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Abstract

The COVID-19 pandemic highlights the substantial public health, economic, and societal

consequences of virus spillover from a wildlife reservoir. Widespread human transmission

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set

of challenges when considering viral spillover from people to naïve wildlife and other animal

populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further

complicate public health control measures and could lead to wildlife health and conservation

impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (β-

CoVs), free-ranging bats are a key group of concern for spillover from humans back to
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wildlife. Here, we review the diversity and natural host range of β-CoVs in bats and examine

the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review

of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+

species of temperate-zone North American bats could be immunologically naïve and sus-

ceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the

wellbeing of human and wildlife health during the current pandemic and to implement new

tools to continue wildlife research while avoiding potentially severe health and conservation

impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.

Spillover of pandemic viruses

The threat of emerging infectious diseases (EIDs) to wildlife health and biodiversity conserva-

tion is recognized [1], but cross-species transmission of novel pathogens, or spillover, is typi-

cally viewed in the specific context of originating in a wildlife reservoir and transmitting to

humans [2]. Research assessing EID risk has typically focused on identifying geographic

regions [3, 4] and wildlife species [5–7] whereby spillover of zoonotic diseases into humans is

most likely. Among recent pandemic zoonotic viruses, some have no evidence of transmission

back to wildlife or domestic animal populations after establishment in people (e.g., human

immunodeficiency virus, which causes acquired immunodeficiency syndrome), while others

have repeatedly crossed species boundaries (e.g., pandemic H1N1 influenza A virus) [8, 9].

Evidence of “reverse zoonotic” transmission, sometime referred to as “spillback,” from people

to wildlife and domestic animals is widespread [9]; however, systematic surveys to determine

the proportion of EIDs that spill back into novel wildlife hosts are lacking. Infection of bats by

viruses of probable human origin has been recorded only twice [10, 11], and further transmis-

sion [12], or spread to a wider bat population, has not been recorded.

In December 2019, a novel coronavirus was detected from a cluster of 41 atypical pneumo-

nia cases in Wuhan, China, and has since spread to cause a pandemic with significant global

morbidity, mortality, and economic impact [13]. Phylogenetic evidence suggests that this

virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the clade of SARS-

related coronaviruses (SARSr-CoVs) that it belongs in evolved in Old-World bats of the family

Rhinolophidae [14–16]. There is no epidemiological evidence of direct or indirect transmis-

sion of SARS-CoV-2 from bats to people, but a full genome of its closest known relative (with

96.2% sequence similarity) was reported from an Intermediate Horseshoe Bat (Rhinolophus
affinis) sampled from Yunnan province, China, in 2013 [17]. The timing of SARS-CoV-2 spill-

over from bats and any involvement of intermediate host species remain undetermined [18,

19]. The United States currently has the highest number of confirmed human cases of

COVID-19, the disease caused by SARS-CoV-2. The consequences of this pandemic are many

and include the possibility of SARS-CoV-2 transmission from humans to free-ranging wildlife

populations. Given the likely bat origin of SARS-CoV-2, free-ranging bats are a key group of

concern for spillover from humans. Humans frequently handle and come into close contact

with North American temperate-zone bats during the course of ecological research, wildlife

rehabilitation, wildlife/pest control, and disease investigations. Anticipating the need for simi-

lar risk assessments across many potentially vulnerable species of wildlife and domesticated

mammals globally, we here examine the possibility of humans inadvertently infecting free-

ranging North American bats with SARS-CoV-2. We further discuss the possible public health

and wildlife conservation consequences of SARS-CoV-2 becoming endemic in bats outside its

natural host range.
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Threats of SARS-CoV-2 to North American bats

The pandemic spread of SARS-CoV-2 may directly or indirectly threaten North American bat

populations in at least three different ways. First, SARS-CoV-2 might infect any of the diverse

and historically isolated 40+ endemic species of temperate-zone North American bats, with or

without causing disease, morbidity, and mortality. Second, SARS-CoV-2 might infect and

become established in one or more North American bat species, creating novel reservoirs

capable of causing human infections (e.g., bat rabies lyssaviruses in the New World [20]).

Third, if SARS-CoV-2 infection persists in North American bats of one or more species, it

could potentially evolve or recombine with endemic viruses [19, 21] to become more patho-

genic or infectious to humans or other animals. In addition to new public health challenges,

the latter outcomes could quickly shift public perception of bats from mostly beneficial wildlife

with associated disease risks that are manageable to bats posing unacceptable disease risks to

human and animal health. Such a shift could increase the likelihood of negative human–bat

interactions and conflicts, as well as undermine decades of concerted science, conservation,

and education efforts aimed at conserving these valuable animals [22–24]. The potential threat

of SARS-CoV-2 transmission from humans to other animals applies to many species of wildlife

and domesticated mammals, but the likely bat origin of SARS-CoV-2 and the current threats

to bat populations due to another disease in North America influenced us to focus this review

on bats.

Lessons from an epizootic—Susceptibility of North American bats

to an introduced pathogen

SARS-CoV-2 is not the first pathogen with the potential for inadvertent spread from people to

North American bats. The COVID-19 pandemic follows the arrival of a fungal pathogen (Pseu-
dogymnoascus destructans) that as early as 2006 began infecting hibernating bat populations in

North America, spreading within and among species to alter the evolutionary trajectory of the

continent’s bats [25–28]. Genetic analyses indicate that P. destructans was introduced to North

America [29], in our opinion likely by movement of humans or materials contaminated with

fungal spores. White-nose syndrome (WNS), the disease caused by P. destructans, remains the

only documented bat epizootic to cause multiyear, widespread mass mortality [30], although

short-term bat die-offs have been also linked to Lloviu virus in Europe [31]. WNS has killed

millions of North American bats, affected populations of at least 12 species of 3 genera, and

has already spread across half of the US and Canada (whitenosesyndrome.org, accessed 11

May 2020). Effective methods to mitigate WNS spread and impacts remain elusive despite sub-

stantial research effort, and targeted mitigation actions have had limited success against its

impacts [32]. It took years of concerted international scientific effort to identify the cold-grow-

ing fungus, determine that it likely originated somewhere in the temperate zones of Europe or

Asia, understand its mechanisms of infection and pathogenicity, develop strategies to limit

accidental translocation, and track its rapid spread through an immunologically naïve conti-

nental assemblage of hibernating bats [33–35].

The devastating impact of WNS on a diverse group of North American bats likely resulted

from evolutionary isolation of the continent’s bat fauna from other parts of the world for mil-

lions of years, despite other species of Pseudogymnoascus being present. Bats in both Europe

and Asia can become infected by P. destructans but do not suffer mass mortality from WNS

[36, 37]. The bat fauna spanning the higher latitudes of North America (in the US and Canada)

is composed almost entirely of endemic species belonging to the family Vespertilionidae. Ves-

pertilionid bats occur globally but likely originated and diversified in North America tens of

millions of years ago before dispersing to other continents [38, 39]. No extant species of bat in
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the Americas also occurs outside of the Americas [40, 41], and no bats migrate across the

Pacific or Atlantic Oceans [42, 43]. The WNS epizootic demonstrates that a large proportion

of these historically isolated bats can be vulnerable to a pathogen introduced from another

continent during a single event. Additionally, bats already in a physiologically stressed condi-

tion due to WNS or other pressures may be more susceptible to viral infection, experience

exacerbated disease outcomes, and/or experience increased viral shedding [44, 45]. The

COVID-19 pandemic resembles WNS with respect to potential spread of a pathogen from

another continent through interconnected, multispecies assemblages of North American bats

that might be immunologically naïve and highlights deficits in our understanding of temper-

ate-zone bat pathogens in North America.

Gaps in understanding global patterns of Bat–CoV diversity,

evolution, and host range

Bats are among the world’s most diverse mammals (comprising approximately 1,400 species

[46]), and the global distribution and diversity of CoVs in bats proportionally reflects that of

their hosts [47, 48]. Available evidence indicates that bats are natural reservoirs of CoVs, some

of which have the potential to cause diseases in humans, domesticated animals, and wildlife

[17, 47, 49–59]. Coronaviruses appear to have ancient and ancestral relationships with bats,

diversifying globally through a process of within-host evolution and cross-taxonomic host-

switching events [47, 59–61]. Bats are the likely mammalian progenitor hosts of all alpha (α-)

and beta (β-) CoVs [58, 59, 62, 63] and potentially all coronaviruses [60]. Alpha-CoVs of likely

bat origin include the causative agent of swine acute diarrhea syndrome (SADS), which caused

mass mortality of over 25,000 piglets on farms in Guangdong province, China [57], and a vari-

ant strain of porcine epidemic diarrhea virus (PEDV) that spread rapidly from China in recent

decades and caused mass piglet mortality in multiple US states [64]. Human CoVs NL63 and

229E also likely had their evolutionary origins in bats [59, 65]. Two recent human disease epi-

demics (severe acute respiratory syndrome [SARS] and Middle East respiratory syndrome

[MERS]) and now the current COVID-19 pandemic are caused by viruses that probably origi-

nated from β-CoVs circulating in bat populations in regions where outbreaks occurred [17, 19,

50–54, 58, 66–68].

The emergence of diseases like SADS, PEDV, SARS, MERS, and now COVID-19 strongly

indicates a close association between CoVs that become pathogenic in humans and the wildlife

reservoirs from which they originate [17, 50–54, 67]. The evolutionary relationships of CoVs

within bats are consistent with geographically structured transmission cycles, with occasional

transmission among related bat species [47, 58, 69]. These phylogeographic factors are also

universal determinants of viral sharing among all mammals [70]. However, bat–virus associa-

tion patterns can be particularly difficult to discern because bats often roost together in multi-

species aggregations that can facilitate viral sharing, with each species capable of harboring

multiple CoV lineages [47, 58, 68, 71]. Host shifts from bats to more divergent taxa are more

difficult to predict—firstly, because the potential host breadth for many CoVs is broad [55, 56,

60, 72], and secondly, because host susceptibility and onward transmission involve complex,

multistage processes [2, 12]. Bat–CoV associations likely remain substantially undersampled

and understudied in temperate-zone North America [47, 71, 73, 74].

Are viruses like SARS-CoV-2 already present in North American

bats?

Our examination of CoV evolutionary lineages and global distribution patterns of the diversity

of bat species they infect suggests that temperate-zone North American bats could be
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immunologically naïve to infection by viruses like SARS-CoV-2. Alpha and β-CoVs have been

detected in bats on most continents, sometimes with both types occurring in bats of the same

species [58, 68]. However, an exception to this pattern is the lack of published evidence that β-

CoVs infect bats of temperate-zone North America, despite several search efforts which used

methods suitable to detect both α- and β-CoVs [59, 71, 74, 75]. Multiple novel α-CoVs have

been detected and described in vespertilionid bats of the US and Canada, infecting species

both living in close contact with humans and in remote wild areas [59, 71, 74–76]. However,

SARSr-CoVs and β-CoVs of the viral subgenus Sarbecovirus have thus far been detected almost

exclusively in species of the Old-World Chiropteran suborder Yinpterochiroptera (Fig 1A)

[47, 58, 69]. The few exceptions to this pattern are the detection of novel Clade 3 and Clade 1

Sarbecovirus (sensu [53]) viruses in the wrinkle-lipped free-tailed bat (Mops plicatus, family

Molossidae) in China [77] and the vespertilionid Leisler’s noctule (Nyctalus leisleri) cohabiting

a Bulgarian cave during autumn with several species of rhinolophids in which other SARSr β-

CoVs were concurrently detected, suggesting cross-species infections (Fig 1A) [78]. Putative

detections of a Clade 1 Sarbecovirus were also reported from guano samples of the

Fig 1. Global patterns of bats and associated β-CoVs. (A) Red-shaded distributions of bat species in which SARS-related β-CoVs of the subgenus Sarbecovirus have

been detected; (B) pink-shaded distributions of bat species known to host β-CoVs of the subgenus Hibecovirus; (C) brown-shaded distributions of bats in which β-CoVs

of the Nobecovirus lineage have been detected; and (D) green-shaded distributions of bats known to host MERS-related β-CoVs of the subgenus Merbecovirus. Different

colors and shade styles within each panel represent different families of bats. A data table that includes all known bat species associations for each β-CoVs subgenus and

peer-reviewed citations is available at US Geological Survey data release https://doi.org/10.5066/P9U461PJ. Maps created using ArcMap (ESRI, Redlands, California,

United States of America) and bat ranges derived from spatial data on terrestrial mammals from the International Union for the Conservation of Nature (IUCN 2020. The
IUCN Red List of Threatened Species. January 2019 [version 6.2]. https://www.iucnredlist.org; Downloaded on 11 April 2020). β-CoV, beta-coronavirus; MERS, Middle

East respiratory syndrome; SARS, severe acute respiratory syndrome.

https://doi.org/10.1371/journal.ppat.1008758.g001
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vespertilionid brown long-eared bat (Plecotus auritus) and the molossid European free-tailed

bat (Tadarida teniotis) on Sardinia, where the same novel β-CoV was described in the greater

horseshoe bat (R. ferrumequinum) [79].

Viruses in the β-CoV subgenera Hibecovirus and Nobecovirus also have been reported

mostly from Old-World bat families Rhinolophidae, Hipposideridae, Rhinonycteridae, and

Pteropodidae, except for novel viruses of the latter subgenus detected in four species of the ves-

pertilionid genus Scotophilus in Asia and Africa (Fig 1B and 1C) [47, 58, 69].

Bat β-CoVs of the subgenus Merbecovirus (MERS-related lineages) occur in a greater diver-

sity of bat families and across more global regions than the other subgenera (Fig 1D) [47, 58,

69]. These widely distributed MERS-like viruses can cause disease in humans (e.g., MERS) and

notably appear to be the only bat β-CoVs to diversify among several families of the globally dis-

tributed suborder Yangochiroptera (Fig 1D) [47, 58, 69].

Lack of evidence for β-CoVs in temperate-zone North American

bats

The several hundred species of extant bats spanning the Americas all belong to the suborder

Yangochiroptera, which likely diverged from the Old-World suborder Yinpterochiroptera

more than 50 million years ago (Fig 2) [80]. The only β-CoVs detected in the Americas to date

Fig 2. Old-World and New-World bats. Overlapping species distribution outlines of bats in the globally distributed suborder Yangochiroptera (blue) and Old-World

Yinpterochiroptera (yellow). Maps created using ArcMap (ESRI, Redlands, California, USA) and bat ranges derived from spatial data on terrestrial mammals from the
International Union for the Conservation of Nature Red List of Threatened Species, January 2019 [version 6.2]. https://www.iucnredlist.org; Downloaded on 11 April 2020.

https://doi.org/10.1371/journal.ppat.1008758.g002

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008758 September 3, 2020 6 / 19

https://www.iucnredlist.org/
https://doi.org/10.1371/journal.ppat.1008758.g002
https://doi.org/10.1371/journal.ppat.1008758


belong to the subgenus Merbecovirus and appear restricted to two exclusively Neotropical bat

families (Phyllostomidae and Mormoopidae) and one that is globally distributed (Molossidae).

Distinct CoV lineages in the subgenus Merbecovirus were described from three species of Pter-
onotus (family Mormoopidae), four species of Artibeus, and Seba’s short-tailed bat (Carollia
perspicillata; family Phyllostomidae) from tropical regions of Mexico [47, 81]. Novel β-CoVs

of the subgenus Merbecovirus were detected in two neotropical bat species of the family Molos-

sidae: Wagner’s bonneted bat (Eumops glaucinus) in southern Brazil and the broad-eared free-

tailed bat (Nyctinomops laticaudatus) in southern Mexico [81, 82]. In vitro infections have

shown that primary kidney cells from the Jamaican fruit-eating bat (Artibeus jamaicensis) can

be infected with MERS-CoV, and virus replication and shedding was reported in experimen-

tally infected bats of this species but without obvious clinical signs of disease [83]. Similar to

the evidence for natural invasion of bat rabies viruses among New World bats [84], available

evidence suggests β-CoVs may have arrived through South America and have long been evolv-

ing in Neotropical bats. Although some bat hosts of Merbecoviruses overlap geographically

with species of temperate-zone North American bats, none occur outside of the Neotropics.

Sampling has been limited, but we are not aware of any published detections of Merbecoviruses
or any other β-CoVs in temperate-zone North American vespertilionid bats.

Our inference of true patterns of CoV occurrence and distribution in bat populations is

limited by uneven global sampling. Yet SARSr-CoVs (Sarbecovirus spp.), a focus of many sur-

veillance efforts, have been almost exclusively documented in Old-World Yinpterochiroptera.

SARSr-CoVs were only found in the ultra-diverse and globally distributed bat suborder Yan-

gochiroptera under conditions with plausible transmission from co-roosting Rhinolophus sp.

bats [53, 85]. This absence of evidence for SARS-like β-CoVs in yangochiropteran bats in gen-

eral, and in temperate-zone vespertilionid bats of North America in particular, likely repre-

sents a unique biogeographic pattern driven by underlying factors of host susceptibility or life

history. These observations also point to the susceptibility of vespertilionid bats under circum-

stances of SARSr-CoV environmental exposure and that they may not be naturally immune to

these viruses.

Bats rank among the most ecologically important mammals and play varied roles in most

of Earth’s ecosystems; bats pollinate and disperse seeds of numerous plants in tropical regions,

and all over the world, bats are primary nocturnal predators of flying insects [23, 24]. Across

the Holarctic, chiropteran species diversity is greatest among hibernating vespertilionid bats.

At least 25 of the ecologically diverse vespertilionid species of bats in the US and Canada hiber-

nate [86], which might influence their susceptibility to or interactions with viruses, as has been

postulated for common vespertilionids infected with α-CoVs and rabies virus [44, 87–89].

Hibernation strategies vary among species of bats (e.g., degree of sociality, thermoregulatory

behaviors, habitat selection) [90], but bat body temperatures during hibernation generally

remain consistently below 10º C for periods lasting 7–9 months per year [91], providing a

potential mechanism to limit viral replication and spread [92]. Experimental studies to assess

the ability of SARS-CoV-2 or other β-CoVs to survive and replicate in bats (cell lines and indi-

viduals) at low temperatures [92, 93] would provide additional insight into risk of reverse zoo-

nosis. However, appropriate tools for studying such possibilities are lacking, particularly

immortalized cell lines from several hibernating, vespertilionid bats [59]. These tools would

also enable interrogation of other physiological features of vespertilionids that may influence

susceptibility, such as receptor-binding affinity and the expression of receptors across tissues.

Scientists did not discover and isolate the obligately psychrophilic fungus that causes WNS

until they collected samples in bat hibernation sites and moved culture dishes for incubation

into laboratory refrigerators [25]. Similar innovative explorations outside the typical tempera-

ture conditions of laboratory experimentation could help assess the risk of SARS-CoV-2
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infecting the more than two dozen species of bats in the US and Canada that hibernate to sur-

vive harsh temperate-zone winters.

Proactively connecting the wellbeing of human and bat

populations

Scientists have long recognized the risk of pathogen spillover from humans to bats [94–96],

but bat researchers in North America have not systematically addressed this risk prior to

WNS. Outside of reservoir host studies, few bat researchers studied infectious diseases in bats

before WNS emerged in 2007 [73] nor studied bat viruses (other than rabies) before bats were

retrospectively connected to the SARS epidemic [15, 66, 97]. Fortunately, bat and wildlife dis-

ease researchers recently began addressing these knowledge gaps in more detail [7, 97, 98].

Possible explanations for why bats might host particularly pathogenic viruses include charac-

teristics of their life history (e.g., long-lived, wide ranging, multispecies aggregations, daily and

seasonal heterothermy) [97], unique physiology for repairing their damaged DNA [99], unique

ability to suppress some of their innate immunity pathways [100–105], high species diversity

[48], and unmatched metabolic range and high body temperatures during flight [106]. Bats

also cryptically come into close contact with humans, increasingly in urban and periurban set-

tings as a result of native habitat loss, often crossing human–wildlife interfaces [107–113].

Except for Lyssavirus infections, bats rarely show substantial signs of sickness from the

same pathogens that cause virulent disease in humans. Bats cope with viral infections in ways

that we do not yet fully comprehend, but learning how they do so may reveal important

insights to develop therapeutics and ultimately to protect human health [103–105]. In vitro

and laboratory studies demonstrate that bats can specifically regulate naïve immunity path-

ways to effectively cope with viral infection [114]. For example, dendritic cells generated from

the bone marrow of the Egyptian rousette (Rousettus aegyptiacus) infected with Marburg virus

down-regulate immune-stimulatory pathways and maturation of cells targeted by the virus

while up-regulating pathogen-sensing pathways [115]. Unique bat immune regulation may

occur with MERS-CoV infection, at least under experimental conditions [101]. Egyptian rou-

sette bats experimentally challenged with SARS-CoV-2 by intranasal inoculation became tran-

siently infected, shed virus, and one cohoused bat became infected but showed no clinical

signs of disease other than rhinitis [116]. Our potential lack of understanding of clinical signs

of illness in bats and the cryptic habits of many species also generally inhibit our ability to eas-

ily detect spillover of pathogens from human to bat populations. This may add to uncertainty

about cross-species transmission and dispersal of CoVs among human and animal communi-

ties. Laboratory findings suggest human viruses that likely originated in bats, such as

HCoV-NL63, are capable of infecting bat cells, at least in vitro [59]. SARS-CoV-2 and other

CoVs have some of the longest genomes among all RNA viruses, and despite having special-

ized RNA proofreading machinery [117, 118], they are still prone to recombination and copy

errors in hosts, sometimes resulting in functional adaptations (e.g., altered receptor binding

capacity or temperature adaptation of enzymes) [119]. CoVs can even recombine with func-

tional fragments of other virus families, such as when a bat-derived CoV gained a functional

gene from a reovirus [21]. Spillover of SARS-CoV-2 from infected humans to North American

bats they handle or come in close contact with could lead to the virus becoming either less or

more pathogenic to bats or other wildlife, domesticated animals, or humans through genetic

mixing in one or more novel hosts. The public health and conservation consequences of a

more virulent virus could be severe, whereas genetic mixing in a bat host that resulted in a

less-virulent virus might go unnoticed.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008758 September 3, 2020 8 / 19

https://doi.org/10.1371/journal.ppat.1008758


Need for an interdisciplinary response

Effectively managing risks of human disease caused by emerging zoonotic pathogens and

ensuring the health and conservation of wildlife species that are potential reservoirs of those

disease agents can be synergistic goals under a One Health framework. Spillover risk (from or

to wildlife) is often greatest in disturbed ecosystems where there is an elevated frequency of

human–wildlife interactions or disruption of ecological patterns [3, 120–124]. Thus, effective

bat conservation and management requires understanding both pathogens that cause disease

in bats, as well as human activities and ecological contexts that increase direct and indirect

interactions with bats that could present health risks [2]. Furthermore, fear-based reactions to

disease risk from wildlife, such as culling infected bat populations or indiscriminate killing,

often have negative unintended consequences for the interconnected health of both humans

and bats (e.g., culling of bats in a Uganda mine led to a more than doubling of Marburg virus

prevalence in the bats living there) [30, 125–127]. Temperate-zone vespertilionid bats inhabit-

ing human dwellings in the US and Canada represent a particularly relevant human–wildlife

interface, in which conservation and management actions to proactively address the potential

consequences for pathogen spillover are worth careful consideration [73].

Conservation-compatible surveillance of bat viruses has demonstrated the potential for

mutually beneficial collaboration between public health scientists and conservation stakehold-

ers [94, 113, 125, 128, 129]. Disease-focused studies that integrate ecological principles into a

rigorous study design provide the most informative context to interpret bat–virus associations

and patterns of richness globally [130–132]. Assessing the risks of SARS-CoV-2 spillover into

North American bats presents a timely opportunity to form multidisciplinary scientific teams

that include experts on emerging infectious diseases and ecologists with expertise on North

American bats [128]. Scientists researching emerging infectious diseases can benefit from sam-

pling opportunities and methods that bat researchers have developed for observing, counting,

and noninvasively sampling bats [73, 133]. Bat researchers can learn about human and animal

health monitoring and supporting laboratory methods, including biosafety, secure handling/

transport of CoV-positive samples, and training in the proper use of personal protective equip-

ment (PPE) from professionals with expertise in veterinary and medical sciences [113, 131,

134, 135]. A shared goal of all stakeholders is to identify and implement simple, widely avail-

able diagnostic tests for detecting SARS-CoV-2 infection that are species-independent, practi-

cal for field and laboratory use, highly specific and sensitive, and that do not require strict

biosafety containment [136]. All investigators can also work together to develop mutually ben-

eficial goals, such as joint risk communications to the public with effective and balanced mes-

saging about bat populations and higher risk activities for human–bat contact.

Adopting a precautionary approach in the face of global COVID-19 transmission among

human populations, national and international wildlife organizations have advised limiting

capturing and handling of bats in the field to minimize the risk of humans infecting wild bats

with SARS-CoV-2 until further assessment can be made [137, 138]. The emergence of WNS in

2007 prompted a similar surge in interdisciplinary collaboration that enabled the rapid

advances already mentioned and introduced changes to guidance for PPE use and disinfection

practices for bat researchers and recreational cavers. Similarly, the emergence of SARS-CoV-2

and other viruses will likely alter the status quo of bat research, emphasizing the need to care-

fully weigh risks and benefits of wildlife research in the context of population-altering diseases.

For example, PPE, including respiratory protection, is a standard practice adopted by many

bat virus researchers but by few others studying and regularly handling bats [134, 139]. The

urgent research priority of a rapid, quantitative risk assessment and analysis of various mitiga-

tion options is currently underway [137, 140]. One key question is whether the proper use of
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optimal PPE, including bidirectional N95 or equivalent masks, along with effective risk com-

munication and adherence to other basic biosafety practices [134, 141, 142] during field work,

can significantly reduce the transmission risk of SARS-CoV-2 from humans to bats. In the

interim, until new guidelines are established for handling and for close-proximity work with

bats, we have outlined gaps in our understanding of SARS-CoV-2 spillover risks at the inter-

face between humans, domesticated animals, and free-ranging wildlife. Temporarily shifting

to “hands-off” bat research methods also seems prudent, wherever possible, and could facilitate

ongoing work with reduced risk.

Examples of “hands-off” research strategies

Multiple research strategies that do not involve close contact with free-ranging bats already

exist for addressing critical gaps in understanding CoV diversity, distribution, evolution, and

potential health effects in temperate-zone bats. For example, a combination of host-cell recep-

tor analyses and in vitro and in vivo experimental infections across a diversity of bat and other

mammalian species have helped inform potential host range expansion for SARS-CoV-2. The

receptors that many CoVs use to gain access to host cells, such as angiotensin-converting

enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4/CD26), have undergone positive selection

in bats, resulting in diverse and recombinant CoV strains [72, 143]. These strains can likely

bind to numerous variants of a host receptor protein and facilitate spillover into other animal

species [72, 144]. SARS-CoV-2 targets and strongly binds to mammalian ACE2 cell receptors

[72, 145, 146]. Beta-CoVs of the subgenus Merbecovirus (like those known to occur in the

Americas) are not known to target ACE2 cell receptors, instead using as a receptor DPP4/

CD26 or possibly other receptors [53, 144]. Current in silico predictions that bats will likely

have low susceptibility to SARS-CoV-2 based on ACE2 structural analyses conflict with in

vitro evidence and do not comprehensively account for ACE2 amino acid sequence variation

(including intraspecific variation) that occurs within bats [17, 72, 145]. Assessing SARS-CoV-2

host range will require additional virus-host receptor binding assays in silico and in vitro [17,

53, 72, 144, 145], together with future experimental infection studies for confirmation of

Koch’s postulates. In addition, in vitro studies could evaluate species variability in innate

immune responses. These investigations will help quantify the potential for North American

bat infection and transmission among free-ranging populations.

Examples of other “hands-off” methods applicable to both bat disease and conservation

research include the following: virus discovery and characterization focused on existing speci-

mens archived in scientific museums or through partnerships and collaboration with estab-

lished national bat disease monitoring or surveillance programs [147, 148]; monitoring

echolocation calls to determine the occurrence, distributions, and seasonal or nightly activity

patterns of bats [133, 149]; digital imaging methods for counting bats and studying physiology

and behaviors in the context of disease [90, 108]; sampling guano from below bat roosts to

determine bat species and individual identity, population dynamics, and daily or seasonal pat-

terns of bat occupancy and pathogen shedding [71, 150–152]; and mathematical modeling to

predict susceptible host species, virus sharing among hosts, spread patterns, or to estimate

mortality in affected populations [5, 70, 122, 135]. Promising areas for innovation include

making technologies for bat research more accessible to a broader global user base, less expen-

sive, easier to use, and scientifically reproducible through open-source hardware, software,

and laboratory methods [153, 154]. In addition to research, standardized field protocols and

probabilistic sampling strategies are needed for monitoring bats and their viruses at continen-

tal scales (www.nabatmonitoring.org) [155, 156], as are longitudinal studies across multiple

sites to better understand the ecological drivers of CoV dynamics and spillover [157].
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Developing simple management tools and methods for rapidly assessing risks of virus spillover

from humans to wildlife, while maintaining scientific rigor, could also help with future disease

response. It might also be useful to prepare a suite of tools, protocols, and risk communication

strategies for natural resource managers and public health officials to immediately deploy

while risks are being assessed. Such prepared management resources could include public out-

reach material and guidelines for enhanced use of PPE for those in closest contact with poten-

tially susceptible wildlife.

Conclusion

Many questions remain about the risk of SARS-CoV-2 to naïve wildlife populations, the influ-

ences of human behavior on those risks, and the potential for establishment of new CoV reser-

voirs. Cross-species virus transmission events are relatively rare, requiring an infectious

reservoir host to be in contact with a recipient host when conditions concurrently favor sus-

ceptibility and onward transmission [12, 113, 114]. The currently unknown, but possible and

potentially high-consequence, risk of SARS-CoV-2 transmission and establishment in North

American bats (or other free-ranging mammals) warrants precaution [116, 140]. Strategically

managing interactions between people and potentially susceptible or at risk species can

decrease the probability of cross-species virus spillover [113]. Humans that frequently handle

and come into close contact with North American temperate-zone bats, such as bat research-

ers, wildlife rehabilitators, wildlife/pest control workers, and disease investigators, can help

decrease any chances of spillover by adopting basic PPE and biosafety practices and carefully

evaluating how their actions might adversely affect bat populations. We are at a critical nexus

of biosecurity and natural resource conservation that will require ingenuity and diligence to

continue important research on bats whilst simultaneously evaluating the ecological future of

SARS-CoV-2. Our actions during this current pandemic could profoundly influence and pro-

tect the health of both humans and wildlife in North America.
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