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A B S T R A C T   

Background: Data-driven methods such as independent component analysis (ICA) makes very few assumptions on 
the data and the relationships of multiple datasets, and hence, are attractive for the fusion of medical imaging 
data. Two important extensions of ICA for multiset fusion are the joint ICA (jICA) and the multiset canonical 
correlation analysis and joint ICA (MCCA-jICA) techniques. Both approaches assume identical mixing matrices, 
emphasizing components that are common across the multiple datasets. However, in general, one would expect 
to have components that are both common across the datasets and distinct to each dataset. 
New method: We propose a general framework, disjoint subspace analysis using ICA (DS-ICA), which identifies 
and extracts not only the common but also the distinct components across multiple datasets. A key component of 
the method is the identification of these subspaces and their separation before subsequent analyses, which helps 
establish better model match and provides flexibility in algorithm and order choice. 
Comparison: We compare DS-ICA with jICA and MCCA-jICA through both simulations and application to multiset 
functional magnetic resonance imaging (fMRI) task data collected from healthy controls as well as patients with 
schizophrenia. 
Results: The results show DS-ICA estimates more components discriminative between healthy controls and pa
tients than jICA and MCCA-jICA, and with higher discriminatory power showing activation differences in 
meaningful regions. When applied to a classification framework, components estimated by DS-ICA results in 
higher classification performance for different dataset combinations than the other two methods. 
Conclusion: These results demonstrate that DS-ICA is an effective method for fusion of multiple datasets.   

1. Introduction 

Joint analysis, or fusion, of multiple datasets is becoming increas
ingly important in multiple fields and medical imaging is a very 
important one among those (Lahat et al., 2015; Mijović et al., 2014; 
Adalı et al., 2015a; Leeb et al., 2010). The goal of data fusion is to 
maximally use joint information available across datasets by letting 
them fully influence each other, hence making the best use of available 
information for the underlying problem (Adalı et al., 2018; Calhoun and 
Sui, 2016; James and Dasarathy, 2014; Savopol and Armenakis, 2002). 
Matrix and tensor decomposition-based methods are based on a latent 
variable model and enable such interaction among the datasets. An 
important strength of these methods is that they are directly interpret
able, i.e., one can attach physical meaning to the output latent variables, 

or components (Smilde et al., 2017; Lahat et al., 2015; Adalı et al., 
2018). Among these methods those based on independent component 
analysis (ICA) have proven especially useful for data fusion since they 
minimize the assumptions on the data and allow full interaction among 
the datasets (Calhoun and Adalı, 2012; Adalı et al., 2015b). However, 
ICA formulation is originally formulated for one dataset. This has led to 
the development of different extensions of ICA for the fusion of multiple 
datasets. These extensions rely on the model used to explain the un
derlying relationship of the components across the datasets and are 
successful when there is a good model match, i.e., the assumptions of the 
model are satisfied, which is key to better interpretability. In this paper, 
we introduce a powerful framework, disjoint subspaces for multiple 
datasets to leverage the strength of two popular fusion methods such 
that a better model match can be achieved. 
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In a latent variable model-based fusion, certain latent variables—or 
components—can be either highly correlated across the datasets or 
might have weak or no correlation. The main goal when fusing datasets 
is to make full use of those that are correlated. We define the highly 
correlated components as common across datasets and unique or low 
correlated ones as distinct. When the components are identified as 
common and distinct among the datasets, one obtains a more complete 
and realistic picture of the underlying relationship across the datasets 
(Smilde et al., 2017; Lock et al., 2013; Schouteden et al., 2014). A 
number of ICA-based fusion methods have focused on this very aspect, 
either taking advantage of only the common components or both com
mon and the distinct components to explain the underlying relationship 
across multiple datasets. One such method, joint ICA (jICA) introduced 
in Calhoun et al. (2006c), has been used for fusion of different medical 
imaging modalities such as functional magnetic resonance imaging 
(fMRI) and Electroencephalography (EEG) (Mangalathu-Arumana et al., 
2012, 2018; Jacob et al., 2017), fMRI, structural MRI (sMRI) and EEG 
(Adalı et al., 2015b), fMRI data of multiple tasks (Calhoun et al., 2006a) 
and many others. Though widely used, jICA assumes a common shared 
mixing matrix for all datasets, thus treating all the estimated compo
nents as common and aligned across the datasets. While it is a strong 
assumption, when it is satisfied it provides much needed robustness in 
the estimation. Another method, MCCA-jICA (Sui et al., 2010, 2013a,b), 
uses a prior multiset canonical correlation analysis (MCCA) step. MCCA, 
an extension of canonical correlation analysis (CCA) for multiple data
sets (Kettenring, 1971), to maximize the linear correlation between the 
datasets prior to the jICA step. This scheme aligns components more 
likely to be common across datasets and thus provides a better model 
match for the following jICA step. MCCA-jICA has been successfully 
applied for fusion of fMRI, diffusion tensor imaging (DTI) and sMRI (Sui 
et al., 2013a; Hirjak et al., 2020), fMRI, EEG and sMRI data (Sui et al., 
2014) and 4-way fusion of MRI data (Liu et al., 2019). However, 
MCCA-jICA like jICA inherently assumes that most underlying compo
nents—or sources—in the decompositions are common across the 
datasets. As expected, the performance of both approaches suffers when 
not all components are shared. A more general extension of ICA to 
multiple datasets, independent vector analysis (IVA) (Adalı et al., 2014) 
alleviates this assumption but requires significant number of samples for 
reliable performance (Bhinge et al., 2019). 

An effective approach would be to break the problem into two to 
achieve a desired trade-off in model match and robustness. We can first 
identify disjoint subspaces, those that are common across all the datasets 
along with those that are unique to each dataset in the fusion. We can 
then perform joint analysis on the common subspaces where strong as
sumptions of fusion methods are justified and perform separate analyses 
on the distinct subspaces. These separate analyses of disjoints subspaces 
thus ensure a better model match, and hence provide better interpret
ability of the estimated components. This is the main idea behind 
disjoint subspaces using ICA (DS-ICA), which we introduce in this paper. 
We present DS-ICA as an effective method for the fusion of multiple 
datasets, through the identification of common and distinct subspaces 
across more than two datasets. We propose solutions for the estimation 
and identification of common and distinct subspaces in multiple datasets 
using independent vector analysis with multivariate Gaussian distribu
tion (IVA-G) (Anderson et al., 2012) and then use ICA to estimate joint 
independent components from common subspaces and distinct inde
pendent components from each distinct subspace separately. IVA-G 
generalizes ICA to multiple datasets, and through the use of Gaussian 
model takes only second-order statistics into account like CCA and its 
multiset generalization, MCCA (Kettenring, 1971). The strong identifi
ability condition of IVA—i.e., the ability to uniquely identify the un
derlying latent variables under very general conditions (Adalı et al., 
2014; Anderson et al., 2012)—allows IVA-G to better capture the exact 
subspace structure across the datasets compared with MCCA as we show 
in the paper. Separation of the common and distinct subspaces as a first 
step reduces the dimensionality of the datasets, which in turn reduces 

the complexity and offers flexibility in the following analyses and en
ables better estimation of both the common and distinct components. 
For example, the assumption of a common mixing matrix becomes more 
flexible in DS-ICA than other methods due to the better estimation of 
subspace structure and separate analyses of common and distinct sub
spaces. A preliminary version of this approach is introduced in Akhonda 
et al. (2019), for only two datasets. In this paper, we introduce the 
general method for fusion of multiple datasets (K ≥ 2), and study its 
properties demonstrating the trade-offs, and present its successful 
application to multitask fMRI data. 

We first compare the performance of DS-ICA with the two closely 
related methods of jICA and MCCA-jICA through simulations and 
highlight its advantages. We then demonstrate its successful application 
to fusion of multitask fMRI data collected from 138 healthy subjects and 
109 patients with schizophrenia. The three tasks in this study involves 
an auditory odd ball (AOD) task, a Sternberg item recognition paradigm 
(SIRP) task, and a sensorimotor (SM) task (Gollub et al., 2013). We show 
that DS-ICA can simultaneously estimate not only the common compo
nents that are shared across all datasets, but also the distinct ones unique 
to each task dataset. The common components estimated by DS-ICA 
primarily show activation in the motor, sensory motor, default mode 
network (DMN), visual and frontal parietal regions while the distinct 
ones show significant activations in part of the auditory and motor re
gions for AOD, visual region for SIRP and sensory motor region for SM 
task. These regions are indeed those that are expected to be common and 
distinct in terms of activation for these tasks, and have been previously 
shown to differentiate patients with schizophrenia from healthy controls 
(Kiehl and Liddle, 2001; Kiehl et al., 2005; Demirci et al., 2009; Öngür 
et al., 2010; Whitfield-Gabrieli et al., 2009; Hu et al., 2017), thus 
increasing our confidence in the results. Overall, DS-ICA estimates more 
components that can differentiate between healthy controls and patients 
with relatively higher discrimination level compared with jICA and 
MCCA-jICA. This, coupled with the meaningful activation areas of the 
estimated components show the advantage of using common and 
distinct components in fusion analysis. We use classification rate to 
compare the performances of different multiset fusion techniques across 
various combinations of datasets as an unambiguous and natural way to 
assess the relative performance of methods and to evaluate how infor
mative the components are for the discrimination of healthy controls 
and patients. We show that DS-ICA achieves higher classification per
formance than other techniques for various combinations of the data
sets, suggesting that it enables higher interaction among the datasets 
which results in better use of the available information. The study also 
guides us about the degree to which there exists complementary infor
mation across the datasets. We also test the stability of the group 
discriminant components across different subject groups and show that 
DS-ICA can consistently estimate these components across different 
subgroups. 

The paper is organized as follows. In Section 2, we discuss about the 
existing ICA based algorithms. In Section 3, we introduce our new 
method and in Section 4, we discuss about implementation and results. 
We provide conclusions in the final section. 

2. ICA-based approaches for fusion 

Data-driven fusion of multiset medical imaging data collected from a 
group of subjects is challenging due to multiple factors. An important 
one among those is the high dimensionality of the datasets. Therefore, it 
is desirable to reduce each dataset into a feature and obtain a lower 
dimensional representation of the data, for each subject (Calhoun and 
Adalı, 2009) while keeping as much variability in the data as possible. 
Consider Xk ∈ ℝM×Tk , k = 1, 2, …, K as a grouping of K feature datasets 
from M subjects, where the mth row of each dataset is formed by one 
multivariate feature for each subject. Such reductions alleviate the high 
dimensionality problem and offer a natural way to discover association 
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across these feature datasets, i.e., the variations across subjects. The 
basic ICA model on kth dataset is formulated by 

Xk = AkSk, k = 1, 2, …, K, (1)  

where each dataset is a linear mixture of M components—referred to as 
sources and given by the rows of matrix Sk ∈ ℝM×Tk —through an 
invertible mixing matrix, Ak ∈ ℝM×M. ICA estimates a demixing matrix 
Wk such that the maximally independent source components can be 
computed using Ŝk = WkXk. The columns of the estimated mixing 
matrices, Âk, k = 1, …, K are referred to as the subject covariations, or 
profiles as they quantify the contributions to the overall mixtures Xk. 
The goal here is, given Xk, to estimate independent sources and their 
associated subject covariations or profiles, which we can interpret, i.e., 
attach a physical meaning to them. Note that both profiles and the 
estimated components, together or individually, can be used to establish 
connection across datasets (Adalı et al., 2018). However, ICA can only 
analyze a single dataset at a time by generating a decomposition on each 
dataset independent of other datasets (Levin-Schwartz et al., 2017). In 
the next section, we discuss different extensions of ICA to jointly analyze 
multiple datasets. 

Joint ICA, the most popular extension of ICA for fusion, enables joint 
analysis by concatenating the datasets horizontally such that each 
dataset is stacked next to each other (Calhoun et al., 2006b). Given K ≥ 2 
datasets that have a common row dimension of M, jICA performs a single 
ICA on the horizontally concatenated ‘joint’ dataset as follows: 

X = [X1…XK] = A[S1…SK] = AS, (2)  

where S ∈ ℝM×(T1+T2+⋯+Tk) represents the joint source matrix and A ∈

ℝM×M is the common mixing matrix shared by all K datasets. Since a 
single density function is used to estimate components from all the 
datasets, jICA requires all the datasets to have almost equal number of 
samples to ensure unbiased estimation of the results (Adalı et al., 2015a; 
Akhonda et al., 2018). Moreover, as the associations across the datasets 
are determined through the columns of shared mixing matrix, i.e., 
profiles, this automatically implies that the model assumes all the esti
mated components are common across concatenated datasets. One way 
to reduce the strong model assumption of jICA is by using MCCA (Ket
tenring, 1971), an extension of CCA for multiple datasets, prior to jICA, 
leading to MCCA-jICA (Sui et al., 2010). 

MCCA-jICA aligns the components prior to jICA by maximizing the 
linear correlation among the datasets. MCCA as a preprocessing step 
estimates weighting vectors w(j)

k , k = 1, 2, …, K and j = 1, 2, …, M known 
as canonical coefficient vectors, such that the normalized correlation 
within u(j) = [u(j)

1 , u(j)
2 , …, u(j)

K ] ∈ ℝK is maximized. Here, uk’s are known 
as canonical variates and can be written in matrix form as 

Uk = Wk
TXk, k = 1, 2, …, K. (3)  

In MCCA, this is achieved through a deflationary approach where one 
first estimates the first set of canonical correlation coefficient vectors, 
w(1)

k , k = 1, 2, …, K using 

[w(1)

1 , w(1)

2 , …, w(1)

K ] = arg max
w

J(r(1)

k1 ,k2
) (4)  

and then proceeds to the next w(2)

k , k = 1, 2, …, K vectors such that w(1)

k is 

orthogonal to w(2)

k , resulting in orthogonal Wk, k = 1, 2, …, K. Here, r(j)
k1 ,k2 

is the correlation between the jth canonical variates from k1 and k2 
datasets and J(⋅) is the cost function needed to be optimized. A number 
of MCCA cost function are proposed in Kettenring (1971) and can be 
optimized to obtain the canonical correlation values. Estimated canon
ical variates are then decomposed using a jICA approach as follows, 

[U1…UK] = A[S1…SK] = AS. (5)  

The concatenation of canonical variates ensures that components are 
aligned across the datasets—i.e., same index components are correlated 
across datasets—and can be estimated by using a single density function 
in jICA (Sui et al., 2010). However, similar to the jICA technique, 
MCCA-jICA also assumes mixing parameters are the same for all esti
mated components. Moreover, maximization of correlation at the first 
step encourages only the available common information, which further 
minimizes the individual features available in each dataset, thus limits 
its application to common and distinct component analysis. 

Another popular ICA-based method, parallel ICA (p-ICA) (Liu et al., 
2009), consists of applying separate ICAs on each dataset, such that the 
correlation among the common subject covariations is maximized in 
each iteration. This method identifies the subject profiles that are 
correlated across datasets and maximizes the correlation only between 
those in later runs by using the cost function 

argmax
λ

I
(

Ŝ1

)
+ I

(
Ŝ2

)
+ λf

(
Â1, Â2

)
, (6)  

where the linking term, f(⋅), introduces correlation across datasets 
through profiles and λ is dynamically adjusted to balance independence 
and the dataset correlation. Unlike jICA and MCCA-jICA, p-ICA can es
timate both common and distinct components from the datasets. How
ever, the application of p-ICA is few in practice due to its many 
limitations (Akhonda et al., 2018). Since f(⋅) is defined for only two 
datasets, p-ICA applies to only two datasets at a time. An extension of 
p-ICA, proposed in Vergara et al. (2014), can be used for fusion of three 
datasets. However, similar to the two datasets case, the method again 
considers pair-wise correlations for maximizing correlation across more 
than two datasets. Moreover, the performance of p-ICA degrades with 
lower number of subjects in the analysis due to errors in correlation 
estimation. Finally, the optimization of the algorithm depends on 
fine-tuning of several user-defined parameters (Akhonda et al., 2019). 

Since most ICA-based fusion methods assume some degree of com
monality across the datasets, a practical approach would be to identify 
and split common and distinct subspaces from the datasets and perform 
separate analyses to achieve a better model match. Identifying and 
performing joint analysis only on the common subspace and individual 
analyses on distinct subspaces alleviates the potential model mismatch 
of jICA and MCCA-jICA, and exploits both common and distinct infor
mation available in each dataset. A preliminary version of this approach 
using CCA and ICA is introduced in Adalı et al. (2018), but only for two 
datasets. In the next section, we introduce a new technique for the fusion 
of more than two datasets that can preserve the subspace structure and 
estimate components that reliably represent the common and distinct 
nature of the data. 

3. Disjoint subspace analysis using ICA (DS-ICA) for K ≥ 2 
datasets 

In this section, we propose a new method, disjoint subspace analysis 
using ICA (DS-ICA), for the fusion of K ≥ 2 datasets by identifying and 
employing separate analyses on disjoint common and distinct subspaces. 
Consider the datasets Xk, k = 1, 2, …, K given in (1). Identifying the 
common and the distinct subspaces across multiple datasets is not 
straightforward due to the many possible correlation structures avail
able across all K datasets. We propose to utilize three definite steps to 
identify and estimate common and distinct components. A general 
framework of DS-ICA performing all three steps is shown in Fig. 1. De
tails about the steps and options to perform those are discussed below. 

3.1. Common order estimation 

The first step of DS-ICA is to estimate the order of the common signal 
subspace C across K ≥ 2 datasets. Given K = 2, several techniques can be 
used to estimate C (Chen et al., 1996; Fujikoshi and Veitch, 1979; 
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Seghouane and Shokouhi, 2019; Song et al., 2015). Among those, we use 
PCA-CCA introduced in Song et al. (2015) since it is equally effective for 
both sample rich and sample poor scenarios, and provides robust per
formance when applied to fMRI analysis (Levin-Schwartz et al., 2016). 
PCA-CCA makes use of the strength of CCA to maximize the linear 
correlation between the reduced dimensional datasets obtained from an 
initial PCA step. The estimated canonical correlation values are then 
used to identify the order of the correlated signal subspace by using 
minimum description length (MDL) criterion given as 

IMDL(m, n) = Tlog
∏m

n=1
(1 − ri(n)

2
) + log(T)m(2n − m), (7)  

where n is the PCA rank, m = 1, …, M and r1(n), …, rM(n) denote the 
canonical correlation coefficient estimates using the PCA rank, n. 
However, since the method is limited to only two datasets, it cannot be 
used to identify the common signal subspace order for K > 2 datasets. 
One practical way to alleviate this issue is to apply PCA-CCA on pairwise 
datasets and use information-theoretic criterion to estimate the common 
order (Song et al., 2016). Other notable techniques include using 
maximum likelihood statistics on sample correlation values (Wu et al., 
2002), MCCA along with knee point detection (Bhinge et al., 2017) and 
rank-reduced hypothesis test on multiple datasets (Hasija et al., 2016). 
Among those, MCCA before knee point detection (MCCA-KPD), esti
mates common order C by using MCCA to maximize linear correlation 
across K > 2 datasets and provides robust performance when applied to 
simulated and real fMRI data (Bhinge et al., 2017). Since IVA-G gener
alizes MCCA, IVA-G can also replace the MCCA step in MCCA-KPD to 
estimate the common order across K > 2 datasets. It is, however, 
important to note that joint order selection methods such as MCCA-KPD 
only gives us a general direction about the common subspace order. In 
our study, we do not simply use the order estimated with the selected 
method but also evaluate the stability and the quality of the estimated 
components to choose the final C. Given the signal subspace order M and 
common order C, distinct signal subspace order can be estimated as 
D = M − C. Next, the common and distinct signal subspace orders C and 
D are used to identify and separate the common and distinct signal 
subspaces from the datasets. 

3.2. Subspace identification and separation 

The next step in DS-ICA is the identification and estimation of the 
common and distinct subspaces. Given the common order C for K ≥ 2 
datasets, DS-ICA uses IVA to identify and split each Xk dataset into 
respective common and distinct parts such that 

rank(Xk) = rank(XkC) + rank(XkD), k = 1, 2, …, K, (8)  

where rank(⋅) represents rank of the matrix and XkC and XkD are the 
common and distinct parts estimated from each K dataset. IVA gener
alizes ICA to multiple datasets and intimately related to both CCA and 
MCCA (Adalı et al., 2014). Given the model formulation in (1), IVA 

jointly estimates the demixing matrices Wk, k = 1, 2, …, K such that 
estimated source components within Ŝk = WkXk are independent while 
maximally dependent with the corresponding components across the 
multiple datasets. This is done my modelling the source component 
vector (SCV), where jth SCV s(j) can be defined as 

s(j) = [s(j)
1 , s(j)

2 , …, s(j)
K ]

T
∈ ℝK , j = 1, 2, …, M, (9)  

i.e., by concatenating the jth source component from each of the K 
dataset. Since SCV is defined using corresponding components across all 
datasets, it is where dependencies across the datasets are taken into 
account. This additional diversity, dependencies among the sources in
side an SCV, is also what aligns the sources estimated across datasets, 
and thus helps with the resolution of permutation ambiguity for ICA 
across datasets. This is important for DS-ICA formulation as well since it 
assumes that the common sources are aligned and dependent across 
datasets. When a multivariate Gaussian distribution is used to model the 
SCV, thus taking only the second order statistics (SOS) into account, the 
resultant method is called independent vector analysis with multivariate 
Gaussian distribution (IVA-G) (Anderson et al., 2012). In our formula
tion, we use IVA-G to identify and estimate the common and distinct 
subspaces. We use the estimated components that are maximally 
correlated across the datasets to form the common subspaces and use the 
rest of the components that are not correlated across datasets to form 
distinct subspaces. This is done by using the estimated common and 
distinct order C and D on the estimated components as 

XkC = [s(1)

k , s(2)

k , …, s(C)

k ]
T
, k = 1, 2, …, K, (10)  

XkD = [s(C+1)

k , s(C+2)

k , …, s(M)

k ]
T
, (11)  

such that (8) is satisfied. These common and distinct subspaces are then 
used in step 3 to estimate the common and distinct components through 
separate decompositions. 

It is important to note here that other methods such as CCA, its 
extension to multiple datasets, MCCA, and joint and individual variation 
explained (JIVE) [12] that can also be used to identify and estimate the 
common and distinct subspaces across multiple datasets. Both MCCA 
and IVA-G use SOS to maximize the correlation between the datasets, 
and IVA-G solves the exactly equivalent cost function as MCCA with 
generalized variance method (GENVAR) when the demixing matrices 
are constrained to be orthogonal in IVA-G. However, the lack of 
orthogonality constraint in IVA-G provides more flexibility, allowing for 
a bigger solution space for the demixing matrices (Anderson et al., 
2012). This also yields a strong identifiability condition—i.e., enables 
identification of a wide range of signals under very general conditions. 
This is the reason IVA-G can better preserve the subspace structure than 
MCCA, a really important feature as the subspace structure gets more 
complicated with the increase of number of datasets (Long et al., 2020; 
Anderson et al., 2014). This advantage is demonstrated with examples 
that involve rich covariance structures in (Long et al., 2020). JIVE, on 
the other hand, fails to identify components, especially the ones 

Fig. 1. General framework of DS-ICA for common and distinct component estimation.  
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common across datasets, if the components are weak, hence making it 
less practical to the fusion of real fMRI data. 

3.3. Common and distinct component estimation 

In the final step of DS-ICA, after extracting the common and distinct 
subspaces from each dataset using SOS, both subspaces can be analyzed 
separately using models that can take higher order statistics (HOS) or 
other statistical properties of the data into account. For example, the 
common or shared parts can be concatenated together and jointly 
analyzed by using jICA, while the distinct parts can be analyzed sepa
rately by using individual ICAs: 

XC = [X1C, X2C, …, XKC]

= AC[S1C, S2C, …, SKC]

= ACSC
and XkD = AkDSkD, k = 1, 2, …, K.

Concatenating only the common parts satisfies the strong assump
tions of jICA model and results strongly associated underlying sources. 
On the other hand, separate analyses on the distinct parts provide 
sources that are distinct to each dataset. Thus, DS-ICA only enables 
fusion to common parts where it is suitable while analyzing distinct 
parts separately, minimizing the influence of distinct components in the 
common component analysis and vice versa. It is, however, important to 
note that other fusion techniques and decomposition methods can be 
used instead of jICA and ICA based of the nature of the data to estimate 
the common and distinct components. Since the number of variables to 
be estimated increases with the number of datasets, fusion methods such 
as jICA and MCCA-jICA become more constrained with added datasets 
due to their assumption of a common mixing matrix. On the other hand, 
DS-ICA alleviates this issue to some extent by splitting the datasets into 
parts, thus significantly reducing the dimension of the datasets under 
joint analysis, i.e., common parts. Performing separate analyses on the 
common and distinct subspaces reduces the number of variables to be 
estimated in fusion, reducing algorithmic complexities and providing 
flexibility to choose an algorithm suitable for each subspace analysis. 

Algorithm 1. DS-ICA with IVA-G  

Input: Xk, k = 1, 2, …, K 
Output: SC = Common components  

SkC = Distinct components  
Ak, AkD = subject covariation/Profiles 

1: C = MCCA − KPD(Xk), 1 ≤ k ≤ K 
2: Ŝ = WkXk, where Wk = IVA − G(Wk), 1 ≤ k ≤ K  
3: XkC = [ŝ1

k , ŝ2
k , …, ŝC

k ]
T 

and  
4: XkD = [ŝC+1

k , ŝC+2
k , …, ŝM

k ]
T
, 1 ≤ k ≤ K,   

where rank(Xk) = rank(XkC) + rank(XkD) 
5: XC = [X1C,X2C, …,XkC] = AC = [S1C,S2C, …,SkC ] = ÂC ŜC  

6: XkC = AkCSkD, 1 ≤ k ≤ K 
7: return AC, SC, AkD and SkD  

4. Implementation and results 

4.1. Simulation setup and results 

In this study, we compare the performance of three ICA-based fusion 
methods, namely, jICA, MCCA-jICA and DS-ICA as this is the set most 
closely related in terms of their goals and models. To ensure a fair 
comparison, we use the same ICA algorithm, ICA by entropy bound 
minimization (ICA-EBM), for all three methods. ICA-EBM uses a flexible 
density matching mechanism based on entropy maximization (Li and 
Adalı, 2009) and provides better estimation performance for neurolog
ical data compare to the other ICA algorithms (Long et al., 2019). We 
generate simulation examples for two datasets, and then extend it to 
three datasets using similar setups. The generative model for the simu
lations is given in Fig. 2. For each dataset, we generate N = 10 sources 
from Laplacian distribution with T = 1000 independent and identically 

distributed (i.i.d.) samples. We select Laplacian distribution since it is a 
good match to fMRI data (Long et al., 2019). We introduce correlation to 
C = 3 sources from each dataset with correlation values 0.9, 0.7 and 0.5, 
which means that across all datasets there are 3 common components 
and rest of the components are distinct. In our simulation results, we let 
0.3 be the minimum correlation value to be satisfied for defining com
mon components. This is a value that will be specific for each application 
and is expected to be determined by the user. These latent sources are 
then linearly mixed with mixing matrices A ∈ ℝM×10 with elements from 
a standard Gaussian distribution N(0, 1), where M is the even number of 
subjects from two groups—a healthy control group and a patient 
group—each with M/2 samples (subjects). 

To simulate group difference in the subjects, a step type response 
with step height 1.5 is added to the columns of the mixing matrices or 
profiles such that one profile from each dataset associated with a com
mon component and a single profile from the second dataset associated 
with a distinct component show group differences. Thus, we have pro
files a1(m) = v1(m) + 1.5u(m), m = 1, 2, …, M for the first dataset and 
ai(m) = vi(m) + 1.5u(m), i = 1, 4 and m = 1, 2, …, M for the second 
dataset to discriminate between the two subject groups. Here, M is the 
even number of subjects, vi(m)’s are generated using standard Gaussian 

distribution and u(m) is the step response with u(m) =

{
1, m ≤ M/2
0, m > M/2 . 

The standard deviation of other profiles are adjusted such that they 
match the standard deviation of the discriminant profiles for each case 
we consider. We refer to the components corresponding to these group 
discriminant profiles as discriminative components since they can be 
identified through a two sample t-test. We use true order 10 for 
dimensionality reduction resulting in Xk ∈ ℝ10×1000 for MCCA-jICA and 
DS-ICA, while X ∈ ℝ10×2000 for jICA. In addition to DS-ICA, we use 
MCCA-KPD to estimate the final common order of 3 for both two and 
three datasets. We evaluate the performance of each method by either 
changing the number of subjects or the step-height used to distinguish 
two subject groups. In the first case, the number of subjects is changed 
from 20 to 200 with step-height fixed to 1.5, while in the second case, 
the step-height is changed from 0.2 to 2—resulting in correlation values 
in the range [0.1 1]—with subject number fixed to 50. Since the datasets 
are generated assuming there are two subject groups, it is the column of 
the estimated mixing matrices (profiles) that report on the subjects’ 
covariations and can be used to identify the discriminative profiles. We 
use a two-sample t-test on the estimated profiles between the loadings of 
the two groups and use p < 0.05 as the threshold to identify the 
discriminative profiles. The components associated with these profiles 
are the estimated components that show differences between the 

Fig. 2. Simulation model for two datasets to compare the relative performance 
of DS-ICA, MCCA-jICA, and jICA. Here, the datasets are designed in a way that a 
fixed number of components across the two datasets are common, and the rest 
of the components are distinct. In addition, one common and one distinct 
component are designed to be discriminative across the two groups, i.e., 
healthy controls and patients. 
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healthy controls and the patients. We estimate the correlation values 
between the true and estimated discriminative components and use 
these correlation values to evaluate each method’s performance. 

Fig. 3 compares the performance of DS-ICA with MCCA-jICA and 
jICA for (a) 2 datasets as well as (b) 3 datasets case. In both simulations, 
estimation performance improves as the number of subjects and step 
height increases. Additionally, as expected, we can see that two varia
tions of DS-ICA, DS-ICA (MCCA) and DS-ICA (IVA-G), outperform the 
other two methods for estimation of both common and distinct 
discriminative components. From Fig. 3(a), jICA being the most con
servative approach suffers most, especially for the estimation of com
mon discriminative components. On the other hand, MCCA-jICA 
provides much better results for the common components but suffers in 
the estimation of the distinct ones because of the maximization of as
sociation in the prior MCCA step. DS-ICA makes the most efficient use of 
the available data by performing separate analyses and outperforms the 
other two methods for both common and distinct discriminative com
ponents. DS-ICA (IVA-G) slightly outperforms DS-ICA (MCCA) as IVA-G 
estimates association structure better than the MCCA. Similar patterns 
are present in the second set of simulation for 3 datasets shown in Fig. 3 
(b). As the number of datasets increase the problem gets even more 
challenging for all the methods. Nevertheless, both DS-ICA (MCCA) and 
DS-ICA (IVA-G) show performance similar to the 2 dataset case and 
outperforms the other two methods. Estimation performance of jICA and 
MCCA-jICA decreases even more for the distinct components as the 
model becomes more constrained with the increase of datasets in fusion. 

4.2. Task fMRI data and features 

The fMRI datasets used in this study are from the Mind Research 
Network Clinical Imaging Consortium Collection (Gollub et al., 2013) 
(publicly available at https://coins.trendscenter.org/). These datasets 
were collected from 247 subjects, 138 healthy individuals and 109 
schizophrenia patients, while performing auditory oddball (AOD), 
Sternberg item recognition paradigm (SIRP) and sensory motor (SM) 
tasks. We introduce the tasks and extracted multivariate features next. 

4.2.1. Auditory oddball task (AOD) 
The AOD task required subjects to listen to three different types of 

auditory stimuli, standard (1 kHz tones with a probability of 0.82), novel 
(complex sounds with probability 0.09) and target (1.2 kHz tones with 
probability 0.09), coming in a pseudo random order and press a button 

only when the target stimuli arrive. A regressor was created to model the 
target related stimuli as a delta function convolved with the default SPM 
HRF and subject averaged contrast images of target tones were used as a 
feature for this task. 

4.2.2. Sternberg item recognition paradigm task (SIRP) 
The SIRP is a visual task that required subjects to memorize a set of 1, 

3, or 5 integer digits randomly selected from 0 to 9. The task paradigm 
lasts for a total of 46 s including 1.5 s of learning, 0.5 s of blank screen, 
6 s of encoding where the whole sequence of digits was presented 
together, and finally 38 s of probing where the subjects were shown a 
sequence of integers and then required to press a button whenever a 
digit from the memorized set arrives. For this task, regressor was created 
by convolving three-digit probe response block with SPM HRF and 
average map of both runs was used as a feature. 

4.2.3. Sensory motor task(SM) 
The SM tasks required subjects to listen to a series of 16 different 

auditory tones and to press a button every time the pitch of the tones 
changed. Each tone lasts for 200 ms and within the frequency range of 
236–1318 Hz. There was a 500 ms inter-stimulus interval between the 
tones. Each run consisted of 15 increase-and-decrease blocks, alternated 
with 15 fixation blocks, with each lasted for 16 s. For this task, regressor 
was created by convolving entire increase-and-decrease block with SPM 
HRF, and average map of both runs was used as a feature. 

4.2.4. Algorithm and order selection 
After extracting the features from each subject’s data, all 245 sub

jects data are concatenated vertically to form the feature dataset 
resulting Xk ∈ ℝ245×48546, k = 1, 2, 3 for each task. To avoid overfitting 
due to the high noise level of medical imaging data, it is critical to 
determine the order of the signal subspace. Using entropy based method 
proposed in Fu et al. (2014), which can take sample dependency in the 
data into account, the order of the signal subspace is estimated for each 
task feature dataset. We use an order N = 25 for all three datasets 
resulting Xk ∈ ℝ25×48546, k = 1, 2, 3 for DS-ICA and MCCA-jICA and X ∈

ℝ25×145638 for jICA. Here, N = max(N1, N2, N3) and N1, N2 and N3 are the 
estimated orders of the feature datasets, selected to retain the maximum 
joint information across datasets. A practical way to test the stability of 
the estimated order is to check the stability of the estimated components 
for different orders around that number. We check the performance of 
the methods for a set of orders [15, 20, 25, 30, 35], in the range of ±10 of 

Fig. 3. Estimation performance of discriminative components with different subject numbers and step-heights for (a) 2 datasets and (b) 3 datasets. Here, component 
correlation is the average correlation between the true and estimated components averaged over 100 independent runs. 
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the estimated order. It is observed that the results are quite similar in 
terms of activation areas for 20 and 30, whereas the activation areas 
started to change for order 15 and 35. DS-ICA then further divide the 
datasets into common and distinct parts by using the order of the 
common signal subspace C. We use multiple techniques mentioned in 
Section 3.1 to estimate the common order, and all of them give us similar 
results in the range [7, 12]. In this study, we use a common order C = 10 
resulting 10 common and 15 distinct components in each dataset. Since 
there is no ground truth, we select the final order using the guidance of 
the selection methods and the quality and the stability of the estimated 
results. Here, we use the statistical significance of the profiles and the 
interpretability of the estimated components as evaluation criteria to 
select the final order. 

To be fair to all three methods, we use the same ICA algorithm, ICA- 
EBM, to estimate the final components (Li and Adalı, 2009). ICA-EBM 
has been shown to provide superior performance with both simulation 
and brain imaging data compare to the other popular ICA algorithms 
(Adalı et al., 2015a). This is due to the fact that ICA-EBM doesn’t assume 
a fix form of distribution for the underlying sources and rather try to 
achieve upper bound of the entropy by using some measuring functions 
(Li and Adalı, 2009). This provides ICA-EBM the flexibility to estimate 
components from a wide verity of distributions, improving the estima
tion performance of the method. To enable better reproducibility of the 

results, we run the algorithm multiple times and select a run that is most 
consistent and hence will lead to a reproducible decomposition. We run 
the algorithms 10 times and select the most consistent run using cross 
intersymbol interference (Cross-ISI) presented in Long et al. (2018). 

4.3. Results 

A two sample t-test is used on the subject covariations or profiles to 
test for significant group difference (p < 0.05) between two subject 
groups. The associated components of those profiles that pass the tests 
are referred to as discriminative components or putative biomarkers of 
disease. Components showing group difference are then thresholded at 
Z = 2.7 and shown in Figs. 4 and 5 . DS-ICA estimates both common and 
distinct components shown in Fig. 4. Due to the high number (75) of the 
estimated components, here we are only showing the discriminative 
components and their associated ones across datasets. Across all three 
datasets, common components estimated by DS-ICA show higher group 
differences between healthy controls and patients than the estimated 
distinct components. This is because all three tasks are closely related to 
each other, collected from the same group of subjects and collected using 
the same fMRI modality. Therefore, it is natural to estimate more 
common components that show higher significant group difference than 
distinct ones. The discriminative components in DS-ICA, in general, 

Fig. 4. Estimated common and distinct components by DS-ICA for AOD, SIRP and SM. We only show the components showing significant group differences and their 
common components across datasets due to the high number (75) of the estimated components. The color red, orange and yellow means higher activation in controls 
and blue means higher activation in patients. The discriminative components in DS-ICA, in general, show higher activation in visual, motor, and sensory-motor areas 
for patients while in default mode network (DMN), auditory, and frontal-parietal region for healthy controls. 
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show higher activation in visual, motor, and sensory-motor areas for 
patients while showing higher activation in default mode network 
(DMN), auditory, and frontal-parietal region for healthy controls. All 
these areas are known to be associated with schizophrenia (Hu et al., 
2017; Du et al., 2012) and therefore indicate meaningful decomposition 
results. 

AOD is known to be the more favorable task for identifying schizo
phrenia (Kiehl and Liddle, 2001; Kiehl et al., 2005; Demirci et al., 2009), 
resulting in a higher number of discriminant components than the other 
two tasks. For AOD, the common components in Fig. 4(a) show signif
icant activations in auditory, motor, DMN, sensory-motor and 
frontal-parietal regions, whereas the distinct ones in Fig. 4(b) show 
activation in mostly auditory and motor regions. SIRP being the visual 
task, both common and distinct components show significant activations 
mostly on the visual and DMN regions. Common and distinct compo
nents in SM show significant activations in motor, sensory-motor, DMN 
and frontal-parietal regions. Being more similar tasks, AOD and SM 
share a higher number of common components showing group differ
ence between healthy controls and patients (C#2, C#3, C#4, C#5, C#6, 
C#8), though the discrimination level (p-value) in most of the compo
nents is higher in AOD than SM, as observed in Fig. 4(a). For example, 
motor (C#5) and auditory (C#8) components show very high group 
differences (lower p-values) in AOD compared with the SM. On the other 
hand, the visual component (C#1) responsible for receiving, integrating, 
and processing visual information shows very high activations in SIRP 
compared with the other two tasks. This is because the SIRP task is 

designed to extract more visual features than the other two tasks. Only 
the DMN component (C#3), which is found to be associated with 
schizophrenia more often than any other components in many prior 
studies (Öngür et al., 2010; Whitfield-Gabrieli et al., 2009; Hu et al., 
2017), is showing discrimination across all three task datasets. 

In Fig. 4(b), distinct components in AOD are showing significant 
activations in part of the motor and auditory regions, whereas for SIRP 
and SM discriminative components show activations mostly in the visual 
and motor regions. Since AOD is an auditory task that requires motor 
movement from the subjects, estimating distinct components that show 
significant activations in the auditory and motor regions reflects on the 
background on which the task was performed. This is true for SIRP and 
SM datasets also. Note that these are the components that carry unique 
information about the tasks, and in classification problem can be used as 
features to identify one task from another. 

Fig. 5 shows the components estimated by jICA and MCCA-jICA. 
Rather than finding the common and distinct components separately, 
both jICA and MCCA-jICA estimate components by assuming common
ality across datasets, and thus neither method is optimized to capture the 
distinct information. From Fig. 5(a), activation patterns of the associated 
components in jICA are well formed and focal in one dataset, while 
distorted and less focal in the other two datasets. For example, the first 
set of components in jICA (#1) show well-formed activation in visual 
areas for SIRP task but scattered activations for AOD and SM tasks. That 
is also true for other estimated components that are showing activations 
in auditory, motor and DMN regions. This is due to the fact that jICA uses 

Fig. 5. Estimated components by jICA and MCCA-jICA. Note that each column in the figure represents the components that are correlated across datasets. We are 
only showing the ones that are showing group difference (p < 0.05) or part of a set where at least a single component of that set is showing group difference. 
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a single density function to estimate components and assumes a common 
mixing matrix across the datasets. MCCA-jICA on the other hand, relaxes 
the shared mixing matrix assumption by applying a prior MCCA step. 
MCCA maximizes the correlation across the datasets, thus align the 
components before jICA analysis. Components estimated by MCCA-jICA 
are therefore well formed and showing activations in meaningful areas 
in all three datasets as shown in Fig. 5(b). Similar to the common 
components in DS-ICA, components estimated in MCCA-jICA are 
showing activations in motor, sensory-motor and DMN regions for AOD, 
visual region for SIRP and sensory-motor and auditory regions for SM. 
However, because of the maximization of correlation of the datasets and 
joint analyses of all the components at the same time, MCCA-jICA loses 
the individual variations available in the data and estimates components 
showing activations in similar areas across all datasets. This also affects 
the p-values of the estimated components. Compared with the DS-ICA, 
where common and distinct components are estimated separately, p- 
values are much higher in MCCA-jICA for estimated components that are 
showing activation in similar areas, i.e., visual in SIRP or motor in AOD. 

Fig. 6 shows a comparison of three fusion methods with respect to the 
estimated DMN components. Given the importance of the DMN as an 
important putative biomarker for schizophrenia (Öngür et al., 2010; 
Whitfield-Gabrieli et al., 2009; Hu et al., 2017), its robust estimation in 
all three datasets with more focal areas and higher group differences 
increases our confidence in the proposed method. On the other hand, 
most of the DMN components in jICA and MCCA-jICA are split into two 
components and do not show significant group difference. This example 
further shows the advantage of fully leveraging the statistical power of 

the data in the analysis using DS-ICA. 

4.4. Classification procedure and results 

We use the classification rate to evaluate the relative performance of 
different methods for different combination of datasets in a similar way 
given in Levin-Schwartz et al. (2017). Since there is no ground truth for 
the underlying sources or profiles, using classification rate provides a 
natural way to compare the efficiency of each method to discriminate 
between healthy controls and patients. Note that our goal here is not to 
obtain a perfect classification rate, but instead to show performance 
advantage of fusion techniques over individual analysis for multitask 
fMRI data in the way they make use of joint information. Since all three 
methods we discuss here are based on ICA, we discuss the classification 
procedure for ICA first, and later extend it to multidataset fusion tech
niques. Considering Xk ∈ ℝM×Tk , k = 1, 2, …, K from (1), where K is the 
number of datasets and mth row of the each dataset is formed by 
extracting one multivariate feature from the mth subject. We randomly 
select 70% of subjects’ data to train and the rest 30% of the data to test 
the network. We keep a similar proportion of healthy controls and pa
tients in all X, Xtrain, and Xtest datasets. Next, we reduce the Xtrain dataset 
dimension using PCA into an order specified in the previous section. We 
perform ICA-EBM on the reduced dimensional train datasets and 
perform a two sample t-test on each column of the estimated profile 
matrix to identify the profiles that shows significant group difference 
(p < 0.05). These profiles and their corresponding spatial maps are then 
formed into Âtrain and Ŝtrain respectively. We estimate Âtest by regressing 

Fig. 6. Estimated DMN components by all three methods. Note that DMN components are more focal and show higher group difference in DS-ICA compared with the 
other two methods. In jICA and MCCA-jICA, most of the DMN components split into two components. 
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Ŝtrain onto X̂test to test the classifier. We train a radial basis kernel support 
vector machine (KSVM) (Cortes and Vapnik, 1995) using the columns of 
Âtrain. The value of kernel parameters is selected by computing the 
average classification rate of 500 independent Monte-Carlo sub
samplings of the data for different values and choosing the ones with the 
highest average classification rate. We perform a grid search of (C, γ) 
values from 10−3 to 103 and ended up selecting (1, 10). After finalizing 
the parameters, we perform the classification procedure on 300 inde
pendent Monte-Carlo samplings and report the average classification 
rate. A flow chart of the process is given in Fig. 7. 

The process is similar for both jICA and MCCA-jICA, except the data 
matrix X is formed differently for these two, as described in the back
ground section. For DS-ICA, computing the common and distinct com
ponents are done separately. We compute the group significant profiles 
separately and then concatenate them vertically to form Âtrain. The 
associated brain spatial maps are concatenated horizontally to form 
Ŝtrain. The rest of the process is similar to ICA. Note that the value of 
kernel parameter is selected for each method individually. 

Fig. 8 shows the classification performance for each task dataset as 
well as their combinations. Fig. 8(a) shows the comparative results of 
different methods, while Fig. 8(b) compares the performance of the 
estimated common and distinct components in DS-ICA. There are many 
important messages to take away from Fig. 8. First, when analyzed 
separately, AOD obtains the highest classification score among the three 
task datasets. This indicates that AOD dataset carries information with 
more discriminatory power than the other two datasets. 

Second, from Fig. 8(a), classification rate improves as we move from 
single dataset to multidataset analyses. This is due to the fact that there 
is more discriminative power available in multi dataset combinations 
than any individual dataset. For example, when analyzing separately, 
the SM dataset results in the lowest classification performance, but 
combining SM with other two datasets, particularly with AOD, signifi
cantly improves the classification rate. 

Third, among the three fusion techniques we consider in this study, 
DS-ICA provides better classification performance than the other two 
techniques. From Fig. 8(a), with DS-ICA being the most flexible method, 
it makes the best use of available information and achieves higher 
classification rate compared with jICA and MCCA-jICA for all possible 
dataset combinations. MCCA-jICA achieves better classification rate 
than jICA in almost all the scenarios except SIRP+SM, where jICA out
performs MCCA-jICA. 

Finally, if the tasks are comparable with each other and the datasets 
share more common information, all three techniques show 

improvement in classification performance, which supports the advan
tage of multi dataset analysis. For example, combination of AOD and SM 
results in higher classification score than other combinations for all 
three techniques, whereas classification performance drops for 
SIRP+SM combination, especially for MCCA-jICA which prioritizes 
common information over distinct information. 

Results shown in Fig. 8(b), which compares the performance of 
estimated common and distinct components in DS-ICA, also agree with 
this conclusion. Common components in DS-ICA lead to higher classi
fication rates than distinct components in almost all dataset combina
tions except SIRP+SM, whereas distinct components yield better 
classification performance. This indicates that SIRP and SM datasets are 
more distinct in nature and when analyzed jointly provide less common 
information than other combinations. The similar classification perfor
mance of MCCA-jICA and jICA with common components in DS-ICA 
indicates the fact that both methods only take the common informa
tion in the datasets into account. DS-ICA, on the other hand, takes 
advantage of both common and distinct information and provides better 
classification performance than the other two methods, especially for 
the SIRP+SM combination where distinct information dominates. 

5. Discussion 

Multiple datasets collected for study of a given problem using 
different experimental conditions or modalities are expected to contain 
features that are common across datasets as well as features that are 
unique to each individual dataset. While fusing these connected data
sets, traditional ICA-based methods typically emphasize the common or 
the shared information, disregarding the individual information avail
able in the datasets. In this paper, we propose a new fusion method, DS- 
ICA, that can take advantage of not only of the common but also the 
distinct information available in the datasets. In addition, separating the 
common and the distinct subspaces prior to analysis allows a better 
model match to methods such as jICA, and also helps to reduce the 
dimensionality of the problem, allowing for more efficient estimation 
compared with methods like IVA. We show the performance advantages 
of DS-ICA over other ICA-based methods in simulations as well as in real 
multitask fMRI data collected from both healthy controls and patients 
with schizophrenia. Even though the focus of the current work is on the 
fusion of multitask fMRI data, DS-ICA model can be also used for the 
fusion of multimodal data, where datasets come from different modal
ities and hence are different in nature. Mathematical formulation of DS- 
ICA addressing multimodal data is given in Section 3.2. 

Since DS-ICA separately estimates the common and distinct 

Fig. 7. Classification process for a single feature dataset. Training features Âtrain are generated by selecting discriminatory features from ICA decomposition. Âtest is 
generated using linear regression of Ŝtrain onto X̂test to test the classifier. The entire process is repeated N times and the average value of the classification rate 
is evaluated. 
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components and performs joint analysis only on the common subspace, 
it reduces the number of parameters to be estimated in the fusion 
analysis. Compared with jICA and MCCA-jICA, which estimate an N × N 
mixing matrix common to all, DS-ICA estimates a C × C mixing matrix 
where C ≤ N. This reduced size single mixing matrix also helps DS-ICA 
with the interpretability of the estimated components, i.e., attaching 
physical meaning to the output results as common components. In a fusion 
scenario, where subjects’ data come from different experimental con
ditions or modalities, it is the variation across the subjects that connects 
the feature datasets across modalities (Adalı et al., 2018). Therefore, 
estimating a single mixing matrix only for the common components 
indicates that the subjects share a similar response to these components 
across the datasets. However, additional steps of order selection and 
subspace identification does make the DS-ICA computationally more 
expensive than both jICA and MCCA-jICA. DS-ICA uses IVA-G, which 
takes the SOS of the data into account, to identify and estimate the 
common and the distinct subspaces. It is important to note here that IVA, 
alone, can be also used to estimate the common and the distinct inde
pendent components. This is achievable by post processing the covari
ance matrices of the estimated SCVs (Long et al., 2020). However, IVA 
algorithms, especially the ones that use the higher or all order statistics 
(AOS), are computationally expensive and the number of parameters to 
be estimated increases proportionally with the number of datasets 
(Bhinge et al., 2019). For K datasets each with N sources, IVA jointly 
estimates K number of N × N mixing matrices, a much greater number 
compared with the methods that use jICA for fusion where a single 
mixing matrix is estimated. Individual mixing matrices also make the 
IVA components harder to interpret, as there is no guarantee that 
components will share similar subject responses across the datasets. 

While estimating the common subspace, it is possible to have sources 
that are correlated across all datasets as well as sources that are corre
lated in subsets of datasets. Depending on the common order used in the 
analysis, DS-ICA can identify partially correlated subspaces as well. 
However, it is important to note that identifying the complete correla
tion structure is a very difficult problem and the complexity level of the 
problem increases rapidly as the number of dataset increases. In this 
work, we only consider the subspace common to all to keep the problem 
simple. Here, we introduce DS-ICA as a general framework, and by 
extending the work to identify complete correlation structure such that 
multiple jICA can be performed in multiple common subsets is a useful 
and important future work. 
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