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Abstract—1It is critical for biological studies to annotate amino
acid sequences and understand how proteins function. Protein
function is important to medical research in the health industry
(e.g., drug discovery). With the advancement of deep learning,
accurate protein annotation models have been developed for
alignment free protein annotation. In this paper, we develop
a deep learning model with an attention mechanism that can
predict Gene Ontology labels given a protein sequence input. We
believe this model can produce accurate predictions as well as
maintain good interpretability. We further show how the model
can be interpreted by examining and visualizing the intermediate
layer output in our deep neural network.

Index Terms—Bioinformatics, Gene Ontology, Deep Learning,
Data Visualization

I. INTRODUCTION

Understanding protein function at the molecular level has
great implications in the biomedical and pharmaceutical in-
dustry [1]. For example, protein annotation facilitates the
development of novel tools for disease prevention, diagnosis,
and treatment [2]. Researchers can design experiments to char-
acterize the function of a protein (for example, researchers can
design an assay to measure the execution of a given molecular
function and show if the protein serves as an agent in such
executions) [3]. Knowing the diversity and full space of the
protein universe will be helpful, and the number of genomic
sequences collected is exponentially growing due to recent
advances in sequencing technology [4]. However, experimental
methods can not efficiently annotate protein sequences at large
scale.

Researchers have shown that the knowledge of the bio-
logical role of common proteins in one organism can often
be transferred to other organisms [5]. Therefore, the Gene
Ontology Consortium proposed to use a dynamic collection
of controlled vocabulary to describe the functions of proteins.
Such a Gene Ontology (GO) database lays a foundation for
computational analysis of large-scale molecular biology and
genetics experiments in biomedical research [6].

There are three major branches in GO, namely, Biolog-
ical Process (BP), Molecular Function (MF), and Cellular
Component (CC) to describe the function of proteins from
different aspects. GO is hierarchical, “children” terms are more
specific functions compared with a “parent” term. In addition,
individual terms can have not only multiple descendants, but
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also multiple parents [7]. This controlled vocabulary of protein
functions has enabled computational methods for functional
annotation. And the experimental function information of
annotated protein sequences can be used to infer the functions
of protein sequences that have not yet been characterized. One
of the challenges in GO term prediction is that it’s essentially a
multi-task learning problem as the model predicts the presence
of multiple GO terms simultaneously.

Recent advances in deep learning have made huge successes
in Computer Vision (CV) and Natural Language Processing
(NLP) fields. In this paper, we propose a deep learning model
to predict the GO terms of protein sequences. We show that
such model can outperform baseline methods and can be
interpreted by extracting the output of intermediate layers. We
show that our model can learn sequential information from
input proteins and demonstrate multiple methods for model
interpretation and data visualization. The rest of this paper is
organized as follows. In Section II, we give an overview of
related research. Section III discusses detailed information on
our proposed model. Experiments are presented in Section IV,
followed by our results and discussion in Section V. In section
VI, we draw our conclusions.

II. RELATED WORK

One of the most effective ways to computationally deter-
mine the functions of an unknown protein is to find the most
similar sequence in the reference sequences with experimental
functional annotations and use its functions to annotate the
query sequence. Similarity comparison programs such as Basic
Local Alignment Search Tool (BLAST) [8] can identify bio-
logically relevant sequence similarities. Many computational
methods have been proposed based on sequence similarity [1],
[9]. However, the similarity search process involves alignment
which is relatively computationally expensive. In addition,
the similarity search method doesn’t generalize to distantly
related sequences. Therefore, the prediction of novel protein
sequences can be challenging for similarity based methods
[10].

Machine learning based methods, on the other hand, have
the advantage of better generalizability to predict the function
of remotely relevant proteins and the homologous proteins of
distinct functions [11]. The function prediction performance
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are further improved by deep learning based models in recent
years [2], [12], [13]. However, the proposed models mainly
use convolutional neural networks (CNN) instead of recurrent
neural networks (RNN) which are more suitable to capture
sequential order information [14]. Furthermore, recurrent neu-
ral networks, especially long short-term memory (LSTM)
network, with an attention mechanism [15] have demonstrated
better performance and model interpretability in not only the
NLP field [16]-[18] but also the bioinformatics field [19],
[20]. Therefore, we believe it is beneficial to incorporate a
recurrent neural network with an attention mechanism for
protein function prediction.

The contributions of our work are 3-fold: 1) We develop a
deep learning model with attention mechanism that can predict
Gene Ontology labels given a protein sequence input; 2) We
show this model can produce more accurate predictions by
comparing it against other baseline methods; 3) We show how
the model can be interpreted by examining and visualizing the
intermediate layer output in our deep neural network.

III. THE PROPOSED MODEL

Our model consists of several convolutional residual net-
work, a Bi-directional LSTM network with an attention mech-
anism [15] and a hierarchical dense layer described in [12].
The convolutional residual network (ResNet) is proposed to
capture local patterns using convolutional filters and avoid
vanishing gradients by shortcut connections. Therefore, we
place it at the beginning of our model to learn the lower level
patterns directly from the input data. Bi-directional LSTM
network is then used to learn the high level features and
sequential information from the previous step. One of the
key component in our proposed model is the feed-forward
attention mechanism, which is inspired by previous work
in neural language processing field [15], [18]. The previous
works have shown that the attention mechanism can enable
the model for better interpretability in addition to accurate
predictions. Therefore, we add this mechanism to the Bi-
directional LSTM layer to get a dense representation of the
input sequence. Finally, a hierarchical dense layer described in
[12] is used to perform the final prediction. The advantage of
such hierarchical dense layer is that it captures the hierarchical
structure of GO and ensures that a GO term will be predicted
if one of its “child” terms is predicted. We have applied a
deep neural network with similar architecture in 16S rRNA
datasets for phenotype prediction and demonstrated that such
deep learning architecture can learn informative regions from
16S rRNA reads that are predictive for “Phenotype” [20].

Our proposed model is described in Fig. 1. The input is a
one-hot coded protein sequence with length T'. Since there
are 20 different amino acids in our input sequences [21],
the dimension of the a one-hot coded sequence is a T' x 20
dimensional matrix. The input is fed to one I-dimensional
convolutional blocks with window size of W and the number
of output channels of N, followed by 4 ResNet layers with
the same configuration. The resultant output is a 7' x N, di-
mensional matrix which is processed by a Bidirectional LSTM

(Gene Ontology Prediction)

Fig. 1. The proposed model diagram

layer with the number of hidden nodes of N;, and the output
from both directions are concatenated together. Therefore, the
hidden states output, H, is a T' X 2NN}, dimensional matrix.
The attention layer is a time distributed dense layer with 1
hidden unit, and it assigns a attention score for each position
in the input along the sequence axis. The attention scores are
activated by a softmax function to generate attention weights
so that the weights sum to 1. The attention weights, «, is 1 xT'
dimensional. Then, the attention weights and the hidden states
output, H, are used compute a sequence embedding vector, E,
as shown in (1) where E is 1 x 2N}, dimensional.

E=aH (1)

Finally, a hierarchical dense layer is used to produce the final
GO term predictions. Since one sequence can have multiple
GO term annotation, we need a prediction layer that can
predict different GO terms simultaneously. Here we used the
hierarchical dense layer proposed in DeepGO [12]. In the
hierarchical dense layer, each dense node, which outputs a
scalar, corresponds to a GO term. We use sigmoid activation
function after each dense node and use the binary cross-
entropy as the cost function.
IV. EXPERIMENTS
A. Baseline Methods

Kulmanov et al. proposed a novel deep learning model,
DeepGO, that predicts protein function from sequence that
outperforms the similarity based baseline method, BLAST
[12]. The proposed model can take the protein sequences only
as input and predict GO terms (referred as DeepGOSeq in the
original paper). In addition, their model can be trained to take
both a protein sequence and a protein-protein interaction (PPI)
network embedding vector as inputs for GO term prediction.
However, in order to retrieve the PPI information of the
input sequence, similarity searches are required. In our paper,
we focus on developing a model without similarity search
steps. Therefore, we choose to compare our method with
DeepGOSeq model which only takes a protein sequence as
input. BLAST is another baseline method we consider in this
paper which relies on sequence similarity comparison.

B. Dataset and Evaluation Metric

SwissProt provides manually curated protein sequences with
Gene Ontology annotation [22] which was used by Kulmanov
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et al. as the experimental dataset which contains 60,710
proteins annotated with 27,760 classes (19,181 in BP, 6221
in MF and 2358 in CC) [12]. They further filtered out very
specific GO terms with only small number of annotations and
selected the top 932 terms for BP, 589 terms for MF and 436
terms for the CC ontology to train their models [12] which
results in three sets of training and testing datasets labeled
by the three GO term branches. The authors have released the
processed dataset'. We use their filtered dataset to develop our
model and further visualization.

The performance of our model is evaluated by a protein
centric maximum F-measure, Fj,,.. It is widely used for
Gene Ontology prediction evaluation [1], [2], [12]. We adapted
the F-measure computation defined in DeepGO [12]. The
output vectors of both our model and DeepGO model are
vectors of decimal values between 0 and 1. To determine the
predicted GO terms, a threshold is needed and protein centric
maximum F-measure can be used to find the best threshold that
maximizes the F-measure of the resultant GO term predictions.
To be specific, Kulmanov et al. compute the F},,, measure
using the following formulas:

1) The precision and recall of an individual sequence, ¢,
can be evaluated by (2) and (3) where f is a GO term,
Pi(t) is a set of predicted GO terms for the protein ¢
determined by a threshold ¢, and 7% is a set of annotated
GO terms for the protein ¢ (ground truth). Note that
one sequence can be annotated by multiple GO terms,
therefore, precision and recall can be calculated per

sequence.
Y IUEPWMASET)
prz(t) - Zf I(f c R(t)) (2)
TCi(t):ZfI(fGPi(t)/\fETi) 3

Zfl(fETi)

2) The averaged precision and recall can be calculated
among testing proteins by (4) and (5) where m(t) is
the total number of proteins that the model predicts at
least one term using the threshold ¢ and n is a number
of all testing proteins.

m(t)
1
AvgPr(t) = —— At 4
vgPr(t) m(t);m() 4)
AvgRc(t) = %Zrci(t) )
i=1

3) Finally, the protein centric maximum F-measure, F}, 4.,
can be calculated by choosing the threshold ¢ that
maximizes the averaged F-measure as shown in (6).

Fovs — max 2. AvgPr(t) - AvgRc(t)

i AvgPr(t) + AvgRc(t) ©

IThe DeepGO experimental dataset is available at https:/github.com/
bio-ontology-research-group/deepgo [12]

C. Experimental Setup

The experimental dataset has been split into a train and
test set by Kulmanov et al. We further split the training set
into 80% training set and 20% validate set. We train three
different models to predict GO terms associated with three
main branches (BP, MF, CC) respectively similar to DeepGO
models [12]. The best set of parameters are selected for each
model to maximize F,,,, in validation set through a grid
search of possible combinations of parameters listed in Table
I. The best parameters for three models are pretty consistent:
N. =128, W =3, D = 0.1 and HD = Yes. However, the
optimal Ny, is 64 for both BP and MF model and 128 for CC
model.

TABLE I

HYPERPARAMETER SEARCH SPACE
Hyperparameter Value
Number of conv filters, N. 64, 128, 256
Window size of conv filters, W 3,9,27
Number of units in LSTM, N}, 32, 64, 128
Dropout probability for Dropout Layer, D | 0, 0.1, 0.2
Hierarchical dense layer, H D No, Yes

V. RESULTS AND DISCUSSION

The models are trained with the best parameters selected
in Section Experimental Setup and compare with the F, .,
values reported in DeepGO paper [12]. We also implement
the DeepGOSeq model ourselves and evaluate our own im-
plementation with the experimental dataset. The performance
is shown in Table II. From Table II, we can see that BLAST

TABLE II
PROTEIN CENTRIC MAXIMUM F-MEASURE FOR DIFFERENT MODELS — THE
PROPOSED MODELS OUTPERFORM THE BASELINE MODELS

Method BP MF CC

BLAST (reported in [12]) 0.314 0372  0.362
DeepGOSeq (reported in [12]) 0.293  0.364 0.568
DeepGOSeq (our implementation)  0.293  0.356  0.539
Proposed model 0.304 0419 0.598

has the best performance for BP related GO terms prediction.
However, it is not performing well in MF and CC prediction
tasks. The performance of the DeepGOSeq model reported
in the original paper notably outperforms BLAST in the CC
prediction task. However, its performance is slightly worse
than BLAST in BP and MF tasks. Our implementation of
DeepGOSeq model outperforms BLAST in both MF and
CC tasks with a some performance drop in BP. Lastly, our
proposed model produces better or comparable Gene Ontology
terms prediction performance. It is comparable to BLAST in
the BP task and it also stands out in MF and CC prediction
tasks compared with DeepGOSeq model.

In addition, to produce accurate GO predictions, the in-
termediate layer output of our model, namely the attention
weights, «, and the sequence embedding vector, E, can
facilitate data visualization and model interpretation. First, our
model can convert a raw amino acid sequence into a mean-
ingful numerical embedded vector, F, that encodes protein
function signals. To understand how our model transforms
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the protein sequences in numerical space, we extract the
embedding vectors, H, for all testing sequences and reduce
the dimensionality to 2-dimension using t-SNE [23] for visu-
alization. Fig. 2 and 3 show the testing sequence embedding
vectors generated by MF and CC models respectively. We can
observe that there are several clusters which might correspond
to biologically meaningful functions. To interpret the clusters,
we perform k-means [24], with k = 5 clusters, to assign cluster
labels to sequences. Then we find the GO term that dominates
each clusters and color code all testing sequences with that
dominant GO term with a distinctive color. Sequences that are
not associated with the selected dominant GO terms are color
coded by gray color. In Figs. 2 and 3, each point is a sequence
and colored by a color that corresponds to a dominant GO
term. From these figures, we can see that the model learns the
amino acid sequences information and can embed sequences
associated with the same functions closely. To be specific, Fig.
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Fig. 2. 2D projection of the testing sequences embedding generated by
Molecular Function (MF) model. Sequences annotated with transporter ac-
tivity are embedded in a small cluster at the left side of the figure and
sequences annotated with transferase activity and transferring phosphorus-
containing groups are embedded in a dense cluster at the top of the figure.

2 shows the embedding of testing sequences of the MF model.
From the figure, we can see that binding related sequences (in
blue) are clustered in the right side of the figure and sequences
with catalytic activity annotation (in orange) are embedded in
the lower side of the figure. And these two clusters overlap
with each other. We further show that some sequences have
both catalytic activity and binding labels (in green) which
contributes to the overlap between the two clusters. Sequences
with transporter activity form their own cluster (in red) and
sequences with one specific catalytic activity related GO
term (transferase activity, transferring phosphorus-containing
groups) form the purple cluster. In Fig. 3, clusters are formed
based on Organelle. Proteins in the Mitochondria form a
small cluster (in green). There is a symbiogenesis theory
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Fig. 3. 2D projection of the testing sequences embedding generated by
Cellular Component (CC) model. Sequences annotated with Mitochondrion,
Plastid and extracellular region forms their own clusters.

hypothesizing that all mitochondria derive from a common
ancestral organelle that originated from the integration of an
endosymbiotic alphaproteobacterium into a host cell related
to Asgard Archaea [25]. Our proposed model picks up this
information by embedding protein sequences in Mitochondria
together in the embedding space. Membrane associated se-
quences, on the other hand, are more widely spread which
implies that the membrane related protein sequences also
participate in other functions.
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Fig. 4. Attention weights for three sodC gene sequences. The model pays
more attention weights towards the middle of the two genes from Aspergillus
species while the attention is placed at the beginning of the sodC gene for
the Candida species

We further explore the attention weights extracted
from our model. We focus on three sodC gene se-
quences from three different fungi, namely, Aspergillus
fumigatus Af293 (SODC_ASPFU), Aspergillus niger CBS
513.88 (SODC_ASPNC) and Candida glabrata CBS 138
(SODC_CANGA). According to Uniprot [22], sodC gene can
destroy toxic radicals which are normally produced within
the cells. Fig. 4 shows the attention weights for these three
sequences. The protein sequence SODC_ASPFU (in blue) and
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SODC_ASPNC (in orange) are pretty similar (15 amino acid
differences out of 154 amino acids) whereas SODC_CANGA
(in green) sequence has more amino acid variations compared
with the other two sequences. In the figure, we also label
the amino acid for those three sequences at high attention
positions (from left to right: SODC_ASPFU, SODC_ASPNC
and SODC_CANGA). From the figure, we can see that similar
sequences have similar attention weights whereas different
amino acid configurations can result in different attention
weights. For example, in position 116, both SODC_ASPFU
(in blue) and SODC_ASPNC (in orange) have high attention
weights while the model doesn’t pay high attention to that
position in SODC_CANGA (in green) sequence. And only the
SODC_CANGA (in green) has an S at that position which is
different from the amino acid T shared by SODC_ASPFU (in
blue) and SODC_ASPNC (in orange).

VI. CONCLUSION

This paper presents a deep learning based Gene Ontology
prediction model that combines convolutional neural network
and recurrent neural network with feed-forward attention
mechanism. We evaluate our new approach using an exper-
imental dataset and demonstrate that our method performs
comparably or outperforms the baseline methods in different
GO branch prediction tasks. We then show that the output
of intermediate layer can be used to interpret the model. We
demonstrate that the sequence with the same Gene Ontology
annotation are clustered together in the embedding space by
the model. Furthermore, with the help of attention weights
produced by the model, users can explore the sequential in-
formation space to identify predictive regions in the sequences.
As a future direction, we suggest to predict other protein labels
such as protein families [26] with this framework.
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