dFNC from
nicotine addiction subjects based on the frequency exhibited
by different dFNC states. Quasi-stable functional states were
acquired extending the concept of stability to allow for a
quasi-stable oscillation within the time lapse a state last.
While dwell time and occupancy rate measurements showed
no relationship with addiction behavior, frequency analysis
of these oscillations reveals a relationship between nicotine
addiction and the oscillatory frequency.



Previous studies in functional connectivity have found
focalized connectivity changes pinpointing specific brain
regions. Connectivity decreased between thalamus and
putamen while increased within the default mode network
(DMN) [15]. Several studies support the effect of nicotine
on the DMN [16]. With respect to subcortical regions, the
putamen was also an area related to nicotine addiction in
dFNC [17]. Those dFNC results also showed that effects can
be specific to a single dFNC state.

Previous functional connectivity studies relied on
differences between correlation strength. For this reason it
difficult to compare results shown here with previous
studies in fMRI. To the best knowledge of the authors, this
is the first time the frequency of dynamic functional
fluctuations within a dFNC state have been found to be
related to nicotine addiction. Parallel evidence for the
frequency reduction linked to nicotine has been reported for
electroencephalogram data. Nicotine abstinence increases
the power of the lower theta frequency when compared to
higher alpha and beta frequencies [18]. Other studies show
that nicotine administration causes a shift towards alpha
frequencies [19]. It is possible that the 3 h abstinence period
of the smokers started a shift towards lower frequencies
reflected in the negative correlation between FTQ and main
frequency from State B.
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