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ABSTRACT

Background: Dynamic functional network connectivity (dFNC) summarizes associations among time-varying
brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC
using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to
investigate spatial variability and the interaction between temporal and spatial variability.

New method: We propose to use an adaptive variant of constrained independent vector analysis to simultaneously
capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in
dFNC analysis—determining the number of transient states. We apply our methods to resting-state functional
magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs).

Results: The results show spatial variability provides more features discriminative between groups than temporal
variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial
states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in
SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights
dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involve-
ment in HCs, suggesting a more efficient cognitive control system relative to SZs.

Comparison with existing methods: Spatial variability is more informative than temporal variability. The proposed
goal-driven scheme determines the optimal number of states in a more interpretable way by making use of
discriminative features.

Conclusion: GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC
and reveals unique biomedical patterns in SZs.

1. Introduction

stimulus-evoked cognitive processing. Data-driven blind source sepa-
ration techniques are widely used in fMRI analysis by assuming the

There is evidence that shows that the intrinsic functional patterns in
the human brain change over time. These time-var-
ying—dynamic—patterns can be studied using resting-state functional
magnetic resonance imaging (fMRI) data (Chang and Glover, 2010;
Hutchison et al., 2013a, b; He et al., 2018; Chen, 2019). Resting-state
fMRI captures the blood-oxygenation-level-dependent (BOLD)
response of neurons in the brain in the absence of external input or
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observed data is a linear mixture of latent factors. A decomposition of
resting-state fMRI data extracts resting-state networks (RSNs) that
consists of cortical and subcortical areas with synchronized BOLD ac-
tivities. Dynamic functional network connectivity (dFNC) or dynamic
functional connectivity (dFC) that summarizes the association among
BOLD activation patterns of RSNs or regions of interest (ROIs) has been a
widely used feature for the study of brain dynamics (Jafri et al., 2008;
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Wang et al., 2010; Calhoun et al., 2014; Kucyi and Davis, 2014; Park
et al., 2018; Lee and Kim, 2019; Weber et al., 2020). Unique dFNC
patterns are identified in many studies to gain a better understanding of
mental disorders such as schizophrenia (SZ) either when compared with
a healthy control (HC) group or in a longitudinal study (Weber et al.,
2020; Rashid et al., 2014; Lefebvre et al., 2016).

In most previous dynamic studies that conduct a dFNC or dFC
analysis, RSNs or ROIs are assumed to vary in their temporal coupling
while staying constant spatially. DFNC is computed using association
among the temporal variation patterns—time courses—of RSNs, which
we refer to as tdFNC in this work. Spatial dynamics are increasingly
being emphasized since they enrich the dynamic study of brain function
(Iraji et al., 2019a, b; Iraji et al., 2020). Previous studies illustrate that
taking both temporal and spatial variability into consideration yields
more discriminative RSNs across subject groups (Jie et al., 2018; Kot-
taram et al., 2018). Studies that compute dFNC using spatial maps
(sdFNC) of brain networks have emphasized the importance of spatial
variability in a dynamic study. The analysis of sdFNC detects significant
differences between the patients with a mental disorder such as between
those with SZ and the HCs (Ma et al., 2014; Bhinge et al., 2019, 2020a).
Therefore, it is desirable to accurately capture the spatial variability of
RSNs in order to quantify and make use of the spatial variability as well
as for studying the interaction between the temporal and spatial vari-
ability in dynamic studies.

Identifying discrete transient states of dFNC is a common strategy
when studying the dynamic evolution of the brain function (Ma et al.,
2014; Zhang et al., 2018). In each transient state, the dFNCs demon-
strate unique characteristics compared with the others, indicating that
unique connectivity patterns exist in these dFNCs. The determination of
the number of states is an essential step, and is usually selected by using
the lowest error/cost associated with the clustering methods that are
used to identify the states. We propose to determine the number of states
in a more interpretable way through a goal-driven scheme. In the study
of brain function of patients with mental disorders, a key point is to find
biomedical patterns that are unique for the patients when compared
with a HC group. The use of a goal-driven scheme can thus help identify
a scenario where a specific number of states with different discrimina-
tive features across groups are identified.

Graph-theoretical (GT) analysis has been widely used in the study of
dFNC as they provide a simple and useful quantification of brain dy-
namics (Lee et al., 2017; Zhi et al., 2018). There are a variety of GT
metrics defined to characterize FNC (Bullmore and Sporns, 2009; Tele-
sford et al., 2020) and metrics that demonstrate significant group dif-
ferences are of special interest. In this work, we investigate the
effectiveness of GT analysis in identifying discriminative dynamic
biomedical patterns that enable a unique characterization of dFNC
states. We also demonstrate that a comprehensive study of the GT
metrics in a goal-driven manner is a useful and effective approach for
determining the number of states.

To ensure a successful GT analysis that yields discriminative GT
metrics between groups, it is important to extract RSNs that preserve as
much individual subject variability as possible. Independent vector
analysis (IVA) is a data-driven technique that extends independent
component analysis (ICA) to multiple datasets (Kim et al., 2006; Adali
et al., 2014). IVA has been shown to effectively capture the variability
across the datasets compared with group ICA (Dea et al., 2011; Ma et al.,
2013; Laney et al., 2014; Michael et al., 2014) and hence has been
attractive for studying brain dynamics, especially when capturing both
spatial and temporal variability (Ma et al., 2014; Bhinge et al., 2019,
2020a). However, IVA suffers from the dimensionality issue as the
number of datasets and components increase beyond a certain range
with a fixed number of samples in each observation (Bhinge et al., 2019;
Long et al., 2020). A recent method, adaptively constrained IVA (acIVA),
makes use of reference signals such as the spatial maps of RSNs to guide
the decomposition. AcIVA inherits the property of IVA in capturing
subject variabilities of RSNs in both temporal and spatial domains
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through an effective adaptively constraint parameter-tuning process.
The use of reference signals guarantees a reliable decomposition and
reduces the effect of high dimension issue to a certain extent Bhinge
et al. (2020b). Moreover, acIVA enables the dynamic study of a set of
target components such as those that are common across SZs and HCs,
leading to a fair comparison of brain dynamics between the two groups.

Therefore, in this work, we propose the use of acIVA to effectively
capture both the temporal and spatial variabilities of functional net-
works to enable a study of brain dynamics using resting-state f{MRI data
collected from SZs and HCs. We compute tdFNC and sdFNC by
measuring correlation across the time courses and higher-order depen-
dence across the spatial maps of the extracted RSNs separately and
identify transient states by clustering tdFNC or sdFNC matrices. For each
dFNC, different GT metrics, efficiency, characteristic path length, clus-
tering coefficient, centrality, and small-worldness are calculated. Each
state is characterized by summarizing the graph-level global GT metrics
that show significant group differences. The results show that more GT
metrics that are discriminative between groups are obtained when using
sdFNC compared with using tdFNC, indicating that the spatial vari-
ability is highly informative for dynamic study. A comprehensive study
of global GT metrics yields a scenario where all six identified sdFNC
states are uniquely characterized. A following analysis of nodal metrics
in this scenario demonstrate that the centrality is a key GT metric in this
application. Four brain network components yield significantly different
levels of involvement in SZ and HC groups regarding GT analysis results.
The high involvement of a component that relates to multiple distrib-
uted brain regions—superior parietal, visual, and cerebellum—in SZs
compared with HCs, points to dysconnectivity in the patients. Another
component that relates to the supplementary motor area also yields
higher involvement in SZs. We find that the HCs potentially possess a
more efficient cognitive control system due to the high involvement of a
frontoparietal component and a frontal component.

The rest of the paper is organized as follows. Section 2 introduces the
details of acIVA algorithm and GT analysis. Section 3 gives the imple-
mentation details including data acquisition, preprocessing and forma-
tion, and reference signals extraction. Section 4 shows the results of
dynamic study of resting-state fMRI data using acIVA and GT analysis.
Section 5 summarizes the work and points out future directions.

2. Methods
2.1. Adaptively constrained IVA

ICA is a data-driven blind source separation technique that is
designed for a single dataset with the assumption that the observed data
is a linear mixture of latent (statistically) independent sources (Adali
et al., 2014; Hyvarinen et al., 2001). It has proven powerful in recov-
ering the independent brain networks from fMRI data (Adali et al., 2014;
Calhoun et al., 2001; Li et al., 2009). However, the observed fMRI data
typically consists of multiple datasets that are collected from multiple
subjects. It is important to enable an analysis of multiset data to leverage
its rich information, especially across multiple datasets. IVA extends ICA
to the joint analysis of multiple datasets by additionally taking into
account the dependence across datasets and has shown powerful in
preserving subject variability (Ma et al., 2014; Bhinge et al., 2019,
2020a; Laney et al., 2014). Therefore, it is a desirable choice for the
analysis of multi-subject fMRI data.

Given K datasets each containing V samples, IVA assumes that each
dataset is a linear mixture of N independent sources,

M)y =AFsHG) 1<k<K, 1<v<V, @

where XM = [x¥(1), x¥(2), ..., x*(V)] € R"™V denotes the observed
dataset, SK = [sM(1), sk (2), -, sk(V)] € RV denotes the set of in-
dependent sources, and AK € R¥*N denotes the invertible mixing ma-
trix. In addition to the assumption of independence among sources
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within a dataset, IVA makes effective use of dependence across multiple
datasets by defining a source component vector (SCV) as sp(v) =

T
[s,[}] ), s2W), -, sl | €eR¥1 1<n<N, by collecting corre-
sponding components, where s¥ € RV is the n th source from the k th
dataset. IVA finds K demixing matrices by minimizing the mutual in-
formation among the SCVs, which results in the following cost function

n=1 k=1
N K N T

=3 )= Y0 D o (0F) W | @
n=1 k=1 n=1

such that the estimated sources of each dataset are obtained as y* (v) =
WK (v) fork =1,...,K, where 7" = {WII Wi ... WK1} denotes the
demixing matrices, y, denotes the estimated SCV, /7 (-) denotes the
(differential) entropy, and h¥ is a unit vector that is perpendicular to all

rows of WK except wl due to the decoupling process (Li and Zhang,
2007; Bhinge et al., 2017). Note the term that is associated with the
observed data X is a constant with respect to W, and hence it can be
ignored.

The acIVA algorithm guides the decomposition with prior informa-
tion such as properly selected reference signals for the source compo-
nents. The IVA decomposition is hence achieved by minimizing the cost

function in (2) subject to an inequality constraint g(yg‘]7 dy) =
«.T
Pn— ‘(YL]) dn
provides the lower bound for the similarity between the estimate yg‘] and
the reference signal d, that is measured using Pearson correlation. The

cost function of acIVA is defined by incorporating the tinequality
constraint in the IVA cost function, yielding

<0, where 0 < p, <1 is the constraint parameter that

M 1 K
SV =F () =Yg > { [max{0.uf) +7,8(v% ) } ]
m=1 m k=1

), ®

where_7 ( 77") is the IVA cost function as defined in (2), M (0 < M < N) is
the number of source estimates to be constrained, ;4,’:] is the regulari-
zation parameter, and y,, > O is the penalty parameter (Bhinge et al.,
2019). Through an adaptive parameter-tuning process, acIVA yields
different values of the lower bound p for the similarity, which allows the
estimate to vary across datasets. Consequently, acIVA is able to

Sensorimotor
(IC2)

Medial visual
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effectively capture the variability across datasets. The use of reference
signals effectively reduces the effect of high dimensionality in IVA,
enabling a more robust estimation. Additionally, it eliminates the
alignment problem across multiple decompositions.

2.2. GT analysis

We compute dFNC for each subject by measuring the associations
across the components of interest—the constrained estimates in acl-
VA—and conduct a GT analysis on dFNC matrices. Each dFNC matrix is a
graph, G, with the components used as nodes and the associa-
tion—either correlation or mutual information—among them as edges.
Beginning with G, we arrange its edges from the smallest to the largest
and find an edge threshold, e;, in order to retain P percent of the edges
that satisfy e < e;, generating a new graph G. We define the percentage
of edges that remain after thresholding as the link density, which in-
creases as the threshold decreases. All GT metrics are computed for the
weighted graphs. In order to avoid very sparse graphs with small link
densities and those with too high link densities, we limit the link density
to range from 20 % to 70 %.

GT metrics highlight different topological characteristics of graphs,
see e.g., (Bullmore and Sporns, 2009; Boccaletti et al., 2006; Bullmore
and Bassett, 2011). The characteristic path length, global efficiency and
centrality are measures that can quantify the ability of a node to facil-
itate functional integration in graphs (Rubinov and Sporns, 2010). These
nodal GT metrics are globally computed as all the nodes are taken into
consideration in their calculation, and provide measures of how infor-
mation is transferred in the functional network. Local efficiency and
clustering coefficient are two local nodal GT metrics that are computed
by taking only the neighbors of a node into consideration. The local
efficiency measures the efficiency of information transfer within the
neighborhood of each node. The clustering coefficient captures the
segregation of networks by measuring the transfer of information in the
immediate neighborhood of each node. The corresponding graph-level
global GT metric is computed by averaging the values of each nodal
GT metric across all the nodes in a graph. Another graph-level global GT
metric, small-worldness of the network, is calculated to measure the
degree of small-world organization in the overall functional network.
The formulas of these metrics are described in detail in (Rubinov and
Sporns, 2010; Bonacich, 1987, 2007).

3. Implementation

The implementations are performed using Matlab code provided in
the Group ICA of fMRI Toolbox (GIFT) (http://trendscenter.org/soft

Cerebellum
(IC3)

Fig. 1. Spatial maps of the eight common components of HC and SZ groups. SP-V-C: super parietal-visual-cerebellum, F-P: frontoparietal, SMA: supplementary

motor area.
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Fig. 2. Dynamic study using acIVA with windowing strategy.

ware/gift) that also has a number of IVA algorithms included, and the
Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).

3.1. Data acquisition and preprocessing

We use a resting state fMRI data from the Center of Biomedical
Research Excellence (COBRE) that is available on the collaborative
informatics and neuroimaging suite data exchange repository (htt
ps://coins.trendscenter.org/) (Scott et al., 2011; Cetin et al., 2014).
The data includes 88 SZs (average age: 37 + 14) and 91 HCs (average
age: 38 + 12). All images were collected on a single 3-Tesla Siemens Trio
scanner with a 12-channel radio frequency coil using the following pa-
rameters: TE =29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5
mm, slice gap = 1.05 mm, voxel size 3.75 x 3.75 x 4.55 mm?. Partici-
pants were instructed to keep their eyes open during the scan and stare
passively at a central fixation cross. Each resting state scan consists of
150 volumes. To eliminate the T1-related signal fluctuations (T1 effect)
(Shin et al., 2013), the first 6 volumes are removed in this study, thus
144 volumes remain for each subject. The fMRI data are realigned with
INRIalign algorithm (Freire et al., 2002) for head motion correction,
followed by slice-timing correction to account for timing difference by
using the middle slice as the reference frame. Then the fMRI data are
spatially normalized to the standard Montreal Neurologic Institute space
and resampled to 3 x 3 x 3 mm?, resulting in 53 x 63 x 46 voxels. Af-
terwards, the fMRI data are smoothed using a Gaussian kernel with a
full-width at half-maximum of 5 mm.

3.2. Reference signal extraction

We use exemplar RSN components as the reference signals within the
acIVA framework. Potential choices include the pre-defined RSN tem-
plates (Allen et al. (2011)) and the group-level RSN components that are
extracted from the same dataset using group decomposition algorithms
such as group ICA (Bhinge et al., 2020a). The data we use in this work is
the resting-state fMRI collected from subjects with SZ and a HC group. In
order to conduct a fair comparison between the SZ and HC groups, we
extract the common RSN components that are shared across the two
groups as the reference signals. We make use of a recent common sub-
space extraction framework, IVA for common subspace analysis
(IVA-CS) (Long et al. (2020)), to estimate the independent components
(IC), yielding M = 8 common RSNs as shown in Fig. 1. The eight com-
mon RSNs include the medial visual (IC1), the sensorimotor (IC2), the
cerebellum (IC3), the DMN (IC4), a component that includes multiple
distributed brain regions—the super parietal, visual, and cerebellum
cortex—(SP-V-C, IC5), the frontoparietal (F-P, IC6), the supplementary
motor area (SMA, IC7), and the frontal (IC8) components. The spatial
maps of the eight RSNs are used as reference signals in acIVA

decompositions. All the spatial maps are normalized to have zero mean
and unit variance.

3.3. Dynamic study using acIVA

FMRI data is obtained by scanning the brain within a certain dura-
tion of multiple minutes. The sliding window approach is widely used to
facilitate a dynamic study of fMRI data by dividing the scanning period
into overlapping windows (Hutchison et al., 2013b; Ma et al., 2014;
Savva et al., 2020). The data in each window forms an individual new
dataset. We use a sliding window of length Ty, = 24 (48 s) with a 66.67
% overlap as shown in Fig. 2, yielding L = 16 datasets for each of the 179
subjects. The dynamics can be described using FNC information across
the 16 windows. The total number of datasets to be analyzed for the
extraction of functional networks is L x 179 = 2864. We propose the use
of acIVA to capture the dynamics by effectively analyzing a relatively
large number of datasets. Since acIVA mitigates the dimensionality issue
and eliminates the alignment problem across multiple decompositions,
we divide the 2864 datasets into 45 subsets of 64 datasets (Ko = 4
subjects), a value that is higher than the optimal value of the number of
datasets that allows a reliable regular IVA decomposition (Long et al.,
2020), and perform acIVA on each subset. Note that the last subset of HC
group only has three subjects hence 48 datasets.

The model order—the number of source components—in each acIVA
decomposition is set as 20 and the dimension of each dataset is reduced
from 24 to 20 using principal component analysis. We select 20, a value
that is slightly lower than the original dimension of each dataset as the
model order in order to reduce the influence of noise while retaining a
significant level of signal variability. Eight of the estimates are con-
strained by the spatial maps of the common exemplar RSNs. We set the
penalty parameter y,, = 3 for all constrained components and initialize

the regularization parameter ,ugi] = 0. During the decomposition, we

update the regularization parameter using ;Aﬁ] = max{O7 ﬂﬁ] + ymg(yﬁ]

dm) } and tune the value of p,, from a candidate set . for each of the

constrained components (Bhinge et al., 2019). In our implementation,
we chose the set as .#»={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and one can choose to be even more conservative and can include cor-
relation values in smaller steps, e.g., steps of 0.05. The tdFNC is
computed as the correlation among the time courses and the sdFNC is
computed as the normalized mutual information among the spatial
maps. For each type of dFNC, a k-means clustering is performed to
identify the transient states with different values as the number of states,
N, =3,4,5,6,7,8,9,10,11,12, to enable an extensive investigation of
the influence of Nj.
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Fig. 3. Ratio of the number of dFNC matrices in each state for SZ and HC groups as the value of Ny changes when using sdFNC (a) and tdFNC (b). The number of
states with different ratios between the two groups is summarized in (c). The results of the knee point detection for states with different ratios between the two groups

are shown in (d) for sdFNC and (e) for tdFNC.

3.4. A goal-driven scheme for the determination of N;

By applying acIVA to the dynamic study of the resting-state COBRE
fMRI data collected from SZ subjects and HCs, our goal is to identify
dynamic biomedical patterns with significant group difference.
Analyzing these discriminative dynamic patterns helps us understand
functional differences in the brain between groups, enabling a better
interpretation of SZ. We perform a GT analysis on the dFNC matrices and
calculate different GT metrics by changing the link density in each dFNC
as described in Section 2.2. A two-sample t -test is performed on each GT
metric between the SZs and HCs in each state in order to determine
whether the metric yields values that are significantly different between
the two groups. The detected significance is reported with the false
discovery rate (FDR) control. Along with the goal of identifying
discriminative biomedical features, we propose the use of a goal-driven
scheme to investigate the influence of N;. This comprehensive study of
GT metrics identifies metrics that are discriminative between groups and
notifies how the discriminative metrics change across states. It would be
desirable if in the scenario of the optimal Nj, all the identified states
yield discriminative GT metrics that are different in terms of the number
and types of metrics.

4. Results
4.1. Transient states

We give an overview of the properties of identified transient states in
Fig. 3 and show that all states contain dFNCs that are from both the HC
and SZ groups. In each state, we calculate the ratio of sdFNC/tdFNC
matrices for the SZ and HC groups separately and summarize them in
Fig. 3(a) and (b). We compare the ratio of sdFNC/tdFNC between the
two groups and show the difference in Fig. 3(d) and (e). We then find the
knee point for the ratio differences by using an elbow criterion that is
calculated as the ratio of within-cluster distance to between-cluster
distance (Zhang et al., 2018; Vergara et al., 2020). The points before
the knee point have large ratio differences, indicating that the number of
sdFNC/tdFNC matrices are obviously different between SZ and HC
groups in corresponding states. In Fig. 3(c), we show the number of
states with a large ratio difference. When using tdFNC, the number of
states with a large ratio difference is the largest (7) when Ny = 11. While
when using sdFNC, the number of states with a large ratio difference is
bounded between 2 and 4. The results indicate that the identified states
using sdFNC are more balanced between SZ and HC groups regarding
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Fig. 4. Summary of the statistical test results of global GT metrics in five cases for sdFNC. Overlapping plots for Ny = 7, 8, 9 means more than one states have the
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Fig. 5. Summary of the statistical test results of nodal GT metrics for states 5 and 6 when Ny = 6. In each plot, the boxplot on the top summarizes the p -values with
FDR control, the barplot gives the number of graphs with different link density that have a significant p -value, and the triangular over a bar means the test results
show the GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-1: local efficiency, PL: path length, CC: clustering coefficient, BCt:

betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality.

the number of dFNC matrices.

4.2. GT analysis

In this work, the statistical tests illustrate that the number of
discriminative GT metrics that demonstrate significant differences be-
tween the HC and SZ groups is much less for tdFNC compared with
sdFNC. The type of discriminative GT metrics is humdrum and the
clustering coefficient and small-worldness always demonstrate signifi-
cant differences for tdFNC. Therefore, whatever the value of N; is, most
of the states have the same characteristics in terms of discriminative
global GT metrics as we demonstrate in Figs. S1 and S2 in the supple-
mentary material. In contrast, sdFNC yields more discriminative GT
metrics and the number and type of these discriminative metrics vary
across states as shown in Fig. 4, making it possible to uniquely charac-
terize the states by using these discriminative metrics. Moreover, this
suggests that the highly informative spatial variability provides more
chances to identify unique biomedical patterns of the subjects with SZ in
this study. We also study the relationship between the two types of
measure for sdFNC—the correlation and the mutual information val-
ues—and find that they are coherent. We believe that both are good
choices, but choose to use mutual information that captures the higher-
order statistical information for sdFNC to make a better use of the high
number of samples in the spatial domain. Next, we introduce the
quantitative study of sdFNC using GT analysis and determine the value
of N; for sdFNC.

We summarize the two-sample ¢ -test results of the global GT metrics
in Fig. 4 for sdFNC. There are ten cases with different values of N; € {3,
4,5,6,7, 8,9, 10, 11, 12} and we show five cases, Ny =5, 6, 7, 8,
9, as examples. In each plot, the boxplot on the top summarizes the

significant p -values with FDR control, the barplot gives the number of
graphs with different levels of link density that yield discriminative GT
metrics, and the triangular over a bar means the GT metric has higher
values in SZs (red) or HCs (blue). If there is no triangular over a bar, it
means among the graphs some have higher metric values in the SZ group
while the others have higher metric values in the HC group. The red dot
in the upper right corner indicates the number of sdFNC matrices are not
balanced in SZ and HC groups in a state. There are three states, as
labeled in magenta, red, and green rectangular separately, that are
robustly estimated. When N; < 5, there are missing states compared
with the cases where N5 > 6. The cases with Ny > 7 yield multiple states
that are not discriminative through the characterization using a sum-
mary of global GT metrics, as we show in Fig. 4 using the overlapping
figures with a green box for cases of Ny = 7, 8, 9. Therefore, Ny = 6 is
the optimal case where all six states are unique. The results illustrate
that the comprehensive study of the global GT metrics effectively de-
termines of the optimal number of states N;. We also use the elbow
approach to estimate the optimal value of N;. The mean value and
standard deviation of 100 runs are 6.02 4+ 0.94, coinciding with the
value suggested by studying the GT metrics. However, the study of GT
metrics determines the optimal value of N in a more interpretable way
by looking into the discriminative GT features that help us compare
between groups.

We also investigate the nodal GT metrics in the case of Ny = 6 in
order to find interesting individual RSNs. We show two states, states 5
and 6, in Fig. 5 where all eight components have at least one discrimi-
native GT metric. In state 5, only the multi-region component (IC5) and
the supplementary motor component (IC7) that consists of superior and
middle frontal cortex yield higher values of centrality in SZ, while the
other six components yield higher values of centrality in HC. This high
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Fig. 6. Summary of the statistical test results of nodal GT metrics for the complex component (IC5) and the supplementary motor area component (IC7) when N; =
6. In each plot, the boxplot on the top summarizes the p -values with FDR control, the barplot gives the number of graphs with different link density that have a
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centrality of IC5 infers that the SZ subjects tend to have more brain
regions involved for a certain intrinsic brain function, illustrating the
dysconnectivity in the brain of SZ. In state 6, the frontoparietal
component IC6 and frontal component IC8 yield higher values of cen-
trality in HC compared with SZ, potentially suggesting a more efficient
cognitive control system in the brain of HCs.

The two components IC5 and IC7 even yield discriminative GT
metrics in all six states, as shown in Fig. 6. Except for the closeness
centrality in state 2 for IC5, the values of all the other GT metrics are
higher in SZ group than in HC group, indicating the increased involve-
ment of the two components in the brain function of SZs. The increased
involvement of the multi-region component IC5 once more suggests
dysconnectivity in SZ brain function. The other component IC7 that
consists of superior and middle frontal cortex has been reported in many
studies to have different levels of activation in SZ compared with HC. In
Fig. 7, we show the GT metrics for the other two interesting components,
IC6, the frontoparietal component, and IC8, the frontal component, that
yield discriminative GT metrics in five and four states separately. All the
values of centrality are higher in HCs in these states. The high
involvement of IC6 and IC8 again supports the conclusion that HCs and
SZs demonstrate differences in their cognitive control system.

From the analysis of nodal GT metrics, we note that the most inter-
esting GT metric is the centrality. An analysis of centrality yields dif-
ferences among individual components in terms of their role on the

brain function. Four interesting RSN components that yield interpret-
able GT analysis results include the multi-region component IC5, the
supplementary motor component IC7, the frontoparietal component IC6
and the frontal component IC8. A study of these four components helps
get a better understanding of the differences between the brain function
of SZs and HCs, i.e., the dysconnectivity in the brain of SZs and an
efficient cognitive control system for HCs.

5. Conclusion and future directions

In this work, we propose the use of acIVA to capture both temporal
and spatial variation of brain functional networks to enable a thorough
study of brain dynamics. We emphasize the importance of taking spatial
variability into consideration in the dynamic study of fMRI data by
conducting a GT analysis on tdFNC and sdFNC. The results show that the
rich dynamic information in the spatial domain yields more features that
are potentially unique biomedical patterns of subjects with SZ. In order
to identify transient states to learn the dynamic evolution of brain
function, we propose the use of a goal-driven scheme—the systematic
study of GT metrics in this work—to determine the optimal value for the
number of states N;. The results illustrate that the proposed scheme
successfully finds a case where the value of N; is optimal in a more
interpretable way compared with using an arbitrary statistical method.
In the case with the optimal Ny = 6, all six states are uniquely charac-
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Fig. 7. Summary of the statistical test results of nodal GT metrics for the frontoparietal component (IC6) and the supplementary motor area component (IC7) when
N; = 6. In each plot, the boxplot on the top summarizes the p -values with FDR control, the barplot gives the number of graphs with different link density that have a
significant p -value, and the triangular over a bar means the test results show the GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-1:
local efficiency, PL: path length, CC: clustering coefficient, BCt: betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality.

terized by the global GT metrics. The study of nodal GT metrics in these
states demonstrates that the centrality is the most interesting metric in
this application. Four interesting components that yield interpretable GT
analysis results include a multi-region component, a supplementary
motor component, a frontoparietal component and a frontal component.
The multi-region component demonstrates increased involvement in the
brain function of SZs compared with HCs, illustrating dysconnectivity
among the SZ brain networks. Frontoparietal and frontal components
yield higher values of centrality in HCs, potentially suggesting a more
efficient cognitive control system in the brain of HCs.

We demonstrate the importance of taking spatial variability into
consideration and propose the use of a goal-driven scheme for the
determination of the number of states in dFNC analysis by applying
acIVA and GT analysis to the resting-state COBRE data. We focused the
analysis on the eight common components. However, one can also
investigate the contribution of components that are unique in either the
HC group or the SZ group to dFNC analysis. We were not able to conduct
a performance comparison with existing algorithms such as group ICA
(Calhoun et al., 2001) and regular IVA due to the unique advantage of
acIVA that it can focus the analysis on a set of target components. The
requirements of low orders and low noise levels in the tensor decom-
position models like canonical polyadic decomposition and block-term
decomposition (Stegeman, 2020; Sorber et al., 2015; Chatzichristos
et al.,, 2019) also limit the applicability of these other factorization
methods for a dynamics study. Though it is not easy to make a com-
parison with the existing methods in real fMRI analysis, we have

conducted a detailed simulation study that helps demonstrate the
effectiveness of acIVA (Bhinge et al., 2019; Long et al., 2020; Bhinge
et al., 2020b). We showed that acIVA is able to tune the closest lower
bound for the association between the reference signals and the con-
strained components without introducing any artificial connection. We
also illustrated that acIVA successfully preserved variabilities of datasets
and reduced the effect of dimensionality issue. Nevertheless, it might be
desirable to extend the work to other fMRI datasets and other neuro-
imaging modalities to gain more evidence. The GT analysis has shown
powerful in FNC study but is also worthy to be investigated more for
dynamic analysis, exploring more possibilities to make use of discrimi-
native GT metrics.
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