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Abstract—Automatic modulation classification (AMC) is
used in intelligent receivers operating in shared spectrum
environments to classify the modulation constellation of radio
frequency (RF) signals from received waveforms. Recently,
deep learning has proven capable of enhancing AMC perfor-
mance using both convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). However, deep learning-
based AMC models are susceptible to adversarial attacks,
which can significantly degrade the performance of well-
trained models by adding small amounts of interference into
wireless RF signals during transmission. In this work, we
present a two-fold defense mechanism to withstand adversar-
ial interference on modulated radio signals. Specifically, our
method consists of (1) correcting misclassifications on mild
attacks and (2) detecting the presence of an adversary on
more potent attacks. We show that our proposed defense is
capable of withstanding adversarial interference injected into
RF signals while maintaining false positive detection rates on
CNNs and RNNs as low as 3%.

I. INTRODUCTION

Automatic modulation classification (AMC) has become
increasingly of interest for shared spectrum environments,
where overcrowded radio channels inhibit wireless effi-
ciency. AMC aims to directly classify the modulation
scheme of radio frequency (RF) signals in a wireless channel
using received waveforms. Recently, deep learning (DL)
has demonstrated cutting-edge performance on AMC tasks,
without requiring computationally expensive derivations of
statistical decision boundaries on manually engineered fea-
tures [1]. Yet, despite these advantages, DL-based AMC
models are highly susceptible to adversarial attacks [2].
In such noise injection attacks, the adversary introduces
small perturbations into wireless signals during transmission
resulting in erroneous, yet high-confidence, predictions from
deep learning AMC classifiers. As a result, an adversary
can inject additive adversarial interference into an RF signal
during transmission to inhibit reliable communications.

In this work, we develop a two-fold defense methodology
to mitigate the effects of an adversary on deep learning-
based AMC classifiers. Specifically, we propose a detection
and a mitigation strategy, where the former rejects identified
adversarial signals for classification while the latter mitigates
the effects of subtle adversarial interference bypassed by
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the detector (thus, reducing misclassification on perturbed
signals). In applying our methodology on two custom trained
deep learning architectures, we find that it is able to detect
and mitigate wireless adversarial interference effectively
under different bounds of noise injection perturbations.

Related Work: Both convolutional neural networks
(CNNs) [3] and recurrent neural networks (RNNs) [1], [4]
have achieved robust AMC performance using different
architectures such as AlexNet [5] and ResNet [6] on clean
RF signals (i.e., signals not corrupted by adversarial interfer-
ence). However, AMC DL classifiers are known to be vul-
nerable to RF signals injected with adversarial interference
[7], [8], and as a result, adversarial susceptibility has been
cited as one of the primary challenges to widespread deep
learning adoption in wireless communications [9]. Defense
mechanisms such as denoising autoencoders [10] and Gaus-
sian smoothing [11] have been proposed to strengthen AMC
DL models in the presence of adversarial attacks, but they
are still susceptible to high-powered adversarial interference
signals. Our proposed methodology exposes the presence of
adversarial interference in such cases and provides mitiga-
tion when the interference has reached perceptible levels.

In computer vision, adversarial retraining [12] has been
proposed as an effective defense mechanism against visu-
ally imperceptible adversarial attacks. Although adversarial
retraining is known to be effective on mild attacks, classi-
fiers trained on adversarial examples demonstrate degraded
performance on potent attacks, making direct adoption of
retraining in defending AMC DL classifiers ineffective.
Manifold learning methods have also been proposed to
detect subtle perturbations for image classification [13], but
they have been shown to be ineffective when the adversary
can account for the detection model [14]. In this work, we
will show that adversarial retraining in conjunction with
manifold learning-based adversarial detection is effective
for both low and high-powered additive interference expe-
rienced in wireless communication channels.

Outline and Summary of Contributions: In this paper,
we begin by defining our target AMC DL classifiers and
comparing their training accuracy and resource utilization
(Sec. II-B and III-B). We then demonstrate the susceptibility
of each trained target model to two distinct adversarial
attacks (Sec. II-C). Finally, we propose a novel two-step
mechanism for defending and detecting adversarial DL-
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Fig. 1: Our wireless system model and proposed receiver architec-
ture for detecting and mitigating adversarial interference.

Signal: s[k

based wireless interference (Sec. II-D) and demonstrate its
effectiveness against /o and [..-bounded perturbations (Sec.
III-C and III-D).

II. AMC MODEL AND DEFENSE METHODOLOGY

In this section, we present our wireless channel model
(Sec. II-A), the deep learning-based AMC models under
attack (Sec. II-B), and the adversarial interference process
(Sec. II-C). Finally, we present our proposed defense and
detection methods (Sec. II-D), which mitigate the effects
of the adversarial attacks. Our overall system model is
depicted in Fig. 1; the AMC model and two-fold defense
are contained in the receiver.

A. Signal Modeling

We consider an /-dimensional modulated signal, s =
[s[0],...,s[¢ — 1]]T, which is transmitted over a wireless
channel. The channel introduces sample rate offset (SRO),
center frequency offset (CFO), selective fading, and additive
white Gaussian noise (AWGN) to the signal. The received
signal for sample k, denoted by z[k], is modeled as

x|k] = s[k] = h[k] + n[k], ()

where * denotes convolution, h[k] is the channel’s im-
pulse response and includes radio imperfections, and n[k]
is complex AWGN with each noise sample distributed as
CN (0, No). Note that although all signals are complex, i.e.,
x € C*, we will follow prior AMC work and represent all
signals as two-dimensional reals, i.e., x € REX2 using the
in-phase (I) and quadrature (Q) components of the signal,
where ¢ denotes the length of the observation window.

B. Target Classifier Architectures

After aggregating a set of modulated data signals, X C
Rf*2 where each input, x € X, belongs to one of C
modulation constellations, we train a DL classifier, which
we denote as f(-;0): R**2 — RC, where @ denotes the
model parameters. The trained classifier assigns each input
x € X a label C(x,0) = argmax; fi(x,0), where f;(x,0)
is the classification probability that x belongs to the ™
modulation constellation for i = 1,...,C. We consider two
DL architectures for f(-,8) consisting of both convolutional
and recurrent-based layers.

Convolutional Neural Nets: CNNs consist of one or
more convolutional layers, which extract spatially correlated

TABLE I: Proposed CNN architecture. The shapes of the convo-
lutional layers correspond to L x W x F.

Layer  Dropout Rate (%) Activation Shape
Input - - 2x€x1
Conv 1 20 ReLU 2 x 5 x 256
Conv 2 20 ReLU 1x4x128
Conv 3 20 ReLU 1x3x64
Conv 4 20 ReLU 1x3x64
FC1 - ReLU 128
Output - Softmax C

TABLE II: Proposed RNN architecture consisting of an LSTM
layer with 256 units followed by a fully connected layer with 128
units.

Layer  Activation Output Shape
Input - 2x/
LSTM - 256

FC ReLU 128
Output  Softmax 10

information from each layer’s input. The primary hyper-
parameters of each layer include the number of filters per
layer, denoted as F', and the filters’ kernel size in each layer.
We denote the filter kernels as m, € RE*W | where L and
W are the length and width of the filter, respectively. The
output of a convolutional layer produces F' outputs (termed
feature maps). Each element in the p" feature map of a

convolutional layer, for p=1,..., F, is given by
L-1W—1
wli Kl =D alj+Lk+wmy[lw], (2
=0 w=0

where the input, x, and the p‘h filter, m,,, are cross-correlated
to produce the output y indexed at j and k. The parameters
of each filter, m,, in each layer are estimated from the
training data. Our proposed CNN architecture along with
its training details are presented in Tables I and III.

Recurrent Neural Nets: RNNs create memory to corre-
late earlier input features to delayed features in the input
signal. Long-short-term-memory (LSTM) cells [15] extend
recurrence in neural networks by implementing three gates
for learning. Input gates prevent irrelevant features from
entering the recurrent layer while forgetr gates eliminate ir-
relevant features altogether. Output gates produce the LSTM
layer output, which is inputted into the subsequent network
layer. The gates are used to recursively calculate the internal
state of the cell, denoted by zgt) at time ¢ (a specific recursive
iteration) for cell ¢, which is then used to calculate the cell
output, defined as

q® = tanh(z))o(p®), (3)

where p(*) is the parameter obtained from the output gate
of the cell and o(+) is the logistic sigmoid function given by
o(pt) = 1/(1+eP%) for the i element in p*). The model
parameters are estimated during training. Our proposed
LSTM-based RNN architecture and the training details we
employ are shown in Tables II and III, respectively.



TABLE III: Model training parameters. The CCE cost function
refers to categorical cross entropy.

Parameter CNN RNN

Cost Function CCE CCE

Optimizer Algorithm Adam  Adam
Learning Rate 0.001  0.001
Batch Size 256 64
Epochs 100 100

Subsampling: To evaluate the tradeoff between training
efficiency and the trained model’s performance, we will
evaluate the training times and classification performances
of both the CNN and RNN in Section III using various
subsampled input representations. A subsampling rate of
d, 0 < d < 1, yields the signal of d - [ evenly spaced
points from the original observation window. We will see
that each model is susceptible to adversarial interference,
and we will evaluate the effectiveness of our defense on
different subsampling rates.

C. Adversarial Attack Models

Adversarial interference injected into transmitted signals
is intended to alter the classification decision of f(-;8). We
model the additive adversarial interference as § € R*2
with the perturbed signal given by

x=x+30. “4)

We focus on crafting 8 according to the [, norm-constrained
class of noise injection attacks, which are common in AMC
settings [7]. In general, multiple methodologies exist to craft
adversarial interference signals and, therefore, a chosen &
may not necessarily be a unique perturbation. Formally, § is
calculated by solving an optimization problem of the form

min 4],
o . (5)
s.t. C(x,0)#C(x+6,0) and x+6 € X.
In (5), ||-||, denotes the [, norm of the perturbation, and the

constraints induce misclassification while keeping x in the
same space as x. In this work, we consider perturbations
crafted using the fast gradient sign method (FGSM) [16]
under both an [,,-norm constraint and an />-norm constraint.
We assume the most vulnerable exposure to the adversary,
known as a white box threat model, where the adversary
has full access to the trained model and its parameters.
Specifically, the adversary is completely aware of f(-;0)
including its architecture and parameters.

loo-bounded attack: The [.,-bounded FGSM adds a
small perturbation, € € R!*2 to each feature of the input
sample in the direction of the sign of the classifier’s cost
function (categorical cross entropy in our case), J(x,y,8),
which is a function of the input sample, x, its ground truth
label, y, and the model parameters, §. Formally, the [,
crafted perturbation is given by

% =x+c-sgn(VaJ (x,4,0)). ©)

TABLE IV: Convolutional autoencoder architecture. The shapes
of the convolutional layers correspond to L x W x F.

Layer  Activation Shape
Input - 2xfx1
Conv 1 Linear 3 X3 %64
Conv 2 Linear 3 x3x 32
Conv 3 Linear 3x3x16
Conv 4 Linear 3 x3x 32
Conv 5 Linear 3 X3 %64
Conv 6 Linear Ix3x1

Employing (6) moves the sample, x, in the direction of
the high-parameter neural network’s decision boundary, and
misclassificaton is induced when the sample crosses the
decision boundary. The adversary here is not limited to
adding an imperceptible perturbation, and therefore, the €
bound added to the sample can vary widely.

la-bounded attack: The l5-bounded FGSM is natural to
consider for wireless signals as it corresponds to the signal
power of the transmission. Specifically, a perturbation, a €
Rf*2_ is added to the signal, x, by

0Vl (x,9,6)
IV d (x,y,0)]]27

where J refers to the classifier’s cost function as in (6). In

Sec. III-C and III-D, we demonstrate both the potency of the

FGSM attack and the effectiveness of our proposed defense
across a wide range of perturbation bounds.

)

X=X+

D. Adversarial Detection and Mitigation

We now develop our two-fold defense strategy against ad-
versarial interference. Given a dataset of modulated signals,
X = {x € ¢}, where ¢ is the universal set containing all
signals, x, we perform a random split to attain two disjoint
subsets, Xiain and X at the receiver. The subset Xian C X
is used for optimizing the defense algorithms, and Xy C X
is used to evaluate the efficacy of our proposed defense. Our
defense consists of a mitigation and a detection component.

Mitigation: The mitigation portion of our proposed
method is concerned with correctly classifying adversarially
perturbed inputs. To achieve this, we re-train f(-;8) using
adversarial inputs generated on Xi.i, using (6) for different
¢ bounds and arrive at F(-;0). F(-;®) can withstand
adversarial perturbations to a greater extent than f(-;0)
due to its augmented training set, which includes inputs
artificially injected with adversarial interference. Algorithm
1 describes our method used to generate F'(-;@®). In this
algorithm, we select a set of upper perturbation bounds,
which are used to train F'(-; ®) to mitigate multiple bounds
of injected interference.

Detection: For detection, we propose a manifold learning
approach using a convolutional autoencoder. We denote this
autoencoder as U (-; @), where ® denotes the parameters of
the autoencoder. We use an encoding function, h : R**2 —
R¥*2 to map an input signal x; to a latent space representa-
tion. Then, a decoding function, g : R¥*2 — R*2  is used



Algorithm 1 AMC Adversarial Mitigation

Algorithm 3 Applying AMC Adversarial Detector

1: input: f(-;0): trained classifier
Nlrain: training data set
7: upper perturbation bounds
initialize: X'[n] < 0 Vn
for x,, € Xyin do
for n, € n do
Xy — Xp + 15 - sgn(VeJ (x,9,0))
X[n] « %,
end for
end for }
)(lotal < [X, X}
F(7 6) < train f(’a) on Xl
return F(-;O)

B A R ol

—_—
—_ o

Algorithm 2 Constructing AMC Adversarial Detector

1: input: Xj,: training data set
€: upper perturbation bound
2: initialize: X'[n] < 0 Vn
E[n] + 0 ¥n
3 U(;®) = min}jmize”% >
for all x,, € X;rain do
Xp < Xp +€-5gn(VyJ(Xn,y,0))
Eln]  ||3 i, (@ - Ul @)1
end for
T = max(E)
return T,U(-; ®)

= g(h(x)))|I?

X € Xirain (Xi

D AN

to reconstruct an approximation of the input, X; € R*2.
Intuitively, the reconstruction cost will be higher when an
adversary has injected noise into the input.

The parameters of the encoder and decoder are simulta-
neously optimized, using the mean squared error function,
to produce the autoencoder given by

+ 2 G- glh(x))

X3 € Xirain

2

®)

U(-; @) = minimize
h,g

The model is trained using the Adam optimizer, and its
architecture is shown in Table IV. After optimizing U (-; ®),
it is used for building and deploying the adversarial detector
using the procedures described in Algorithms 2 and 3,
respectively. Specifically, the reconstruction loss of U(-, ®)
is used to measure the distance of a sample from the
training data manifold, where samples beyond a threshold,
T, are considered adversarial. In Algorithm 3, assigning an
input sample to a value of one is equivalent to a positive
adversarial detection.

III. EVALUATION RESULTS AND DISCUSSION

In this section, we begin by discussing the dataset em-
ployed to evaluate our proposed defense methodology (Sec.
II-A). We then evaluate our AMC models in the absence of
an attack (Sec. II-B) and show the ability of our proposed

1: input: T": pre-determined threshold
U(-; ®): trained autoencoder
X;: input sample

2 T = | 2N (s — Ul @) 2
3: if T; > T then

4: X; 1

5: else if T; < T' then

6: X; <0

7: end if

defense to mitigate adversarial interference on both CNNs
(Sec. II-C) and RNNs (Sec. II-D).

A. Dataset and Evaluation Procedure

To evaluate our methodology, we leverage the RadioML
2016.10b dataset [17], which consists of 60,000 128 x 2
wireless 1Q signals at different signal to noise ratios (SNRs).
Each signal is modulated according to one of the following
ten schemes (eight digital (D) and two analog (A) constel-
lations): BPSK (D), QPSK (D), 8PSK (D), QAM16 (D),
QAMO64 (D), GFSK (D), CPFSK (D), PAM4 (D), WB-FM
(A), and AM-DSB (A). The modulated signals range from
0 to 18 dB in increments of 2 dB, and they are normalize
to unit energy.

We perform an 80/20 split of the signals at each SNR
to construct X, and Xy, respectively. We evaluate each
model in terms of accuracy, computational overhead, and
susceptibility to adversarial perturbations. These metrics are
measured using the classification accuracy on an unper-
turbed testing set, the classifier training time, and the classi-
fication accuracy on different perturbation bounds employed
on Xy, respectively.

B. AMC Classifier Performance

We first analyze the AMC performance of the CNN and
RNN without the presence of adversarial interference. We
consider the effect of different SNRs and subsampling rates
on the resulting performance. The trained model accuracies
and training times are shown in Fig. 2 and Table V, respec-
tively. Both the CNN and RNN follow similar classification
accuracy trends in that (i) the classifiers trained on the
full observation window achieve similar performance to the
classifiers trained on signals subsampled by 1/2, and (ii)
the performance degrades with more aggressive subsampling
rates. Higher downsampling results in faster model training
times but degrades the performance until the modulated
signal does not contain enough relevant features for effective
classification. Although the RNN requires significantly less
training time (about 75% lower) than the CNN on the
full observation window, the benefit of its computational
efficiency is hindered by its poorer accuracy (about 18%
lower) compared to the CNN. This indicates that convo-
lutional architectures tend to perform better than recurrent
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TABLE V: Model training times per epoch (in seconds) for
different subsampling rates on the CNN and RNN.

Subsamp. Rate CNN RNN
None 246 60
1/2 127 55
1/4 70 53
1/8 42 52

architectures when training time is not a factor, but recurrent
architectures may be preferred to convolutional models when
computational resources for model training are scarce.

C. Defending the CNN-based AMC Classifier

We now evaluate our two-fold defense methodology on
the CNN architecture, considering both FGSM attacks and
different subsampling rates. The results for the /,-bounded
perturbation are shown in Fig. 3. The first part of our
proposed defense, F'(-,®), effectively mitigates the mis-
classification induces from lower perturbation bounds. In
particular, when no subsampling is employed, F(-;®) is
able to achieve an improvement in classification accuracy
by a factor of up to 5x for € € [0.00,0.01] (where x
has unit energy) in comparison to the baseline classifier,
where no attempt at mitigation is made. Classifiers trained
on subsampled inputs show similar performance for small
perturbations, but, for more aggressive subsampling rates,
the performance of the defense classifier, F'(-; @), slightly
falls below the baseline classifier. This suggests that F'(-; ®)
is better suited for defending models trained at a higher
dimensionality.

As the perturbation bound grows, the performance of
F(-;©) degrades and becomes equivalent to the baseline
classifier’s performance regardless of the subsampling rate.
In this scenario, the second part of our proposed defense,
U(-; @), detects adversarial interference, indicating to the
receiver that the prediction of F'(-;®) may be unreliable.
In Fig. 3, once ¢ = 0.01, we achieve high detection rates
(above 80%) for each subsampling rate. This exemplifies
both portions of the proposed defense working together; the
defense metrics show that F'(-; ®) is able to mitigate, to a
great extent, the adversarial perturbation on lower bounds
when U(-; ®) has a lower detection rate, whereas U/(-; ®)
is able to confidently detect adversarial interference at high
bounds when the performance of F'(-;®) degrades. As a

TABLE VI: Attack independent false positive adversarial detection
rates for each considered CNN and RNN model.

Subsamp. Rate CNN FP (%) RNN FP (%)
None 2.48% 2.24%

1/2 5.69% 5.45%

1/4 18.85% 12.54%

1/8 10.44% 8.21%
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Fig. 3: Defense effectiveness on the CNN against an [.-bounded
perturbation. For € < 0.01, F(-,®) is able to obtain significant
improvements in classification performance over f(-,8), while for
€ > 0.01, U(-, ®) has a high detection rate.

result, U(-; ®) prevents any adversary from adding a large
amount of interference in order to avoid detection. In the
limited operating region remaining to the adversary, our
proposed defense, F(-; ©®), significantly increases the clas-
sification performance in comparison to using the baseline
classifier, f(-;0).

Our proposed defense retains similar performance against
l> bounded attacks on CNNs. Specifically, as shown in Fig.
4, F(-;©) achieves higher classification performance than
f(-;0) on lower bounded attacks (« < 0.1) followed by
degraded performance on higher bounded attacks (o > 0.1)
in the region where U(-; ®) achieves high detection rates.
This trend is consistent over different subsampling rates.
Furthermore, as in Fig. 3, classifiers trained on lower
dimensional signals exhibit weaker performance on lower
perturbation bounds.

D. Evaluation of Defense on RNN

Fig. 5 shows the result of applying our two-fold defense
to the RNN for the [.,-bounded FGSM attack. Despite the
lower baseline classification performance of the RNN, com-
pared to the CNN, the RNN is equivalently susceptible to
adversarial attacks. Further, our proposed defense mitigates
the FGSM attack similarly on the RNN as with the CNN.
Specifically, in each subsampled representation, F(-;®)
achieves a higher classification performance compared to
f(+;8) on lower bounded attacks (¢ < 0.01) whereas U(-; @)
attains nearly perfect detection rates on higher bounded
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Fig. 5: Defense effectiveness on the RNN against an [-bounded
perturbation. Similar to the CNN, the adversary’s operating region
here is limited to e < 0.010 to avoid probable detection, and in this
range of € our mitigation achieves noticeable gains in classification
performance.

attacks (e > 0.01). The robust detection rate at high bounded
perturbations is critical to inhibiting an adversary from
adding a large amount of interference.

The FP rate of U(-; ®) on each subsampled signal rep-
resentation is presented in Table VI. U(-; ®) achieves the
lowest FP rate on the full observation window, and the rate
increases for higher subsampling rates on both the CNN and
RNN. Furthermore, the detectors for both classifiers attain
higher FP rates for signals with 1/4 subsampling compared
to 1/8 subsampling. Thus, although more computationally
costly, models trained on the full observation window result
in the most secure classifiers with the lowest FP rates on
unperturbed RF signals.

IV. CONCLUSION AND FUTURE WORK

Deep learning automatic modulation classification (AMC)
classifiers have been shown to be susceptible to adversarial
interference. In this work, we proposed a two-fold defense
strategy capable of detecting and mitigating RF signals
perturbed with adversarial interference. We demonstrated
the effectiveness of our method on both CNNs and RNNs
against two [, constrained attacks. In future work, we
anticipate investigating the effectiveness of our defense in
additional threat models in which the adversary may be lim-
ited in system knowledge. We also anticipate evaluating our
defense in the presence of additional sources of interference
such as the superposition of multiple waveforms.
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