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A B S T R A C T   

Background: Dynamic functional network connectivity (dFNC) summarizes associations among time-varying 
brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC 
using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to 
investigate spatial variability and the interaction between temporal and spatial variability. 
New method: We propose to use an adaptive variant of constrained independent vector analysis to simultaneously 
capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in 
dFNC analysis—determining the number of transient states. We apply our methods to resting-state functional 
magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs). 
Results: The results show spatial variability provides more features discriminative between groups than temporal 
variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial 
states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in 
SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights 
dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involve
ment in HCs, suggesting a more efficient cognitive control system relative to SZs. 
Comparison with existing methods: Spatial variability is more informative than temporal variability. The proposed 
goal-driven scheme determines the optimal number of states in a more interpretable way by making use of 
discriminative features. 
Conclusion: GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC 
and reveals unique biomedical patterns in SZs.   

1. Introduction 

There is evidence that shows that the intrinsic functional patterns in 
the human brain change over time. These time-var
ying—dynamic—patterns can be studied using resting-state functional 
magnetic resonance imaging (fMRI) data (Chang and Glover, 2010; 
Hutchison et al., 2013a, b; He et al., 2018; Chen, 2019). Resting-state 
fMRI captures the blood-oxygenation-level-dependent (BOLD) 
response of neurons in the brain in the absence of external input or 

stimulus-evoked cognitive processing. Data-driven blind source sepa
ration techniques are widely used in fMRI analysis by assuming the 
observed data is a linear mixture of latent factors. A decomposition of 
resting-state fMRI data extracts resting-state networks (RSNs) that 
consists of cortical and subcortical areas with synchronized BOLD ac
tivities. Dynamic functional network connectivity (dFNC) or dynamic 
functional connectivity (dFC) that summarizes the association among 
BOLD activation patterns of RSNs or regions of interest (ROIs) has been a 
widely used feature for the study of brain dynamics (Jafri et al., 2008; 
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Wang et al., 2010; Calhoun et al., 2014; Kucyi and Davis, 2014; Park 
et al., 2018; Lee and Kim, 2019; Weber et al., 2020). Unique dFNC 
patterns are identified in many studies to gain a better understanding of 
mental disorders such as schizophrenia (SZ) either when compared with 
a healthy control (HC) group or in a longitudinal study (Weber et al., 
2020; Rashid et al., 2014; Lefebvre et al., 2016). 

In most previous dynamic studies that conduct a dFNC or dFC 
analysis, RSNs or ROIs are assumed to vary in their temporal coupling 
while staying constant spatially. DFNC is computed using association 
among the temporal variation patterns—time courses—of RSNs, which 
we refer to as tdFNC in this work. Spatial dynamics are increasingly 
being emphasized since they enrich the dynamic study of brain function 
(Iraji et al., 2019a, b; Iraji et al., 2020). Previous studies illustrate that 
taking both temporal and spatial variability into consideration yields 
more discriminative RSNs across subject groups (Jie et al., 2018; Kot
taram et al., 2018). Studies that compute dFNC using spatial maps 
(sdFNC) of brain networks have emphasized the importance of spatial 
variability in a dynamic study. The analysis of sdFNC detects significant 
differences between the patients with a mental disorder such as between 
those with SZ and the HCs (Ma et al., 2014; Bhinge et al., 2019, 2020a). 
Therefore, it is desirable to accurately capture the spatial variability of 
RSNs in order to quantify and make use of the spatial variability as well 
as for studying the interaction between the temporal and spatial vari
ability in dynamic studies. 

Identifying discrete transient states of dFNC is a common strategy 
when studying the dynamic evolution of the brain function (Ma et al., 
2014; Zhang et al., 2018). In each transient state, the dFNCs demon
strate unique characteristics compared with the others, indicating that 
unique connectivity patterns exist in these dFNCs. The determination of 
the number of states is an essential step, and is usually selected by using 
the lowest error/cost associated with the clustering methods that are 
used to identify the states. We propose to determine the number of states 
in a more interpretable way through a goal-driven scheme. In the study 
of brain function of patients with mental disorders, a key point is to find 
biomedical patterns that are unique for the patients when compared 
with a HC group. The use of a goal-driven scheme can thus help identify 
a scenario where a specific number of states with different discrimina
tive features across groups are identified. 

Graph-theoretical (GT) analysis has been widely used in the study of 
dFNC as they provide a simple and useful quantification of brain dy
namics (Lee et al., 2017; Zhi et al., 2018). There are a variety of GT 
metrics defined to characterize FNC (Bullmore and Sporns, 2009; Tele
sford et al., 2020) and metrics that demonstrate significant group dif
ferences are of special interest. In this work, we investigate the 
effectiveness of GT analysis in identifying discriminative dynamic 
biomedical patterns that enable a unique characterization of dFNC 
states. We also demonstrate that a comprehensive study of the GT 
metrics in a goal-driven manner is a useful and effective approach for 
determining the number of states. 

To ensure a successful GT analysis that yields discriminative GT 
metrics between groups, it is important to extract RSNs that preserve as 
much individual subject variability as possible. Independent vector 
analysis (IVA) is a data-driven technique that extends independent 
component analysis (ICA) to multiple datasets (Kim et al., 2006; Adalı 
et al., 2014). IVA has been shown to effectively capture the variability 
across the datasets compared with group ICA (Dea et al., 2011; Ma et al., 
2013; Laney et al., 2014; Michael et al., 2014) and hence has been 
attractive for studying brain dynamics, especially when capturing both 
spatial and temporal variability (Ma et al., 2014; Bhinge et al., 2019, 
2020a). However, IVA suffers from the dimensionality issue as the 
number of datasets and components increase beyond a certain range 
with a fixed number of samples in each observation (Bhinge et al., 2019; 
Long et al., 2020). A recent method, adaptively constrained IVA (acIVA), 
makes use of reference signals such as the spatial maps of RSNs to guide 
the decomposition. AcIVA inherits the property of IVA in capturing 
subject variabilities of RSNs in both temporal and spatial domains 

through an effective adaptively constraint parameter-tuning process. 
The use of reference signals guarantees a reliable decomposition and 
reduces the effect of high dimension issue to a certain extent Bhinge 
et al. (2020b). Moreover, acIVA enables the dynamic study of a set of 
target components such as those that are common across SZs and HCs, 
leading to a fair comparison of brain dynamics between the two groups. 

Therefore, in this work, we propose the use of acIVA to effectively 
capture both the temporal and spatial variabilities of functional net
works to enable a study of brain dynamics using resting-state fMRI data 
collected from SZs and HCs. We compute tdFNC and sdFNC by 
measuring correlation across the time courses and higher-order depen
dence across the spatial maps of the extracted RSNs separately and 
identify transient states by clustering tdFNC or sdFNC matrices. For each 
dFNC, different GT metrics, efficiency, characteristic path length, clus
tering coefficient, centrality, and small-worldness are calculated. Each 
state is characterized by summarizing the graph-level global GT metrics 
that show significant group differences. The results show that more GT 
metrics that are discriminative between groups are obtained when using 
sdFNC compared with using tdFNC, indicating that the spatial vari
ability is highly informative for dynamic study. A comprehensive study 
of global GT metrics yields a scenario where all six identified sdFNC 
states are uniquely characterized. A following analysis of nodal metrics 
in this scenario demonstrate that the centrality is a key GT metric in this 
application. Four brain network components yield significantly different 
levels of involvement in SZ and HC groups regarding GT analysis results. 
The high involvement of a component that relates to multiple distrib
uted brain regions—superior parietal, visual, and cerebellum—in SZs 
compared with HCs, points to dysconnectivity in the patients. Another 
component that relates to the supplementary motor area also yields 
higher involvement in SZs. We find that the HCs potentially possess a 
more efficient cognitive control system due to the high involvement of a 
frontoparietal component and a frontal component. 

The rest of the paper is organized as follows. Section 2 introduces the 
details of acIVA algorithm and GT analysis. Section 3 gives the imple
mentation details including data acquisition, preprocessing and forma
tion, and reference signals extraction. Section 4 shows the results of 
dynamic study of resting-state fMRI data using acIVA and GT analysis. 
Section 5 summarizes the work and points out future directions. 

2. Methods 

2.1. Adaptively constrained IVA 

ICA is a data-driven blind source separation technique that is 
designed for a single dataset with the assumption that the observed data 
is a linear mixture of latent (statistically) independent sources (Adalı 
et al., 2014; Hyvärinen et al., 2001). It has proven powerful in recov
ering the independent brain networks from fMRI data (Adalı et al., 2014; 
Calhoun et al., 2001; Li et al., 2009). However, the observed fMRI data 
typically consists of multiple datasets that are collected from multiple 
subjects. It is important to enable an analysis of multiset data to leverage 
its rich information, especially across multiple datasets. IVA extends ICA 
to the joint analysis of multiple datasets by additionally taking into 
account the dependence across datasets and has shown powerful in 
preserving subject variability (Ma et al., 2014; Bhinge et al., 2019, 
2020a; Laney et al., 2014). Therefore, it is a desirable choice for the 
analysis of multi-subject fMRI data. 

Given K datasets each containing V samples, IVA assumes that each 
dataset is a linear mixture of N independent sources, 

x[k](v) = A[k]s[k](v), 1 ≤ k ≤ K, 1 ≤ v ≤ V, (1)  

where X[k] = [x[k](1), x[k](2), ⋯, x[k](V)] ∈ RN×V denotes the observed 
dataset, S[k] =

[
s[k](1), s[k](2), ⋯, s[k](V)

]
∈ RN×V denotes the set of in

dependent sources, and A[k] ∈ RN×N denotes the invertible mixing ma
trix. In addition to the assumption of independence among sources 

Q. Long et al.                                                                                                                                                                                                                                    



Journal of Neuroscience Methods 350 (2021) 109039

3

within a dataset, IVA makes effective use of dependence across multiple 

datasets by defining a source component vector (SCV) as sn(v) =

[
s[1]
n (v), s[2]

n (v), ⋯, s[K]
n (v)

]T
∈ RK×1, 1 ≤ n ≤ N, by collecting corre

sponding components, where s[k]
n ∈ RV×1 is the n th source from the k th 

dataset. IVA finds K demixing matrices by minimizing the mutual in
formation among the SCVs, which results in the following cost function 

J (W ) =
∑N

n=1
H (yn) −

∑K

k=1
log

⃒
⃒detW[k]

⃒
⃒

=
∑N

n=1
H (yn) −

∑K

k=1

∑N

n=1
log

⃒
⃒
⃒
(
h[k]

n

)Tw[k]
n

⃒
⃒
⃒ (2)  

such that the estimated sources of each dataset are obtained as y[k](v) =

W[k]x[k](v) for k = 1,…,K, where W = {W[1], W[2], ⋯, W[K]} denotes the 
demixing matrices, yn denotes the estimated SCV, H (∙) denotes the 
(differential) entropy, and h[k]

n is a unit vector that is perpendicular to all 
rows of W[K] except w[k]

n due to the decoupling process (Li and Zhang, 
2007; Bhinge et al., 2017). Note the term that is associated with the 
observed data X is a constant with respect to W, and hence it can be 
ignored. 

The acIVA algorithm guides the decomposition with prior informa
tion such as properly selected reference signals for the source compo
nents. The IVA decomposition is hence achieved by minimizing the cost 
function in (2) subject to an inequality constraint g(y[k]

n , dn) =

ρn −

⃒
⃒
⃒(y[k]

n )
T
dn

⃒
⃒
⃒ ≤ 0, where 0 ≤ ρn ≤ 1 is the constraint parameter that 

provides the lower bound for the similarity between the estimate y[k]
n and 

the reference signal dn that is measured using Pearson correlation. The 
cost function of acIVA is defined by incorporating the tinequality 
constraint in the IVA cost function, yielding 

J
c
(W ) = J (W ) −

∑M

m=1

1
2γm

∑K

k=1

{[
max

{
0, μ[k]

m + γmg
(
y[k]

m , dm
) } ]2

−
(
μ[k]

m

)2
}

, (3)  

where J (W ) is the IVA cost function as defined in (2), M (0 ≤ M ≤ N) is 
the number of source estimates to be constrained, μ[k]

m is the regulari
zation parameter, and γm > 0 is the penalty parameter (Bhinge et al., 
2019). Through an adaptive parameter-tuning process, acIVA yields 
different values of the lower bound ̂ρ for the similarity, which allows the 
estimate to vary across datasets. Consequently, acIVA is able to 

effectively capture the variability across datasets. The use of reference 
signals effectively reduces the effect of high dimensionality in IVA, 
enabling a more robust estimation. Additionally, it eliminates the 
alignment problem across multiple decompositions. 

2.2. GT analysis 

We compute dFNC for each subject by measuring the associations 
across the components of interest—the constrained estimates in acI
VA—and conduct a GT analysis on dFNC matrices. Each dFNC matrix is a 
graph, G, with the components used as nodes and the associa
tion—either correlation or mutual information—among them as edges. 
Beginning with G, we arrange its edges from the smallest to the largest 
and find an edge threshold, et, in order to retain P percent of the edges 
that satisfy e ≤ et, generating a new graph G’. We define the percentage 
of edges that remain after thresholding as the link density, which in
creases as the threshold decreases. All GT metrics are computed for the 
weighted graphs. In order to avoid very sparse graphs with small link 
densities and those with too high link densities, we limit the link density 
to range from 20 % to 70 %. 

GT metrics highlight different topological characteristics of graphs, 
see e.g., (Bullmore and Sporns, 2009; Boccaletti et al., 2006; Bullmore 
and Bassett, 2011). The characteristic path length, global efficiency and 
centrality are measures that can quantify the ability of a node to facil
itate functional integration in graphs (Rubinov and Sporns, 2010). These 
nodal GT metrics are globally computed as all the nodes are taken into 
consideration in their calculation, and provide measures of how infor
mation is transferred in the functional network. Local efficiency and 
clustering coefficient are two local nodal GT metrics that are computed 
by taking only the neighbors of a node into consideration. The local 
efficiency measures the efficiency of information transfer within the 
neighborhood of each node. The clustering coefficient captures the 
segregation of networks by measuring the transfer of information in the 
immediate neighborhood of each node. The corresponding graph-level 
global GT metric is computed by averaging the values of each nodal 
GT metric across all the nodes in a graph. Another graph-level global GT 
metric, small-worldness of the network, is calculated to measure the 
degree of small-world organization in the overall functional network. 
The formulas of these metrics are described in detail in (Rubinov and 
Sporns, 2010; Bonacich, 1987, 2007). 

3. Implementation 

The implementations are performed using Matlab code provided in 
the Group ICA of fMRI Toolbox (GIFT) (http://trendscenter.org/soft 

Fig. 1. Spatial maps of the eight common components of HC and SZ groups. SP-V-C: super parietal-visual-cerebellum, F-P: frontoparietal, SMA: supplementary 
motor area. 
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ware/gift) that also has a number of IVA algorithms included, and the 
Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/). 

3.1. Data acquisition and preprocessing 

We use a resting state fMRI data from the Center of Biomedical 
Research Excellence (COBRE) that is available on the collaborative 
informatics and neuroimaging suite data exchange repository (htt 
ps://coins.trendscenter.org/) (Scott et al., 2011; Çetin et al., 2014). 
The data includes 88 SZs (average age: 37 ± 14) and 91 HCs (average 
age: 38 ± 12). All images were collected on a single 3-Tesla Siemens Trio 
scanner with a 12-channel radio frequency coil using the following pa
rameters: TE =29 ms, TR = 2 s, flip angle = 75◦, slice thickness = 3.5 
mm, slice gap = 1.05 mm, voxel size 3.75 × 3.75 × 4.55 mm3. Partici
pants were instructed to keep their eyes open during the scan and stare 
passively at a central fixation cross. Each resting state scan consists of 
150 volumes. To eliminate the T1-related signal fluctuations (T1 effect) 
(Shin et al., 2013), the first 6 volumes are removed in this study, thus 
144 volumes remain for each subject. The fMRI data are realigned with 
INRIalign algorithm (Freire et al., 2002) for head motion correction, 
followed by slice-timing correction to account for timing difference by 
using the middle slice as the reference frame. Then the fMRI data are 
spatially normalized to the standard Montreal Neurologic Institute space 
and resampled to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels. Af
terwards, the fMRI data are smoothed using a Gaussian kernel with a 
full-width at half-maximum of 5 mm. 

3.2. Reference signal extraction 

We use exemplar RSN components as the reference signals within the 
acIVA framework. Potential choices include the pre-defined RSN tem
plates (Allen et al. (2011)) and the group-level RSN components that are 
extracted from the same dataset using group decomposition algorithms 
such as group ICA (Bhinge et al., 2020a). The data we use in this work is 
the resting-state fMRI collected from subjects with SZ and a HC group. In 
order to conduct a fair comparison between the SZ and HC groups, we 
extract the common RSN components that are shared across the two 
groups as the reference signals. We make use of a recent common sub
space extraction framework, IVA for common subspace analysis 
(IVA-CS) (Long et al. (2020)), to estimate the independent components 
(IC), yielding M = 8 common RSNs as shown in Fig. 1. The eight com
mon RSNs include the medial visual (IC1), the sensorimotor (IC2), the 
cerebellum (IC3), the DMN (IC4), a component that includes multiple 
distributed brain regions—the super parietal, visual, and cerebellum 
cortex—(SP-V-C, IC5), the frontoparietal (F-P, IC6), the supplementary 
motor area (SMA, IC7), and the frontal (IC8) components. The spatial 
maps of the eight RSNs are used as reference signals in acIVA 

decompositions. All the spatial maps are normalized to have zero mean 
and unit variance. 

3.3. Dynamic study using acIVA 

FMRI data is obtained by scanning the brain within a certain dura
tion of multiple minutes. The sliding window approach is widely used to 
facilitate a dynamic study of fMRI data by dividing the scanning period 
into overlapping windows (Hutchison et al., 2013b; Ma et al., 2014; 
Savva et al., 2020). The data in each window forms an individual new 
dataset. We use a sliding window of length Tw = 24 (48 s) with a 66.67 
% overlap as shown in Fig. 2, yielding L = 16 datasets for each of the 179 
subjects. The dynamics can be described using FNC information across 
the 16 windows. The total number of datasets to be analyzed for the 
extraction of functional networks is L × 179 = 2864. We propose the use 
of acIVA to capture the dynamics by effectively analyzing a relatively 
large number of datasets. Since acIVA mitigates the dimensionality issue 
and eliminates the alignment problem across multiple decompositions, 
we divide the 2864 datasets into 45 subsets of 64 datasets (K0 = 4 
subjects), a value that is higher than the optimal value of the number of 
datasets that allows a reliable regular IVA decomposition (Long et al., 
2020), and perform acIVA on each subset. Note that the last subset of HC 
group only has three subjects hence 48 datasets. 

The model order—the number of source components—in each acIVA 
decomposition is set as 20 and the dimension of each dataset is reduced 
from 24 to 20 using principal component analysis. We select 20, a value 
that is slightly lower than the original dimension of each dataset as the 
model order in order to reduce the influence of noise while retaining a 
significant level of signal variability. Eight of the estimates are con
strained by the spatial maps of the common exemplar RSNs. We set the 
penalty parameter γm = 3 for all constrained components and initialize 
the regularization parameter μ[k]

m = 0. During the decomposition, we 

update the regularization parameter using μ[k]
m = max

{
0, μ[k]

m + γmg
(

y[k]
m ,

dm

) }
and tune the value of ρm from a candidate set P for each of the 

constrained components (Bhinge et al., 2019). In our implementation, 
we chose the set as P = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

and one can choose to be even more conservative and can include cor
relation values in smaller steps, e.g., steps of 0.05. The tdFNC is 
computed as the correlation among the time courses and the sdFNC is 
computed as the normalized mutual information among the spatial 
maps. For each type of dFNC, a k-means clustering is performed to 
identify the transient states with different values as the number of states, 
Ns = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, to enable an extensive investigation of 
the influence of Ns. 

Fig. 2. Dynamic study using acIVA with windowing strategy.  
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3.4. A goal-driven scheme for the determination of Ns 

By applying acIVA to the dynamic study of the resting-state COBRE 
fMRI data collected from SZ subjects and HCs, our goal is to identify 
dynamic biomedical patterns with significant group difference. 
Analyzing these discriminative dynamic patterns helps us understand 
functional differences in the brain between groups, enabling a better 
interpretation of SZ. We perform a GT analysis on the dFNC matrices and 
calculate different GT metrics by changing the link density in each dFNC 
as described in Section 2.2. A two-sample t -test is performed on each GT 
metric between the SZs and HCs in each state in order to determine 
whether the metric yields values that are significantly different between 
the two groups. The detected significance is reported with the false 
discovery rate (FDR) control. Along with the goal of identifying 
discriminative biomedical features, we propose the use of a goal-driven 
scheme to investigate the influence of Ns. This comprehensive study of 
GT metrics identifies metrics that are discriminative between groups and 
notifies how the discriminative metrics change across states. It would be 
desirable if in the scenario of the optimal Ns, all the identified states 
yield discriminative GT metrics that are different in terms of the number 
and types of metrics. 

4. Results 

4.1. Transient states 

We give an overview of the properties of identified transient states in 
Fig. 3 and show that all states contain dFNCs that are from both the HC 
and SZ groups. In each state, we calculate the ratio of sdFNC/tdFNC 
matrices for the SZ and HC groups separately and summarize them in 
Fig. 3(a) and (b). We compare the ratio of sdFNC/tdFNC between the 
two groups and show the difference in Fig. 3(d) and (e). We then find the 
knee point for the ratio differences by using an elbow criterion that is 
calculated as the ratio of within-cluster distance to between-cluster 
distance (Zhang et al., 2018; Vergara et al., 2020). The points before 
the knee point have large ratio differences, indicating that the number of 
sdFNC/tdFNC matrices are obviously different between SZ and HC 
groups in corresponding states. In Fig. 3(c), we show the number of 
states with a large ratio difference. When using tdFNC, the number of 
states with a large ratio difference is the largest (7) when Ns = 11. While 
when using sdFNC, the number of states with a large ratio difference is 
bounded between 2 and 4. The results indicate that the identified states 
using sdFNC are more balanced between SZ and HC groups regarding 

Fig. 3. Ratio of the number of dFNC matrices in each state for SZ and HC groups as the value of Ns changes when using sdFNC (a) and tdFNC (b). The number of 
states with different ratios between the two groups is summarized in (c). The results of the knee point detection for states with different ratios between the two groups 
are shown in (d) for sdFNC and (e) for tdFNC. 

Q. Long et al.                                                                                                                                                                                                                                    



Journal of Neuroscience Methods 350 (2021) 109039

6

Fig. 4. Summary of the statistical test results of global GT metrics in five cases for sdFNC. Overlapping plots for Ns = 7, 8, 9 means more than one states have the 
same characteristics. In each plot, the boxplot on the top summarizes the p -values with FDR control, the barplot gives the number of graphs with different link 
density that have a significant p -value, and the triangular over a bar means the GT metric has higher value in SZs (red) or HCs (blue). The red dot in the upper right 
corner indicates the number of SZ and HC subjects are different in a state. Ef-g: global efficiency, Ef-l: local efficiency, PL: path length, CC: clustering coefficient, SW: 
small-worldness, BCt: betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality. 
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the number of dFNC matrices. 

4.2. GT analysis 

In this work, the statistical tests illustrate that the number of 
discriminative GT metrics that demonstrate significant differences be
tween the HC and SZ groups is much less for tdFNC compared with 
sdFNC. The type of discriminative GT metrics is humdrum and the 
clustering coefficient and small-worldness always demonstrate signifi
cant differences for tdFNC. Therefore, whatever the value of Ns is, most 
of the states have the same characteristics in terms of discriminative 
global GT metrics as we demonstrate in Figs. S1 and S2 in the supple
mentary material. In contrast, sdFNC yields more discriminative GT 
metrics and the number and type of these discriminative metrics vary 
across states as shown in Fig. 4, making it possible to uniquely charac
terize the states by using these discriminative metrics. Moreover, this 
suggests that the highly informative spatial variability provides more 
chances to identify unique biomedical patterns of the subjects with SZ in 
this study. We also study the relationship between the two types of 
measure for sdFNC—the correlation and the mutual information val
ues—and find that they are coherent. We believe that both are good 
choices, but choose to use mutual information that captures the higher- 
order statistical information for sdFNC to make a better use of the high 
number of samples in the spatial domain. Next, we introduce the 
quantitative study of sdFNC using GT analysis and determine the value 
of Ns for sdFNC. 

We summarize the two-sample t -test results of the global GT metrics 
in Fig. 4 for sdFNC. There are ten cases with different values of Ns ∈ {3,

4, 5, 6, 7, 8, 9, 10, 11, 12} and we show five cases, Ns = 5, 6, 7, 8,

9, as examples. In each plot, the boxplot on the top summarizes the 

significant p -values with FDR control, the barplot gives the number of 
graphs with different levels of link density that yield discriminative GT 
metrics, and the triangular over a bar means the GT metric has higher 
values in SZs (red) or HCs (blue). If there is no triangular over a bar, it 
means among the graphs some have higher metric values in the SZ group 
while the others have higher metric values in the HC group. The red dot 
in the upper right corner indicates the number of sdFNC matrices are not 
balanced in SZ and HC groups in a state. There are three states, as 
labeled in magenta, red, and green rectangular separately, that are 
robustly estimated. When Ns ≤ 5, there are missing states compared 
with the cases where Ns ≥ 6. The cases with Ns ≥ 7 yield multiple states 
that are not discriminative through the characterization using a sum
mary of global GT metrics, as we show in Fig. 4 using the overlapping 
figures with a green box for cases of Ns = 7, 8, 9. Therefore, Ns = 6 is 
the optimal case where all six states are unique. The results illustrate 
that the comprehensive study of the global GT metrics effectively de
termines of the optimal number of states Ns. We also use the elbow 
approach to estimate the optimal value of Ns. The mean value and 
standard deviation of 100 runs are 6.02 ± 0.94, coinciding with the 
value suggested by studying the GT metrics. However, the study of GT 
metrics determines the optimal value of Ns in a more interpretable way 
by looking into the discriminative GT features that help us compare 
between groups. 

We also investigate the nodal GT metrics in the case of Ns = 6 in 
order to find interesting individual RSNs. We show two states, states 5 
and 6, in Fig. 5 where all eight components have at least one discrimi
native GT metric. In state 5, only the multi-region component (IC5) and 
the supplementary motor component (IC7) that consists of superior and 
middle frontal cortex yield higher values of centrality in SZ, while the 
other six components yield higher values of centrality in HC. This high 

Fig. 5. Summary of the statistical test results of nodal GT metrics for states 5 and 6 when Ns = 6. In each plot, the boxplot on the top summarizes the p -values with 
FDR control, the barplot gives the number of graphs with different link density that have a significant p -value, and the triangular over a bar means the test results 
show the GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-l: local efficiency, PL: path length, CC: clustering coefficient, BCt: 
betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality. 
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centrality of IC5 infers that the SZ subjects tend to have more brain 
regions involved for a certain intrinsic brain function, illustrating the 
dysconnectivity in the brain of SZ. In state 6, the frontoparietal 
component IC6 and frontal component IC8 yield higher values of cen
trality in HC compared with SZ, potentially suggesting a more efficient 
cognitive control system in the brain of HCs. 

The two components IC5 and IC7 even yield discriminative GT 
metrics in all six states, as shown in Fig. 6. Except for the closeness 
centrality in state 2 for IC5, the values of all the other GT metrics are 
higher in SZ group than in HC group, indicating the increased involve
ment of the two components in the brain function of SZs. The increased 
involvement of the multi-region component IC5 once more suggests 
dysconnectivity in SZ brain function. The other component IC7 that 
consists of superior and middle frontal cortex has been reported in many 
studies to have different levels of activation in SZ compared with HC. In 
Fig. 7, we show the GT metrics for the other two interesting components, 
IC6, the frontoparietal component, and IC8, the frontal component, that 
yield discriminative GT metrics in five and four states separately. All the 
values of centrality are higher in HCs in these states. The high 
involvement of IC6 and IC8 again supports the conclusion that HCs and 
SZs demonstrate differences in their cognitive control system. 

From the analysis of nodal GT metrics, we note that the most inter
esting GT metric is the centrality. An analysis of centrality yields dif
ferences among individual components in terms of their role on the 

brain function. Four interesting RSN components that yield interpret
able GT analysis results include the multi-region component IC5, the 
supplementary motor component IC7, the frontoparietal component IC6 
and the frontal component IC8. A study of these four components helps 
get a better understanding of the differences between the brain function 
of SZs and HCs, i.e., the dysconnectivity in the brain of SZs and an 
efficient cognitive control system for HCs. 

5. Conclusion and future directions 

In this work, we propose the use of acIVA to capture both temporal 
and spatial variation of brain functional networks to enable a thorough 
study of brain dynamics. We emphasize the importance of taking spatial 
variability into consideration in the dynamic study of fMRI data by 
conducting a GT analysis on tdFNC and sdFNC. The results show that the 
rich dynamic information in the spatial domain yields more features that 
are potentially unique biomedical patterns of subjects with SZ. In order 
to identify transient states to learn the dynamic evolution of brain 
function, we propose the use of a goal-driven scheme—the systematic 
study of GT metrics in this work—to determine the optimal value for the 
number of states Ns. The results illustrate that the proposed scheme 
successfully finds a case where the value of Ns is optimal in a more 
interpretable way compared with using an arbitrary statistical method. 
In the case with the optimal Ns = 6, all six states are uniquely charac

Fig. 6. Summary of the statistical test results of nodal GT metrics for the complex component (IC5) and the supplementary motor area component (IC7) when Ns =

6. In each plot, the boxplot on the top summarizes the p -values with FDR control, the barplot gives the number of graphs with different link density that have a 
significant p -value, and the triangular over a bar means the test results show the GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-l: 
local efficiency, PL: path length, CC: clustering coefficient, BCt: betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality. 
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terized by the global GT metrics. The study of nodal GT metrics in these 
states demonstrates that the centrality is the most interesting metric in 
this application. Four interesting components that yield interpretable GT 
analysis results include a multi-region component, a supplementary 
motor component, a frontoparietal component and a frontal component. 
The multi-region component demonstrates increased involvement in the 
brain function of SZs compared with HCs, illustrating dysconnectivity 
among the SZ brain networks. Frontoparietal and frontal components 
yield higher values of centrality in HCs, potentially suggesting a more 
efficient cognitive control system in the brain of HCs. 

We demonstrate the importance of taking spatial variability into 
consideration and propose the use of a goal-driven scheme for the 
determination of the number of states in dFNC analysis by applying 
acIVA and GT analysis to the resting-state COBRE data. We focused the 
analysis on the eight common components. However, one can also 
investigate the contribution of components that are unique in either the 
HC group or the SZ group to dFNC analysis. We were not able to conduct 
a performance comparison with existing algorithms such as group ICA 
(Calhoun et al., 2001) and regular IVA due to the unique advantage of 
acIVA that it can focus the analysis on a set of target components. The 
requirements of low orders and low noise levels in the tensor decom
position models like canonical polyadic decomposition and block-term 
decomposition (Stegeman, 2020; Sorber et al., 2015; Chatzichristos 
et al., 2019) also limit the applicability of these other factorization 
methods for a dynamics study. Though it is not easy to make a com
parison with the existing methods in real fMRI analysis, we have 

conducted a detailed simulation study that helps demonstrate the 
effectiveness of acIVA (Bhinge et al., 2019; Long et al., 2020; Bhinge 
et al., 2020b). We showed that acIVA is able to tune the closest lower 
bound for the association between the reference signals and the con
strained components without introducing any artificial connection. We 
also illustrated that acIVA successfully preserved variabilities of datasets 
and reduced the effect of dimensionality issue. Nevertheless, it might be 
desirable to extend the work to other fMRI datasets and other neuro
imaging modalities to gain more evidence. The GT analysis has shown 
powerful in FNC study but is also worthy to be investigated more for 
dynamic analysis, exploring more possibilities to make use of discrimi
native GT metrics. 
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