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ARTICLE INFO ABSTRACT

Keywords: Background: Data-driven methods such as independent component analysis (ICA) makes very few assumptions on
Data fusion the data and the relationships of multiple datasets, and hence, are attractive for the fusion of medical imaging
EMRI data. Two important extensions of ICA for multiset fusion are the joint ICA (jJICA) and the multiset canonical
?\:/1: correlation analysis and joint ICA (MCCA-jICA) techniques. Both approaches assume identical mixing matrices,

emphasizing components that are common across the multiple datasets. However, in general, one would expect
to have components that are both common across the datasets and distinct to each dataset.

New method: We propose a general framework, disjoint subspace analysis using ICA (DS-ICA), which identifies
and extracts not only the common but also the distinct components across multiple datasets. A key component of
the method is the identification of these subspaces and their separation before subsequent analyses, which helps
establish better model match and provides flexibility in algorithm and order choice.

Comparison: We compare DS-ICA with jICA and MCCA-JICA through both simulations and application to multiset
functional magnetic resonance imaging (fMRI) task data collected from healthy controls as well as patients with
schizophrenia.

Results: The results show DS-ICA estimates more components discriminative between healthy controls and pa-
tients than jICA and MCCA-ICA, and with higher discriminatory power showing activation differences in
meaningful regions. When applied to a classification framework, components estimated by DS-ICA results in
higher classification performance for different dataset combinations than the other two methods.

Conclusion: These results demonstrate that DS-ICA is an effective method for fusion of multiple datasets.

Common and distinct components

1. Introduction or components (Smilde et al., 2017; Lahat et al., 2015; Adali et al.,

2018). Among these methods those based on independent component

Joint analysis, or fusion, of multiple datasets is becoming increas-
ingly important in multiple fields and medical imaging is a very
important one among those (Lahat et al., 2015; Mijovic et al., 2014;
Adali et al., 2015a; Leeb et al., 2010). The goal of data fusion is to
maximally use joint information available across datasets by letting
them fully influence each other, hence making the best use of available
information for the underlying problem (Adali et al., 2018; Calhoun and
Sui, 2016; James and Dasarathy, 2014; Savopol and Armenakis, 2002).
Matrix and tensor decomposition-based methods are based on a latent
variable model and enable such interaction among the datasets. An
important strength of these methods is that they are directly interpret-
able, i.e., one can attach physical meaning to the output latent variables,
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analysis (ICA) have proven especially useful for data fusion since they
minimize the assumptions on the data and allow full interaction among
the datasets (Calhoun and Adali, 2012; Adali et al., 2015b). However,
ICA formulation is originally formulated for one dataset. This has led to
the development of different extensions of ICA for the fusion of multiple
datasets. These extensions rely on the model used to explain the un-
derlying relationship of the components across the datasets and are
successful when there is a good model match, i.e., the assumptions of the
model are satisfied, which is key to better interpretability. In this paper,
we introduce a powerful framework, disjoint subspaces for multiple
datasets to leverage the strength of two popular fusion methods such
that a better model match can be achieved.
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In a latent variable model-based fusion, certain latent variables—or
components—can be either highly correlated across the datasets or
might have weak or no correlation. The main goal when fusing datasets
is to make full use of those that are correlated. We define the highly
correlated components as common across datasets and unique or low
correlated ones as distinct. When the components are identified as
common and distinct among the datasets, one obtains a more complete
and realistic picture of the underlying relationship across the datasets
(Smilde et al., 2017; Lock et al., 2013; Schouteden et al., 2014). A
number of ICA-based fusion methods have focused on this very aspect,
either taking advantage of only the common components or both com-
mon and the distinct components to explain the underlying relationship
across multiple datasets. One such method, joint ICA (jICA) introduced
in Calhoun et al. (2006c¢), has been used for fusion of different medical
imaging modalities such as functional magnetic resonance imaging
(fMRI) and Electroencephalography (EEG) (Mangalathu-Arumana et al.,
2012, 2018; Jacob et al., 2017), fMRI, structural MRI (sMRI) and EEG
(Adali et al., 2015b), fMRI data of multiple tasks (Calhoun et al., 2006a)
and many others. Though widely used, jICA assumes a common shared
mixing matrix for all datasets, thus treating all the estimated compo-
nents as common and aligned across the datasets. While it is a strong
assumption, when it is satisfied it provides much needed robustness in
the estimation. Another method, MCCA-JICA (Sui et al., 2010, 2013a,b),
uses a prior multiset canonical correlation analysis (MCCA) step. MCCA,
an extension of canonical correlation analysis (CCA) for multiple data-
sets (Kettenring, 1971), to maximize the linear correlation between the
datasets prior to the jICA step. This scheme aligns components more
likely to be common across datasets and thus provides a better model
match for the following jICA step. MCCA-ICA has been successfully
applied for fusion of fMRI, diffusion tensor imaging (DTI) and sMRI (Sui
et al., 2013a; Hirjak et al., 2020), fMRI, EEG and sMRI data (Sui et al.,
2014) and 4-way fusion of MRI data (Liu et al., 2019). However,
MCCA-jICA like jICA inherently assumes that most underlying compo-
nents—or sources—in the decompositions are common across the
datasets. As expected, the performance of both approaches suffers when
not all components are shared. A more general extension of ICA to
multiple datasets, independent vector analysis (IVA) (Adali et al., 2014)
alleviates this assumption but requires significant number of samples for
reliable performance (Bhinge et al., 2019).

An effective approach would be to break the problem into two to
achieve a desired trade-off in model match and robustness. We can first
identify disjoint subspaces, those that are common across all the datasets
along with those that are unique to each dataset in the fusion. We can
then perform joint analysis on the common subspaces where strong as-
sumptions of fusion methods are justified and perform separate analyses
on the distinct subspaces. These separate analyses of disjoints subspaces
thus ensure a better model match, and hence provide better interpret-
ability of the estimated components. This is the main idea behind
disjoint subspaces using ICA (DS-ICA), which we introduce in this paper.
We present DS-ICA as an effective method for the fusion of multiple
datasets, through the identification of common and distinct subspaces
across more than two datasets. We propose solutions for the estimation
and identification of common and distinct subspaces in multiple datasets
using independent vector analysis with multivariate Gaussian distribu-
tion (IVA-G) (Anderson et al., 2012) and then use ICA to estimate joint
independent components from common subspaces and distinct inde-
pendent components from each distinct subspace separately. IVA-G
generalizes ICA to multiple datasets, and through the use of Gaussian
model takes only second-order statistics into account like CCA and its
multiset generalization, MCCA (Kettenring, 1971). The strong identifi-
ability condition of IVA—i.e., the ability to uniquely identify the un-
derlying latent variables under very general conditions (Adali et al.,
2014; Anderson et al., 2012)—allows IVA-G to better capture the exact
subspace structure across the datasets compared with MCCA as we show
in the paper. Separation of the common and distinct subspaces as a first
step reduces the dimensionality of the datasets, which in turn reduces
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the complexity and offers flexibility in the following analyses and en-
ables better estimation of both the common and distinct components.
For example, the assumption of a common mixing matrix becomes more
flexible in DS-ICA than other methods due to the better estimation of
subspace structure and separate analyses of common and distinct sub-
spaces. A preliminary version of this approach is introduced in Akhonda
et al. (2019), for only two datasets. In this paper, we introduce the
general method for fusion of multiple datasets (K > 2), and study its
properties demonstrating the trade-offs, and present its successful
application to multitask fMRI data.

We first compare the performance of DS-ICA with the two closely
related methods of jICA and MCCA-ICA through simulations and
highlight its advantages. We then demonstrate its successful application
to fusion of multitask fMRI data collected from 138 healthy subjects and
109 patients with schizophrenia. The three tasks in this study involves
an auditory odd ball (AOD) task, a Sternberg item recognition paradigm
(SIRP) task, and a sensorimotor (SM) task (Gollub et al., 2013). We show
that DS-ICA can simultaneously estimate not only the common compo-
nents that are shared across all datasets, but also the distinct ones unique
to each task dataset. The common components estimated by DS-ICA
primarily show activation in the motor, sensory motor, default mode
network (DMN), visual and frontal parietal regions while the distinct
ones show significant activations in part of the auditory and motor re-
gions for AOD, visual region for SIRP and sensory motor region for SM
task. These regions are indeed those that are expected to be common and
distinct in terms of activation for these tasks, and have been previously
shown to differentiate patients with schizophrenia from healthy controls
(Kiehl and Liddle, 2001; Kiehl et al., 2005; Demirci et al., 2009; Ongiir
et al.,, 2010; Whitfield-Gabrieli et al., 2009; Hu et al., 2017), thus
increasing our confidence in the results. Overall, DS-ICA estimates more
components that can differentiate between healthy controls and patients
with relatively higher discrimination level compared with jICA and
MCCA-ICA. This, coupled with the meaningful activation areas of the
estimated components show the advantage of using common and
distinct components in fusion analysis. We use classification rate to
compare the performances of different multiset fusion techniques across
various combinations of datasets as an unambiguous and natural way to
assess the relative performance of methods and to evaluate how infor-
mative the components are for the discrimination of healthy controls
and patients. We show that DS-ICA achieves higher classification per-
formance than other techniques for various combinations of the data-
sets, suggesting that it enables higher interaction among the datasets
which results in better use of the available information. The study also
guides us about the degree to which there exists complementary infor-
mation across the datasets. We also test the stability of the group
discriminant components across different subject groups and show that
DS-ICA can consistently estimate these components across different
subgroups.

The paper is organized as follows. In Section 2, we discuss about the
existing ICA based algorithms. In Section 3, we introduce our new
method and in Section 4, we discuss about implementation and results.
We provide conclusions in the final section.

2. ICA-based approaches for fusion

Data-driven fusion of multiset medical imaging data collected from a
group of subjects is challenging due to multiple factors. An important
one among those is the high dimensionality of the datasets. Therefore, it
is desirable to reduce each dataset into a feature and obtain a lower
dimensional representation of the data, for each subject (Calhoun and
Adali, 2009) while keeping as much variability in the data as possible.
Consider X; € RM*Tc k =1,2,...,K as a grouping of K feature datasets
from M subjects, where the mth row of each dataset is formed by one
multivariate feature for each subject. Such reductions alleviate the high
dimensionality problem and offer a natural way to discover association
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across these feature datasets, i.e., the variations across subjects. The
basic ICA model on kth dataset is formulated by

Xe=ASk, k=1,2,...,K, @
where each dataset is a linear mixture of M components—referred to as
sources and given by the rows of matrix Sy € RM*Tk—through an
invertible mixing matrix, Ay € RM*M, ICA estimates a demixing matrix
Wy such that the maximally independent source components can be

computed using §k = WXk. The columns of the estimated mixing

matrices, Z\k, k =1, ..., K are referred to as the subject covariations, or
profiles as they quantify the contributions to the overall mixtures X.
The goal here is, given X, to estimate independent sources and their
associated subject covariations or profiles, which we can interpret, i.e.,
attach a physical meaning to them. Note that both profiles and the
estimated components, together or individually, can be used to establish
connection across datasets (Adali et al., 2018). However, ICA can only
analyze a single dataset at a time by generating a decomposition on each
dataset independent of other datasets (Levin-Schwartz et al., 2017). In
the next section, we discuss different extensions of ICA to jointly analyze
multiple datasets.

Joint ICA, the most popular extension of ICA for fusion, enables joint
analysis by concatenating the datasets horizontally such that each
dataset is stacked next to each other (Calhoun et al., 2006b). Given K > 2
datasets that have a common row dimension of M, jICA performs a single
ICA on the horizontally concatenated ‘joint’ dataset as follows:

where S € RM*(Ti+To+-4Tk) represents the joint source matrix and A €
RM*M s the common mixing matrix shared by all K datasets. Since a
single density function is used to estimate components from all the
datasets, jICA requires all the datasets to have almost equal number of
samples to ensure unbiased estimation of the results (Adali et al., 2015a;
Akhonda et al., 2018). Moreover, as the associations across the datasets
are determined through the columns of shared mixing matrix, i.e.,
profiles, this automatically implies that the model assumes all the esti-
mated components are common across concatenated datasets. One way
to reduce the strong model assumption of jICA is by using MCCA (Ket-
tenring, 1971), an extension of CCA for multiple datasets, prior to jICA,
leading to MCCA-JICA (Sui et al., 2010).

MCCA-JICA aligns the components prior to jICA by maximizing the
linear correlation among the datasets. MCCA as a preprocessing step
estimates weighting vectors w,((D, k=1,2,...,Kandj=1,2, ..., Mknown
as canonical coefficient vectors, such that the normalized correlation
within u¥) = [u(lj),ug), ..., u)] € RX is maximized. Here, ui’s are known
as canonical variates and can be written in matrix form as

Uy =W,"X,, k=1,2,... K. 3)
In MCCA, this is achieved through a deflationary approach where one
first estimates the first set of canonical correlation coefficient vectors,

w,((l),k: 1,2,...,K using

(1 (1)]

Wi wil L w :argmaxJ(ri:?kZ) @

and then proceeds to the next w,({z) ,k=1,2,...,Kvectors such that w,il) is

) , resulting in orthogonal Wy, k=1, 2, ..., K. Here, r,(fl),kz

orthogonal to w,i2
is the correlation between the jth canonical variates from k; and kj
datasets and J(-) is the cost function needed to be optimized. A number
of MCCA cost function are proposed in Kettenring (1971) and can be
optimized to obtain the canonical correlation values. Estimated canon-

ical variates are then decomposed using a jICA approach as follows,
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The concatenation of canonical variates ensures that components are
aligned across the datasets—i.e., same index components are correlated
across datasets—and can be estimated by using a single density function
in jICA (Sui et al., 2010). However, similar to the jICA technique,
MCCA-JICA also assumes mixing parameters are the same for all esti-
mated components. Moreover, maximization of correlation at the first
step encourages only the available common information, which further
minimizes the individual features available in each dataset, thus limits
its application to common and distinct component analysis.

Another popular ICA-based method, parallel ICA (p-ICA) (Liu et al.,
2009), consists of applying separate ICAs on each dataset, such that the
correlation among the common subject covariations is maximized in
each iteration. This method identifies the subject profiles that are
correlated across datasets and maximizes the correlation only between
those in later runs by using the cost function

argmfxl(é\l) + I(§2> + lf(gl, Kz) , (6)

where the linking term, f(-), introduces correlation across datasets
through profiles and 4 is dynamically adjusted to balance independence
and the dataset correlation. Unlike jICA and MCCA-JICA, p-ICA can es-
timate both common and distinct components from the datasets. How-
ever, the application of p-ICA is few in practice due to its many
limitations (Akhonda et al., 2018). Since f(:) is defined for only two
datasets, p-ICA applies to only two datasets at a time. An extension of
p-ICA, proposed in Vergara et al. (2014), can be used for fusion of three
datasets. However, similar to the two datasets case, the method again
considers pair-wise correlations for maximizing correlation across more
than two datasets. Moreover, the performance of p-ICA degrades with
lower number of subjects in the analysis due to errors in correlation
estimation. Finally, the optimization of the algorithm depends on
fine-tuning of several user-defined parameters (Akhonda et al., 2019).

Since most ICA-based fusion methods assume some degree of com-
monality across the datasets, a practical approach would be to identify
and split common and distinct subspaces from the datasets and perform
separate analyses to achieve a better model match. Identifying and
performing joint analysis only on the common subspace and individual
analyses on distinct subspaces alleviates the potential model mismatch
of jICA and MCCA-ICA, and exploits both common and distinct infor-
mation available in each dataset. A preliminary version of this approach
using CCA and ICA is introduced in Adali et al. (2018), but only for two
datasets. In the next section, we introduce a new technique for the fusion
of more than two datasets that can preserve the subspace structure and
estimate components that reliably represent the common and distinct
nature of the data.

3. Disjoint subspace analysis using ICA (DS-ICA) for K > 2
datasets

In this section, we propose a new method, disjoint subspace analysis
using ICA (DS-ICA), for the fusion of K > 2 datasets by identifying and
employing separate analyses on disjoint common and distinct subspaces.
Consider the datasets X, k = 1, 2, ..., K given in (1). Identifying the
common and the distinct subspaces across multiple datasets is not
straightforward due to the many possible correlation structures avail-
able across all K datasets. We propose to utilize three definite steps to
identify and estimate common and distinct components. A general
framework of DS-ICA performing all three steps is shown in Fig. 1. De-
tails about the steps and options to perform those are discussed below.

3.1. Common order estimation

The first step of DS-ICA is to estimate the order of the common signal
subspace C across K > 2 datasets. Given K = 2, several techniques can be
used to estimate C (Chen et al.,, 1996; Fujikoshi and Veitch, 1979;
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Fig. 1. General framework of DS-ICA for common and distinct component estimation.

Seghouane and Shokouhi, 2019; Song et al., 2015). Among those, we use
PCA-CCA introduced in Song et al. (2015) since it is equally effective for
both sample rich and sample poor scenarios, and provides robust per-
formance when applied to fMRI analysis (Levin-Schwartz et al., 2016).
PCA-CCA makes use of the strength of CCA to maximize the linear
correlation between the reduced dimensional datasets obtained from an
initial PCA step. The estimated canonical correlation values are then
used to identify the order of the correlated signal subspace by using
minimum description length (MDL) criterion given as

IvpL(m,n) = Tlog H(l — ri(n)z) + log(T)m(2n — m), 7
n=1

where n is the PCA rank, m = 1, ..., M and ri(n), ..., ry(n) denote the
canonical correlation coefficient estimates using the PCA rank, n.
However, since the method is limited to only two datasets, it cannot be
used to identify the common signal subspace order for K > 2 datasets.
One practical way to alleviate this issue is to apply PCA-CCA on pairwise
datasets and use information-theoretic criterion to estimate the common
order (Song et al., 2016). Other notable techniques include using
maximum likelihood statistics on sample correlation values (Wu et al.,
2002), MCCA along with knee point detection (Bhinge et al., 2017) and
rank-reduced hypothesis test on multiple datasets (Hasija et al., 2016).
Among those, MCCA before knee point detection (MCCA-KPD), esti-
mates common order C by using MCCA to maximize linear correlation
across K > 2 datasets and provides robust performance when applied to
simulated and real fMRI data (Bhinge et al., 2017). Since IVA-G gener-
alizes MCCA, IVA-G can also replace the MCCA step in MCCA-KPD to
estimate the common order across K > 2 datasets. It is, however,
important to note that joint order selection methods such as MCCA-KPD
only gives us a general direction about the common subspace order. In
our study, we do not simply use the order estimated with the selected
method but also evaluate the stability and the quality of the estimated
components to choose the final C. Given the signal subspace order M and
common order C, distinct signal subspace order can be estimated as
D =M — C. Next, the common and distinct signal subspace orders C and
D are used to identify and separate the common and distinct signal
subspaces from the datasets.

3.2. Subspace identification and separation

The next step in DS-ICA is the identification and estimation of the
common and distinct subspaces. Given the common order C for K > 2
datasets, DS-ICA uses IVA to identify and split each Xj dataset into
respective common and distinct parts such that

rank(X;) = rank(X;c) + rank(Xsp), k=1,2,...,K, 8)
where rank(-) represents rank of the matrix and Xyc and Xyp are the
common and distinct parts estimated from each K dataset. IVA gener-
alizes ICA to multiple datasets and intimately related to both CCA and

MCCA (Adali et al., 2014). Given the model formulation in (1), IVA

jointly estimates the demixing matrices Wy, k = 1, 2, ..., K such that
estimated source components within §k = WXy are independent while
maximally dependent with the corresponding components across the
multiple datasets. This is done my modelling the source component
vector (SCV), where jth SCV s¥ can be defined as

)0

sV =V 9 ...

ST ERK, j=1,2,...M, 9)
i.e., by concatenating the jth source component from each of the K
dataset. Since SCV is defined using corresponding components across all
datasets, it is where dependencies across the datasets are taken into
account. This additional diversity, dependencies among the sources in-
side an SCV, is also what aligns the sources estimated across datasets,
and thus helps with the resolution of permutation ambiguity for ICA
across datasets. This is important for DS-ICA formulation as well since it
assumes that the common sources are aligned and dependent across
datasets. When a multivariate Gaussian distribution is used to model the
SCV, thus taking only the second order statistics (SOS) into account, the
resultant method is called independent vector analysis with multivariate
Gaussian distribution (IVA-G) (Anderson et al., 2012). In our formula-
tion, we use IVA-G to identify and estimate the common and distinct
subspaces. We use the estimated components that are maximally
correlated across the datasets to form the common subspaces and use the
rest of the components that are not correlated across datasets to form
distinct subspaces. This is done by using the estimated common and
distinct order C and D on the estimated components as

k=1,2

(N ©n’ Y ¢

Xic = [Sk 3Sk Ty ey S

) (10)

(C+2)

X = [SECH) Sk s 1n

Y
such that (8) is satisfied. These common and distinct subspaces are then
used in step 3 to estimate the common and distinct components through
separate decompositions.

It is important to note here that other methods such as CCA, its
extension to multiple datasets, MCCA, and joint and individual variation
explained (JIVE) [12] that can also be used to identify and estimate the
common and distinct subspaces across multiple datasets. Both MCCA
and IVA-G use SOS to maximize the correlation between the datasets,
and IVA-G solves the exactly equivalent cost function as MCCA with
generalized variance method (GENVAR) when the demixing matrices
are constrained to be orthogonal in IVA-G. However, the lack of
orthogonality constraint in IVA-G provides more flexibility, allowing for
a bigger solution space for the demixing matrices (Anderson et al.,
2012). This also yields a strong identifiability condition—i.e., enables
identification of a wide range of signals under very general conditions.
This is the reason IVA-G can better preserve the subspace structure than
MCCA, a really important feature as the subspace structure gets more
complicated with the increase of number of datasets (Long et al., 2020;
Anderson et al., 2014). This advantage is demonstrated with examples
that involve rich covariance structures in (Long et al., 2020). JIVE, on
the other hand, fails to identify components, especially the ones
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common across datasets, if the components are weak, hence making it
less practical to the fusion of real fMRI data.

3.3. Common and distinct component estimation

In the final step of DS-ICA, after extracting the common and distinct
subspaces from each dataset using SOS, both subspaces can be analyzed
separately using models that can take higher order statistics (HOS) or
other statistical properties of the data into account. For example, the
common or shared parts can be concatenated together and jointly
analyzed by using jICA, while the distinct parts can be analyzed sepa-
rately by using individual ICAs:

Xc = [Xic, Xoc, -, Xkl
= Ac[Sic, Sac, -+, Skc]
= AcSc
and Xip = AwSw, k=12,... K.

Concatenating only the common parts satisfies the strong assump-
tions of jICA model and results strongly associated underlying sources.
On the other hand, separate analyses on the distinct parts provide
sources that are distinct to each dataset. Thus, DS-ICA only enables
fusion to common parts where it is suitable while analyzing distinct
parts separately, minimizing the influence of distinct components in the
common component analysis and vice versa. It is, however, important to
note that other fusion techniques and decomposition methods can be
used instead of jICA and ICA based of the nature of the data to estimate
the common and distinct components. Since the number of variables to
be estimated increases with the number of datasets, fusion methods such
as jICA and MCCA-JICA become more constrained with added datasets
due to their assumption of a common mixing matrix. On the other hand,
DS-ICA alleviates this issue to some extent by splitting the datasets into
parts, thus significantly reducing the dimension of the datasets under
joint analysis, i.e., common parts. Performing separate analyses on the
common and distinct subspaces reduces the number of variables to be
estimated in fusion, reducing algorithmic complexities and providing
flexibility to choose an algorithm suitable for each subspace analysis.

Algorithm 1. DS-ICA with IVA-G

Input: X, k=1,2,...,K
Output: S¢c = Common components
Sic = Distinct components
Ay, Axp = subject covariation/Profiles

1: C =MCCA — KPD(Xy), 1 <k <K
2: S = WyX;, where Wy = IVA — G(Wy), 1 <k <K
3 X = [51,52,...,55" and
4 X = B 1<k <K,
where rank(Xy) = rank(Xyc) + rank(Xyp)
5: X¢ = [Xic, Xac, -, Xic] = Ac = [S16.S2¢, -+, Skc] = AcSc
6: Xkc = AkcSkp, 1 <k <K
7: return Ac, S¢, Axp and Sip

4. Implementation and results
4.1. Simulation setup and results

In this study, we compare the performance of three ICA-based fusion
methods, namely, jICA, MCCA-jICA and DS-ICA as this is the set most
closely related in terms of their goals and models. To ensure a fair
comparison, we use the same ICA algorithm, ICA by entropy bound
minimization (ICA-EBM), for all three methods. ICA-EBM uses a flexible
density matching mechanism based on entropy maximization (Li and
Adali, 2009) and provides better estimation performance for neurolog-
ical data compare to the other ICA algorithms (Long et al., 2019). We
generate simulation examples for two datasets, and then extend it to
three datasets using similar setups. The generative model for the simu-
lations is given in Fig. 2. For each dataset, we generate N = 10 sources
from Laplacian distribution with T = 1000 independent and identically
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Common discriminative components
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\ A2 52 f
Controls ¥
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Distinct discriminative profiles

Fig. 2. Simulation model for two datasets to compare the relative performance
of DS-ICA, MCCA-jJICA, and jICA. Here, the datasets are designed in a way that a
fixed number of components across the two datasets are common, and the rest
of the components are distinct. In addition, one common and one distinct
component are designed to be discriminative across the two groups, i.e.,
healthy controls and patients.

distributed (i.i.d.) samples. We select Laplacian distribution since it is a
good match to fMRI data (Long et al., 2019). We introduce correlation to
C = 3 sources from each dataset with correlation values 0.9, 0.7 and 0.5,
which means that across all datasets there are 3 common components
and rest of the components are distinct. In our simulation results, we let
0.3 be the minimum correlation value to be satisfied for defining com-
mon components. This is a value that will be specific for each application
and is expected to be determined by the user. These latent sources are
then linearly mixed with mixing matrices A € RM*10 with elements from
a standard Gaussian distribution N(0O, 1), where M is the even number of
subjects from two groups—a healthy control group and a patient
group—each with M/2 samples (subjects).

To simulate group difference in the subjects, a step type response
with step height 1.5 is added to the columns of the mixing matrices or
profiles such that one profile from each dataset associated with a com-
mon component and a single profile from the second dataset associated
with a distinct component show group differences. Thus, we have pro-
files a; (m) = v1(m) + 1.5u(m), m=1,2,...,M for the first dataset and
ai(m) =vi(m) +1.5u(m), i=1,4and m = 1, 2, ..., M for the second
dataset to discriminate between the two subject groups. Here, M is the
even number of subjects, v;(m)’s are generated using standard Gaussian
1, m<M/2
0, m>M/2
The standard deviation of other profiles are adjusted such that they
match the standard deviation of the discriminant profiles for each case
we consider. We refer to the components corresponding to these group
discriminant profiles as discriminative components since they can be
identified through a two sample t-test. We use true order 10 for
dimensionality reduction resulting in X; € R1*10% for MCCA-jICA and
DS-ICA, while X € R10%2000 for JICA. In addition to DS-ICA, we use
MCCA-KPD to estimate the final common order of 3 for both two and
three datasets. We evaluate the performance of each method by either
changing the number of subjects or the step-height used to distinguish
two subject groups. In the first case, the number of subjects is changed
from 20 to 200 with step-height fixed to 1.5, while in the second case,
the step-height is changed from 0.2 to 2—resulting in correlation values
in the range [0.1 1]—with subject number fixed to 50. Since the datasets
are generated assuming there are two subject groups, it is the column of
the estimated mixing matrices (profiles) that report on the subjects’
covariations and can be used to identify the discriminative profiles. We
use a two-sample t-test on the estimated profiles between the loadings of
the two groups and use p < 0.05 as the threshold to identify the
discriminative profiles. The components associated with these profiles
are the estimated components that show differences between the

distribution and u(m) is the step response with u(m) = {
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healthy controls and the patients. We estimate the correlation values
between the true and estimated discriminative components and use
these correlation values to evaluate each method’s performance.

Fig. 3 compares the performance of DS-ICA with MCCA-ICA and
JICA for (a) 2 datasets as well as (b) 3 datasets case. In both simulations,
estimation performance improves as the number of subjects and step
height increases. Additionally, as expected, we can see that two varia-
tions of DS-ICA, DS-ICA (MCCA) and DS-ICA (IVA-G), outperform the
other two methods for estimation of both common and distinct
discriminative components. From Fig. 3(a), jICA being the most con-
servative approach suffers most, especially for the estimation of com-
mon discriminative components. On the other hand, MCCA-ICA
provides much better results for the common components but suffers in
the estimation of the distinct ones because of the maximization of as-
sociation in the prior MCCA step. DS-ICA makes the most efficient use of
the available data by performing separate analyses and outperforms the
other two methods for both common and distinct discriminative com-
ponents. DS-ICA (IVA-G) slightly outperforms DS-ICA (MCCA) as IVA-G
estimates association structure better than the MCCA. Similar patterns
are present in the second set of simulation for 3 datasets shown in Fig. 3
(b). As the number of datasets increase the problem gets even more
challenging for all the methods. Nevertheless, both DS-ICA (MCCA) and
DS-ICA (IVA-G) show performance similar to the 2 dataset case and
outperforms the other two methods. Estimation performance of jICA and
MCCA-jJICA decreases even more for the distinct components as the
model becomes more constrained with the increase of datasets in fusion.

4.2. Task fMRI data and features

The fMRI datasets used in this study are from the Mind Research
Network Clinical Imaging Consortium Collection (Gollub et al., 2013)
(publicly available at https://coins.trendscenter.org/). These datasets
were collected from 247 subjects, 138 healthy individuals and 109
schizophrenia patients, while performing auditory oddball (AOD),
Sternberg item recognition paradigm (SIRP) and sensory motor (SM)
tasks. We introduce the tasks and extracted multivariate features next.

4.2.1. Auditory oddball task (AOD)

The AOD task required subjects to listen to three different types of
auditory stimuli, standard (1 kHz tones with a probability of 0.82), novel
(complex sounds with probability 0.09) and target (1.2 kHz tones with
probability 0.09), coming in a pseudo random order and press a button
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only when the target stimuli arrive. A regressor was created to model the
target related stimuli as a delta function convolved with the default SPM
HRF and subject averaged contrast images of target tones were used as a
feature for this task.

4.2.2. Sternberg item recognition paradigm task (SIRP)

The SIRP is a visual task that required subjects to memorize a set of 1,
3, or 5 integer digits randomly selected from O to 9. The task paradigm
lasts for a total of 46 s including 1.5 s of learning, 0.5 s of blank screen,
6 s of encoding where the whole sequence of digits was presented
together, and finally 38 s of probing where the subjects were shown a
sequence of integers and then required to press a button whenever a
digit from the memorized set arrives. For this task, regressor was created
by convolving three-digit probe response block with SPM HRF and
average map of both runs was used as a feature.

4.2.3. Sensory motor task(SM)

The SM tasks required subjects to listen to a series of 16 different
auditory tones and to press a button every time the pitch of the tones
changed. Each tone lasts for 200 ms and within the frequency range of
236-1318 Hz. There was a 500 ms inter-stimulus interval between the
tones. Each run consisted of 15 increase-and-decrease blocks, alternated
with 15 fixation blocks, with each lasted for 16 s. For this task, regressor
was created by convolving entire increase-and-decrease block with SPM
HRF, and average map of both runs was used as a feature.

4.2.4. Algorithm and order selection

After extracting the features from each subject’s data, all 245 sub-
jects data are concatenated vertically to form the feature dataset
resulting X; € R245*48546 } — 1 2 3 for each task. To avoid overfitting
due to the high noise level of medical imaging data, it is critical to
determine the order of the signal subspace. Using entropy based method
proposed in Fu et al. (2014), which can take sample dependency in the
data into account, the order of the signal subspace is estimated for each
task feature dataset. We use an order N = 25 for all three datasets
resulting X; € R25*48546 ' — 1 2 3 for DS-ICA and MCCA-ICA and X €
R25x145638 for JICA. Here, N = max(Ny, Ny, N3) and Ny, N, and N; are the
estimated orders of the feature datasets, selected to retain the maximum
joint information across datasets. A practical way to test the stability of
the estimated order is to check the stability of the estimated components
for different orders around that number. We check the performance of
the methods for a set of orders [15, 20, 25, 30, 35], in the range of +10 of
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the estimated order. It is observed that the results are quite similar in
terms of activation areas for 20 and 30, whereas the activation areas
started to change for order 15 and 35. DS-ICA then further divide the
datasets into common and distinct parts by using the order of the
common signal subspace C. We use multiple techniques mentioned in
Section 3.1 to estimate the common order, and all of them give us similar
results in the range [7, 12]. In this study, we use a common order C = 10
resulting 10 common and 15 distinct components in each dataset. Since
there is no ground truth, we select the final order using the guidance of
the selection methods and the quality and the stability of the estimated
results. Here, we use the statistical significance of the profiles and the
interpretability of the estimated components as evaluation criteria to
select the final order.

To be fair to all three methods, we use the same ICA algorithm, ICA-
EBM, to estimate the final components (Li and Adali, 2009). ICA-EBM
has been shown to provide superior performance with both simulation
and brain imaging data compare to the other popular ICA algorithms
(Adali et al., 2015a). This is due to the fact that ICA-EBM doesn’t assume
a fix form of distribution for the underlying sources and rather try to
achieve upper bound of the entropy by using some measuring functions
(Li and Adali, 2009). This provides ICA-EBM the flexibility to estimate
components from a wide verity of distributions, improving the estima-
tion performance of the method. To enable better reproducibility of the
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results, we run the algorithm multiple times and select a run that is most
consistent and hence will lead to a reproducible decomposition. We run
the algorithms 10 times and select the most consistent run using cross
intersymbol interference (Cross-ISI) presented in Long et al. (2018).

4.3. Results

A two sample t-test is used on the subject covariations or profiles to
test for significant group difference (p < 0.05) between two subject
groups. The associated components of those profiles that pass the tests
are referred to as discriminative components or putative biomarkers of
disease. Components showing group difference are then thresholded at
Z = 2.7 and shown in Figs. 4 and 5 . DS-ICA estimates both common and
distinct components shown in Fig. 4. Due to the high number (75) of the
estimated components, here we are only showing the discriminative
components and their associated ones across datasets. Across all three
datasets, common components estimated by DS-ICA show higher group
differences between healthy controls and patients than the estimated
distinct components. This is because all three tasks are closely related to
each other, collected from the same group of subjects and collected using
the same fMRI modality. Therefore, it is natural to estimate more
common components that show higher significant group difference than
distinct ones. The discriminative components in DS-ICA, in general,
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Fig. 4. Estimated common and distinct components by DS-ICA for AOD, SIRP and SM. We only show the components showing significant group differences and their
common components across datasets due to the high number (75) of the estimated components. The color red, orange and yellow means higher activation in controls
and blue means higher activation in patients. The discriminative components in DS-ICA, in general, show higher activation in visual, motor, and sensory-motor areas
for patients while in default mode network (DMN), auditory, and frontal-parietal region for healthy controls.
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Fig. 5. Estimated components by jICA and MCCA-JICA. Note that each column in the figure represents the components that are correlated across datasets. We are
only showing the ones that are showing group difference (p < 0.05) or part of a set where at least a single component of that set is showing group difference.

show higher activation in visual, motor, and sensory-motor areas for
patients while showing higher activation in default mode network
(DMN), auditory, and frontal-parietal region for healthy controls. All
these areas are known to be associated with schizophrenia (Hu et al.,
2017; Du et al., 2012) and therefore indicate meaningful decomposition
results.

AOD is known to be the more favorable task for identifying schizo-
phrenia (Kiehl and Liddle, 2001; Kiehl et al., 2005; Demirci et al., 2009),
resulting in a higher number of discriminant components than the other
two tasks. For AOD, the common components in Fig. 4(a) show signif-
icant activations in auditory, motor, DMN, sensory-motor and
frontal-parietal regions, whereas the distinct ones in Fig. 4(b) show
activation in mostly auditory and motor regions. SIRP being the visual
task, both common and distinct components show significant activations
mostly on the visual and DMN regions. Common and distinct compo-
nents in SM show significant activations in motor, sensory-motor, DMN
and frontal-parietal regions. Being more similar tasks, AOD and SM
share a higher number of common components showing group differ-
ence between healthy controls and patients (C#2, C#3, C#4, C#5, C#6,
C#8), though the discrimination level (p-value) in most of the compo-
nents is higher in AOD than SM, as observed in Fig. 4(a). For example,
motor (C#5) and auditory (C#8) components show very high group
differences (lower p-values) in AOD compared with the SM. On the other
hand, the visual component (C#1) responsible for receiving, integrating,
and processing visual information shows very high activations in SIRP
compared with the other two tasks. This is because the SIRP task is

designed to extract more visual features than the other two tasks. Only
the DMN component (C#3), which is found to be associated with
schizophrenia more often than any other components in many prior
studies (Ongﬁr et al., 2010; Whitfield-Gabrieli et al., 2009; Hu et al.,
2017), is showing discrimination across all three task datasets.

In Fig. 4(b), distinct components in AOD are showing significant
activations in part of the motor and auditory regions, whereas for SIRP
and SM discriminative components show activations mostly in the visual
and motor regions. Since AOD is an auditory task that requires motor
movement from the subjects, estimating distinct components that show
significant activations in the auditory and motor regions reflects on the
background on which the task was performed. This is true for SIRP and
SM datasets also. Note that these are the components that carry unique
information about the tasks, and in classification problem can be used as
features to identify one task from another.

Fig. 5 shows the components estimated by jICA and MCCA-JICA.
Rather than finding the common and distinct components separately,
both jICA and MCCA-JICA estimate components by assuming common-
ality across datasets, and thus neither method is optimized to capture the
distinct information. From Fig. 5(a), activation patterns of the associated
components in jICA are well formed and focal in one dataset, while
distorted and less focal in the other two datasets. For example, the first
set of components in jICA (#1) show well-formed activation in visual
areas for SIRP task but scattered activations for AOD and SM tasks. That
is also true for other estimated components that are showing activations
in auditory, motor and DMN regions. This is due to the fact that jICA uses
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a single density function to estimate components and assumes a common
mixing matrix across the datasets. MCCA-JICA on the other hand, relaxes
the shared mixing matrix assumption by applying a prior MCCA step.
MCCA maximizes the correlation across the datasets, thus align the
components before jICA analysis. Components estimated by MCCA-jICA
are therefore well formed and showing activations in meaningful areas
in all three datasets as shown in Fig. 5(b). Similar to the common
components in DS-ICA, components estimated in MCCA-ICA are
showing activations in motor, sensory-motor and DMN regions for AOD,
visual region for SIRP and sensory-motor and auditory regions for SM.
However, because of the maximization of correlation of the datasets and
joint analyses of all the components at the same time, MCCA-JICA loses
the individual variations available in the data and estimates components
showing activations in similar areas across all datasets. This also affects
the p-values of the estimated components. Compared with the DS-ICA,
where common and distinct components are estimated separately, p-
values are much higher in MCCA-JICA for estimated components that are
showing activation in similar areas, i.e., visual in SIRP or motor in AOD.

Fig. 6 shows a comparison of three fusion methods with respect to the
estimated DMN components. Given the importance of the DMN as an
important putative biomarker for schizophrenia (Ongiir et al., 2010;
Whitfield-Gabrieli et al., 2009; Hu et al., 2017), its robust estimation in
all three datasets with more focal areas and higher group differences
increases our confidence in the proposed method. On the other hand,
most of the DMN components in jICA and MCCA-JICA are split into two
components and do not show significant group difference. This example
further shows the advantage of fully leveraging the statistical power of

MCCA-jICA
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the data in the analysis using DS-ICA.

4.4. Classification procedure and results

We use the classification rate to evaluate the relative performance of
different methods for different combination of datasets in a similar way
given in Levin-Schwartz et al. (2017). Since there is no ground truth for
the underlying sources or profiles, using classification rate provides a
natural way to compare the efficiency of each method to discriminate
between healthy controls and patients. Note that our goal here is not to
obtain a perfect classification rate, but instead to show performance
advantage of fusion techniques over individual analysis for multitask
fMRI data in the way they make use of joint information. Since all three
methods we discuss here are based on ICA, we discuss the classification
procedure for ICA first, and later extend it to multidataset fusion tech-
niques. Considering X, € RM*Tx k =1,2,...,K from (1), where K is the
number of datasets and mth row of the each dataset is formed by
extracting one multivariate feature from the mth subject. We randomly
select 70% of subjects’ data to train and the rest 30% of the data to test
the network. We keep a similar proportion of healthy controls and pa-
tients in all X, Xirain, and Xest datasets. Next, we reduce the Xirain dataset
dimension using PCA into an order specified in the previous section. We
perform ICA-EBM on the reduced dimensional train datasets and
perform a two sample t-test on each column of the estimated profile
matrix to identify the profiles that shows significant group difference
(p < 0.05). These profiles and their corresponding spatial maps are then

formed into Kmin and §Lmin respectively. We estimate R[cs[ by regressing

Fig. 6. Estimated DMN components by all three methods. Note that DMN components are more focal and show higher group difference in DS-ICA compared with the
other two methods. In jICA and MCCA-jICA, most of the DMN components split into two components.
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§mm onto )A(tesl to test the classifier. We train a radial basis kernel support
vector machine (KSVM) (Cortes and Vapnik, 1995) using the columns of

Km,in. The value of kernel parameters is selected by computing the
average classification rate of 500 independent Monte-Carlo sub-
samplings of the data for different values and choosing the ones with the
highest average classification rate. We perform a grid search of (C, y)
values from 1072 to 10% and ended up selecting (1, 10). After finalizing
the parameters, we perform the classification procedure on 300 inde-
pendent Monte-Carlo samplings and report the average classification
rate. A flow chart of the process is given in Fig. 7.

The process is similar for both jICA and MCCA-jICA, except the data
matrix X is formed differently for these two, as described in the back-
ground section. For DS-ICA, computing the common and distinct com-
ponents are done separately. We compute the group significant profiles

separately and then concatenate them vertically to form Almin. The
associated brain spatial maps are concatenated horizontally to form

Suain. The rest of the process is similar to ICA. Note that the value of
kernel parameter is selected for each method individually.

Fig. 8 shows the classification performance for each task dataset as
well as their combinations. Fig. 8(a) shows the comparative results of
different methods, while Fig. 8(b) compares the performance of the
estimated common and distinct components in DS-ICA. There are many
important messages to take away from Fig. 8. First, when analyzed
separately, AOD obtains the highest classification score among the three
task datasets. This indicates that AOD dataset carries information with
more discriminatory power than the other two datasets.

Second, from Fig. 8(a), classification rate improves as we move from
single dataset to multidataset analyses. This is due to the fact that there
is more discriminative power available in multi dataset combinations
than any individual dataset. For example, when analyzing separately,
the SM dataset results in the lowest classification performance, but
combining SM with other two datasets, particularly with AOD, signifi-
cantly improves the classification rate.

Third, among the three fusion techniques we consider in this study,
DS-ICA provides better classification performance than the other two
techniques. From Fig. 8(a), with DS-ICA being the most flexible method,
it makes the best use of available information and achieves higher
classification rate compared with jICA and MCCA-JICA for all possible
dataset combinations. MCCA-jICA achieves better classification rate
than jICA in almost all the scenarios except SIRP+SM, where jICA out-
performs MCCA-jICA.

Finally, if the tasks are comparable with each other and the datasets

share more common information, all three techniques show
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improvement in classification performance, which supports the advan-
tage of multi dataset analysis. For example, combination of AOD and SM
results in higher classification score than other combinations for all
three techniques, whereas classification performance drops for
SIRP+SM combination, especially for MCCA-jICA which prioritizes
common information over distinct information.

Results shown in Fig. 8(b), which compares the performance of
estimated common and distinct components in DS-ICA, also agree with
this conclusion. Common components in DS-ICA lead to higher classi-
fication rates than distinct components in almost all dataset combina-
tions except SIRP-+SM, whereas distinct components yield better
classification performance. This indicates that SIRP and SM datasets are
more distinct in nature and when analyzed jointly provide less common
information than other combinations. The similar classification perfor-
mance of MCCA-jICA and jICA with common components in DS-ICA
indicates the fact that both methods only take the common informa-
tion in the datasets into account. DS-ICA, on the other hand, takes
advantage of both common and distinct information and provides better
classification performance than the other two methods, especially for
the SIRP+SM combination where distinct information dominates.

5. Discussion

Multiple datasets collected for study of a given problem using
different experimental conditions or modalities are expected to contain
features that are common across datasets as well as features that are
unique to each individual dataset. While fusing these connected data-
sets, traditional ICA-based methods typically emphasize the common or
the shared information, disregarding the individual information avail-
able in the datasets. In this paper, we propose a new fusion method, DS-
ICA, that can take advantage of not only of the common but also the
distinct information available in the datasets. In addition, separating the
common and the distinct subspaces prior to analysis allows a better
model match to methods such as jICA, and also helps to reduce the
dimensionality of the problem, allowing for more efficient estimation
compared with methods like IVA. We show the performance advantages
of DS-ICA over other ICA-based methods in simulations as well as in real
multitask fMRI data collected from both healthy controls and patients
with schizophrenia. Even though the focus of the current work is on the
fusion of multitask fMRI data, DS-ICA model can be also used for the
fusion of multimodal data, where datasets come from different modal-
ities and hence are different in nature. Mathematical formulation of DS-
ICA addressing multimodal data is given in Section 3.2.

Since DS-ICA separately estimates the common and distinct
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Fig. 8. Average classification results using KSVM for individual datasets and their combinations using data fusion techniques. Fig. 8(a) compares the performance of
JICA, MCCA-jJICA and DS-ICA, while Fig. 8(b) compares the performance of DS-ICA using common and distinct components. Note that DS-ICA provides better
classification performance compared with other two methods for different dataset combinations.

components and performs joint analysis only on the common subspace,
it reduces the number of parameters to be estimated in the fusion
analysis. Compared with jICA and MCCA-ICA, which estimate an N x N
mixing matrix common to all, DS-ICA estimates a C x C mixing matrix
where C < N. This reduced size single mixing matrix also helps DS-ICA
with the interpretability of the estimated components, i.e., attaching
physical meaning to the output results as common components. In a fusion
scenario, where subjects’ data come from different experimental con-
ditions or modalities, it is the variation across the subjects that connects
the feature datasets across modalities (Adali et al., 2018). Therefore,
estimating a single mixing matrix only for the common components
indicates that the subjects share a similar response to these components
across the datasets. However, additional steps of order selection and
subspace identification does make the DS-ICA computationally more
expensive than both jICA and MCCA-jICA. DS-ICA uses IVA-G, which
takes the SOS of the data into account, to identify and estimate the
common and the distinct subspaces. It is important to note here that IVA,
alone, can be also used to estimate the common and the distinct inde-
pendent components. This is achievable by post processing the covari-
ance matrices of the estimated SCVs (Long et al., 2020). However, IVA
algorithms, especially the ones that use the higher or all order statistics
(AOS), are computationally expensive and the number of parameters to
be estimated increases proportionally with the number of datasets
(Bhinge et al., 2019). For K datasets each with N sources, IVA jointly
estimates K number of N x N mixing matrices, a much greater number
compared with the methods that use jICA for fusion where a single
mixing matrix is estimated. Individual mixing matrices also make the
IVA components harder to interpret, as there is no guarantee that
components will share similar subject responses across the datasets.

While estimating the common subspace, it is possible to have sources
that are correlated across all datasets as well as sources that are corre-
lated in subsets of datasets. Depending on the common order used in the
analysis, DS-ICA can identify partially correlated subspaces as well.
However, it is important to note that identifying the complete correla-
tion structure is a very difficult problem and the complexity level of the
problem increases rapidly as the number of dataset increases. In this
work, we only consider the subspace common to all to keep the problem
simple. Here, we introduce DS-ICA as a general framework, and by
extending the work to identify complete correlation structure such that
multiple jICA can be performed in multiple common subsets is a useful
and important future work.
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