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Abstract

Software defined networking (SDN) controller requires crucial statistics like flow-
wise statistics from the switches to make decisions related to routing, load balanc-
ing, and QoS provisioning. These statistics, when viewed across the switches are
likely to be inconsistent if a specific order is not enforced while collecting statis-
tics. Collecting consistent statistics requires coordination among all the participating
switches. A few approaches in the literature collect globally consistent statistics of
a network in the SDN domain. However, these approaches are not time-efficient,
robust, and synchronous for OpenFlow based networks. We propose, GlobeSnap, a
time-efficient, robust, and synchronous method to collect globally consistent statis-
tics for OpenFlow networks. GlobeSnap collects consistent statistics for all flows in
a single round and is therefore, time-efficient. Moreover, GlobeSnap is robust since
it resumes the statistics collection process from where it left in case of interruption.
GlobeSnap also provides a near-synchronous snapshot of statistics of the switches
traversed by a given flow. We also propose a mechanism to persistently store states
in OpenFlow based networks using registers, multiple flow tables, and multiple pipe-
lines. We find that GlobeSnap outperforms the state-of-the-art approaches in con-
sistency evaluation. Further we present two use-cases which are sensitive to incon-
sistent flow statistics, that is, computing packet loss and identifying bottleneck links,
to show the time-efficiency, robustness, and synchronicity of GlobeSnap. GlobeSnap
provides 100% consistency in OpenFlow based SDN networks. Whereas the existing
methods achieve a maximum of 59.89% consistency.
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1 Introduction

Software defined networking (SDN) is an emerging networking paradigm [1]. The
SDN architecture is based on the separation of the control plane from the data plane.
The control plane consists of a centralized entity called the SDN controller that con-
trols the functioning of the distributed data plane. The data plane is a network of
interconnected switches, which does traffic forwarding as per the policies defined by
the SDN controller. To perform various network management tasks, the SDN con-
troller needs to have an up-to-date and globally consistent snapshot of the network.
These statistics are then used to estimate load on the links, to identify the bottleneck
links, and to measure packet loss in the network. Accurate estimate of these param-
eters is essential to perform various network management tasks such as load balanc-
ing, QoS assurance [2], to meet the SLA (service level agreement) requirements etc.

The global state of the network is said to be consistent if a packet belonging to a
flow is recorded as “received” at switch A then the same packet must have also been
recorded as “sent” by all the preceding switches with respect to a flow. Failing to
collect a consistent global snapshot can lead to the poor estimation of various net-
work parameters such as queue depth, and load on links [3].

Prevalent network monitoring methods focus on per flow or per port statistics col-
lection [4, 5]. These statistics, when viewed across the switches, are likely to be
inconsistent if a specific order is not enforced while collecting them. A traditional
method to collect global state in an SDN network is to get flow statistics from all
the switches by polling them with a specific polling rate. Due to the delay variations
between controller and switches, polling based statistics do not guarantee a consist-
ent global state [6]. For example, consider a network as shown in Fig. 1, in which a
packet are P is transmitted from switch S, to switch S,. Also, consider that there is
no packet loss in the network. We define the following four events,

Controller

h, S S, h,

Fig. 1 Example to illustrate challenges in consistent statistics collection
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— E,: Packet P arrives at switch S, and matches' with a flow entry.

— E,: Packet P arrives at switch S, and matches with a flow entry.

— E5: Switch S, receives statistics request message from the controller and sends
the statistics to the controller.

— E,: Switch S, receives statistics request message from the controller and sends
the statistics to the controller.

Now depending on the order of these events w.r.t time, there can be three possible
cases. In the first case, the occurrence of the events is in the order E|, E,, E3, and E.
In this case, the packet P is counted in sent statistics of switch §; and is also counted
in received statistics of switch S,. Thus, it gives consistent statistics. In the second
case, the occurrence of the events is in the order E;, E|, E,, E,. That is, the packet P
counted in the received statistics of switch S, but not counted in the sent statistics
of switch §;. Thus, it gives inconsistent statistics. In the third case, the occurrence
of the events is in the order E,, E5, E,, E,. That is, the packet P is recorded as sent
at switch S, but not recorded as received at switch S,. This can lead the controller
to a wrong conclusion that the packet is lost. The wrong or inconsistent statistics
can lead the SDN controller to make erroneous decisions, especially in case of load
balancing [3] and bottleneck link identification. Here we considered a single packet,
even with large number of packets it will give similar results. The effect of the order
of events will remain same as inconsistency in collected statistics is not related to
time duration but to the order of occurrence of events. The experimental results are
provided in Appendix B. Thus consistency of the collected statistics depends on the
order in which the switches receive the statistics request from the controller and send
the corresponding statistics reply to the controller. This order can not be enforced by
the SDN controller due to variations in delays on the control and data links. We need
a protocol to enforce the order of statistics collection such that it collects statistics in
a globally consistent manner.

State of the network is a collection of states of switches and links. It can be meas-
ured by querying switches. When a part of the state across the switches is causally
related i.e., an attribute in one switch is causally effected by the same attribute of
another switch, such a state needs to be measured preserving this causal relation.
For example, packet counters or byte counters in a switch are causally related to the
same counters in the predecessor switch with respect to a flow. In certain applica-
tions such as congestion prediction, trace recording [7], applying updates consist-
ently on all switches [8], dynamic visualization of network traffic patterns [9], a
measurement that preserves this causal order is expected to yield accurate results.

There exist multiple solutions to collect statistics in SDN networks [3—6, 10—12].
In-band network telemetry (INT) [11] can be used to collect per flow or per path
statistics. Though it is possible to record consistent statistics for a given flow but it
is not trivial to collect globally consistent statistics for the entire network. In addi-
tion it requires a programmable data plane. There exist a few works that address

! When a packet matches with a flow entry in OpenFlow switch, it increments the packet counter of the
matched flow entry.
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collection of consistent global state [3, 6]. In [6], the authors present a method,
OpenSnap, to collect globally consistent statistics in OpenFlow networks with
FIFO? and Non-FIFO? channels. Whereas, SpeedLight [3] proposes a solution for
P4 networks, which works for both FIFO and Non-FIFO channels. In this paper, we
are considering an OpenFlow based network with both FIFO and Non-FIFO chan-
nels. OpenFlow network with FIFO channels has only a single queue at every output
port of the underlying network switches whereas in OpenFlow network with Non-
FIFO channels, the switches can have multiple queues configured at the output ports
and order of packet transmission depends on the queuing scheduler. Both OpenSnap
[6] and Speedlight [3] propose a modified version of a traditional distributed sys-
tems algorithm “Chandy-Lamport” [13, 14]. Original Chandy-Lamport algorithm
works only for FIFO channels. SpeedLight [3] instead of using a marker as in the
Chandy-Lamport algorithm, inserts an additional packet header to every packet that
carries the snapshot related information. SpeedLight [3] collects per-port statistics.
However, it does not guarantee consistent statistics collection in every run of the
proposed protocol. This scenario occurs when the channel state is considered and
difference between the snapshot ID and ID of the upstream neighbor/s is more than
1. If any inconsistency is detected in the collected statistics, the controller has to run
the protocol again. Thus SpeedLight is not time-efficient.

OpenSnap [6] provides consistent statistics for each flow in OpenFlow based net-
work with FIFO channels. It further extends the solution to provide consistent sta-
tistics in OpenFlow based networks with Non-FIFO channels by sending the marker
packet to one queue at a time in each round of statistics collection. However, this
extension would provide consistent statistics only when a given flow in the network
goes through the same output queue ID of all the switches in the path towards its
destination, which may not be possible in every network. Also, in a given round it
provides consistent statistics only for the flows going through the queue from which
the marker packet is sent. This causes a delay in the collection of consistent statistics
of all the flows. Also, OpenSnap is not a robust solution as it requires to restart the
whole statistics collection process in case of an interruption (we explain this in more
detail in Sect. 3.5.4).

We propose, GlobeSnap, a time-efficient, robust, and synchronous method to col-
lect globally consistent statistics for OpenFlow networks which works for both FIFO
and Non-FIFO channels. In one round OpenSnap can collect consistent statistics for
all the flows going through a queue. Thus for a network with switches that have
n queues per port it would take n rounds. Whereas GlobeSnap provides consistent
statistics for all flows in a single round irrespective of the number of queues con-
figured on a given switch. Thus GlobeSnap is time efficient in comparison to Open-
Snap. Additionally, it does not assume that the data packets of a given flow have to
go through the same queue ID on every switch in the path towards the destination.

2 In OpenFlow networks with FIFO channels, the outgoing packets for transmission are scheduled based
on order of their arrival at the switch.

3 In OpenFlow networks with Non-FIFO channels, the outgoing packets for transmission could be sched-
uled irrespective of the order of their arrival.
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Moreover, GlobeSnap is a robust solution as it does not require to restart the whole
statistics collection process in case of an interruption. It resumes the statistics col-
lection process from where it left. GlobeSnap also provides a near-synchronous
snapshot of statistics of the switches traversed by a given flow. The synchronicity of
a snapshot is a measure of how contemporaneously switches can record their local
snapshots. A near-synchronous snapshot of a network is one in which all switches
record their local snapshots almost simultaneously. This is difficult to achieve
in practice in a distributed system and if proper care is not taken packets may be
reported as received but may not be reflected as sent, thus violating consistency.
GlobeSnap, while ensuring consistency, can also provide a near-synchronous snap-
shot of a flow.

Communication between SDN controller and the underlying switches can hap-
pen in two ways: out-of-band and in-band. In an out-of-band configuration, the
switches are directly connected to the SDN controller through dedicated links. There
are some advantages of out-of-band configuration like, the communication is more
secure, low communication delay between the switches and SDN controller [15].
However, there are some disadvantages also: (i) costs involved in laying dedicated
links are huge (ii) scaling can be an issue when new switches are added. Due to
these limitations, an in-band controller is preferred. In this paper, we are considering
an in-band controller configuration.

The major contributions of the paper are as follows,

1. We propose, GlobeSnap, a time-efficient, robust, and synchronous method to
collect globally consistent statistics for OpenFlow based networks.

2. We also propose a mechanism to persistently store the states in OpenFlow based
networks using registers, multiple flow tables and multiple pipelines.

3. We evaluate the consistency guarantees of GlobeSnap using Mininet [16] testbed
and also compare with the state-of-the-art approaches like OpenSnap [6], Open-
NetMon [5] and CeMon [4].

4. We also present two use-cases which are sensitive to inconsistent flow statistics
that is, computing packet loss and identifying bottleneck links, to show the time-
efficiency, robustness and synchronicity of GlobeSnap.

The rest of the paper is organised as follows: In the next section we discuss the exist-
ing works related to statistics collection in SDN networks. We discuss our system
model and the problem with the marker-based solution in Sect. 3.1 and 3.3 respec-
tively. In Sect. 3.4, we discuss our protocol. In Sect. 3.5, we discuss the characteris-
tics of GlobSnap. In Sect. 3.6 we compare the existing solutions with ours in terms
of overhead incurred. In Sect. 4, we provide the implementation details followed by
the experimental evaluations in Sect. 5. In Sect. 6, we conclude our work. In Appen-
dix A we also provide correctness proof for our solution.
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2 Related Work

In this section, we discuss the existing approaches related to statistics collection in
SDN networks.

OpenNetMon [5] is a network monitoring open-source software that monitors
all the flows in a network. OpenNetMon polls the edge switches of every flow and
collects the statistics. The collected statistics are used to monitor per-flow metrics,
especially delay, throughput, and packet loss. The polling frequency increases when
new flows are added and reduces when the flow rate becomes constant. This adap-
tive rate of sampling reduces the network and switch overhead. OpenTM [17] pro-
vides a traffic matrix of SDN networks, representing the volume of traffic between
the source and destination pairs of all the flows in the network. It presents different
strategies to select switches for polling. There is a trade-off between the measure-
ment accuracy and the maximum load on each switch. OpenTM demonstrates that
better performance is accomplished by using a non-uniform distribution querying
strategy as it selects the switches which are near to the destination in contrast to
uniform schemes.

CeMon [4] proposes two schemes for polling the network, namely, Maximum
Coverage Polling Scheme (MCPS) and Adaptive Fine-Grained Scheme (AFPS).
MCPS globally optimizes the polling cost. It proposes a greedy strategy to select the
switches in a cost-effective manner so that all flows are covered. It proposes a heu-
ristic called Dynamic Adjust and Periodical Reconstruction (DAPR), which dynami-
cally handles the arrival of new flows. If the current polling scheme covers the new
flow then no action is taken otherwise it adds one polling for the currently arrived
flow. If a flow expires then the expired flow is removed from the polling scheme.
AFPS is a complementary scheme for MCPS, that aims at providing a solution when
to poll the switch for a given flow. AFPS deploys various schemes to decide the poll-
ing frequency for a given flow on a given switch. But the best among the proposed
schemes is Sliding Window Based Tuning (SWT). This scheme queries the switches
for a flow and calculates the difference between the last two readings. This differ-
ence is used to dynamically tune the sampling frequency.

FlowRadar [18], is a better version of NetFlow [19]. In case of high traffic where
data processing needs to happen at a very fast rate, NetFlow is unable to keep up
with the rate and therefore in some of its implementations, it monitors only a sub-
set of packets. FlowRadar overcomes this limitation by using less bandwidth and
small memory overhead. It encodes the per-flow counters in a constant time using
little memory of the switches. The decoding and analysis of the network-wide flow
occur at a remote controller. LossRadar [20] provides a solution to detect the packets
lost in the data center networks independent of their root causes (i.e., congestion,
persistent black holes, transient black holes, and random drops). LossRadar installs
meters in all the switches to capture unidirectional traffic. It checks for packet loss
and reports to the controller immediately. To capture the packet header information
of the lost packet, LossRadar provides traffic digest at every switch which stores the
information about the lost packet header.
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Table 1 Table summarizing the

X . ¢ Paper/method Provide consistent Robust Time efficient
consistent statistics collection e
statistics
works
GlobeSnap v v v
OpenSnap [6] v X X
SpeedLight [3] v v X

PayLess [10] proposes an adaptive monitoring algorithm. When a PacketIN mes-
sage is received at the controller, it adds a new flow in active flow table along with
its expiry time t. If the flow expires in time t, then the controller gets the statistics
of the flow in FlowRemoved message. Otherwise, when the time-out event occurs,
the controller sends the flow statistics request message to the switches for that flow.
If the difference between the previous byte count and the current byte count is not
above the threshold, then the time out is multiplied by a small constant. If the dif-
ference is above the threshold, then the time out is divided by a small constant.
FlowSense [12] measures the link utilization in the network with zero measure-
ment cost. It uses control messages like PaketIN and FlowRemoved to estimate the
network metrics. But the performance metrics estimations are far from the actual
values as large flows generate sparse FlowRemoved packets. FlowSense works well
only when there are large number of small duration flows. OpenSample [21] is a
sampling-based measurement method. It uses one out of N packets for sampling.
The network performance metrics are estimated by the sampled packets. This works
well in case of elephant flows only. In [22], the authors proposed a solution to cre-
ate a snapshot of the network at a given time in the history. To create a snapshot in
the history, they logged the OpenFlow messages between the SDN controller and
switches. Their main goal is to identify the root cause of a problem using history.
Whereas, our method provides a consistent snapshot of the current state of the net-
work that would help to take decisions in both present and future.

As already discussed in Sect. 1, SpeedLight [3] provides consistent port statistics.
However, it may not provide consistent statistics in every round of statistics collec-
tion. In case of an inconsistency in the collected statistics, the controller has to run
the protocol again. OpenSnap [6], provides consistent flow statistics in both Open-
Flow based network with FIFO channels and OpenFlow based network with Non-
FIFO channels. OpenSnap takes multiple rounds to collect consistent statistics of
all the flows in a network with Non-FIFO channels. Also, the solution is not robust
because it has to restart the whole statistics collection process in case of interrup-
tion. Both SpeedLight [3] and OpenSnap [6] may require multiple rounds to collect
consistent statistics. Thus they are not time-efficient (Table 1). To handle real time
applications the controller should take quick decisions. This requires updated glob-
ally consistent view of the network. A delay in consistent statistics collection could
degrade the network performance. In this paper, we propose an efficient and robust
solution to collect consistent flow statistics in OpenFlow based network.
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3 GlobeSnap Method

In this section, we define the system model, issues with marker-based mechanisms,
and the proposed GlobeSnap method.

3.1 System Model

We consider an SDN network with OpenFlow 1.3 compatible switches. Figure 2a
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Fig.2 a OpenFlow Switch, b detailed diagram of two switches directly connected to each other

depicts the internals of a switch. A switch consists of multiple flow tables and each
flow table consists of multiple flow entries with their counters. Each switch con-
tains multiple ports each connected to a switch or a host and each egress port sup-
ports multiple queues [23]. Figure 2b shows two switches S; and S; connected to
each other through a data channel C;. The network supports different forwarding
classes i.e., flows are assigned to different queues based on their priority or QoS
requirement. The flow to queue mapping is dynamically done by the SDN control-
ler. Now depending on the queue scheduler the order in which packets are transmit-
ted through egress port can be different from the order in which they are received
at the ingress port. The controller is an in-band controller i.e., the controller is not
connected to each switch through a dedicated link. The controller is just like any
other host in the network. When a new flow enters the network, if there is no cor-
responding flow entry then the first packet of the flow is forwarded to the control-
ler as a PacketIn message and the controller inserts the necessary flow entries into
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the switches. Flow entries are stored in the flow tables. There can be multiple flow
tables in an OpenFlow switch. Depending on the flow entries, a packet may be pro-
cessed through multiple tables. We assume that switches support metadata as speci-
fied in OpenFlow 1.3 specifications [24]. This metadata is used to store the data in
one flow table, which can be accessed in another table.

3.2 What are Globally Consistent Statistics?

Globally consistent statistics is a set of statistics collected from all the switches for a
given flow such that every packet that is recorded as sent at a switch must have been
recorded as either received at the next switch or present in the channel* or in the
queue or is dropped. In OpenFlow packet processing sequence, the packet counter of
a flow entry is updated as soon as the packet matches the flow entry. Once the packet
exits the processing pipeline, the packet is queued into its respective queue. If the
queue does not have enough space, then the packet may be dropped. Similarly, the
next switch maintains packet counters for each flow entry. Consider a network with
N switches and X number of flows. Also consider I number of queues are configured
in every switch. Let S be the set of switches in the network, S ={S,,5,, S5, ..., Sy},
and F be the set of flows in the network, F = {f,f,.f3, ..., fx}. Given a flow f;, 1 <k
<X, from switch §; to switch §;, 1 <i, j <N and i #j, the packet counters for flow 1~
are labelled as sent(fik) and recv(fik) on switch §; and S; respectively. The relationship

between them is defined as,
se) = ree) + 0+ €+ drop?), 0

where Cf; is the number of packets of kth flow present in the channel connecting
switch §; and switch S, qu is the number of packets of kth flow queued in gth, 1 <q
< I, queue of switch §; for transmission and dmp(fl.k) is the number of packets
dropped before queueing. Since Cf;., Qi.‘q, and drop(f*) are always > 0, Eq. 1 can be
written as,

sent(fik ) > recv();k ). )

3.3 Issues with Marker-Based Mechanism

In this section, we show why the marker-based consistent statistics collection
method proposed in [6], which sends the marker through only one queue of the
switch, fails to collect consistent global state in case of OpenFlow [25] networks
with Non-FIFO channels. In marker-based method, the controller initiates the sta-
tistics collection process by sending a marker packet in the network. The switches
send the statistics only when they receive a marker packet [6]. Consider a network

4 We use channel and link interchangeably in this paper.
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Fig.3 Illustrating the limitation of OpenSnap for OpenFlow based networks with Non-FIFO channels

of two switches, as shown in Fig. 3. There are three queues configured on both the
switches. Let there be three flows f, f}, and f, being forwarded through queues g,
q,> and g, respectively. Let the controller send the marker packet to switch S, (1). On
receiving the marker packet switch §; sends the statistics corresponding to the flows
Jo» fi» and f, as x, y, and z respectively to the controller (2). Note that x, y, and z
also contain the packets which are already scheduled and waiting in their respective
queues to be transmitted. This marker packet is enqueued in one of the queues (say
queue ¢,) behind the packets that are already present in the queue g, (3). Now sup-
pose that the scheduler sends a few packets from queue g of switch §;, which were
already present in the queue g, at the time when the marker packet was enqueued.
Let x’ be the number of such packets. Let Ay be the number of packets arrived in
queue g, after the arrival of the marker packet in queue g,. Now suppose that the
scheduler sends y’ + Ay packets on the data channel, where y’ is the number of pack-
ets that were already present in the queue g, when the marker packet was enqueued
in queue ¢g,,. Note that, the marker packet is still waiting in the queue ¢g,. This can
happen because of the Non-FIFO nature of the SDN switches.

Let Az be the number of packets that arrived in queue g, after the arrival of the
marker packet in queue g,. Now suppose that the scheduler sends 7’ + Az packets
on data channel from queue ¢,, where 7’ is the number of packets that were already
present in the queue g, when the marker packet was enqueued in queue g,. Now
the scheduler sends the marker packet on the data channel (4). Note that the marker
packet will reach switch S, after all the packets of flows f,, fi, and f, which were
scheduled on the data channel before the marker packet. When the marker packet
hits the switch §,, it sends the statistics for all three flows f,, f, and f; as x, y + Ay,
and z + Az respectively to the controller (5) and forwards the marker packet through
queue g, (6). OpenSnap gives inconsistent statistics for flows f; and f,, as sent statis-
tics minus received statistics is -Ay, and -Az respectively. That is, Ay and Az packets
for flows f, and f; respectively are recorded as received at destination switch but not
recorded as sent at source switch.

@ Springer



Journal of Network and Systems Management (2021) 29:35 Page 110f40 35

3.4 GlobeSnap Protocol
3.4.1 Overview

Our idea in this paper is inspired by an algorithm by Lai-Yang [26] proposed for
construction of a global snapshot in distributed systems with Non-FIFO chan-
nels. This algorithm uses a color scheme to overcome the drawbacks of previous
approaches. Data packets and switches are marked as red or white, depending on the
following conditions. Initially, all switches (processes) are in white state and they
turn red when they receive a red data or flow statistics request packet. The packet
sent by a white (or red) switch is colored white (or red).

Though the idea is inspired by Lai-Yang [26], there are a few differences concep-
tually and in implementation when applied to OpenFlow networks. (i) The original
algorithm assumes that traffic of red packets goes through all the processes in the
network. This may not be true in a network of switches. A flow colored red may not
convert all the switches in the network to red. We adapt the algorithm to take care of
this. (i) The original algorithm is designed to collect a global snapshot for a single
round. We make changes to the algorithm to collect global snapshots in a continu-
ous manner using multiple colors. (iii) The original algorithm mandates keeping the
history of the messages to compute the channel state correctly. This is not required
when applied to OpenFlow networks as the statistics are maintained cumulatively in
the switches. (iv) The original algorithm depends on the process turning red atomi-
cally when the snapshot is recorded. This is non-trivial to implement in a network of
switches. We make use of flow tables in OpenFlow to implement this requirement.
(v) The original algorithm requires storage space to store messages received after
the snapshot is recorded. OpenFlow switches do not support user-specified values
in-memory or disk storage. We use a combination of flow rule priorities, flow rules,
and metadata to achieve this.

OpenFlow switches support sending flow statistics upon receiving a flow statis-
tics request from the controller. Our algorithm requires that switches should send
the statistics to the controller on receiving a colored packet different from its own
state. But OpenFlow (as for the current OpenFlow [25] Standard) does not have any
action which sends the flow statistics on the arrival of a particular packet. Thus, to
solve this issue, we extend the OpenFlow protocol by implementing a new action
called “send_stats” in Open vSwitch [27]. On arrival of the first colored packet at
a switch send_stats action is performed, the switch then sends statistics of all of
its flows to the controller. The statistics collection process is over when the SDN
controller receives the statistics from all the switches in the network. This is the
case when the controller is collecting statistics (recording snapshot) for all the flows
in the network. Assuming the network has X number of flows. Let F be the set of
flows, F = {f./;.f5, ... .fx}. In case the controller wants to poll a subset, F C F, of
the flows then it has to wait for the statistics replies only from the switches pro-
cessing the flows in the subset F. In order to enable statistics collection in multiple
rounds, the controller must use a different color for special control packet differing
from the current state of the switches. This is to differentiate between the packets in-
transit and the special control packet for the next round. To satisfy this requirement
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the controller needs at least two colors for special control packet. In the proposed
method the controller uses red and green colors for special control packets alter-
natively to minimize the cool-down period between subsequent rounds. Detailed
explanation is provided in Sect. 3.4.4.

We divide the algorithm into two parts, one executing at the data plane or switch
level and the other executing at the control plane or SDN controller level. Data plane
is responsible for taking a copy of flow statistics, sending the statistics to SDN con-
troller, and changing the state of the switch. At a given time, a switch can be in one
of the three possible states: WHITE, RED, or GREEN. Initially, at the start, all the
switches are considered to be in WHITE state. Any packet going out of the process-
ing pipeline in the switch is colored with the same color as that of the switch state.
Incoming packets on the ingress ports can be of one of the three colors: white, red,
or green. Initially, all packets are considered to be of white color. When a switch
receives a colored packet (special color packet or data packet) different from its
state, it sends the statistics of all the flows to the controller. To start the network-
wide statistics collection, the SDN controller sends a special control packet to one
of the switches, with a color different from the color of the switches in the network.
This triggers state changes in the rest of the switches as the packets move around
in the network. Sometimes, packets with the changed color may not reach certain
portions of the network. SDN controller with its global knowledge of the flows and
their paths in the network, can identify the disconnected portions of the networks,
and send a special control packet to one of the switches in each of the disconnected
network portions.

3.4.2 An Example to Illustrate GlobeSnap Method

Consider the same example which we used in Sect. 3.3 to demonstrate the limitation
of marker-based solution. Consider the same set up with two switches as shown in
Fig. 4a. There are three queues configured on both the switches. Let there be three
flows f, fi, and f, being forwarded through queue g, g,, and g, respectively. Let
the controller send a special color packet (let’s say red packet) to switch S, initially
in WHITE state, to initiate the statistics collection process (1). When the red packet
hits the switch S, it sends the statistics of all three flows f,, f, and f, as x, y;,
and z; respectively to the controller (2). Once the switch §; sends its statistics to
the controller, it changes its state from WHITE to RED (3). Now, traffic going out
of switch S| is colored red (4). Now suppose the scheduler sends x’1 packets on data
channel from queue g,, where x/l is the number of packets of flow f, that arrived
in the queue g, before sending the statistics of switch S, to the controller. Let Ay,
and Az, be the number of packets of the flows f, and f, respectively that arrived in
queues g; and g, respectively after switch S, has sent its statistics to the controller.
Thus, these Ay, and Az, packets are colored red. Now suppose the scheduler sends
)/1 + Ay, packets from queue g, on data channel, where )/1 is the number of packets
of flow f; that arrived in queue g, before switch S, sent its statistics to the controller.
Now the scheduler sends z’l + Az, packets from queue g, on data channel, where z/l
is the number of packets of flow f, that arrived in the queue g, before switch S, sent
its statistics to the controller (5). When the first red packet of flow f (i.e., the first

@ Springer



Journal of Network and Systems Management (2021) 29:35 Page 130f40 35

Controller

Red I/ Z+Az; Y +A '
, 1 1 V1+tAY1 x @
©, ® —

qol__ NOOODD

S, q__00onon
9, qQ goonn
@ State recorded at S, as x4, y1, and z; ©State recorded at S, as x4, ¥y, and z;-2z;
for flows f,, f}, and f, respectively. for flows £, f,, and f, respectively.

Round 1
Controller

Z;+Azy y, + Ay, x)

SR (1) CAITTIT)
@ State recorded at S, as x5, y,, and z, @ State recorded at S, as x,, y, and z, — 25
for flows £, f,, and f, respectively. for flows f, f}, and f, respectively.
Round 2

Fig.4 An example to illustrate the working of GlobeSnap on a link between two switches

packet of Ay, ) hits switch S,, it sends the statistics for all three flows f;, f}, and f, as
X, yp.and z; — z/l respectively to the controller (6). After sending the statistics to the
controller, the switch changes its state from WHITE to RED (7). Sent statistics at
switch S, for flows f; and f; is equal to received statistics of flows f; and f; at switch
S,. Whereas, for flow f, the sent statistics is greater than the received statistics (i.e.,
1> — z/l). Thus, it satisfies the consistency condition given in Eq. 2 and gives
consistent statistics for all three flows. A list variables used in this section is given in
Table 2.

One round of statistics collection is complete when the controller gets the statis-
tics from all the switches in the network. In the second round the controller sends
a special color packet of color different from the first round (the reason for this is
explained later in Sect. 3.4.4). Let’s assume that in second round the controller send
a special color packet of green color to switch S to initiate the statistics collection
process (1) (as shown in Fig. 4b). When the green packet hits the switch S, it sends
the statistics of all three flows f;, f}, and f, as x,, y,, and z, respectively to the con-
troller (2). OpenFlow switches maintain cumulative counters for each flow entry.
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Table 2 List of variables used in Sect. 3.4.2

Variable Meaning

qo-91-9, Queues configured on the output port of each switch

X;,¥;-2;  Sent statistics of flows f;, f}, and f,, respectively in i th round of statistics collection w.r.t
source switch and received statistics w.r.t destination switch

X Number of packets of flow f; that arrived in the queue g, before sending the statistics of switch
S in ith round of statistics collection

¥, Number of packets of flow f that arrived in queue g, before switch S, sent its statistics to the
controller in ith round of statistics collection

z Number of packets of flow f, that arrived in the queue g, before switch S, sent its statistics to
the controller in ith round of statistics collection

Ay, Number of packets of the flows f that arrived in queues g, after switch S, has sent its statistics
to the controller in ith round of statistics collection and are colored red/green

Az Number of packets of the flows f, that arrived in queues g, after switch S, has sent its statistics

to the controller in ith round of statistics collection and are colored red/green

Thus, switches send cumulative counters as statistics reply. x, is the total number
packets matched to flow entry corresponding to flow f; when the green packet hits
the switch §,. That is, x, includes x, (the number packets match to flow entry corre-
sponding to flow f; in first round). Similarly, y, includes y, and Ay,, and z, includes
zyand Az,.

Once the switch §; sends its statistics to the controller, it changes its state from
RED to GREEN (3). Now, traffic going out of switch S is colored green (4). Now
suppose the scheduler sends x/2 packets on data channel from queue g,, where x/2 is
the number of packets of flow f, that arrived in queue g, before switch S, sent its sta-
tistics to the controller. Let Ay, and Az, be the number of packets of flows f; and f,
respectively that arrived in queues g, and g, respectively after switch S, has sent its
statistics to the controller. Thus these Ay, and Az, packets are colored green. Now
suppose the scheduler sends y2 + Ay, packets from queue g, on data channel, where
y2 is the number of packets of flow f; that arrived in the queue g, before switch §;
sent its statistics to the controller. Now suppose the scheduler sends z2 + Az, pack-
ets from queue g, on data channel where zz is the number of packets of flow f, that
arrived in the queue g, before switch S, sent its statistics to the controller (5). When
the first green packet of flow f; (i.e., the first packet of Ay,) hits the switch S,, it
sends the statistics for all three flows f, f}, and f, as x,, y,, and z, — z’z respectively
to the controller (6). After sending the statistics to the controller, the switch changes
its state from RED to GREEN (7). Sent statistics at switch S, for flows f, and f; is
equal to received statistics of flows f, and f; at switch S,. Whereas, for flow f, the
sent statistics is greater than the received statistics (i.e., 2, > 2, — z/z). Thus, it satis-
fies the consistency condition given in Eq. 2 and gives consistent statistics for all
three flows. In every alternate round, the controller sends a special control packet of
the same color to initiate the statistics collection process.
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3.4.3 Algorithm at the Controller

We represent the network by a bi-directed graph G = (V,E), where V =
{51,585, 83,...,8y} is the set of switches in the network and E is the set of bi-directed
edges representing the physical links between two switches. Let F be the current set
of flows in the network. We create a directed graph FlowG = (V.E) corresponding
to the set F such that E' is the set of directed physical links between two switches
which carry traffic of at least one flow in the set F.

Initially all the switches are in WHITE state and the traffic in the network is also
white. In every round of statistics collection, the controller sends the FlowMod
command to all the switches to update the current round color (line 3-5 of Algo-
rithm 1). The controller initiates the statistics collection process by sending a spe-
cial control packet which is like any other data packet but colored® with the same
color as the round color. Initially the round color is initialized to red color (line 1 of
Algorithm 1).

Algorithm 1: Controller Side

// RoundColor holds the Color of the current run

round-color < RED;

foreach round do

// N is the total number of switches in the network

3 foreach i in {1,2,...,N} do

// sends command to a switch to update the current round color
COMMAND_SET_-ROUND_COLOR (v;, round-color);

[V

end

RemainingSet + FlowG ;

while RemainingSet # ¢ do

// Returns a switch with maximum flows fanning out

8 S <— MAX_OUT_DEGREE_VERTEX(remainingSet);

// Breadth-First-Search routine returns set of all vertices
reachable from node s

N 0 p

9 ReachableSet < BFS(FlowG,s);
// sends a special color packet to the root switch of a subtree
10 SEND_CONTROL_PACKET(s, round_color);
11 RemainingSet < RemainingSet — ReachableSet;
12 end

// Round terminates when it receives stats from all switches
13 foreach ¢ in {1,2,...,N} do
// receives flow statistics from a switch

14 All_stats[i] = RECEIVE_FLOW_STATS_SWITCH(i) ;
15 end

16 if round_color == RED then

17 ‘ round_color < GREEN;

18 else

19 ‘ round_color <~ RED ;

20 end

21 end

The objective of sending a special control packet to a particular switch is that it
should eventually spread to all switches. This may not happen always. There can

5 To color a packet, ECN field of IP header is used. ECN field has 2 bits, therefore there can be 4 ways
of using it.
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be two or more groups of switches where the flow in one group does not reach
another group. Therefore, we choose the switch with maximum out-degree in the
graph FlowG (line 8 of Algorithm 1) and find reachable nodes from it using Breadth
First Search (BES) (line 9 of Algorithm 1). This gives us a disconnected tree. We
send a special control packet to the root switch of this tree (line 10 of Algorithm 1).
Then we remove this tree from the FlowG (line 11 of Algorithm 1) and repeat this
process on the remaining graph until all the switches in the network are covered.
The controller waits for statistics from all N switches (line 13—-15 of Algorithm 1).
Once the controller receives the statistics from all the switches, it concludes the one
round of statistics collection and updates the round color for next run (line 16-20 of
Algorithm 1).

3.4.4 Need of Two Colors for Switch State

One round of statistics collection is complete when the controller receives the sta-
tistics from all the switches in the network (line 13—15 of Algorithm 1) and thus
network becomes RED. For the next round, the state of all the switches needs to be
reset back to WHITE. After each round of statistics collection, the controller sends
the command to the switches to reset their state. Only after successful reset of the
state of all the switches, the network comes back again in WHITE state and becomes
ready for the next round. But the above approach has a limitation. By the time a
round of statistics collection completes the whole network has turned RED and all
the switches can not be reset back to WHITE state simultaneously. In a network with
in-band controller configuration, some switches will be near to the controller and
some switches will be some hops away. The switches nearer to the controller are
reset faster compared to those which are far from the controller. Thus, the switches
which are far from the controller and have not been turned back WHITE will keep
on generating red packets. These stray red packets can hit the switches which the
controller has reset for the next round. So, the controller can not start a new round
until there is a red packet in the network. This increases the delay in statistics col-
lection for the next round. Thus, to resolve this limitation, we propose use of two
different color packets. Now for the second round of statistics collection, the con-
troller sets the current round color different from the first round, say green (line 17
of Algorithm 1). The switches will consider all the packets of color different from
current round color as normal packets and send the statistics for the current round
only on reception of a green packet. Thus, the controller does not need to wait for
all the switches to reset back to WHITE state before starting the next round statistics
collection. After the end of second round of statistics collection the whole network
turns GREEN. So, for the third round the controller can use a special control packet
of RED color and so on. Thus, the proposed method requires at least two special
control packets of different colors.

3.4.5 Algorithm at the Switch

The switch has multiple forwarding tables as shown in Fig. 2a. Each table has mul-
tiple flow entries. Counters for each flow entry are maintained in the switch and
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these counters get updated when a packet matches the flow entry. The switch sends
the value of these counters as statistics reply to the controller on arrival of a colored
packet.

Algorithm 2: SwitchSidePacketProcessingProcedure(Packet P)

1 Current RoundColor < none;

2 SwitchState < WHITE;

3 if P.Type == COMMANDTOUPDATECOLOR then

// Command from SDN Controller to setup new round
4 Current RoundColor < P.RoundColor;

5 else

// Normal data packet

6 if P.Color == CurrentRoundColor then

// Packets which have seen the current round or Special Control
Packet

7 if SwitchState == CurrentRoundColor then

// Flow Statistics already sent to the controller

Forward Packet P;

9 else
// Statistics not sent

10 Send statistics of all the flows to the controller;
11 SwitchState < Current RoundColor;

12 Forward Packet P ;
13 end
14 else

// Packets which have not seen the current round

15 if SwitchState = Current RoundColor then

16 P.Color <+ CurrentRoundColor;

17 Forward Packet P;
18 else

19 ‘ Forward Packet P ;
20 end
21 end
22 end

The execution of algorithm on a switch in the data plane depends on three
things:CurrentRoundColor, SwitchState, and input packet. CurrentRound-Color is
used for starting a new round and SwitchState is used for making the switch remem-
ber whether it has sent the statistics for the current round or not. CurrentRoundColor
is updated by the controller to start a new round and SwitchState is set by the switch
itself. It is not straightforward to implement this in an OpenFlow enabled switches.
We provide more details about this in Sect. 4. The input to Algorithm 2 SwitchSide-
PacketProcessingProcedure() is a packet. The packet can be a data packet (default
color is white) or a special control packet (red or green) from SDN controller to ini-
tiate the statistics collection process or a command sent by SDN controller to update
the current round color. When the switch receives a command to update the round
color it updates the current round color (line 3—4 of Algorithm 2). As discussed
above, initially all the switches are in WHITE state and the traffic in the network
is also white. The controller initiates the statistics collection process by sending a
red or green special control packet. We call the first round of statistics collection as
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bootstrapping round. Packet processing is slightly different for bootstrapping round
when compared to subsequent rounds.

During bootstrapping round, packet processing at a given switch w.r.t the input
packet’s color and current state of the switch is given in Table 3.

Table 3 Packet processing at a switch during bootstrapping round

Input Switch state Action

Red packet WHITE The switch sends the statistics to the controller, updates its state
to RED, and forwards the packet (line 9-13 of Algorithm 2)

Red packet RED The switch will not send the statistics to the controller and sim-

ply forwards the received packet (line 7-8 of Algorithm 2)

White packet RED The switch will not send the statistics to the controller. However,
it will color every incoming white packet as red and forwards
it (line 15-17 of Algorithm 2)

Table 4 Packet processing at a switch during subsequent rounds

Input Switch state  Action

Packet of CurrentRound-  {WHITE, When the switch state is not CurrentRoundColor and it

Color GREEN, receives a packet of same color as CurrentRoundColor, the
RED} switch sends the statistics to the controller, updates its state
- {Curren- to CurrentRoundColor, and forwards the packet (line 9-13
tRound- of Algorithm 2)
Color}
Packet of CurrentRound-  Curren- Once the switch is in state same as CurrentRoundColor, the
Color tRound- switch will not send the statistics to the controller and sim-
Color ply forwards the received packet (line 7-8 of Algorithm 2)
Packet of color = Curren- Once the switch is in state same as CurrentRoundColor,
{white,green,red }- tRound- the switch will not send the statistics to the controller, it
{ CurrentRoundColor} Color colors every incoming packet with CurrentRoundColor and

forwards the packet (line 15—17 of Algorithm 2)

In subsequent rounds, packet processing at a given switch w.r.t the input packet’s
color and current state of the switch is given in Table 4.

3.5 Characteristics of GlobeSnap

Consider two adjacent switches S; and §; in a connected subgraph of a network.
There are many flows going through these two switches such as forward flows F,
reverse flows R, and orthogonal flows O. A forward flow, w.r.t switch S;, goes from
switch §; to switch §;. A reverse flow, w.r.t switch §;, goes from switch ; to switch
S;- An orthogonal flow goes either through switch S; or switch S; but not both.
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3.5.1 Consistent Snapshots

A forward flow f;, when it goes through several switches on its path, at any given
instant, for switches S; and S;, sent(f*) > recv()j."). This is due to the fact that any
packet received at switch Sj, should have been sent from switch ;. This is known as
causal consistency. GlobeSnap ensures consistency according to this relation. Let us
now understand how it works.

Case 1: forward flow carrying red packets In GlobeSnap, once a red packet is
received at switch S, statistics of all the flows at switch S; are sent to the controller
and any further packet is colored as red. As soon as any of these red packets reach
switch Sj, statistics of all the flows of switch Sj are sent to the controller. This avoids
the possibility of a packet not recorded in the statistics of switch S, reaching switch
S; before switch §; sends its statistics. This is formally proven in Appendix A.

When a forward flow carries red packets, statistics recorded at switch S; and
switch S also contain the statistics of reverse flows. For a reverse flow ry,
sent(r") > recv(r") is true. This is because, by the time the first red packet reaches to
sw1tch S;, zero or more packets would have been transmitted from switch S; to switch
S; for flow r;.. Therefore, the sent statistics of flow r; at switch S; will be more than or
equal to received statistics of flow r; at switch S;. Consider the following example,
let at time ¢, the flow match counter values of ﬂow fi and ry at switch S; are x; and y,,
respectively. Now a red packet arrives at switch S; and the switch S; sends statistics
of both the flows to the controller as sent(fik) = x;, and recv(rf) =y,. Let after A time
a red packet of flow f; from switch ; arrives at switch S;. This will invoke statistics
collection at switch ;. During this A time interval sw1tch S; may or may not have
sent packets to sw1tch S, for flow . Thus, for flow * the statlstlcs recorded at switch
S; will be greater than or equal to the statistics recorded at switch S,.

Case 2: orthogonal flows carrying red packets Consider that two orthogonal
flows o;, 0; carry red packets and these red packets reach switch §; and switch S; at T;
and T, respectively. Also consider that 7; < 7; and during the time I7; — T}l no red
packet is exchanged between the switches. At time 7, red packet from orthogonal
flow o; reaches switch S; and it sends the statistics of both the flows f; and r, as
sent(fk) and recv(rk) respectively. In I7; — 7}l time only the white packets are sent
from switch S; to switch S;. All these white packets would either have reached switch
S; or still be in the data channel Thus when switch S; receives a red packet of flow o,

J J
at time 7}, the recorded statistics of flow f; i.e., recv(fk) will be less than or equal to

sent statistics from switch S, i.e., sent(f") Similarly for the reverse flow r;, during
the time |7; — T}l switch S; may or may not have sent packets to switch S;. Thus, the
recorded statlstlcs for ﬂow ry at switch §; i.e., sent(rk) is greater than or equal to the

received statistics at switch S; i.e., recv(rl’.‘) Slmllarly the consistency condition will
also hold when T; > T;.

3.5.2 Near-synchronous Snapshot

Synchronicity of a snapshot is a measure of how contemporaneously switches can
record their local snapshots. A synchronous snapshot of a network is one in which
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all switches record their local statistics simultaneously. This is difficult to achieve
in practice in a distributed system because if proper care is not taken packets may
be reported as received but may not be reflected as sent thus violating consistency.
GlobeSnap while ensuring consistency as described above, provides a near-syn-
chronous snapshot of a flow. If T}, T,, ..., Ty are the timestamps at which switches
S1,S,, ..., Sy have recorded local statistics of a flow f, then GlobeSnap ensures that
T = Topin < RTT(f,)/2 where T, is maximum timestamp and 7, is minimum
timestamp and RTT(f,) is round trip time measured from S, to Sy of f,. This is pos-
sible because red packet initiated at S; can reach S, in RTT(f;)/2 time.

3.5.3 Efficient and Flexible Recording of Snapshot

In a network, let us assume that it takes 7 time for a packet to reach the farthest
switch from the SDN controller and #, time in reverse direction.

As already explained in Sect. 3.3, OpenSnap provides inconsistent statistics for
OpenFlow based networks with Non-FIFO channels. In a given round of statistics
collection, OpenSnap sends marker packet through a queue say g;, and can ensure
consistency only for the set of flows going through queue ¢g;. Every round takes
tp + tp time, f, time for marker packet to reach the farthest switch and #; is the time
taken by the farthest switch to send the statistics reply to the controller. In order to
cover all flows, marker has to be sent separately through each queue, each taking a
round of its own. If there are Q number of queues supported on all outgoing inter-
faces in the network, OpenSnap needs Q X (t5 + ;) time to collect the statistics of
all the flows for single snapshot. On the other hand, GlobeSnap collects statistics of
all flows in a single round taking ¢ + t, time. Therefore, GlobeSnap is more effi-
cient than OpenSnap.

In GlobeSnap, ¢ is the time taken by red packet to reach the farthest switch and
tx is the time taken by the farthest switch to send statistics to the controller. The
component 5 can be further reduced, if red packets are introduced in more than one
switch in the connected subgraph. This leads to faster spread of red packets reduc-
ing ¢ time. ¢ will be zero in an ideal case where red packets are introduced in all
switches at the same time. Depending on how many special color packets are intro-
duced in the network, to that degree, t; will be lesser. However, ; can not be reduced
as it is required that the farthest switch has to send its statistics to the controller.
Therefore, GlobeSnap takes a minimum of 7, time and a maximum of ¢, + # time to
collect consistent statistics in a single round. Thus, giving the flexibility in adjusting
the time required to complete a round.

3.5.4 Robustness

A method is robust if it provides consistent statistics in a given run without restart-
ing the whole statistics collection process in case of a link failure, switch failure or
packet loss event. GlobeSnap method robustly collects consistent statistics. It ini-
tiates the statistics collection separately in each connected subgraph of a network
as shown in Algorithm 1. Failure in initiating, i.e., loss of special control packet
or FlowMod packet can be rectified by retransmission, which is inbuilt in TCP.
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Another type of failure that may happen is link or switch failure when snapshot is
in progress within a connected subgraph. Snapshot recording is not hindered if there
are multiple paths to reach the adjacent switch. In case there are no redundant paths
and a link fails, snapshot recording resumes when the failed link restores and adja-
cent switch sends colored packets. In case of a switch failure, the switch sends the
statistics once it is restored and receives a colored packet. Another type of failure
is packet loss. Packet loss does not hinder snapshot recording since every packet is
colored as per the switch state. As soon as new packets arrive at the switch, they will
be colored red/green and transmitted which will make the next switch to record the
snapshot. Whereas, OpenSnap has to restart the statistics collection again when a
link/switch fails or a packet drop event happens, as this can lead to no marker packet
being forwarded from one switch to another.

3.5.5 Estimating Network Parameters from Snapshot

A snapshot recorded with Globesnap offers some insights into computing network
parameters. Considering that f; is a forward flow with red packets, # is a reverse
flow, and link is symmetric, the following observations can be made: Considering
that the first red packet takes d amount of time to reach from switch S; to switch S,
and during the same amount of time, all reverse flows in R would have transmitted

}5'1 sent(r/’.) - recv(rf) number of packets i.e., the sum of the differences between
sent and received statistics of all reverse flows. This fact states that flow rate of any

/ . sent(r;)—recv(rf) .
reverse flow 7 can be derived by —————. If at least one forward flow has its

sent() — recv() > 0, then it means that there were enough packets to utilize link
capacity on the link connecting switch §; to switch §;. In addition, if the link is sym-

metric, then it can be stated that Z}ill sent(fj’) - recv(fl.’), i.e., the number of packets

transmitted during time d from switch S; to switch S§; is same as the number of

Si
Qfirstred \\ First red packet scheduled on the data
channel and received by switch S;

a1 \

I~ Packets scheduled on data channel and

\ received by switch S; before first red

|_— packet from Gyirstreq hits the switch S;

a: \ =]

Packets scheduled on data channel and

received by switch S; after first red
packet from qirsereq hits the switch S;

Fig.5 Network parameter estimation
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packets transmitted from switch S; to switch ;. Using the relation stated above, the
aggregate input traffic rate can be estlmated on the forward link. Also, controller has
the timestamps at which the statistics are received from the switches. From these
timestamps, controller can estimate d.

Now let us look at switch §; having multiple queues (as shown in Fig. 5), each
queue carrying multiple flows. When a red packet arrives at switch §;, it sends the
statistics of all the flows to the controller and packets coming thereafter are marked
red. The first red packet, depending on which flow it belongs to, is placed in one of
the queues. Similarly, packets of different flows arriving hereafter will be colored
red and placed in different queues. Depending on the packet scheduling at switch
S;, the first red packet in any of the queues may reach switch S;. When the first red
packet reaches switch S, it sends the statistics of all the flows to the controller. If the
first red packet which reached switch S, is from gp,,.4 at switch S, then all the flows
IN Ggeq Will have their seni() and recv() statistics equal i.e., the number of packets
recorded at switch S; and yet to reach switch S; is zero. For queues other than gy,
at switch S;, flows will have sent() > recv(). In a queue g;, where i # firstred, the
ratio of sent() — recv() of flows gives the ratio of their traffic rates. This is attributed
to the distribution of packets of different flows in the region of a queue between the
first red packet of that queue and the point when the first red packet from gy, has
reached switch S;.

From the above observations, various parameters can be estimated using the sta-
tistics collected by Globesnap. Traffic rates of flows and links are important statis-
tics in networks. Input traffic rate of forward link and reverse link between switch S
and switch §; are estimated using d and Z =1 sent(r[) - recv(rl) as explained above.

RFC 3272 [28] defines a bottleneck network element as whose input traffic rate
tends to be greater than its output rate. The input traffic rate on link connecting

switch §; to switch S; can be calculated as M This input rate is compared
with the transmission rate of the link and with a suitable threshold the link can be
identified as bottleneck link. Flow rates of reverse flows is estimated using the indi-
vidual sent() and recv() statistics of each flow. For forward flows, queue bandwidth
is split in the ratio of sent() — recv() of the flows in a given queue resulting in indi-
vidual flow rates. For a given flow, across the links, these flow rates can be com-
pared and the minimum flow rate is taken as the end-to-end flow rate of the flow.
This also lets us identify the bottleneck link for a given flow.
Computing packet loss on a link connecting switch §; to switch S; is achieved by
taking the sum of sent() — recv() of all reverse flows and dlfferencmg it from the
sum of total queue capacity and channel capacity. Computing packet loss on forward
link connecting switch S; to switch S is achieved by taking the sum of sent() — recv()
of all reverse flows and forward ﬂows and differencing it with the sum of total queue
capacity and channel capacity.
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3.6 Overhead

In this section, we discuss the overhead in the network in terms of the number of
control messages required to collect the statistics of the underlying network using
CeMon [4], OpenNetMon [5], OpenSnap [6] and GlobeSnap.

Consider a network of N switches, which has a diameter d and an in-band SDN
controller configuration. Let the average distance (in terms of the number of links)
from a switch to the SDN controller be g Therefore, round trip distance from the
SDN controller to a switch is d. In OpenNetMon [5], the controller sends the flow
statistics request only to the edge switches of every flow. Therefore, the number of
control packets in the network will be f X d, where f is the total number of flows
in the network. In CeMon [4], instead of collecting statistics only from the edge
switches, it collects the statistics from some of the switches for each flow. We
assume that the number of switches from which the controller collects the statistics
for a flow are Y. The total number of switches that will be polled for all flow sta-
tistics are XX/ Therefore, the total number of control packets in the network will
be w. In OpenSnap [6], two marker packets per link are required to collect the
statistics from all the switches. As OpenSnap is designed for a spanning tree proto-
col (STP) networks, the number of links in the network would be N — 1. Therefore,
the total number of marker packets in the network will be &4 There will be N
statistics replies to the controller. Therefore, the total number of control packets in
the network will be XM=2Xd Thiq gverhead increases in case of a network with
Non-FIFO channels. If each switch has q queues configured on each interface then
the overhead to collect consistent statistics for all the flows is {ZXX=2xgxd

In GlobeSnap, there is no marker-like control packet on the data channel. To
start the statistics collection process, the controller sends special control packets to
a few switches. In the worst case, it can be N switches. Since usually, a flow will go
through at least two switches, it can be averaged to g switches. There will be one
statistics reply from all switches. The total number of control packets required to ini-
tiate and collect the statistics from all the switches will be (Y24 However, after
the collection of statistics, the controller has to reset the state of the switches. The
overhead to reset a switch is <. Therefore, the overhead to reset all the switches is
M To update the current rouznd color the controller has to send a control messages
to each switch. This introduces an overhead of 24 messages. Thus, the total number
of control packet required in GlobeSnap is 22,

The control message overhead in GlobeSnap is independent of the number of
flows in the network as compared to CeMon and OpenNetMon in which the over-
head increases with the increase in the number of flows. Usually f >> N. The
overhead in OpenSnap with Non-FIFO channels is q times more compared to
GlobeSnap, where q is the number of queues configured on an output interface of a
switch.
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4 Implementation Details

We use Mininet [16] to emulate a network of Open vSwitch [27] switches and ryu
[29] controller to communicate with Open vSwitch switches using OpenFlow 1.3
[25]. In Mininet, the default configuration of controller is out-of-band, which is
not practical as it requires a dedicated link from every switch to the controller. We
implemented an in-band configuration of controller for our experiments.

4.1 Overview of OpenFlow Features

In this section, we give an overview of OpenFlow features and its extensions that we
use to implement GlobeSnap.

4.1.1 Registers

Open vSwitch has multiple 32-bit registers that retain their state until a packet is
being processed in the switch processing pipeline. These registers act like variables,
they provide space to Open vSwitch for temporary storage while packet is being pro-
cessed. We use the Nicira extension [30] for OpenFlow 1.3 that supports setting and
matching of these registers.

4.1.2 Multiple Forwarding Tables Pipeline

OpenFlow switches can have multiple forwarding tables and each forwarding table
can contain multiple flow entries to forward the network traffic. When a packet
comes to an OpenFlow switch, the packet can match against a flow entry in any of
the forwarding tables. Once we find a match, the packet can be forwarded to another
forwarding table using “Goto Instruction”, where the same process will be repeated.
A given flow entry can only forward the packets to another forwarding table with a
greater table number than its own table number. That is, the packet processing pipe-
line always goes in the forward direction not in backward. The processing pipeline
stops when the packet cannot be forwarded to any further forwarding table. At the
end of the processing pipeline the associated actions are performed. If a packet does
not match any flow entry in the forwarding table, the table miss actions are per-
formed [24].

4.2 Implementing GlobeSnap in OpenFlow

In this section, we explain how we use registers, multiple forwarding table and mul-
tiple pipelines to maintain the states in OpenFlow switches and thus implement
GlobeSnap.

Figure 6 shows the processing of the incoming packet in GlobeSnap in a given
run. We use four tables in each switch namely, PREPROCESSING table, STATE
table, LOGIC table, and FORWARDING table to perform conditional forwarding
w.r.t to a given color. The PREPROCESSING table identifies the incoming packet’s
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color as current round color or other color and forwards it to the STATE table and
LOGIC table. The STATE table is responsible for maintaining the state of the switch
as RED, GREEN, or WHITE that it does with the help of a 32-bit register provided
by Open vSwitch [27] as part of Nicira Extensions register. Note that, the register
alone can not store the state of the switch as the registers are always initialized to ‘0’
and their values can not persist from one packet processing to another. This is the
reason for using STATE table. The STATE table has the flow entries to set the value
of the register which can then be accessed in the subsequent flow tables. This is how
state of a switch is maintained. LOGIC table implements the main logic of the algo-
rithm by accessing the register value.

1. If Register_value = 0, then it forwards the packet to the FORWARDING table.
2. If Register_value = 1, then it does the following,

(a) Send the statistics to the controller.

(b) Color the packet with current round color.

(c) Add anew flow entry in STATE table with higher priority, which sets the
register value to 2.

(d) Forward the packet to the FORWARDING table.

3. If Register_value = 2, then it colors every incoming packet with the current round
color and forwards the packet to the FORWARDING table.

The register values 1 and 2 are used to distinguish between the first red/green packet
and the packets received after the first red/green packet. FORWARDING table pro-
cesses the packet based on the flow entries added by the controller.

Once the switch has sent the statistics to the controller, the STATE table of a
given pipeline updates the register value to 2 to denote the RED state of a switch.
Resetting of switch state requires deletion of the flow entries, from the STATE table,
which correspond to the RED state of the switch. After each run of statistics collec-
tion, the controller sends a command to the switches to delete the flow entries from
their STATE tables. On successful removal of the flow entries from STATE tables
of all the switches, the network comes back again in WHITE state for the next run.
As already discussed in Sect. 3.4.4, due to stray red packets, it would be difficult to
simultaneously delete the flow entries from STATE tables of all the switches. So, we
need a separate processing pipeline for green color.

Table_id =0 Table_id =2 Table_id = 3

Packet In[ PREPROCESSING ]_ LOGIC FORWARDING |Packet Out
Table Table Table
STATE
Table

Table_id =1

Fig. 6 Processing of incoming packets using multiple flow tables in an OpenFlow switch
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Table_id =1 Table_id =3

PREPROCESSING LOGIC

Table Table

ineli Table_id =2
Table_id=0  |ipeline ] = Table_id =7
= STATE Packet O
Packet In| CHANNEL Table FORWARDING |Packet Out
Table Table

Table_id = 4 Table_id = 6

Table Table
Pipeline 2 Table_id =5
STATE
Table

Fig. 7 Processing of packets in GlobeSnap using two pipelines

If we consider the processing of packets as shown in Fig. 6 as a single pipeline
which processes the packets for a given round of statistics collection (let us say for
red color), then to process the packets for next round of statistics collection (i.e.,
green color) we use another pipeline, as shown in Fig. 7. Pipelinel and pipeline2
correspond to red and green color respectively. Both the pipelines consist of separate
PREPROCESSING, STATE, and LOGIC tables with different table numbers, for
example, table_id 1, 2, and 3 correspond to PREPROCESSING table, STATE table,
and LOGIC table respectively of Pipelinel and table_id 4, 5, and 6 correspond to
PREPROCESSING table, STATE table, and LOGIC table respectively of pipeline2.
The decision to which pipeline the packet needs to be forwarded is taken by the
CHANNEL table (i.e., table_id = 0) given in Fig. 7. Once the pipeline is decided for
packet forwarding, all the packets are processed through the selected pipeline for the
given round of statistics collection and the other pipeline is being reset for the next
round of statistics collection. In every alternate round, the controller uses the same
pipeline for statistics collection.

5 Experimental Evaluation

In this section, we evaluate the performance of GlobeSnap w.r.t to collection of con-
sistent statistics and compare the results with Simple Polling, CeMon [4], Open-
NetMon [5], and OpenSnap [6] with FIFO and Non-FIFO channels. All experiments
are performed on the same network topology as given in Fig. 8 and configurations as
given in Table 5. The controller is running on host 4. Flow f; traces the same path
as statistics request messages, flow f, traces the opposite path to the statistics request
messages and flow f; is not following any strict direction w.r.t statistics messages.

5.1 Consistency Evaluation

The experiments are performed with a constant bit rate (CBR) traffic over both
TCP and UDP and variable bit rate (VBR) traffic over UDP. For consistency evalu-
ation, we got similar results for all three kinds of traffic. However, in this paper,
only the results of CBR traffic running over UDP are presented, we did not observe
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Fig. 8 Topology used for consistency evaluation
Table 5 .Network conﬁgurations Topology Given in Fig. 8
for consistency evaluation
experiments Number of queues per port 3
Number of flows 3(f) @ hy=hg, fr : hy=h,,
and f; @ hy—hs)
Traffic generator D-ITG [31] (4 Mbps per flow)
Controller configuration In-band

considerable variations in the results when experiments are performed with VBR
traffic for all the methods. For the experiments, we have configured three queues
do-4,> and g, on each port of the switches. Flows f; and f; are forwarded through
queue g,, and flow f, is forwarded through queue g,.

For a particular flow f,, we calculate 4 = seni(f!") — recv([;.”) as a measure to com-
pare the consistency achieved by different methods, where i is the switch connected
to the source host and j is the switch connected to the destination host of flow f,. For
OpenNetMon [5] the controller polls the source and destination switches of all the
flows. Simple polling and OpenNetMon [5] provide inconsistent statistics for flows
Jiand f; (as shown in Fig. 9a, c, d, f respectively). Whereas, they provide consistent
statistics for flow f, (as shown in Fig. 9b, e respectively) because the controller is
running on host /#; which is connected to switch S; and the destination host £, of
flow f, is also connected to switch S,. Thus, when the controller initiates the statis-
tics collection process by sending the statistics request messages to the switches, for
flow f, the destination switch S, sends the statistics before the source switch S,. This
is because for flow f, the source switch is located far from the controller as com-
pared to the destination switch. So, by the time statistics request reaches source
switch S, of flow f; its flow match counter would have increased. Thus, it gives con-
sistent statistics as sent statistics of flow f, is greater than its received statistics.

CeMon [4] proposes an algorithm to calculate the polling frequency for each flow
on a given switch. We run this algorithm for all three flows f,,f,, and f; and the
controller polls the source and destination switches at the calculated frequency. As
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shown in Fig. 10a—c, CeMon gives inconsistent statistics for all three flows, f;, f,
and f;. Whereas, GlobeSnap provides consistent statistics for all three flows.

In OpenSnap with FIFO channels, the statistics are consistent for all three flows
as shown in Fig. 11a—c. Whereas, the statistics for flows f; and f; are inconsistent
in case of OpenSnap with Non-FIFO channels as shown in Fig. 10d and f. It pro-
vides consistent statistics for flow f,, as shown in Fig. 10e because the controller
is running on host /; which is connected to switch S, and the destination host %, of
the flow f, is also connected to the switch §;. Thus, when the controller initiates
the statistics collection process, switch S| sends the received statistics of flow f, to
the controller and forwards the marker packet to all the adjacent switches. So, by
the time marker packet reaches source switch S, of flow f, its flow match counter
would have increased. Thus, it gives consistent statistics as sent statistics of flow f,
is greater than its received statistics. Whereas, GlobeSnap provides consistent statis-
tics for all three flows in both, network with FIFO channels and network with Non-
FIFO channels.

We also compare all these solutions in terms of the percentage of consistency
achieved. We define percentage of consistency achieved as the percentage of rounds
providing consistent statistics out of the total number of rounds of statistics collec-
tion. The percentage of consistency is measured as follows,

Number of rounds providing consistent statistics

% consistency = 100. (3)

Total number of rounds of statistics collection
Figure 11d, shows the percentage of consistency achieved by each solution. Open-
Snap [6] with Non-FIFO channels provides least consistency whereas, simple
polling, CeMon [4], and OpenNetMon [5] provides 59.89%, 52.25%, and 43.19%
consistent statistics respectively. Both OpenSnap with FIFO channels [6] and
GlobeSnap provides 100% of consistent statistics. As already explained in Sects. 1
and 3.3, OpenSnap is not an efficient solution for OpenFlow based networks with
Non-FIFO channels.

5.2 Synchronicity

As discussed in Sect. 3.5, synchronicity is measured as the difference between high-
est timestamp and lowest timestamp in a snapshot. Globesnap method ensures that
the synchronicity of a snapshot of a given flow does not exceed half of its RTT. This
is supported by experimental results as shown in Fig. 12. Maximum RTT of flow f;
is 1.35 and half of it is 0.67. The synchronicity of snapshot recorded for flow f; is
always below 0.67.

5.3 Use Cases of GlobeSnap

As already discussed in Sect. 3.4.2, the controller can use the collected consistent
statistics to identify the bottleneck link and to estimate the packet loss in a given
queue and link. In this section, we present the results for the use cases of GlobeSnap.
The existing works OpenNetMon [5], CeMon [4], Simple polling does not provide
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Fig.9 Comparison of GlobeSnap with simple polling, and OpenNetMon [5] with Non-FIFO channels.
The shaded area represents the inconsistent statistics

consistent statistics. Thus, they can not be used to identify the bottleneck link and
packet losses. As shown in the previous section OpenSnap provides consistent sta-
tistics for FIFO networks only. Thus, it can not identify the bottleneck links in Non-
FIFO networks. For the experiments, we have used the topology as shown in Fig. 13
and network configurations as given in Table 6.

Initially, there are only two flows in the network f; and f,. Flow f; is forwarded
through queue g,, whereas flow f, is forwarded through queue g,. After 120 s, two
more flows (f; and f;) are admitted in the network, where the flow f; is forwarded
through queue ¢, and flow f; is forwarded through queue g,. After next 120 s, one
more flow (i.e., fs) is admitted to the network, which is forwarded through queue
q,- After 60 s flow f; is admitted in the network, which is forwarded through queue
q,. There are six flows in the network, and all six flows go through link L, : S;—S,.
Whereas, only three flows go through link L, : S,—S,and L; : S,—S;.
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Fig. 10 Comparison of GlobeSnap with CeMon [4], and OpenSnap [6] with Non-FIFO channels for con-
sistency. The shaded area represents the inconsistent statistics

5.3.1 Identifying Bottleneck Links

The statistics collected using GlobeSnap can be used to identify the bottleneck
links correctly. We consider a link to be a bottleneck link when it reaches 70% of
its capacity. We estimate the arrival rate of a link by taking the difference of the
number of bytes sent from source switch and the number of bytes received at the
destination switch of a link for all the flows going through the link and divide it by
the link delay.

As shown in Fig. 14a and c, links L, : S,—S|, and L; : S,—S; are not bottleneck
links. As all six flows are going through link L, : S;—S,, the arrival rate increases
every time when a new flow joins the link. Between 266th and 269th second the traf-
fic arrival rate increases which results in 70% link utilization as shown in Fig. 14b.
Thus, L, link is identified as a bottleneck link. Between 269th and 272th second the
link state of L, goes above the link capacity.
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Fig. 12 Synchronicity of GlobeSnap

5.3.2 Computing Packet Loss

For packet loss evaluation, we have considered the same topology as shown in
Fig. 13 and network configurations as given in Table 6. We compare the packet
loss results of GlobeSnap with the actual number of packet loss provided by Open
vSwitch (OVS) queue statistics (i.e., NetEm [32] statistics).
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Fig. 13 Topology for bottleneck link and packet loss evaluations

Table 6 Network configurations
for experiments to identify the
bottleneck link and number of
packets lost on a link

Topology Given in Fig. 13

No. of queues per port 3, namely ¢, ¢, and g,

Bandwidth of link 25 Mbps

Queue bandwidth 10 Mbps for queue g;, 12
Mbps for queue ¢, and
remaining 3 Mbps for g,

Host to switch delay Sps

Switch to switch delay 176 ps

Number of flows 6 (fi + hg=hy, fo 2 hyy—hy,
St hg—=hs, fy @ hyg—he,
S5 hy3—hs, and

fo @ hy —=hy)
Traffic generator D-ITG [31] (4 Mbps per flow)
Controller In-band
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Fig. 14 Bottleneck link identification in the network using GlobeSnap
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Fig. 15 Packet loss measurements on each link of the network by GlobeSnap and actual packet loss pro-
vided by queues statistics

Figure 15a and c show that the results of GlobeSnap for packet loss through indi-
vidual queues and for total packet loss on the links L, : §,—S;, and Ly : S,—=S;
are overlapping with the results given by OVS and the packet loss on both the links
is 0. All six flows are going through link L, : S;—S,, Fig. 15b shows that packets
start dropping at 272th second on queue g, and 327th second on queue g, of link
L, : §;—S, when fifth and sixth flows joined the link respectively. The total packet
loss on the link is sum of packet loss on both the queues. The results of GlobeSnap
for packet loss through individual queues and total packet loss on the link are over-
lapping with the results given by OVS.

6 Conclusion

In this paper, we proposed an efficient and robust method to collect globally con-
sistent statistics in OpenFlow based SDN networks. GlobeSnap uses a coloring
mechanism to collect consistent statistics. GlobeSnap outperforms the state-of-the-
art approach OpenSnap [6] and other polling-based methods in consistency evalua-
tion. Also, in CeMon [4] and OpenNetMon [5], the overhead of the number of con-
trol packets increases if the number of flows in the network increases. Whereas, the
control packet overhead in GlobeSnap is independent of the number of flows in the
network. We also demonstrated that consistent statistics can be used to identify the
bottleneck links accurately and to estimate the number of packet loss in the links.

A Appendix for Correctness

In this section, we show the correctness of the proposed solution to collect consist-
ent statistics in OpenFlow networks with Non-FIFO channels.

Consider the network segment given in Fig. 16. There are two flows f; and f,,
both are going from switch S, to switch S,. The controller is connected to switch §;.
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Fig. 16 Illustrating the correctness of GlobeSnap for OpenFlow based networks with Non-FIFO channels

Both switches have two queues, g, and g,, configured on each port. For simplicity,
let’s assume flow f; is forwarded through queue g, and flow f, is forwarded through
queue g,. As shown in Fig. 16, at time ¢, the packet count corresponding to the flows
fiand f, is X, and X, respectively at switch S,. The count for the flows f; and f,is Y,
Y, respectively at switch S, and the whole network is in WHITE state. Considering
X, to be equal to Y, and X, to be equal to ¥,. Now at time ¢,, the controller initiates
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the statistics collection process by sending a red packet to switch §;. On receipt of a
red packet, switch S, sends the statistics to the controller as X;+A,° and X,+A, for
flows f, and f, respectively. Which are recorded as sent statistics for both the flows
w.r.t to switch S, that is,

sent(f!) =X, + A, )
sent(f}) =X, + A,. 5)

After sending the statistics to the controller the switch S; changes its state from
WHITE to RED. Any further transmission of packets from switch S, are colored red.
At time t;, when the first red packet from switch S, hits the switch S,, it triggers the
statistics collection at switch S,. This ensures that any packet which is transmitted
after the statistics collection from switch S; will not be recorded in the received sta-
tistics at switch S,. At time #;, there are two possibilities,

Casel: First red packet scheduled on data channel is from the queue q, of switch
S,. At time f;, let queue g, be scheduled first for packet transmission on the data
channel as shown in Fig. 16a. The packets from queue g, are transmitted in FIFO
order. When the first red packet which is transmitted from switch S, through queue
g, hits the switch S,, switch S, sends the statistics to controller as Y,+4; and Y,+4,
for flows f; and f, respectively. Which are recorded as received statistics for flows f;
and f, at switch S,, that is,

recv(le) =Y, + 43, (6)

recv(fzz) =Y, + A4. @)

Since the first red packet which triggers the statistics collection at switch S, was
sent through queue g, of switch S,. Thus it belongs to flow f,. Any packet which is
received at switch S, before the red packet was a white packet. If there is no packet
loss on the link which connects switch S, and switch S, then,

A=A (8)
Using Eqs. 4, 6 and 8
sent(fll) = recv(le). 9)

If there is a packet loss for flow f; on the link which connects switch S; and switch
S, then,

6 A;, where i=1,2,3,..., is the number of packets sent from source switch to destination after time ¢,
7 A, where i=1,2,3,..., is the number of packets received at the destination switch after time #,
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A > A, (10)
Using Eqs. 4, 6 and 10,
sent(f!) > recv(f) ). (11)
Using Eqgs. 9 and 11,
sent(fll) > recv(f;). (12)

Thus, it satisfies the consistency condition given in Eq. 2.

For flow f,, the sent statistics can be greater than or equal to the received statis-
tics. The sent statistics will be equal to received statistics, if there is no white packet
in queue g, at switch S, when the first red packet from queue g, at switch S, is sched-
uled on data channel and there is no packet loss on the link which connects switch S
and switch S,. That is,

A, = Ay (13)
Using Eqs. 5, 7 and 13,
sent(flz) = recv(fZZ). (14)

The sent statistics will be greater than received statistics for flow f,, if there is at
least one white packet in queue g, at switch S; when the first red packet from queue
g, of switch S, is scheduled on data channel or there is a packet loss on the link
which connects switch S| and switch S,. This gives,

Ay > Ay (15)
Using Eqgs. 5, 7 and 15
sent(flz) > recv(fZZ). (16)
Using Eqgs. 14 and 16
sent(flz) > recv(f22). a7

Thus, satisfies the consistency conditions given in Eq. 2.

Case2: First red packet scheduled on data channel is from the queue q, of switch
S,. At time t;, let queue g, be scheduled first for the packet transmission on the data
channel as shown in Fig. 16b. The packets from queue g, are transmitted in FIFO
order. When the first red packet which is transmitted from switch S, through queue
q, hits the switch S, it triggers the statistics collection process. Switch S, sends the
statistics to the controller as Y, + A3 and Y, + A, for flows f; and f, respectively.
Which are recorded as received statistics for the flows w.r.t to switch S, as given
in Egs. 6 and 7. The first red packet which hits the switch S, is sent through queue
q, from switch S;. Any packet received by switch S, before the reception of the red
packet is counted in the sent statistics at switch S;. If there is no packet loss on the
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link which connects switch S, and switch §,, then it results in Egs. 13 and 14. That
is, sent and received statistics will be equal for flow f,. If there is a packet loss on
the link which connects switch S, and switch S, then it results in Eqgs. 15 and 16.
That is, the sent statistics will be greater than received statistics for flow f,. Using
Egs. 13, 14, 15 and 16,

sent(flz) > recv(fz2 ) (18)

Thus, it satisfies the consistency condition given in Eq. 2. For flow f}, the sent sta-
tistics can be greater than or equal to the received statistics. If there is no white
packet in queue g, at switch S, when the first red packet from queue g, at switch S,
is scheduled on data channel and there is no packet loss on the link which connects
switch S| and switch S, then it results in Eqs. 8 and 9. That is, the sent statistics
and received statistics for flow f; are equal. The sent statistics will be greater than
received statistics if there is at least one white packet in queue g, at switch S; when
the first red packet from queue g, at switch S is scheduled on data channel or there
is a packet loss on the link which connects switch §; and switch S,. This results in
Egs. 10 and 11. Using Eqgs. 8,9, 10 and 11,

sent(fll) > recv(le) (19)

Thus, it satisfies the consistency condition given in Eq. 2.

Correctness of Consistent Statistics for End-to-End Path

We proved that GlobeSnap provides consistent statistics on a given link. It can be
easily seen that GlobeSnap would also provide end-to-end consistent statistics using
transitive relation between the switches for the flow. It can also be observed that
even if switches are connected in a mesh topology then also GlobeSnap would pro-
vide consistent statistics. This is because every switch has a unique link from which
it receives the packets to be forwarded towards the destination for a particular flow.
In GlobeSnap, it is important to note that explicit marker packets are not required
to collect the statistics. Colored packets themselves act as markers and triggers the
statistics collection process. GlobeSnap always provides consistent statistics for all
flows because, on a given link all the packets that arrived at source switch after it
has sent the statistics to the controller will be colored red before transmission on
the data channel. The destination switch of a link sends statistics to the controller
only when the first red packet arrives at it. All the packets received at the destination
switch before the arrival of the first red packet are white and were recorded in the
sent statistics at source switch. Thus, the sent statistics will always be greater than or
equal to the received statistics for a given flow on a given link.
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B Experiment with Large Number of Packets and Over a Longer Time

Window

Table 7 below shows the experimental results with large number of packets for the
network topology given in Fig. 1. The controller polls both the switches (S, and S,)
by sending flow statistics requests. The results show even with longer time duration
the inconsistencies in the collected statistics does not smooth out.

Table 7 Statistics collected at
controller without enforcing
order of events in statistics
collection

Time

Statistics
from switch
S

Statistics
from switch
Sy

Sent-received Stats

0
2.08432
4.23353
6.36766
8.49809
10.62451
12.76864
14.88422
16.98311
19.13689
21.21459
23.34231
25.48619
27.64657
29.69471
31.84977
34.0017
36.10995
38.2682
40.40304
42.515
44.67638
46.79377
48.88439
51.05453
53.12028

1978
4325
6696
9076
11,434
13,798
16,169
18,555
20,923
23,321
25,707
28,068
30,441
32,809
35,171
37,536
39,913
42,284
44,653
47,028
49,411
51,772
54,146
56,523
58,896
61,264

1991
4325
6788
9144
11,560
13,995
16,381
18,741
21,132
23,557
25,843
28,257
30,705
33,088
35,359
37,888
40,312
42,674
45,131
47,486
49,932
52,364
54,771
57,076
59,510
61,870

-13

-92
- 68
- 126
- 197
-212
— 186
- 209
— 236
- 136
- 189
— 264
-279
- 188
- 352
- 399
-390
— 478
— 458
- 521
-592
- 625
— 553
- 614
- 606

Inconsistent
Consistent

Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent
Inconsistent

Inconsistent
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