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A B S T R A C T   

Assessing the equity impacts of transportation systems/policies has become a crucial component in trans
portation planning. Existing statistical modeling approaches for transportation equity analysis have typically 
assumed that parameter estimates are constant across all observations and used data aggregated to certain 
geographic units for the analysis. Such methods cannot capture unobserved factors that are not contained in the 
dataset, i.e., unobserved heterogeneity, which is likely to be present in the increasingly popular disaggregated 
datasets. To investigate whether there is unobserved heterogeneity in transportation equity impacts, this study 
carries out an empirical study focusing on the distribution of individual accessibility to activity locations via 
bike-sharing in southern Tampa. A disaggregated dataset containing information on individual bike-sharing 
accessibility and socio-economic factors is modeled with a random parameters logit model that allows for the 
investigation of possible unobserved heterogeneity. Further, models are estimated using data aggregated to 
parcel- and TAZ-levels to explore the impacts of data aggregation on model estimation results. The models unveil 
the unobserved heterogeneity in bike-sharing accessibility among populations in different groups defined by 
different sociodemographic factors in southern Tampa. These results shed insights into how the inconsistent 
disparity direction of transportation outcomes across individuals in a population group can be measured from the 
heterogeneity effects. Finally, a comparison between different models show that to capture such inconsistency, 
the use of disaggregated data with heterogeneity models is highly recommended for transportation equity 
analysis.   

1. Introduction 

Title VI of the Civil Rights Act of 1964 requires programs, trans
portation programs included, that receive federal funds to bring out
comes (e.g., costs, benefits) to society non-discriminatively (Karer and 
Niemeier, 2013). Achieving an equitable distribution of the outcomes of 
transportation systems across space and different sociodemographic 
groups has then become a primary challenge facing urban transportation 
planning (Gao and Klein, 2010; Carrier et al., 2014). Regardless of 
enormous efforts on ensuring equity from transportation planners, as
sertions of inequity have been witnessed in traditional and emerging 
transportation systems (Noland and Lem, 2002; Guo et al., 2020). Many 
traditional transportation practices were known to favor automobile 
travel rather than other modes of transportation that are heavily relied 
on by socially- or economically-disadvantaged groups (Litman and 
Brenman, 2012). Further, research has also identified inequities in ac
cess to the emerging bike-sharing systems, with white, college-educated, 

and affluent people being overrepresented among the registered users of 
several bike-sharing systems in the United States (Ursaki and Aultman- 
Hall, 2015). Therefore, analyzing the equity impacts of transportation 
systems/policies has become an important part of transportation project 
design. 

In the challenging mission of analyzing the equity impacts for 
transportation systems, a critical step is to assess the distribution of their 
outcomes across space and/or different demographic groups. One 
typical approach is to apply a mismatch analysis of simple descriptive 
statistics (e.g., mean) of the transportation outcome measures. This 
method presents the distribution of the outcome measures in maps or 
tables and then compares the distributions (Currie, 2004; Karn Kaplan 
et al., 2014; Golub and Martens, 2014; El-Geneidy et al., 2016). 
Mismatch analysis is quite simple and intuitive, but it cannot offer much 
quantitative information on equity performance. Therefore, trans
portation researchers have adopted inequality indexes from social sci
ence to obtain a quantitative evaluation of the overall degree of 
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inequality. Popular inequality indicators include Gini index (Delbosc 
and Currie, 2011; Karn Kaplan et al., 2014; Guzman et al., 2017; 
Pritchard et al., 2019), Atkinson index (Levy et al., 2009), Theil’s en
tropy index (Hamidi et al., 2019), comparative environmental risk index 
(Kocak, 2019), and subgroup inequality index (Gurram et al., 2015; 
Gurram et al., 2019; Chen et al., 2019). Another approach to quantita
tively evaluating inequity, which is the focus of this paper, is statistical 
modeling such as the ordinary least squares regression model (Ogilvie 
and Goodman, 2012), the negative binomial model (Wang and Akar, 
2019), and the multinomial logit model (Wang and Akar, 2019; Raux 
et al., 2017). In these models, the sign of the estimated coefficient on 
each explanatory variable indicates whether a population group with 
that factor is over- or under-represented in terms of the outcome they 
receive, while the magnitude of the coefficient is often used as a measure 
of the strength of the disparity (or level of inequality). 

Due to their exploratory capability in describing the relationship 
between transportation outcomes and sociodemographic attributes, 
statistical models have been popularly applied for transportation equity 
analysis such as disparities among populations in terms of accessibility 
(Ogilvie and Goodman, 2012; Wang and Akar, 2019; Raux et al., 2017), 
exposure to emissions (Buzzelli and Jerrett, 2007; Havard et al., 2009), 
and safety outcomes (Harper et al., 2015; Kravetz and Noland, 2012; 
Morency et al., 2012). In these studies, data were usually aggregated to 
certain geographic scales for analysis, e.g., census tracts (Morency et al., 
2012; Buzzelli and Jerrett, 2007), census blocks (Havard et al., 2009; 
Wang and Akar, 2019), and census block groups (Kravetz and Noland, 
2012). However, data aggregation has been demonstrated to absorb 
individual heterogeneity in the distribution of transportation outcomes 
(Chen et al., 2019). Therefore, researchers have promoted the use of 
individual-level disaggregated data to unveil individual disparities in 
transportation equity analysis (Bills and Walker, 2017; Chen et al., 2019; 
Gurram et al., 2019). Using disaggregated data unveils individual het
erogeneity that tends to be hindered by aggregated approaches and 
therefore offers a better interpretation of the equity impacts. Although 
disaggregated data contain rich information on individual sociodemo
graphic attributes, these databases usually only cover a small fraction of 
the large number of elements that define individual sociodemographic 
status. Many other factors indeed remain unobserved to analysts. For 
example, the availability of credit cards has been shown to be a signif
icant factor contributing to individual access to bike-sharing services 
(Shaheen et al., 2017). However, datasets providing sociodemographic 
information (e.g., those from the American Community Survey) do not 
contain such information. 

These unobserved factors can introduce variations in the distribution 
of transportation outcomes among individuals that belong to a socio
demographic group. For instance, consider race as an unobserved factor 
that correlates with the distribution of transportation outcomes. 
Although there has been ample evidence that different racial groups 
benefit differently from some transportation systems in terms of their 
accessibility (Chen et al., 2019), there are also great variations across 
people of the same race, including differences in transportation needs, 
availability of credit cards, English proficiency and other factors that are 
generally unavailable to the analysts. This type of heterogeneity essen
tially are not captured in the dataset, and thus is called unobserved het
erogeneity in the literature. It has been frequently observed in highway 
accident data and traffic flow data. In highway accident data, unob
served heterogeneity is found in a range of explanatory variables such as 
gender, age, vehicle type, traffic volume, and so on (Mannering et al., 
2016). In traffic flow data, unobserved heterogeneity exists in driving 
styles, vehicle types, and leader-follower pair compositions (Ossen and 
Hoogendoorn, 2011). 

However, few studies have investigated unobserved heterogeneity 
for transportation equity analysis. Existing studies applying exploratory 
statistical models for transportation equity analysis have generally 
assumed that parameters in the estimated model are constant across all 
observations; i.e., there is no unobserved heterogeneity in the collected 

data. However, ignoring the unobserved heterogeneity may result in 
misspecified models, and thus the estimated parameters will be biased 
and inefficient (Mannering et al., 2016). As a result, inference and policy 
implications based on the estimated models will be erroneous. An 
instance is the relationship between race and the accessibility an indi
vidual receives from a bike-sharing system. As mentioned previously, 
there are multiple reasons to believe that the accessibility people receive 
from a bike-sharing system varies from individual to individual even if 
they are the same race owing to unobserved individual heterogeneity. 
Nevertheless, if possible unobserved heterogeneity across individuals 
were ignored, incorrect conclusions may have been drawn from erro
neous parameter estimates such as believing that all individuals in one 
racial group have higher accessibility than the general population. 
Indeed, there are possibly some individuals of that race who do not 
receive accessibility from the system at all because the lack of credit 
cards prevents them from using the services (which is not captured by 
the analysis dataset). This phenomenon is particularly likely when a 
disaggregated dataset containing a large number of samples is used for 
analysis. Without explicitly considering the unobserved heterogeneity, 
it will be difficult to determine whether this statement is true or not. 
Therefore, approaches to accounting for unobserved heterogeneity for 
analyzing transportation equity impacts are needed. 

Against this background, this paper aims to apply an exploratory 
modeling approach to investigate whether there is unobserved hetero
geneity in transportation equity impacts. To this end, we carry out a case 
study focusing on the distribution of individual accessibility to activity 
locations via bike-sharing in southern Tampa using a disaggregated 
dataset. The dataset includes individual bike-sharing accessibility and 
sociodemographic information. To allow for the investigation of 
possible unobserved heterogeneity in the data, three random parameters 
logit models are estimated using the individual-level data and data 
aggregated to land parcel and traffic analysis zone (TAZ) levels, 
respectively. The novelty of this paper lies in allowing for possible un
observed heterogeneity of random parameters and the use of heteroge
neity effects in equity impact measurement for transportation equity 
analysis. The main contributions of this paper are threefold. First, we 
apply a heterogeneity modeling approach to study the equity impacts of 
a case study transportation system in southern Tampa using a dis
aggregated dataset. The use of a heterogeneity model captures the po
tential unobserved heterogeneity hidden in the large amount of 
individual-level data while traditional fixed parameters models cannot 
serve the same purpose. We also investigate how heterogeneity effects 
can be used to measure the equity impacts in transportation systems. 
Incorporating this unobserved heterogeneity ensures that the model is 
correctly specified, and thus the resultant equity interpretations are 
unbiased and efficient. Second, we offer a comparison between the 
model estimation results using disaggregated data, data aggregated to 
parcels, and data aggregated to TAZs. This comparison enables an in- 
depth understanding of the impacts of data aggregation on parameter 
estimates in the model, which are of special importance to trans
portation planners and equity analysts. It also provides insights into the 
presence of unobserved heterogeneity in aggregated data. Finally, the 
case study reveals how bike-sharing accessibility is distributed among 
the population and population subgroups defined by various socio
demographic attributes in southern Tampa. It also confirms the exis
tence of unobserved heterogeneity in the investigated data, the necessity 
of using a heterogeneity model, and the advantage of using dis
aggregated data. Overall, this study offers empirical evidence to trans
portation equity analysts of the existence and importance of 
incorporating unobserved heterogeneity given the emerging use of dis
aggregated data in transportation equity analysis. Particularly, various 
equity implications and recommendations of the studied bike-sharing 
system provide insights that can assist bike-sharing operators in 
designing unobserved heterogeneity-aware equitable expansion plans in 
southern Tampa and beyond. 

The remainder of this paper is organized as follows. Section 2 
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presents the materials (including the bike-sharing system, analysis area, 
and data collection), and the analytical method used for modeling the 
data. Section 3 presents and discusses the analysis results, including 
descriptive statistics, model estimation results using the individual- 
level, parcel-level, TAZ-level data, and the corresponding equity impli
cations. Finally, Section 4 provides conclusions and potential future 
research directions. 

2. Materials and methods 

The primary goal of this study is to investigate unobserved hetero
geneity in the equity impacts of transportation outcomes via a case study 
bike-sharing system. To this end, we first collected data on individual 
sociodemographic and accessibility to activity locations via a bike- 
sharing system in the study area. Then, a statistical modeling 
approach that captures unobserved heterogeneity was applied to model 
the data. This section presents the bike-sharing system, the analysis area, 
the investigated dataset and the statistical modeling approach 
successively. 

2.1. Bike-sharing system 

We selected the Coast Bike Share system in Downtown Tampa, the 
central business district of Tampa (see Fig. 1), as a case study for 
exploring possible unobserved heterogeneity in the equity impacts of a 
transportation system. The selected system is an interesting case study 
for a number of reasons. Bike-sharing is a fast-growing mode of trans
portation in many countries with increasing equity concerns (Lei and 
Ouyang, 2018; Chen et al., 2019; Chen et al., 2020; Qian and Niemeier, 
2019). Starting in late 2014, the Coast Bike Share system has been 
serving both tourists and residents (Mckenna, 2016), and therefore we 
can use it as a case to analyze residents’ accessibility to activity locations 
via bike-sharing. Note that although the Coast Bike Share system in 
Downtown Tampa is relatively small, it was listed as one of the 29th 
largest bike-sharing systems in the US (Barajas and Drive, 2018). Its 
small service scale also makes equity a more sensitive issue. Addition
ally, the area where the bike-sharing system is located features high 
diversity in terms of residents’ sociodemographic profiles, making it 
appropriate for studying the accessibility distribution across different 
population groups. Furthermore, although a previous study (Chen et al., 

Fig. 1. The analysis area. The top left sub-figure presents the location of Florida within the United States. The top right sub-figure presents the location of Tampa 
within Florida. The bottom left sub-figure presents the area selected for analyzing the equity impacts in terms of individual accessibility via bike-sharing, i.e., 
southern Tampa. The bottom right sub-figure shows the distribution of bike-share hubs (represented by dots) of the Coast Bike Share system in Downtown Tampa. 
Source: Created by the authors. 
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2019) has revealed inequality of the accessibility distribution of the 
Coast Bike Share system among different sociodemographic groups of 
southern Tampa, their method does not capture any unobserved het
erogeneity. Certain groups (e.g., whites, Asians, non-Hispanics) have 
been shown to be overrepresented in terms of the accessibility they 
receive from the system but whether the overrepresentation is consistent 
across the entire population subgroup is still not clear. Therefore, a case 
study using an approach that capture unobserved heterogeneity would 
be helpful for policymakers and bike-sharing operators to better un
derstand the equity impacts and to design unobserved heterogeneity- 
aware equitable expansion plans of this system and other bike-sharing 
systems more broadly. 

2.2. Analysis area 

Following Chen et al. (2019), we selected an area that surrounds the 
Coast Bike Share system for the analysis. This area corresponds to the 
Tampa City Public Use Microdata Area (PUMA) in Florida, which is the 
most detailed geographic unit with available individual records from the 
US Census Bureau (Gliebe et al., 2014; US Census Bureau, 2010). It is 
located in the southern part of Tampa as shown in Fig. 1, and thus we 
call it southern Tampa. According to the US Census Bureau (2019), this 
area had a population of 168,835 as of 2018 and the sociodemographic 
profiles of the residents in this area were highly diverse. Specifically, the 
population distribution for white, black, Asian and other racial groups 
was 58%, 10%, 2%, and 30%, respectively. Twenty six percent of the 
population identified themselves as Hispanic or Latino origin. Male 
accounted for 50% of the population and the age distribution was 20% 
under 18 years, 65% between 18 and 64, and 15% over 65. In terms of 
the annual household income, 11.5% of the population lived below the 
poverty line while 34% of the households earned more than $100,000 
per year. Further, the selected analysis area covers residents within and 
outside the service area of the bike-sharing system, and thus an anlysis 
based on this area likely paints a more complete picture of the equity 
landscape of the system. 

2.3. Data collection 

The data used for this study were collected from a synthetic popu
lation of southern Tampa simulated with the Person Day Activity and 
Travel Simulator (Daysim, Bradley et al., 2010). These include infor
mation on individual sociodemographic and accessibility to activity 
locations in their daily travel itineraries over a typical weekday via the 
Coast Bike Share system. The synthetic population was generated by an 
iterative proportional fitting approach (Beckman et al., 1996) from the 
PUMS of the American Community Survey (US Census Bureau, 2010) by 
Gurram et al. (2019). To ensure that the synthetic population is repre
sentative of the real-world data, multiple variables are used to calibrate 
the model, such as land use, demographic information, and trip char
acteristics. For example, the statistics of the synthetic population are 
consistent with those of the original census data, indicating the validity 
of the synthetic population. Note that since using real individual infor
mation will involve privacy concerns and a huge amount of time and 
money to collect data from a full population, here we adopt a synthetic 
population that well represents the real population in southern Tampa. 
There are some individual records with missing sociodemographic in
formation in the dataset due to the presence of incomplete individual 
records in the PUMA data for generating the synthetic population. 
Further, kids under the age of 18 are not allowed to use the bike-sharing 
service due to the unavailability of credit cards and/or incapability to 
ride (Coast Bike Share, 2019). Therefore, we excluded them from the 
analysis. Finally, we removed all these problematic records and ob
tained a sample size of 75,697. 

The sociodemographic information contains the individuals’ resi
dence locations and sociodemographic attributes. Both the land parcel 
and TAZ of each hypothetical individual were identified. We determined 

the centroid coordinate locations of land parcels and TAZ’s from Daysim 
and PlanHillsborough (2017), respectively. These were used to aggre
gate individual-level data to different geographic scales for comparative 
equity analyses. For sociodemographic attributes, we considered the 
number of tours in one’s daily travel itinerary, age (18–35, 35–45, 
45–65, above 65), gender (male, female), race (white, black, Asian, 
other), ethnicity (Hispanic and non-Hispanic), nativity (native American 
and non-native), marital status (married, widowed, divorced, separated, 
never married or under 15 years old), household income level (below 
poverty, middle income defined as above the 2009 poverty level but 
with an annual household income below $75,000, and upper income 
with an annual household income above $75,000), person type 
(workers, university students), commute time (i.e., travel time from 
home to work) by car in minutes, household size (i.e., number of people 
in the household), number of workers in the household, number of 
retired adults in the household, number of kids aged less than 16 in the 
household, and number of university students in the household. The 
attributes are divided into different subgroups following Chen et al. 
(2019) and American Community Survey. 

Individual accessibility to activity locations via the bike-sharing 
system was estimated with a tour-based approach proposed in Chen 
et al. (2019) using information regarding the locations of bike-sharing 
stations and individual daily travel itineraries generated from Daysim. 
This approach takes into account the intermodal characteristic of bike- 
sharing trips and the interdependence of individual mode choice de
cisions for neighboring trips. The resulting accessibility of each person is 
a continuous value ranging from 0 to 1, with 0 representing the lowest 
value and 1 representing the highest. This accessibility measure is 
essentially a person-based potential accessibility measure (Geurs and 
Van Wee, 2004). It quantifies the potential of an individual in reaching 
all activity locations in her daily travel itinerary via the bike-sharing 
system. The potential accessibility measure has been shown to be an 
appropriate social indicator for analyzing the level of access to social 
and economic opportunities related to the activity locations of one’s 
daily travel itinerary for different sociodemographic groups. Additional 
details of the tour-based accessibility modeling approach can be found in 
Chen et al. (2019). 

However, the accessibility measure selected does not involve an in
dividual’s actual usage of the bike-sharing system. As a result, the pro
posed method cannot answer questions such as how the visitors’ (the 
other group of target customers for the studied bike-sharing system) 
usage on the bike-sharing system affects city residents’ bike-sharing 
accessibility. The actual usage of shared bikes depends on the spatio
temporal distribution of the shared bikes, which is a function of a range 
of complicated factors including the repositioning activities, the bicycle 
pick-up and drop-off dynamics at each station regardless of the user type 
(i.e., residents and tourists), etc. The availability of data on the travel 
behavior of visitors poses another challenge to the consideration of 
visitors in the analysis. Thus, to investigate the bike-sharing accessibility 
based on the users’ actual usage of the system would amount to a new 
problem that is out of the scope of this study. 

2.4. Analysis methodology 

We aim to estimate a heterogeneity model to capture unobserved 
heterogeneity in the distribution of bike-sharing accessibility among 
different sociodemographic groups of southern Tampa. There are 
various heterogeneity models in statistical modeling, such as random 
parameters models (Anastasopoulos and Mannering, 2009, 2011, latent 
class models (Behnood et al., 2014), and their combinations (Xiong and 
Mannering, 2013), as summarized in Table 1. Yet, no concensus has 
been reached on which approach is always superior in addressing un
observed heterogeneity. As an empirical study to demonstrate the 
presence of unobserved heterogeneity in transportation equity impacts, 
this study adopts the most widely used random parameters approach 
(Mannering et al., 2016) to model the collected data. 
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2.4.1. Statistical modeling approach 
To convert the continuous bike-sharing accessibility values to a set of 

binary variables that can be modeled by the mixed logit model, we 
define a set of bike-sharing accessibility levels indexed as 
n ∈ N := {0, 1}, where n = 0 represents an accessibility value of 0 and n 
= 1 represents an accessibility value greater than 0. Besides, we define 
binary variable Yni, which equals 1 if the bike-sharing accessibility level 
of individual i is n and 0 otherwise. Specifically, Y0i = 1 and Y1i = 0 if the 
accessibility value of individual i is 0, while Y0i = 0 and Y1i = 1 if the 
accessibility value of individual i is greater than 0. Thus, dependent 
variables Yni := {Y0i,Y1i} represent a set of discrete (binary in this case) 
outcomes, to model which mixed (or random parameters) logit model is 
appropriate. To arrive at a mixed logit model that allows for heteroge
neity in the estimated parameters across observations (i.e., individuals 
in this paper), a function that determines the probability of individual i 
having outcome n can be defined as (Washington et al., 2010): 

Yni = βnXni + ϵni (1)  

where βn is a vector of estimated parameters for discrete outcome n and 
Xni is a vector of observable explanatory sociodemographic attributes 
that correlate with discrete outcome n for individual i, and ϵni is a 
disturbance term that is assumed to be extreme value distributed. Note 
that all notation in bold is vector while the remaining is not. The basic 
idea of random parameters models is to account for the unobserved 
heterogeneity by allowing estimated parameters in the model to vary 
across observations following a predefined probability distribution with 
probability function f(β|φ), where φ refers to a vector of parameters of 
the density function (i.e., mean and variance). Then, the outcome 
probability of a mixed logit model, which accounts for unobserved 
heterogeneity in the collected data, can be derived as (Train, 2009): 

Pi(n|φ) =

∫
eβnXni

∑

n∈N

eβnXni
f (βn|φ)dβn (2)  

where Pi(n|φ) represents the probability that the accessibility outcome 
of individual i is n given a vector of parameters φ of the density function. 
Obviously, the probability shown in Eq. (2) is a weighted average of the 
probabilities of a set of standard multinomial logit models correspond
ing to different values of β. 

For model estimation, we used a popular statistical analysis software, 
NLOGIT5. We considered various probability distributions in the model 
estimation, including normal, lognormal, triangular, and uniform dis
tributions. The model estimation was realized using the simulated 
likelihood method with 200 Halton draws, which has been shown to 

result in sufficiently accurate parameter estimation (McFadden and 
Train, 2000). Marginal effects were computed as (∂E[Yni|Xni])/(∂Xni) by 
NLOGIT5 (Greene, 2007) to quantify the influence that one-unit in
crease in an explanatory variable Xni has on the accessibility outcome 
probabilities Yni to further interpret the model estimation results. 

Apart from analyzing the accessibility distribution of the Coast Bike 
Share system using the individual data, we also aggregated the data to 
both the parcel- and TAZ-level to investigate the impacts of data ag
gregation on the unobserved heterogeneity. For example, we computed 
the mean for all numerical values (e.g., accessibility, age) for all in
dividuals residing in a land parcel. For sociodemographic attributes with 
factorial values (e.g., race, gender), we computed the proportion of the 
population that belongs to a group in each land parcel. Similar aggre
gations were also applied to TAZs. Then, we estimated mixed logit 
models to analyze the accessibility distribution with the aggregated data 
also using NLOGIT 5. 

2.4.2. Statistical evaluation criteria 
To make sure that the included variables in the models are statisti

cally significant and representative, we applied four statistical evalua
tion criteria during the model estimation process. First, the p-values of 
all included variables should be less than 0.05, indicating that the var
iables are statistically significant given a confidence level of 95%. Sec
ond, the sample size of the included variables should account for at least 
10% and at most 90% of the population because we cannot determine 
causality if the number of observations in a subgroup is too high or too 
small. By applying this rule, the sample size of each subgroup repre
sented by an indicator variable will be between 7,569 and 68,127, which 
would provide enough observations for causality inference. Third, we 
computed the McFadden ρ2 statistic to assess the overall model fitness 
(McFadden, 1973). The formulation of the ρ2 statistic is 

ρ2 = 1 −
LL(β)

LL(0)
(3)  

where LL(β) is the log-likelihood at convergence with parameter vector β 
and LL(0) is the log-likelihood at zero (i.e., with all parameters set to 0). 
This statistic is similar to R2 in ordinary least square regression models, 
whose value ranges from 0 to 1. A ρ2 statistic value close to 1 indicates 
that the model can predict the outcomes with near certainty. Finally, to 
statistically determine whether we need a mixed logit model rather than 
a fixed parameters logit model for the investigated dataset, we carried 
out a likelihood ratio test. Specifically, we computed the likelihood ratio 
test statistic as (Washington et al., 2010) 

X2 = − 2
[
LL

(
βfixed

)
− LL(βmixed)

]
(4)  

where LL(βmixed) is the log-likelihood at convergence of the mixed logit 
model and LL(βfixed) is the log-likelihood at convergence of the fixed 
parameters logit model with the same explanatory variables but all their 
estimated coefficients remain constant across observations. The result
ing X2 is χ2 distributed, with degrees of freedom equaling to the differ
ence between the numbers of parameters in the mixed and fixed 
parameters logit models. Then we used the Chi-Square Calculator (Stat 
Trek, 2019) to determine whether the null hypothesis stating that the 
parameters in the logit model are constant across observations (i.e., 
there is no unobserved heterogeneity in the data) can be rejected. 

3. Results and discussion 

This section discusses the results of our analyses. Section 3.1 presents 
the variables used for model estimation and summary statistics for bike- 
sharing accessibility computed by each variable that represents a pop
ulation subgroup. Results from the disaggregated (i.e., individual-level) 
data analysis are presented in Section 3.2. Finally, Section 3.3 compares 
the results from the disaggregated model with those from the aggregated 
(i.e., parcel-level and TAZ-level) data analyses. 

Table 1 
Comparisons of popular heterogeneity models. Source: After Mannering et al. 
(2016).  

Models Concepts Advantages Disadvantages 

Random- 
parameters 
models 

Allow parameter 
estimates to follow 
a continuous 
statistical 
distribution 

Capture 
heterogeneity 
across individual 
observations 

Require an 
assumption on the 
parameter 
distribution 

Latent class 
models 

Separate the 
sample into groups 
(or classes) within 
which parameters 
are homogeneous 

Allow for fixed 
parameters within 
classes; do not 
require an 
assumption on the 
parameter 
distribution 

Are difficult to 
estimate if there are 
many latent 
classes; cannot 
capture possible 
heterogeneity 
within a class 

Latent class 
models with 
random- 
parameters 

Separate the 
samples into 
groups and allow 
parameter 
variations within 
each group 

Combine the 
advantages of 
random-parameters 
and latent class 
models 

Are very 
cumbersome to 
estimate, especially 
for large-scale 
disaggregated 
datasets  
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3.1. Descriptive statistics 

Table 2 summarizes the variables used for model estimation and 
summary statistics for bike-sharing accessibility by each variable (or 
population subgroup) in the analysis area. 

As seen in Table 2, there are 75,697 individuals in the final dataset 
used for the model estimation. The sampled population is divided into 
different subgroups, each of which corresponds to an indicator variable 
defined by a sociodemographic attribute. We see that from the last row 
in Table 2 that the mean bike-sharing accessibility for the population in 
southern Tampa is 0.0027. A 75th percentile value of 0 indicates that at 
least 75% of the population in southern Tampa does not have bike- 
sharing accessibility at all. This finding is consistent with those from 
Chen et al. (2019), which also reveals relatively low bike-sharing 
accessibility and an extremely skewed distribution of the bike-sharing 
accessibility in southern Tampa overall. 

The bike-sharing accessibility is distributed among the individuals in 
each subgroup following a similar skewed distribution, with the 75th 
percentiles of all subgroups being 0. However, there is an obvious 
disparity of the mean bike-sharing. Specifically, the mean bike-sharing 
accessibility for certain subgroups (i.e., individuals with the commute 
time by car less than 29 min, people aged between 19 and 34, those with 
an annual household income higher than $74,999, males, Asians, non- 
Hispanics, native American, people who never married, university stu
dents, individuals living in household without kids under 16 years old, 
and those who live in a household without university students) are 
higher than the population mean. However, certain groups receive 
lower bike-sharing accessibility than the entire population on average, 
including individuals with the commute time by car more than 29 min, 
people aged over 34, those with an annual household income from 
$25,000 to $74,999, females, black people, Hispanics, non-Native 
American, individuals who have married at least once, workers, those 
living in a household with at least 2 workers, and those living in a 
household with retired adults. For the rest of the subgroups, the mean 
bike-sharing accessibility is the same as the population mean. These 
results describe a seemingly uneven distribution of the bike-sharing 
accessibility among different population subgroups in southern 
Tampa. However, the difference of the mean bike-sharing accessibility 
values between different subgroups is relatively small (i.e., less than 
0.01). Thus, it is not clear whether the disparity in the mean bike-sharing 
accessibility between different subgroups is statistically significant or 
not; probably this disparity can be ignored if it is statistically insignifi
cant. An in-depth analysis using statistical methods (e.g., analysis of 
variance, regression modeling) is needed to answer this question. We 
will present results from the estimated mixed logit model in the 
following subsection for this purpose. 

3.2. Model estimation results using individual-level data 

The mixed logit model estimation results using individual-level data 
are presented in Table 3. Parameter distribution of the random param
eters in the mixed logit model is reported in Table 4. Results of the 
likelihood ratio tests are presented in Table 5. 

We first analyze the statistical performance of the mixed logit model. 
As shown in Table 3, 12 variables (including a constant) are included in 
the estimated mixed logit model and their absolute values of the t-sta
tistics are all greater than 1.96 (i.e., the p-values are less than 0.05), 
indicating that the variables in the estimated mixed logit model are 
statistically different from zero when conducting a two-tailed t-test. 
Note that not all variables with a mean accessibility unequal to the 
population mean is found to be statistically significant in the estimated 
model (e.g., age group 3). This observation highlights an advantage of 
using statistical modeling for assessing the equity impacts of trans
portation outcomes over comparisons of simple summary statistics: they 
can filter out population subgroups that are slightly over-/under-rep
resented so that focuses can be placed on groups facing substantial 

Table 2 
Variable definition and summary statistics for the bike-sharing accessibility by 
each variable (or population subgroup). Source: Created by the authors.  

Variable Sample 
size (%) 

Descriptive statistics of accessibility 

Min 25th 
% ile 

Median Mean 75th 
% ile 

Max 

Indicator variables 
Very short trip: 

1 if the 
commute 
time by car 
is less than 
10 min; 
0 otherwise 

8096 
(10.70) 

0 0 0 0.0031 0 0.32 

Short trip: 1 if 
the 
commute 
time by car 
is between 
10 and 19 
min and 
0 otherwise 

21,875 
(28.90) 

0 0 0 0.0029 0 0.35 

Medium trip: 1 
if the 
commute 
time by car 
is between 
20 and 29 
min and 
0 otherwise 

17,923 
(23.68) 

0 0 0 0.0029 0 0.35 

Long trip: 1 if 
the 
commute 
time by car 
is more than 
29 min and 
0 otherwise 

27,803 
(36.73) 

0 0 0 0.0023 0 0.41 

Age group 1: 1 
if the age 
ranges from 
19 to 34; 
0 otherwise 

26,015 
(34.37) 

0 0 0 0.0038 0 0.41 

Age group 2: 1 
if the age 
ranges from 
35 to 44; 
0 otherwise 

18,152 
(23.98) 

0 0 0 0.0025 0 0.28 

Age group 3: 1 
if the age 
ranges from 
45 to 64; 
0 otherwise 

27,393 
(36.19) 

0 0 0 0.0018 0 0.34 

Age group 4: 1 
if the age is 
greater than 
64; 
0 otherwise 

4137 
(5.47) 

0 0 0 0.0020 0 0.32 

Low income: 1 
if the annual 
household 
income is 
less than 
$25,000; 
0 otherwise 

8804 
(11.63) 

0 0 0 0.0027 0 0.32 

Middle 
income: 1 if 
the annual 
household 
income 
ranges from 
$25,000 to 
$74,999; 
0 otherwise 

34,783 
(45.95) 

0 0 0 0.0022 0 0.35 

High income:1 
if the annual 
household 
income is 

32,110 
(42.42) 

0 0 0 0.0031 0 0.41 

(continued on next page) 
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disparities. Also, the estimated model shows a good overall statistical fit 
with a ρ2 value of 0.70 (Anastasopoulos and Mannering, 2009, 2011). 

The results also reveal the superiority to use a heterogeneity model. 
We see that the t-statistics of the standard deviations (i.e., the t-statistics 
in parenthesis) of 8 variables are greater than 1.96, indicating the 
standard deviations of the density functions of these parameters are 
statistically different from zero in a two-tailed t-test (at a confidence 
level of 95%). Thus, these random parameters are statistically 

Table 2 (continued ) 

Variable Sample 
size (%) 

Descriptive statistics of accessibility 

Min 25th 
% ile 

Median Mean 75th 
% ile 

Max 

higher than 
$74,999; 
0 otherwise 

Male: 1 if the 
gender is 
male; 
0 otherwise 

39,000 
(51.52) 

0 0 0 0.0028 0 0.41 

Female: 1 if 
the gender is 
female; 
0 otherwise 

36,697 
(48.48) 

0 0 0 0.0025 0 0.35 

White: 1 if the 
race is 
white; 
0 otherwise 

59,505 
(78.61) 

0 0 0 0.0027 0 0.41 

Black: 1 if the 
race is black; 
0 otherwise 

10,256 
(13.55) 

0 0 0 0.0022 0 0.30 

Asian: 1 if the 
race is 
Asian; 
0 otherwise 

2182 
(2.88) 

0 0 0 0.0028 0 0.20 

Other: 1 if the 
race is not 
white, black 
or Asian; 
0 otherwise 

3754 
(4.96) 

0 0 0 0.0027 0 0.29 

Hispanic: 1 if 
the ethnicity 
is Hispanic; 
0 otherwise 

15,625 
(20.64) 

0 0 0 0.0023 0 0.35 

Non-Hispanic: 
1 if the 
ethnicity is 
not 
Hispanic; 
0 otherwise 

60,072 
(79.36) 

0 0 0 0.0028 0 0.41 

Native: 1 if an 
individual is 
native 
American; 
0 otherwise 

57,976 
(76.59) 

0 0 0 0.0028 0 0.41 

Non-native: 1 
if an 
individual is 
not native 
American; 
0 otherwise 

17,721 
(23.41) 

0 0 0 0.0021 0 0.35 

Married: 1 if 
the marital 
status is 
married; 
0 otherwise 

23,699 
(31.31) 

0 0 0 0.0015 0 0.29 

Widowed: 1 if 
the marital 
status is 
widowed; 
0 otherwise 

2031 
(2.68) 

0 0 0 0.0017 0 0.28 

Divorced: 1 if 
the marital 
status is 
divorced; 
0 otherwise 

15,228 
(20.12) 

0 0 0 0.0024 0 0.32 

Separated: 1 if 
the marital 
status is 
separated; 
0 otherwise 

3057 
(4.04) 

0 0 0 0.0025 0 0.26 

Never married: 
1 if the 
marital 
status is 
never 

31,682 
(41.85) 

0 0 0 0.0037 0 0.41  

Table 2 (continued ) 

Variable Sample 
size (%) 

Descriptive statistics of accessibility 

Min 25th 
% ile 

Median Mean 75th 
% ile 

Max 

married or 
under 15 
years old; 
0 otherwise 

Worker: 1 if an 
individual is 
a worker; 
0 otherwise 

73,806 
(97.50) 

0 0 0 0.0026 0 0.41 

University 
student: 1 if 
an 
individual is 
a university 
student; 
0 otherwise 

1800 
(2.38) 

0 0 0 0.0053 0 0.27 

Household 
with 
workers: 1 if 
an 
individual 
lives in an 
household 
with at least 
2 workers; 
0 otherwise 

46,465 
(61.38) 

0 0 0 0.0022 0 0.41 

Household 
with retired 
adults: 1 if 
an 
individual 
lives in 
household 
with at least 
1 retired 
adult; 
0 otherwise 

16,011 
(21.15) 

0 0 0 0.0013 0 0.30 

Household 
without kids 
under 16 
years old: 1 
if an 
individual 
lives in a 
household 
with no kid 
under 16 
years old; 
0 otherwise 

53,715 
(70.96) 

0 0 0 0.0033 0 0.41 

Household 
without 
university 
students: 1 if 
an 
individual 
lives in an 
household 
without 
university 
students; 
0 otherwise 

70,891 
(93.65) 

0 0 0 0.0026 0 0.41 

The entire 
population 

75,697 
(100) 

0 0 0 0.0027 0 0.41  
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significant (Anastasopoulos et al., 2011); the effects of these indepen
dent variables on the dependent variable varies across the observations 
following a normal distribution. Note that we also tried other distribu
tions, including lognormal, triangular, and uniform distributions, but 
the empirical analysis shows that no distribution was statistically su
perior to the normal distribution. Further, the log-likelihood ratio test 
results in Table 5 indicate that the null hypothesis can be rejected at a 
confidence level of 100%, and thus not all coefficients of the included 
variables in the model are constant across the observations. This result 
confirms the existence of unobserved heterogeneity in the investigated 
individual-level dataset. It also confirms that the mixed logit model 

provides a more statistically superior model fit compared with the 
traditional fixed parameters logit model. Therefore, we should adopt a 
mixed logit model that can capture possible unobserved heterogeneity in 
the dataset to achieve a better model fit. 

Turning to the explanatory variables with fixed parameters, we see 
from Table 3 that four of the included parameters are fixed across the 
individual observations. Specifically, the marginal effects of variable age 
group 1 and variable never married indicate that if an individual is aged 
between 19 and 34 or never married, the probability of them having 
bike-sharing accessibility will increase by 0.032 and 0.007, respectively. 
Likewise, the marginal effect of variable household without kids under 16 
yeards old reveals that if an individual lives in a household without kids 
under 16 years old, his/her probability of having bike-sharing accessi
bility is higher than the general population by 0.035. Further, the 
marginal effect of variable mean distance between activity locations to the 
nearest bike-sharing hub indicates that a 1 unit increase in the mean 
distance between an indivudual’s activity locations to the nearest bike- 
sharing hub decreases the probability of having bike-sharing accessi
bility by 0.009. Note that to account for possible endogeneity between 
the distance-related variable and the accessibility metric, an instru
mental variable approach was employed: the distance-related variable 
was regressed against all exogenous variables and their instruments 
were used as independent variables. 

These results reveal that population subgroups represented by these 
variables are entirely overrepresented (i.e., subgroups with positive 
marginal effects) or underrepresented (i.e., subgroups with negative 
marginal effects) in terms of the bike-sharing accessibility distribution. 
When policymakers intend to decrease/eliminate the disparity between 
subgroups defined by these sociodemographic attributes, they should 
formulate policies to improve the bike-sharing accessibility for all in
dividuals in these subgroups that are underrepresented as a whole. In the 
case of southern Tampa, people having longer distance from their daily 
activity locations to the bike-sharing hubs are those who consistently 
experience lower likelihoods of having bike-sharing accessibility than 
the general population. If the Coast Bike Share operator intends to 
bridge the bike-sharing accessibility gap between this group and the 
general population, measures can be adopted such as deploying more 
bike-sharing facilities to communities with few bike-sharing hubs, of
fering a discounted membership or lower payment option, and pro
moting bike-sharing services among individuals in this subgroup. 
Individuals need not be treated differently in these policies since there is 

Table 3 
Mixed logit model results of the individual-level bike-sharing accessibility in 
southern Tampa. (Standard deviation of parameter estimate, in parentheses). 
Source: Created by the authors.  

Variable Estimated 
parameter 

t-Stat. Marginal 
effects 

Constant −1.67 (0.82) −8.95 
(45.28) 

– 

Number of tours 0.31 (0.12) 14.71 
(15.35) 

0.018 

Age group 1: 1 if the age ranges from 
19 to 34; 0 otherwise 

0.55 16.69 0.032 

Age group 2: 1 if the age ranges from 
35 to 44; 0 otherwise 

0.13 (0.80) 3.65 
(21.37) 

0.008 

Female: 1 if the gender is female; 
0 otherwise 

−0.29 (0.83) −10.24 
(31.53) 

−0.017 

Never married: 1 if the marital status 
never married or under 15 years 
old; 0 otherwise 

0.12 4.31 0.007 

High income: 1 if the annual 
household income is higher than 
$74,999; 0 otherwise 

0.31 (0.13) 12.61 
(5.18) 

0.018 

Long trip: 1 if the commute time by 
car is more than 29 min and 
0 otherwise 

−0.08 (0.28) −3.13 
(9.47) 

−0.005 

Number of workers in the household −0.44 (0.33) −23.96 
(34.46) 

−0.025 

Number of retired adults in the 
household 

−0.64 (0.92) −16.15 
(23.22) 

−0.037 

Household without kids under 16 
years old: 1 if an individual lives in 
a household with no kid under 16 
years old; 0 otherwise 

0.60 17.71 0.035 

Mean distance between activity 
locations to the nearest bike- 
sharing hubs 

−0.16 −8.37 −0.009  

Model statistics 
Number of observations 75,697 
Log-likelihood at zero, LL(0) −52,449.53 
Log-likelihood at convergence, LL(β) −15,734.86 
ρ2 = 1 − LL(β)/LL(0) 0.70  

Table 4 
Parameter distribution of random parameters of the mixed logit model using 
individual-level bike-sharing accessibility in southern Tampa. Source: Created 
by the authors.  

Variable Above 
0 (%) 

Below 
0 (%) 

Constant 2.08 97.92 
Number of tours 0.49 99.51 
Age group 2: 1 if the age ranges from 35 to 44; 

0 otherwise 
56.45 43.55 

Female: 1 if the gender is female; 0 otherwise 36.34 63.66 
High income:1 if the annual household income is higher 

than $74,999; 0 otherwise 
99.15 0.85 

Long trip: 1 if the commute time by car is more than 29 
min and 0 otherwise 

38.75 61.25 

Number of workers in the household 9.12 90.88 
Number of retired adults in household 24.33 75.67  

Table 5 
Results of the likelihood ratio tests. Source: Created by the authors.  

Item Random 
parameters 

Fixed 
parameters 

Model using individual-level data 
Number of parameters 20 12 
Log-likelihood at convergence, LL(β) −15,734.86 −15,752.87 
X2 = − 2[LL(βfixed) − LL(βmixed)] 36.02  
Degree of freedom 8  
Probability of rejecting the null 

hypothesis 
100%   

Model using parcel-level data 
Number of parameters 17 13 
Log-likelihood at convergence, LL(β) −10,231.11 −10,256.13 
X2 = − 2[LL(βfixed) − LL(βmixed)] 50.04  
Degree of freedom 4  
Probability of rejecting the null 

hypothesis 
100%   

Model using TAZ-level data 
Number of parameters 7 6 
Log-likelihood at convergence, LL(β) −77.84 −82.27 
X2 = − 2[LL(βfixed) − LL(βmixed)] 8.86  
Degree of freedom 1  
Probability of rejecting the null 

hypothesis 
99.70%   
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no unobserved heterogeneity between individuals. 
Next, we focus on the explanatory variables with random parame

ters, i.e., parameters with t-statistics in parenthesis. The disparity di
rection related to these variables are not consistent across the 
population; not all individuals in a related subgroup follow the same 
disparity direction as the subgroup mean reveals. For instance, the 
constant produces a negative mean parameter, indicating that the pop
ulation in southern Tampa is more likely to not have bike-sharing 
accessibility on average. However, as shown in Table 4, the specified 
normal distribution for the constant suggests that 97.92% of the popu
lation in southern Tampa has a negative constant term while 2.08% has 
a positive one. This result indicates that despite the low likelihood for 
individuals to have bike-sharing accessibility in southern Tampa, a small 
portion (2.08%) is more likely to receive bike-sharing accessibility than 
others. Since the constant term does not involve any sociodemographic 
attributes (i.e., individuals are treated as similar), this observation 
indeed implies that the bike-sharing accessibility is not evenly distrib
uted among the population in southern Tampa from the horizontal eq
uity perspective. This result is consistent with those in Chen et al. 
(2019), indicating the validity and correctness of the estimated model. 
Likewise, variable age group 2 produces a normally distributed positive 
parameter with a mean of 0.13 and a standard deviation of 0.80. This 
result reveals that 56.45% of individuals aged between 35 and 64 have a 
higher likelihood of having bike-sharing accessibility (with estimated 
parameters above 0) while 43.55% of individuals in this subgroup have 
a lower probability (with estimated parameters below 0). Other vari
ables resulting in random parameters can be interpreted in a similar way 
using the parameter distributions summarized in Table 4. These results 
indicate that there are discrepancies between the accessibility received 
by different population subgroups, i.e.; the accessibility distribution in 
southern Tampa is not equal from the vertical equity perspective. These 
findings on parameters with unobserved heterogeneity offer important 
managerial insights for policy makers as we discuss below. 

The measures that can be applied for subgroups without unobserved 
heterogeneity may not be as effective in addressing the inequality issues 
between population subgroups defined by variables with random pa
rameters. For subgroups with negative mean parameters (meaning that 
these subgroups are underrepresented on average), there might be an 
evident portion of individuals resulting in positive estimated parameters 
or vice versa. For example, 43.55% of the individuals aged between 35 
and 44 produce a negative parameter despite a positive mean parameter 
for this subgroup. In contrast, 36.34% of females lead to a positive 
parameter although this subgroup results in a negative mean parameter. 
Therefore, it may be a waste of investment to enact a policy simply 
targeting all individuals in underrepresented subgroups with unob
served effects. Worse still, this kind of policy may exasperate the 
inequality issue between different subgroups. For instance, if more bike- 
sharing stations are sited in areas with a higher proportion of females in 
southern Tampa, it is likely that the 36.34% of females who already 
produce a positive parameter will receive more bike-sharing accessi
bility owing to the improvement. As a result, this increase will drive the 
disparity further to the point that females will eventually be over
represented on average. 

Therefore, to design effective policies for subgroups with unobserved 
heterogeneity, policymakers should spend efforts on identifying people 
who are truly underrepresented in these subgroups, e.g., the 63.66% of 
females with a negative parameter. With this, equitable system 
improvement plans can be designed to target these individuals only 
rather than all individuals in an underrepresented subgroup. However, 
differentiating these individuals from others in the same subgroups is a 
challenging task that needs more sophisticated models; it involves an 
analysis of the distributions of individual sociodemographic and acces
sibility outcomes. A relevant study (Qian and Niemeier, 2019) can shed 
insights into in the development of such methods. It proposes a new 
index-based method to determine the priority to site bike-sharing sta
tions at different geographic units of analysis so that the expanded 

system can better serve low income and minority households. Addi
tionally, even though such sophisticated methods have not been avail
able yet, results from the mixed logit model can be integrated to better 
define disadvantaged subgroups at which the equitable system 
improvement measures should target. One way is to simply prioritize 
subgroups with higher proportions of individuals producing negative 
parameter estimates. Equitable improvement investments can then be 
allocated to address the accessibility gaps between subgroups with high 
priority and those with low priority. Also, several sociodemographic 
attributes with higher proportions of individuals having negative 
parameter estimates can be weighted to define a composite index that 
reflects to what extent the population in a geographic unit of analysis is 
deprived of bike-sharing accessibility. The index can then be used to 
determine the priority of equitable improvement for different 
geographic units of analysis with their sociodemographic profiles. 

3.3. Model estimation results using parcel-level and TAZ-level data 

To investigate the impacts of data aggregation on revealing unob
served heterogeneity in transportation equity effects, we present and 
discuss the results from estimated models using the parcel-level and 
TAZ-level data. We also present the spatial distribution of the accessi
bility results and three representative sociodemographics to visualize 
the unobserved heterogeneity. The estimated parcel-level and TAZ-level 
models are summarized in Table 6 and Table 7, respectively. Results of 
the likelihood ratio test for these models are shown in Table 5. Spatial 
distributions of the accessibility and population subgroups are shown in 
Figs. 2 and 3. 

As seen from Table 6, when data are aggregated to land parcels, 

Table 6 
Mixed logit model results of the parcel-level bike-sharing accessibility in 
southern Tampa. (Standard deviation of parameter estimate, in parentheses). 
Source: Created by the authors.  

Variable description Estimated 
parameter 

t-Stat. Marginal 
effects 

Constant −2.773 
(2.573) 

−7.71 
(59.02) 

/ 

Average number of tours 0.491 (0.068) 12.52 
(5.60) 

0.007 

Proportion of people aged from 19 
to 34 years old 

0.014 13.12 2.00E-4 

Proportion of people aged from 35 
to 44 years old 

0.008 7.95 1.20E-4 

Proportion of people aged from 44 
to 65 years old 

0.003 2.82 0.40E-4 

Proportion of people who never 
married 

0.002 4.01 0.27E-4 

Proportion of people whose annual 
household income is higher than 
$74,999 

0.006 15.30 0.87E-4 

Proportion of people with the 
commute time greater than 29 
min 

−0.002 −4.77 −0.30E-4 

Proportion of Native Americans −0.002 
(0.001) 

−3.41 
(3.29) 

−0.24E-4 

Average number of people in a 
household 

−0.881 
(0.782) 

−25.73 
(49.27) 

−0.013 

Average number of workers in a 
household 

0.460 11.56 0.007 

Proportion of people whose 
household has no kid under 16 
years old 

−0.004 −4.90 −0.52E-4 

Mean distance between activity 
locations to the nearest bike- 
sharing hubs 

−0.183 −5.31 −0.003  

Model statistics 
Number of observations 41,380 
Log-likelihood at zero, LL(0) −28,419.75 
Log-likelihood at convergence, LL(β) −10,231.11 
ρ2 = 1 − LL(β)/LL(0) 0.64  

Z. Chen and X. Li                                                                                                                                                                                                                               



Journal of Transport Geography 91 (2021) 102956

10

many of the variables that are significant in the estimated individual- 
level model are still statistically significant, with the absolute values 
of their t-statistics greater than 1.96 (i.e., p-values less than 0.05). Most 
of the estimated parameters show the same signs and thus indicate the 
same disparity direction as the individual-level model does. However, 
several subgroups (e.g., females) are not statistically significant in the 
parcel-level model, revealing that data aggregation dilutes the disparity 
among individuals in groups defined by these sociodemographic attri
butes. Interestingly, variable proportion of people whose household has no 
kid under 16 years old produces a negative sign, meaning that people 
living in households with higher proportions of kids aged 16 are less 
likely to have bike-sharing accessibility, which contradicts the finding 

from the individual-level data. However, this result is not very surprising 
because it has been well-known in geography that analytical results from 
multivariate analysis using aggregated data are dependent on the 
geographic units used for the analysis; different geographic scales may 
even result in contradictory results. This so-called modifiable unit areal 
problem (MUAP) poses a major challenge to using multivariate analysis 
of aggregated spatial data to formulate policies (Fotheringham and 
Wong, 1991). 

Further, although results from the log-likelihood ratio test confirm 
the necessity of using a mixed logit model for analyzing the parcel-level 
data at a confidence level of 100% (see Table 5), most individual un
observed heterogeneity revealed by the random parameters are absor
bed. Specifically, there are only four statistically significant random 
parameters in the parcel-level model. For example, the constant follows 
a normal distribution with a mean of −2.773 and a standard deviation of 
2.573, meaning that the estimated coefficients are greater than 0 for 
14.06% of the land parcels and less than 0 for 85.94% of them. This 
result indicates the distribution of bike-sharing accessibility is not hor
izontally equitable at the land parcel levels in southern Tampa, either. 
Additionally, variable average number of people in a household follows a 
normal distribution with a mean of −0.881 and a standard deviation of 
0.782, revealing that the corresponding parameter is positive for 13% of 
the parcels and negative for 87% of them. This result indicates that when 
data are aggregated, the unobserved heterogeneity is also likely absor
bed along with the observable individual heterogeneity. 

When data are further aggregated to the TAZ level, the number of 
variables that are included in the estimated model (with p-values less 
than 0.05) is much fewer, meaning that more heterogeneity that could 
have been captured in the disaggregated dataset tends to be diluted. 
Specifically, only three variables statistically significant in the 
individual-level model are also significant in the TAZ-level model, 
including the proportion of people with the commute time more than 29 min, 
the proportion of people whose annual household income is higher than 
$74,999, and the proportion of households without kids under 16 years old. 
Again, the number of university students in a household shows an 

Table 7 
Mixed logit model results of the TAZ-level bike-sharing accessibility in southern 
Tampa. (Standard deviation of parameter estimate, in parentheses). Source: 
Created by the authors.  

Variable description Estimated 
parameter 

t-Stat. Marginal 
effects 

Constant −10.46 −3.31 / 
Proportion of people with the 

commute time ranging from 20 to 
29 min 

0.18 2.91 0.0037 

Proportion of people with the 
commute time more than 29 min 

0.13 2.50 0.0028 

Proportion of people whose annual 
household income is higher than 
$74,999 

0.04 2.82 0.0008 

Proportion of people that is in the 
combined other racial group 

1.09 (1.11) 4.75 
(4.67) 

0.0230 

Proportion of households without kids 
under 16 years old 

−0.06 −2.31 −0.0012  

Model statistics 
Number of observations 178 
Log-likelihood at zero, LL(0) −123.56 
Log-likelihood at convergence, LL(β) −77.84 
ρ2 = 1 − LL(β)/LL(0) 0.37  

Fig. 2. Spatial distribution of bike-sharing accessibility in southern Tampa. Dots represent land parcels. The left figure contains all TAZs and parcels with bike- 
sharing accessibility greater than 0.001. The right figure contains all TAZs and parcels with bike-sharing accessibility less than and equal to 0.001. Source: 
Created by the authors. 
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opposite impact on the distribution of bike-sharing accessibility as that 
in the individual-level model. Further, several variables that do not 
show significant impacts on the distribution of bike-sharing accessibility 
in the individual-level model are found to be statistically different from 
zero in a two-tailed t-test in the TAZ-level model. These variables 
include the proportion of people with commute time ranging from 20 to 29 
min and the proportion of people that is in the combined other racial group. 

The model estimated with TAZ-level data also produces different 
results in terms of unobserved heterogeneity. Only the parameter esti
mate for variable proportion of people that is in the combined other racial 
group is found to follow the normal distribution across TAZs. However, 
the variable pertinent to individuals with high annual household in
come, whose parameter estimate follows the normal distribution in the 
individual-level data, is found to be fixed across TAZs. These inconsis
tent results are, again, rooted in the fact that data aggregation absorbs 
the heterogeneity between different individuals. Note that in this case, 
we observe that as the aggregation level increases (i.e., the geographic 
unit of analysis becomes larger), the results tend to be more deviant from 
those in the individual-level model. However, this finding may not be a 
universal rule that holds for other transportation systems. As pointed out 
by Fotheringham and Wong (1991), the impact of the modifiable unit 
areal problem in multivariate analysis is unpredictable since the in
teractions between changes in the variance and covariance of different 
independent variables cannot be anticipated. 

The spatial distributions of the accessibility metric and sociodemo
graphic offer a better understanding of the above statistical analysis 
results. Fig. 2 confirms that the bike-sharing accessibility is concentrated 
in only a small portion of parcels and TAZs, mainly located in Downtown 
Tampa. Fig. 2 also reveals the smoothing effect of data aggregation. We 
see that within a large portion of TAZs, there are parcels with bike- 
sharing accessibility beyond the accessibility levels of these TAZs (e.g., 
red dots in TAZs shaded blue). Fig. 3(a) shows that parcels in the north 
side of the study area have higher average numbers of people in the 
households. These include parcels in the downtown where the bike- 
sharing accessibility is generally higher. Thus, the parcel-level model 
produces a positive parameter estimate for this attribute. Meanwhile, 
not all parcels in the north side are in the downtown and therefore have 
a bike-sharing accessibility less than 0.001. Thus, variable average 
number of people in a household produces a random parameter in the 
parcel-level model. However, at the TAZ level, the average number of 
people in a household is relatively homogenous (i.e., most areas are 
shaded green). As a result, this variable is not statistically significant in 
the TAZ-level model. From Fig. 3(b), we see that both TAZs and parcels 
beyond the downtown area have a higher proportion of people living in 

households without kids under 16 years old. These areas are where the 
bike-sharing accessibility is low. Therefore, this attribute has a negative 
parameter estimate in both models. Finally, while the proportion of 
people that is in the combined other racial group is almost evenly 
distributed across different parcels, TAZs in the north side generally 
have higher proportions, as shown in Fig. 3(c). As a result, this attribute 
only produces a statistically significant parameter in the TAZ-level 
model. Again, because the north side covers areas with high and low 
bike-sharing accessibility, variable proportion of people that is in the 
combined other racial group generates a random parameter in the TAZ- 
level model. 

These results offer strong evidence of the modifiable unit areal 
problem and unobserved heterogeneity in using aggregated data for 
transportation equity analysis. Data aggregation involves a smoothing 
effect so that the variation in a variable that could have been captured by 
the disaggregated data (observed heterogeneity) or could be modeled by 
heterogeneity models (unobserved heterogeneity) decreases as the ag
gregation level increases. Thus, different aggregation levels usually lead 
to different or even contradictory analytical results. This inconsistency 
raises a question whether it is reliable to use multivariate analysis results 
from data at a particular aggregation level for decision making and 
policy formulation. Fortunately, as evidenced in other studies (Bills and 
Walker, 2017; Hu and Wang, 2015), using individual-level dis
aggregated data can help mitigate the impacts of the MUAP. Thus, the 
disaggregated analysis approach presented in this paper shall be 
promising in addressing the MUAP as well. Thus, the use of dis
aggregated data along with unobserved heterogeneity modeling tech
niques, when available, is beneficial for transportation equity analysis. 
However, here we do not intend to claim that using aggregated data in 
transportation equity analysis is unreasonable or not useful. Instead, for 
planning agencies that do not have access to disaggregated data, the 
only feasible solution is aggregated data. However, equity analysts must 
bear in mind that analyses based on aggregated data may miss signifi
cant factors and/or unobserved heterogeneity. Thus, they should exert 
cautions while interpreting the analysis results from aggregated data. 
The purpose of this study is to provide empirical evidence of the exis
tence of unobserved heterogeneity in transportation equity analysis. 

4. Conclusions 

Using individual data on bike-sharing accessibility and sociodemo
graphic in southern Tampa, this paper carries out a case study on the 
existence of unobserved heterogeneity in analyzing the equity impacts 
of the Coast Bike Share system in terms of the accessibility it brings to 

Fig. 3. Spatial distribution of sociodemographic attributes in southern Tampa. Dots represent land parcels. Three attributes are selected: (a) average number of 
people in a household, which is statistically significant in the parcel-level model but not in the TAZ-level model; (b) proportion of people whose households have no 
kids under 16 years old, which is statistically significant in both models; and (c) proportion of people that are in the combined other racial group, which is statistically 
significant in the TAZ-level model but not in the parcel-level model. Source: Created by the authors. 
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society. By grouping the individual accessibility values into two out
comes of having bike-sharing accessibility and not having bike-sharing 
accessibility, a mixed logit model was estimated to investigate the 
relationship between the accessibility outcomes and various socio
demographic attributes. Furthermore, models were also estimated using 
data aggregated to the parcel- and TAZ- levels to explore the impacts of 
data aggregation on model estimation results. The main findings are:  

• Bike-sharing accessibility is relatively low in southern Tampa, 
resulting in a higher likelihood for individuals to not have bike- 
sharing accessibility in general. The bike-sharing accessibility is 
not evenly distributed in southern Tampa from both the horizontal 
and vertical equity perspectives. Specifically, the bike-sharing 
accessibility is concentrated in 2.08% of the individuals. Bike- 
sharing accessibility is higher for people with a higher number of 
tours in their daily travel itineraries, people aged between 19 and 44, 
individuals who have never married, those with an annual household 
income greater than $74,999, and those living in a household with 
no kids under 16 years old on average. In contrast, females, married 
people, individuals with commute time greater than 29 min by car, 
those living in households with higher numbers of workers and 
retired adults, and those have longer mean distances between ac
tivity locations to the nearest bike-sharing hubs are underrepre
sented on average.  

• A number of parameters follow normal distributions with different 
values of mean and standard deviation in the model estimated using 
individual-level data, demonstrating the presence of unobserved 
heterogeneity in the disaggregated dataset. Unobserved heteroge
neity is also found in the parcel-level and TAZ-level models but with 
a fewer number of random parameters. The existence of unobserved 
heterogeneity reveals that relevant parameter estimates do not pro
duce the same sign across the observations, therefore revealing 
different disparity directions for individuals in a population sub
group. Ignoring this effect would likely lead to incorrect parameter 
estimates and thus ineffective policy formulation. Thus, this finding 
demonstrates the necessity and importance of addressing unobserved 
heterogeneity in transportation equity analysis.  

• Data aggregation absorbs the variation of a variable that could have 
been captured by the disaggregated data (observed heterogeneity) or 
been modeled by heterogeneity models (unobserved heterogeneity). 
As a result, as the aggregation level increases, fewer variables are 
statistically significant or produce a random parameter in the esti
mated models. Worse still, due to the modifiable unit areal problem, 
the use of aggregated data likely leads to different analytical results 
at different aggregation levels. This inconsistency makes it unreliable 
to apply modeling results from a particular level of aggregation for 
decision making and policy formulation. Instead, incorporating dis
aggregated data into transportation equity analysis when available 
can avoid this issue. Thus, it is preferable to use disaggregated data 
with heterogeneity methods for transportation equity analysis if 
possible. 

This study provides empirical evidence for the existence of unob
served heterogeneity in transportation equity analysis and offers a 
timely alert for transportation equity analysts to this intriguing issue. 
However, only the most popular heterogeneity modeling approach (i.e., 
random parameters model) is investigated. Applying other relevant 
approaches such as latent class models, random parameters models with 
heterogeneity in mean and standard deviation and comparing the results 
would offer important methodological and planning implications for 
transportation planners. Further, for variables with random parameters, 
how to differentiate individuals truly underrepresented from others in 
the same subgroup is a challenging future research direction. Such 
research would be insightful for policymakers but requires more so
phisticated modeling techniques that allow an analysis of the distribu
tions of individual sociodemographic and transportation outcomes. 

Also, the bike-sharing system investigated in this paper serves a limited 
geographic scale. Heterogeneity models are a sophisticated statistical 
modeling technique that can be applied to data sets of various sizes. We 
were not able to apply the analysis methods to other bike-sharing sys
tems due to the lack of data. It would be an interesting and meaningful 
future research direction to apply the heterogeneity models to other 
transportation systems of different sizes (e.g., Citi Bike in New York) and 
structures (e.g., systems without station clusters). Finally, the estimation 
of a random parameters model using a huge amount of disaggregated 
data takes expensive computational and time resources. The develop
ment of efficient model estimation methods would also be an interesting 
and meaningful future research direction. 
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