Fractional excitations in non-Euclidean elastic plates
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We show that minimal-surface non-Euclidean elastic plates share the same low-energy effective
theory as Haldane’s dimerized quantum spin chain. As a result, such elastic plates support frac-
tional excitations, which take the form of charge-1/2 solitons between degenerate states of the plate,

in strong analogy to their quantum counterpart.

These fractional excitations exhibit properties

similar to fractional excitations in quantum fractional topological states and in Haldane’s dimer-
ized quantum spin chain, including deconfinement and braiding, as well as unique new features
such as holographic properties and diode-like nonlinear response, demonstrating great potentials for

applications as mechanical metamaterials.

Introduction— The analogy between quantum and clas-
sical physics plays an important role in the history of
many-body physics. For example, in the early develop-
ment of quantum topological states, concepts of classi-
cal topological defects (e.g., vortices and solitons) have
been crucial to the understanding of fractional excita-
tions in fractional quantum Hall systems [1] and quantum
spin chains [2, 3]. A more recent example is the duality
between topological defects in elasticity and fractons in
tensor gauge theories [4]. Conversely, quantum topologi-
cal states of matter inspired the blossoming new field of
topological mechanics [5-19]. So far, mechanical analogs
have only been achieved for integer quantum topological
states, but not yet the more exotic fractional ones.

In a typical quantum system, excitations are usually
composed of integer numbers of fundamental building
blocks (quanta). However, in certain strongly-correlated
fractional topological systems, such as fractional quan-
tum Hall systems [20] or Z spin liquids [21], a low-
energy excitation is a fraction of the fundamental build-
ing blocks, and this phenomenon is known as fraction-
alization. More specifically, the definition of fractional
excitations involves five criteria. (1) “Integer” excita-
tions need to be defined, i.e., the system needs to obey
certain quantization condition, such that excitations can
be classified by certain integer quantum number (e.g.,
charge). (2) An integer excitation then “breaks up” into
multiple pieces. Most importantly, the interactions be-
tween these pieces need to decay with their separation in
space, known as deconfinement. In quantum systems, de-
confinement is a highly nontrivial requirement, because
it is usually impossible to break a quantum particle, e.g.,
an electron. In classical physics, it is often possible to
partition an object. However, such partition in classi-
cal physics usually cannot meet the next criterion. (3)
Equal partition has to be enforced as we split the integer
excitation. For example, if a charge 1 integer excitation
splits into 2 equal parts, each part is a fractional excita-
tion with charge 1/2. Such equal partition is natural in
quantum systems, but a nontrivial requirement in clas-
sical systems. Furthermore, two more criteria need to
be enforced to ensure that these fractional excitations

cannot be trivially mapped back to integer ones: (4) a
fractional excitation must be a topological object, which
cannot be created by any local deformations, and (5)
these fractional excitations must exhibit novel properties
impossible for any integer ones, such as braiding [22].

In this letter, we show that minimal-surface elastic
plates support fractional low-energy excitations. Due
to the presence of the minimal surface associate fam-
ily, these systems exhibit two types of soliton configura-
tions: integer and half-integer, in strong analogy to the
quantum integer and fractional excitations in the one-
dimensional (1D) dimerized spin chains of Haldane [2].
Following the notion in Ref. [2, 3], the term soliton here
refers to topological solitons (kinks), instead of solitons
arising from nonlinear wave equations. We demon-
strate that the classical system and the quantum spin
chain share the same low-energy effective theory (com-
pact sine-Gordon), and in both systems, fractionalization
is induced by a Zs symmetry. As a result, this classical
version of fractional excitations shares identical physical
properties as their quantum counterpart. For example,
integer excitations are conventional and could be created
via local deformations, but once it splits into two frac-
tional excitations, each of them is a topological excita-
tion, robust against any local perturbations.

These fractional excitations exhibit exotic mechanical
properties, including braiding which is general to frac-
tional excitations, and holographic property and diode-
like torque-rotation response which are unique to these
minimal surface plates. These novel properties may find
broad applications as mechanical metamaterials.
2D non-FEuclidean plates— non-FEuclidean plates are elas-
tic plates having no stress-free configurations. Their elas-
tic energy is composed of two parts F = E; + E, for
stretching (Fs) and bending (Ej) energies [23, 24]. The
stretching energy depends on the first fundamental form
(i.e., the metric tensor) g of the manifold

E, = h/dA {BO;GO tr(g — g0)* + Go tr[(g — 90)2](}1;

where h is the thickness of the sheet and the elastic mod-



uli are By = % and Gy = G/4 with B and G
being the 3D bulk and shear moduli of the material re-
spectively. FEy is minimized if ¢ = go. The bending en-
ergy depends on the second fundamental form (i.e., the
curvature tensor) b. In this study, we focus on 2D non-
Euclidean plates, i.e. thin sheets homogeneous along the
thickness direction, so the bending energy takes the fol-
lowing form

G [8(3B+G)
3 2 _
Ey,=h /dA12[SB+4GH 2K|,  (2)

where H = trb and K = det b/ det gp are the mean and
Gaussian curvatures respectively. Because Fy o h and
Ey, < h3, E, is the dominant part in the small thickness
limit ~ — 0.

We highlight one important symmetry of 2D plates:

the elastic energy [Eq. (2)] is invariant if the curvature
tensor flips sign (b — —b), which is a Zy symmetry. This
Zo symmetry originates from the fact that the two sides
of a plate are equivalent, and thus the transformation b —
—b (equivalent to flipping the two sides) is a symmetry
operation that preserves the energy. This Zs symmetry
plays a crucial role for fractional excitations.
Minimal surfaces and low-energy effective theory—
Minimal surfaces are 2D surfaces that minimize their
area locally, characterized by H = 0. In this letter, we
focus on 2D plates whose target metric tensor (go) is
that of a minimal surface. In this case, minimization of
elastic energy E in the h — 0 limit gives ¢ = gy and
H = 0 [25]. However, this doesn’t uniquely determine
one ground state. Instead, there exist infinitely many
minimal surfaces with ¢ = go and H = 0 and all these
configurations are degenerate ground states of E (where
the only nonzero term is —2K which is fully determined
by go and thus is a constant) [26]. This set of minimal
surfaces, which share the same metric tensor, are called
an “associate family”, and it is known that minimal sur-
faces in an associate family can be labeled by a phase
angle ¢ [27]. As we vary ¢, minimal surfaces in this as-
sociate family deform smoothly into each other. As ¢
increase by 27, the surface returns to its original config-
uration. Ome such example, helicoid-catenoid associate
family, is shown in Fig. 1(a) [28].

In summary, the associate family that a minimal sur-
face plate belongs to defines a soft mode of this plate,
where we can deform the plate with zero elastic-energy
cost to the leading order (up to O(h?)). This soft mode
dominates low-energy deformations of such plates.

In particular, we consider a long ribbon of a 2D min-
imal surface plate. Here, low-energy excitations can be
characterized by a slowly varying ¢ along the ribbon,
©(v), where v is the coordinate along the ribbon. In
an ideal minimal surface plate, because all configura-
tions in the associate family have the same energy, the
elastic energy take the following form to the leading or-
der E = [dv [(8,)?], ie., energy cost from inhomo-
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FIG. 1. (a) The helicoid-catenoid associate family. (b-c) frac-
tional excitation configurations from FEA of ribbons with he-
licoids (b) and catenoids (c) ground states.

geneity. However, in reality, due to the finite thick-
ness and other deviations from the ideal 2D limit, dif-
ferent configurations in the associate family may have
some small energy difference, and thus an additional term
arises E = [ dv [(0up)? + V(p)] [28]. For a generic 2D
minimum surface, V' must be a periodic function with
V() = V(e + 27) due to the periodic structure of the
associate family. For simplicity, here we will take the
lowest Fourier harmonic V() = ycos(p — @), but it
must be emphasized that the same qualitative features
we discuss below survive even if more complicated V()
is considered. As a result, the elastic energy now takes
the form of a sine-Gordon theory, which supports soliton
solutions. Here, we define the soliton charge as Ap/(27),
where Ay measures the change of ¢ across a soliton. Due
to the periodicity V() = V(¢ + 27), it is easy to ver-
ify that the soliton solution for this sine-Gordon elastic
energy has Ap = 27 and thus the soliton charge is 1.
Therefore, they will be called integer excitations (i.e., in-
teger solitons). This quantization is due to the periodic
structure of the associate family.

Fractional excitations— In 2D plates, the Zy symmetry
discussed above enforces a nontrivial constraint. In a
minimal surface associate family, this Z5 transformation
(b — —b) corresponds to ¢ — ¢ + 7 in the Weierstrass-
Enneper parameterization [27, 28]. Thus, it implies that
the elastic energy remains invariant under ¢ — @+m. We
then must also have V(@) = V(p+n), i.e., the periodicity
of the function V() is reduced from 27 to w. The elastic
energy to the lowest harmonic in V() is then

E= / {000 +veos 2o — )} (3)

where an extra factor of 2 arises in the cos function, and
thus the soliton of this sine-Gordon theory has Ap =,
leading to soliton charge 1/2. These charge-1/2 solitons
are the fractional excitations.

This mechanism of symmetry-induced fractionaliza-
tion is identical to the fractional excitations in Haldane’s
dimerized spin chain, where fractional spin-1/2 solitons



arise from a Z5 symmetry (i.e., translation by an odd in-
teger times the lattice constant) [2]. This physics is also
in strong analogy to nematic liquid crystals, where the
molecules (and the order parameter) are invariant under
a m rotation, and this Zs symmetry results in fractional
topological defects in nematic liquid crystals, i.e., disin-
clinations or disinclination lines, which can be viewed as
half of a vortex or a vortex line [29, 30].

Guided by the low-energy effective theory, we perform
finite element analysis (FEA) of helicoid- and catenoid-
ribbons as an example to verify the existence of fractional
excitations as their low energy excitations. In particular,
we simulate a narrow ribbon with £ = E,; + E} as given
in Eq. (1,2) with go of the helicoid-catenoid associate
family. A small perturbation is added to Ej to lift the
infinite degeneracy of the ground states, favoring either
the helicoid (¢ = £m/2) as ground states or the catenoid
(¢ =0, 7) as ground states, corresponding to ¢o = 0 and
wo = /2 in Eq. (3) respectively [28]. This simulation
didn’t enforce the excluded-volume condition, and thus
the ribbon may intersect with itself. Enforcing excluded
volume doesn’t change any qualitative conclusions.

From the FEA, we found that a fractional excitation
is indeed a local energy minimum [Fig. 1(b-c)]. When
the helicoid is the ground state, the fractional excitation
is the domain boundary between a left-handed (L) sec-
tion of helicoid and a right-handed (R) one. When the
catenoid is the ground state, the fractional excitation is
also a domain boundary, across which the two sides (in-
side and outside) of the catenoid flip. The fact that 1/2
excitation corresponds to a domain boundary is universal
for any 1/2 excitation in any minimal surface plates, as
well as in dimerized quantum spin chains [2]. Because it
is a domain boundary, such fractional excitations cannot
be created by any local deformations, in contrast to inte-
ger excitations, which can be created or removed locally.

In particular, for the helicoid ground states, by min-
imizing the elastic energy, we find that such a domain
structure always bends the ribbon by nearly 180°, i.e.,
each 1/2 excitation implies a sharp U-turn. The origin
of this sharp turn is that ¢ changes between +7/2 across
the soliton, thus the soliton profile is characterized by a
narrow section of a catenoid, which turns the ribbon.
Quantum-classical analogy and braiding— To set the
stage for comparing these classical fractional excitations
with their quantum counterparts, we first provide a brief
review of 1D dimerized spin chains and 2D Z5 spin lig-
uids. A 2D Z, spin liquid is one of the most important
fractional topological states (see e.g. Refs. [21, 31] and
references therein). The study of Zs spin liquids orig-
inates from Anderson’s resonating-valence-bond (RVB)
scenario [32, 33] in frustrated quantum spin systems
and quantum dimer models [34-36]. This exotic quan-
tum phase of matter is characterized by a topological
Ising gauge theory and gives rise to deconfined fractional
excitations, e.g., spinons which carry spin-1/2 but no
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FIG. 2. Analogous fractional excitations in (a-d) a dimerized
spin chain and (e-h) a helicoid ribbon. The spin chain has two
degenerate ground states (a) and (b). A spin-1 excitation can
be created via local perturbations (c), which splits into two
deconfined spin-1/2 excitations (d). (e) and (f) show two
degenerate ground states of a helicoid ribbon with opposite
chirality. (g) shows a local charge-1 soliton, which splits into
two charge-1/2 solitons (d).

charge [37-41]. Later, an exactly solvable model with
the same topological order was introduced, known as the
toric code model of Kitaev [42]. A 1D dimerized spin
chain (e.g., the Majumdar-Ghosh model [43]) does not
show a Z5 topological order, but it shares certain similar
feature as the Zs spin liquids.

Here we start from the 1D case by considering the
1D Majumdar-Ghosh model (spin-1/2 Heisenberg spins
with frustrated nearest and next-nearest-neighbor anti-
ferromagnetic couplings) [43]. This model has two dimer-
ized ground states [Fig. 2(a-b)], where each box repre-
sents a spin singlet pair (a “dimer”). One obvious exci-
tation is to break a dimer, transferring a singlet into a
triplet, carrying integer spin S = 1. The low-energy effec-
tive theory of this chain is a sine-Gordon theory (known
as abelian-bosonization [44-46]) same as for the ribbon
we discuss, where the spin-1 local excitation is a quan-
tum soliton, which can fractionalize into two deconfined
spin-1/2 solitons [2] [Fig 2 (c-d)]. In both the quantum
model and the ribbon, integer excitations can be cre-
ated /removed locally (although this is beyond the low-
energy theory), but the spin-1/2 excitations can not.

One important and unique property of these frac-
tional particles is that by moving such fractional particles
around non-contractible loops, the global state of the en-
tire system can be transformed in a nontrivial way. One
such example is “braiding” (i.e., moving particles around
each other), which plays a crucial role in the understand-
ing of fractional quantum Hall effects, Majorana modes
and topological quantum computing [22]. In 1D, because
one cannot move one particle around another as in 2D,
a different non-contractible loop is utilized [47] as dis-
cussed below, which reflects the same non-trivial impact
of a fractional excitations. As shown in Fig. 2(d), mov-
ing the two fractional excitations in the 1D Majumdar-
Ghosh model away from each other flips the ground state
from (a) to (b). This phenomenon also arises in minimal-
surface plates [Fig. 2(e-h)]. An integer soliton of charge-1



FIG. 3. Fractional excitations and topological degeneracy.
(a-d) A quantum Z> spin liquid on an annulus, with two de-
generate ground states (a,b) due to topological degeneracy.
(¢) A spin-1 excitation is introduced via local perturbations
and split into two spin-1/2 fractional excitations. (d) If these
two fractional excitations move around the annulus and anni-
hilated with each other, the system turns from ground state
(a) to (b). (e-h) A catenoid with the same geometry shows
the same property. The two degenerate ground states corre-
spond to swap the two sides of the 2D manifold (e, f). One
can create two charge-1/2 solitons (g) and move them around
the catenoid (h), flipping the catenoid to ground state (f).

can be locally generated, and split into two charge-1/2
solitons. This pair of fractional excitations are decon-
fined, as the ribbon between them is in ground state.
Moving this pair of fractional excitations away from each
other flips the ribbon between R- and L- helicoids.

For a 2D Z, spin liquid, a similar phenomenon
arises [31], where moving a pair of fractional excita-
tion around an annulus flips the topologically degenerate
ground states [Fig. 3]. This is analogous to the motion
of fractional excitations in the catenoid.

Holographic property— In addition to the analogy to their
quantum counterparts, fractional excitations in a helical
ribbon have certain unique features. One example is that
these solitons are holographic, which means that if there
is only one charge-1/2 soliton in a helicoid, we can con-
trol its location at the two ends of the helicoid. This is
because this soliton is the domain boundary between the
L and R sections. For a helicoid of total length [ and L
section length x, the helicity of the whole ribbon (i.e.,
the net number of R twist) is (I — 2x)/A where A is the
pitch of the helicoid. This directly relates helicity to the
position of the soliton. Thus, by twisting the two ends of
the ribbon relative to one another, one can change helic-
ity and the position of the soliton holographically. This
holographic control is not a general property of fractional
excitations, but a special feature for fractional excitations
in helicoids, and provides a natural way to generate these
fractional excitations.

Diode-like torque-rotation response The holographic
property of this fractional excitations gives rise to un-
usual mechanical response. One prominent example is
that when one end of the ribbon is fixed and the center-
line of the ribbon is confined to be straight (e.g., by em-
bedding a stiff rod), the torque-rotation relation at the
opposite end strongly resembles the current-voltage (IV)
characteristics of a diode. We simulated this effect as-
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suming an elastic energy of the form in Eq. (3), and the
results are shown in Fig. 4. When counterclockwise ro-
tation is applied to the end of an R helicoidal ribbon, it
tightens the ribbon and leads to a linear torque-rotation
response. In contrast, when clockwise rotation is applied
to the end of this ribbon, it generates a fractional ex-
citation, which turns the R helicoid into an L helicoid.
At small counter-clockwise rotation the response is still
linear (which homogeneously loosens the helicoid), but
as the rotation increases, a small barrier (green area in
Fig. 4, the energy of one soliton) is overcome and the
torque vanishes, as further rotation just moves the soli-
ton to the left, where the elastic energy stays constant.
This strong asymmetry resembles the IV characteristics
of a diode, where voltage of different directions generates
currents of dramatically different amplitudes.

Furthermore, this system exhibits convenient pro-
grammability by placing the soliton at different locations
in the ribbon which shifts the torque-rotation curve. This
effect can potentially be applied to a broad range of prob-
lems such as wave rectification, impact mitigation, mode
conversion, and mechanical logic circuits.
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FIG. 4. Diode-like torque-rotation response. Three represen-
tative configurations are shown for the ground state (middle),
a state with counterclockwise rotation (orange arrow) where
the helicoid is tightened (right), and a state with clockwise
rotation where a soliton (red arrow) is generated (left).

Conclusion and discussion— We demonstrate that due to
minimal surface associate families, non-Euclidean elastic
plates can support low energy fractional excitations that
strongly resemble fractional quantum excitations. These
fractional excitations are highly robust and can not be
locally created or destroyed. They exhibit novel mechan-
ical properties such as holographic control and diode-like
torque-rotation response. It is worth pointing out that
fractional excitations in quantum topological states of
matter and discussed here are distinct from fractional
solitons in Refs. [48-51], the physics of which is com-
pletely different despite the similarity in terminology.
The non-Euclidean plates discussed in this paper can
be realized experimentally through various techniques of
metric control, such as stimuli responsive gels, strain en-
gineering, halftone and gray-scale 3D printing [24, 52—



54]. The unavoidable finite-thickness of the ribbon in
experiments can be utilized to enforce the Z; symmetry
of the problem and select different ground states, as the
degeneracy of other ¢ states will be lifted by higher order
terms in h. The unique holographic control and diode-
like nonlinear elastic response may open the door to novel
mechanical metamaterials. Furthermore, this elastic re-
alization also offers a new system for future explorations
for other species of solitons, such as static and travel-
ing breathers, the quantum versions of which has been
studied recently [55-59].

In addition, the fractional excitation in the case of heli-
coid elastic ribbons share a lot of similarities with various
types of kinks and perversions between domains of differ-
ent handedness in other helical structures such as tendrils
on climbing plants [60], intrinsically curved rods [61], self-
assembled Janus particle spirals [62], elastic bi-strips [63],
helical strings [64], and minimal surface liquid films [65].
These fractional excitations also share similarities with
solitons and other localized excitations in elastic sheets
[66-69] and out-of-equilibrium 1D models [70, 71]. Here
we reveal their unexpected link with fractional quantum
excitations.
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