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Assessing the equity impacts of transportation systems/policies has become a crucial component in trans-
portation planning. Existing statistical modeling approaches for transportation equity analysis have typically
assumed that parameter estimates are constant across all observations and used data aggregated to certain
geographic units for the analysis. Such methods cannot capture unobserved factors that are not contained in the
dataset, i.e., unobserved heterogeneity, which is likely to be present in the increasingly popular disaggregated
datasets. To investigate whether there is unobserved heterogeneity in transportation equity impacts, this study
carries out an empirical study focusing on the distribution of individual accessibility to activity locations via
bike-sharing in southern Tampa. A disaggregated dataset containing information on individual bike-sharing
accessibility and socio-economic factors is modeled with a random parameters logit model that allows for the
investigation of possible unobserved heterogeneity. Further, models are estimated using data aggregated to
parcel- and TAZ-levels to explore the impacts of data aggregation on model estimation results. The models unveil
the unobserved heterogeneity in bike-sharing accessibility among populations in different groups defined by
different sociodemographic factors in southern Tampa. These results shed insights into how the inconsistent
disparity direction of transportation outcomes across individuals in a population group can be measured from the
heterogeneity effects. Finally, a comparison between different models show that to capture such inconsistency,
the use of disaggregated data with heterogeneity models is highly recommended for transportation equity
analysis.

1. Introduction and affluent people being overrepresented among the registered users of

several bike-sharing systems in the United States (Ursaki and Aultman-

Title VI of the Civil Rights Act of 1964 requires programs, trans-
portation programs included, that receive federal funds to bring out-
comes (e.g., costs, benefits) to society non-discriminatively (Karer and
Niemeier, 2013). Achieving an equitable distribution of the outcomes of
transportation systems across space and different sociodemographic
groups has then become a primary challenge facing urban transportation
planning (Gao and Klein, 2010; Carrier et al., 2014). Regardless of
enormous efforts on ensuring equity from transportation planners, as-
sertions of inequity have been witnessed in traditional and emerging
transportation systems (Noland and Lem, 2002; Guo et al., 2020). Many
traditional transportation practices were known to favor automobile
travel rather than other modes of transportation that are heavily relied
on by socially- or economically-disadvantaged groups (Litman and
Brenman, 2012). Further, research has also identified inequities in ac-
cess to the emerging bike-sharing systems, with white, college-educated,
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Hall, 2015). Therefore, analyzing the equity impacts of transportation
systems/policies has become an important part of transportation project
design.

In the challenging mission of analyzing the equity impacts for
transportation systems, a critical step is to assess the distribution of their
outcomes across space and/or different demographic groups. One
typical approach is to apply a mismatch analysis of simple descriptive
statistics (e.g., mean) of the transportation outcome measures. This
method presents the distribution of the outcome measures in maps or
tables and then compares the distributions (Currie, 2004; Karn Kaplan
et al.,, 2014; Golub and Martens, 2014; El-Geneidy et al., 2016).
Mismatch analysis is quite simple and intuitive, but it cannot offer much
quantitative information on equity performance. Therefore, trans-
portation researchers have adopted inequality indexes from social sci-
ence to obtain a quantitative evaluation of the overall degree of
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inequality. Popular inequality indicators include Gini index (Delbosc
and Currie, 2011; Karn Kaplan et al., 2014; Guzman et al., 2017;
Pritchard et al., 2019), Atkinson index (Levy et al., 2009), Theil’s en-
tropy index (Hamidi et al., 2019), comparative environmental risk index
(Kocak, 2019), and subgroup inequality index (Gurram et al., 2015;
Gurram et al., 2019; Chen et al., 2019). Another approach to quantita-
tively evaluating inequity, which is the focus of this paper, is statistical
modeling such as the ordinary least squares regression model (Ogilvie
and Goodman, 2012), the negative binomial model (Wang and Akar,
2019), and the multinomial logit model (Wang and Akar, 2019; Raux
et al., 2017). In these models, the sign of the estimated coefficient on
each explanatory variable indicates whether a population group with
that factor is over- or under-represented in terms of the outcome they
receive, while the magnitude of the coefficient is often used as a measure
of the strength of the disparity (or level of inequality).

Due to their exploratory capability in describing the relationship
between transportation outcomes and sociodemographic attributes,
statistical models have been popularly applied for transportation equity
analysis such as disparities among populations in terms of accessibility
(Ogilvie and Goodman, 2012; Wang and Akar, 2019; Raux et al., 2017),
exposure to emissions (Buzzelli and Jerrett, 2007; Havard et al., 2009),
and safety outcomes (Harper et al., 2015; Kravetz and Noland, 2012;
Morency et al., 2012). In these studies, data were usually aggregated to
certain geographic scales for analysis, e.g., census tracts (Morency et al.,
2012; Buzzelli and Jerrett, 2007), census blocks (Havard et al., 2009;
Wang and Akar, 2019), and census block groups (Kravetz and Noland,
2012). However, data aggregation has been demonstrated to absorb
individual heterogeneity in the distribution of transportation outcomes
(Chen et al., 2019). Therefore, researchers have promoted the use of
individual-level disaggregated data to unveil individual disparities in
transportation equity analysis (Bills and Walker, 2017; Chen et al., 2019;
Gurram et al., 2019). Using disaggregated data unveils individual het-
erogeneity that tends to be hindered by aggregated approaches and
therefore offers a better interpretation of the equity impacts. Although
disaggregated data contain rich information on individual sociodemo-
graphic attributes, these databases usually only cover a small fraction of
the large number of elements that define individual sociodemographic
status. Many other factors indeed remain unobserved to analysts. For
example, the availability of credit cards has been shown to be a signif-
icant factor contributing to individual access to bike-sharing services
(Shaheen et al., 2017). However, datasets providing sociodemographic
information (e.g., those from the American Community Survey) do not
contain such information.

These unobserved factors can introduce variations in the distribution
of transportation outcomes among individuals that belong to a socio-
demographic group. For instance, consider race as an unobserved factor
that correlates with the distribution of transportation outcomes.
Although there has been ample evidence that different racial groups
benefit differently from some transportation systems in terms of their
accessibility (Chen et al., 2019), there are also great variations across
people of the same race, including differences in transportation needs,
availability of credit cards, English proficiency and other factors that are
generally unavailable to the analysts. This type of heterogeneity essen-
tially are not captured in the dataset, and thus is called unobserved het-
erogeneity in the literature. It has been frequently observed in highway
accident data and traffic flow data. In highway accident data, unob-
served heterogeneity is found in a range of explanatory variables such as
gender, age, vehicle type, traffic volume, and so on (Mannering et al.,
2016). In traffic flow data, unobserved heterogeneity exists in driving
styles, vehicle types, and leader-follower pair compositions (Ossen and
Hoogendoorn, 2011).

However, few studies have investigated unobserved heterogeneity
for transportation equity analysis. Existing studies applying exploratory
statistical models for transportation equity analysis have generally
assumed that parameters in the estimated model are constant across all
observations; i.e., there is no unobserved heterogeneity in the collected
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data. However, ignoring the unobserved heterogeneity may result in
misspecified models, and thus the estimated parameters will be biased
and inefficient (Mannering et al., 2016). As a result, inference and policy
implications based on the estimated models will be erroneous. An
instance is the relationship between race and the accessibility an indi-
vidual receives from a bike-sharing system. As mentioned previously,
there are multiple reasons to believe that the accessibility people receive
from a bike-sharing system varies from individual to individual even if
they are the same race owing to unobserved individual heterogeneity.
Nevertheless, if possible unobserved heterogeneity across individuals
were ignored, incorrect conclusions may have been drawn from erro-
neous parameter estimates such as believing that all individuals in one
racial group have higher accessibility than the general population.
Indeed, there are possibly some individuals of that race who do not
receive accessibility from the system at all because the lack of credit
cards prevents them from using the services (which is not captured by
the analysis dataset). This phenomenon is particularly likely when a
disaggregated dataset containing a large number of samples is used for
analysis. Without explicitly considering the unobserved heterogeneity,
it will be difficult to determine whether this statement is true or not.
Therefore, approaches to accounting for unobserved heterogeneity for
analyzing transportation equity impacts are needed.

Against this background, this paper aims to apply an exploratory
modeling approach to investigate whether there is unobserved hetero-
geneity in transportation equity impacts. To this end, we carry out a case
study focusing on the distribution of individual accessibility to activity
locations via bike-sharing in southern Tampa using a disaggregated
dataset. The dataset includes individual bike-sharing accessibility and
sociodemographic information. To allow for the investigation of
possible unobserved heterogeneity in the data, three random parameters
logit models are estimated using the individual-level data and data
aggregated to land parcel and traffic analysis zone (TAZ) levels,
respectively. The novelty of this paper lies in allowing for possible un-
observed heterogeneity of random parameters and the use of heteroge-
neity effects in equity impact measurement for transportation equity
analysis. The main contributions of this paper are threefold. First, we
apply a heterogeneity modeling approach to study the equity impacts of
a case study transportation system in southern Tampa using a dis-
aggregated dataset. The use of a heterogeneity model captures the po-
tential unobserved heterogeneity hidden in the large amount of
individual-level data while traditional fixed parameters models cannot
serve the same purpose. We also investigate how heterogeneity effects
can be used to measure the equity impacts in transportation systems.
Incorporating this unobserved heterogeneity ensures that the model is
correctly specified, and thus the resultant equity interpretations are
unbiased and efficient. Second, we offer a comparison between the
model estimation results using disaggregated data, data aggregated to
parcels, and data aggregated to TAZs. This comparison enables an in-
depth understanding of the impacts of data aggregation on parameter
estimates in the model, which are of special importance to trans-
portation planners and equity analysts. It also provides insights into the
presence of unobserved heterogeneity in aggregated data. Finally, the
case study reveals how bike-sharing accessibility is distributed among
the population and population subgroups defined by various socio-
demographic attributes in southern Tampa. It also confirms the exis-
tence of unobserved heterogeneity in the investigated data, the necessity
of using a heterogeneity model, and the advantage of using dis-
aggregated data. Overall, this study offers empirical evidence to trans-
portation equity analysts of the existence and importance of
incorporating unobserved heterogeneity given the emerging use of dis-
aggregated data in transportation equity analysis. Particularly, various
equity implications and recommendations of the studied bike-sharing
system provide insights that can assist bike-sharing operators in
designing unobserved heterogeneity-aware equitable expansion plans in
southern Tampa and beyond.

The remainder of this paper is organized as follows. Section 2
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presents the materials (including the bike-sharing system, analysis area,
and data collection), and the analytical method used for modeling the
data. Section 3 presents and discusses the analysis results, including
descriptive statistics, model estimation results using the individual-
level, parcel-level, TAZ-level data, and the corresponding equity impli-
cations. Finally, Section 4 provides conclusions and potential future
research directions.

2. Materials and methods

The primary goal of this study is to investigate unobserved hetero-
geneity in the equity impacts of transportation outcomes via a case study
bike-sharing system. To this end, we first collected data on individual
sociodemographic and accessibility to activity locations via a bike-
sharing system in the study area. Then, a statistical modeling
approach that captures unobserved heterogeneity was applied to model
the data. This section presents the bike-sharing system, the analysis area,
the investigated dataset and the statistical modeling approach
successively.

Journal of Transport Geography 91 (2021) 102956
2.1. Bike-sharing system

We selected the Coast Bike Share system in Downtown Tampa, the
central business district of Tampa (see Fig. 1), as a case study for
exploring possible unobserved heterogeneity in the equity impacts of a
transportation system. The selected system is an interesting case study
for a number of reasons. Bike-sharing is a fast-growing mode of trans-
portation in many countries with increasing equity concerns (Lei and
Ouyang, 2018; Chen et al., 2019; Chen et al., 2020; Qian and Niemeier,
2019). Starting in late 2014, the Coast Bike Share system has been
serving both tourists and residents (Mckenna, 2016), and therefore we
can use it as a case to analyze residents’ accessibility to activity locations
via bike-sharing. Note that although the Coast Bike Share system in
Downtown Tampa is relatively small, it was listed as one of the 29th
largest bike-sharing systems in the US (Barajas and Drive, 2018). Its
small service scale also makes equity a more sensitive issue. Addition-
ally, the area where the bike-sharing system is located features high
diversity in terms of residents’ sociodemographic profiles, making it
appropriate for studying the accessibility distribution across different
population groups. Furthermore, although a previous study (Chen et al.,

0 195390 780 1,170 1560
[ - Miles

02550 100 150 200 5 < 1
O s Miles . NS Y

>z

0 27555 11 16.5 22
[ = Miles

>z

e  Bike-sharing lub

01 2 4
[ = Miles

Fig. 1. The analysis area. The top left sub-figure presents the location of Florida within the United States. The top right sub-figure presents the location of Tampa
within Florida. The bottom left sub-figure presents the area selected for analyzing the equity impacts in terms of individual accessibility via bike-sharing, i.e.,
southern Tampa. The bottom right sub-figure shows the distribution of bike-share hubs (represented by dots) of the Coast Bike Share system in Downtown Tampa.

Source: Created by the authors.



Z. Chen and X. Li

2019) has revealed inequality of the accessibility distribution of the
Coast Bike Share system among different sociodemographic groups of
southern Tampa, their method does not capture any unobserved het-
erogeneity. Certain groups (e.g., whites, Asians, non-Hispanics) have
been shown to be overrepresented in terms of the accessibility they
receive from the system but whether the overrepresentation is consistent
across the entire population subgroup is still not clear. Therefore, a case
study using an approach that capture unobserved heterogeneity would
be helpful for policymakers and bike-sharing operators to better un-
derstand the equity impacts and to design unobserved heterogeneity-
aware equitable expansion plans of this system and other bike-sharing
systems more broadly.

2.2. Analysis area

Following Chen et al. (2019), we selected an area that surrounds the
Coast Bike Share system for the analysis. This area corresponds to the
Tampa City Public Use Microdata Area (PUMA) in Florida, which is the
most detailed geographic unit with available individual records from the
US Census Bureau (Gliebe et al., 2014; US Census Bureau, 2010). It is
located in the southern part of Tampa as shown in Fig. 1, and thus we
call it southern Tampa. According to the US Census Bureau (2019), this
area had a population of 168,835 as of 2018 and the sociodemographic
profiles of the residents in this area were highly diverse. Specifically, the
population distribution for white, black, Asian and other racial groups
was 58%, 10%, 2%, and 30%, respectively. Twenty six percent of the
population identified themselves as Hispanic or Latino origin. Male
accounted for 50% of the population and the age distribution was 20%
under 18 years, 65% between 18 and 64, and 15% over 65. In terms of
the annual household income, 11.5% of the population lived below the
poverty line while 34% of the households earned more than $100,000
per year. Further, the selected analysis area covers residents within and
outside the service area of the bike-sharing system, and thus an anlysis
based on this area likely paints a more complete picture of the equity
landscape of the system.

2.3. Data collection

The data used for this study were collected from a synthetic popu-
lation of southern Tampa simulated with the Person Day Activity and
Travel Simulator (Daysim, Bradley et al., 2010). These include infor-
mation on individual sociodemographic and accessibility to activity
locations in their daily travel itineraries over a typical weekday via the
Coast Bike Share system. The synthetic population was generated by an
iterative proportional fitting approach (Beckman et al., 1996) from the
PUMS of the American Community Survey (US Census Bureau, 2010) by
Gurram et al. (2019). To ensure that the synthetic population is repre-
sentative of the real-world data, multiple variables are used to calibrate
the model, such as land use, demographic information, and trip char-
acteristics. For example, the statistics of the synthetic population are
consistent with those of the original census data, indicating the validity
of the synthetic population. Note that since using real individual infor-
mation will involve privacy concerns and a huge amount of time and
money to collect data from a full population, here we adopt a synthetic
population that well represents the real population in southern Tampa.
There are some individual records with missing sociodemographic in-
formation in the dataset due to the presence of incomplete individual
records in the PUMA data for generating the synthetic population.
Further, kids under the age of 18 are not allowed to use the bike-sharing
service due to the unavailability of credit cards and/or incapability to
ride (Coast Bike Share, 2019). Therefore, we excluded them from the
analysis. Finally, we removed all these problematic records and ob-
tained a sample size of 75,697.

The sociodemographic information contains the individuals’ resi-
dence locations and sociodemographic attributes. Both the land parcel
and TAZ of each hypothetical individual were identified. We determined
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the centroid coordinate locations of land parcels and TAZ’s from Daysim
and PlanHillsborough (2017), respectively. These were used to aggre-
gate individual-level data to different geographic scales for comparative
equity analyses. For sociodemographic attributes, we considered the
number of tours in one’s daily travel itinerary, age (18-35, 35-45,
45-65, above 65), gender (male, female), race (white, black, Asian,
other), ethnicity (Hispanic and non-Hispanic), nativity (native American
and non-native), marital status (married, widowed, divorced, separated,
never married or under 15 years old), household income level (below
poverty, middle income defined as above the 2009 poverty level but
with an annual household income below $75,000, and upper income
with an annual household income above $75,000), person type
(workers, university students), commute time (i.e., travel time from
home to work) by car in minutes, household size (i.e., number of people
in the household), number of workers in the household, number of
retired adults in the household, number of kids aged less than 16 in the
household, and number of university students in the household. The
attributes are divided into different subgroups following Chen et al.
(2019) and American Community Survey.

Individual accessibility to activity locations via the bike-sharing
system was estimated with a tour-based approach proposed in Chen
et al. (2019) using information regarding the locations of bike-sharing
stations and individual daily travel itineraries generated from Daysim.
This approach takes into account the intermodal characteristic of bike-
sharing trips and the interdependence of individual mode choice de-
cisions for neighboring trips. The resulting accessibility of each person is
a continuous value ranging from 0 to 1, with 0 representing the lowest
value and 1 representing the highest. This accessibility measure is
essentially a person-based potential accessibility measure (Geurs and
Van Wee, 2004). It quantifies the potential of an individual in reaching
all activity locations in her daily travel itinerary via the bike-sharing
system. The potential accessibility measure has been shown to be an
appropriate social indicator for analyzing the level of access to social
and economic opportunities related to the activity locations of one’s
daily travel itinerary for different sociodemographic groups. Additional
details of the tour-based accessibility modeling approach can be found in
Chen et al. (2019).

However, the accessibility measure selected does not involve an in-
dividual’s actual usage of the bike-sharing system. As a result, the pro-
posed method cannot answer questions such as how the visitors’ (the
other group of target customers for the studied bike-sharing system)
usage on the bike-sharing system affects city residents’ bike-sharing
accessibility. The actual usage of shared bikes depends on the spatio-
temporal distribution of the shared bikes, which is a function of a range
of complicated factors including the repositioning activities, the bicycle
pick-up and drop-off dynamics at each station regardless of the user type
(i.e., residents and tourists), etc. The availability of data on the travel
behavior of visitors poses another challenge to the consideration of
visitors in the analysis. Thus, to investigate the bike-sharing accessibility
based on the users’ actual usage of the system would amount to a new
problem that is out of the scope of this study.

2.4. Analysis methodology

We aim to estimate a heterogeneity model to capture unobserved
heterogeneity in the distribution of bike-sharing accessibility among
different sociodemographic groups of southern Tampa. There are
various heterogeneity models in statistical modeling, such as random
parameters models (Anastasopoulos and Mannering, 2009, 2011, latent
class models (Behnood et al., 2014), and their combinations (Xiong and
Mannering, 2013), as summarized in Table 1. Yet, no concensus has
been reached on which approach is always superior in addressing un-
observed heterogeneity. As an empirical study to demonstrate the
presence of unobserved heterogeneity in transportation equity impacts,
this study adopts the most widely used random parameters approach
(Mannering et al., 2016) to model the collected data.
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Table 1
Comparisons of popular heterogeneity models. Source: After Mannering et al.
(2016).
Models Concepts Advantages Disadvantages
Random- Allow parameter Capture Require an
parameters estimates to follow  heterogeneity assumption on the
models a continuous across individual parameter
statistical observations distribution
distribution

Latent class
models

Separate the
sample into groups
(or classes) within

Allow for fixed
parameters within
classes; do not

Are difficult to
estimate if there are
many latent

which parameters require an classes; cannot
are homogeneous assumption on the capture possible
parameter heterogeneity
distribution within a class
Latent class Separate the Combine the Are very

modelswith ~ samples into advantages of cumbersome to
random- groups and allow random-parameters  estimate, especially
parameters parameter and latent class for large-scale
variations within models disaggregated
each group datasets

2.4.1. Statistical modeling approach

To convert the continuous bike-sharing accessibility values to a set of
binary variables that can be modeled by the mixed logit model, we
define a set of bike-sharing accessibility levels indexed as
n €./ :={0,1}, where n = 0 represents an accessibility value of 0 and n
= 1 represents an accessibility value greater than 0. Besides, we define
binary variable Yy;, which equals 1 if the bike-sharing accessibility level
of individual i is n and O otherwise. Specifically, Yo; = 1 and Y7; = 0 if the
accessibility value of individual i is 0, while Yy; = 0 and Yy; = 1 if the
accessibility value of individual i is greater than 0. Thus, dependent
variables Yy; := {Yy;, Y1;} represent a set of discrete (binary in this case)
outcomes, to model which mixed (or random parameters) logit model is
appropriate. To arrive at a mixed logit model that allows for heteroge-
neity in the estimated parameters across observations (i.e., individuals
in this paper), a function that determines the probability of individual i
having outcome n can be defined as (Washington et al., 2010):

Y =B, Xui + €ni (@]

where g, is a vector of estimated parameters for discrete outcome n and
X, is a vector of observable explanatory sociodemographic attributes
that correlate with discrete outcome n for individual i, and e is a
disturbance term that is assumed to be extreme value distributed. Note
that all notation in bold is vector while the remaining is not. The basic
idea of random parameters models is to account for the unobserved
heterogeneity by allowing estimated parameters in the model to vary
across observations following a predefined probability distribution with
probability function f(| @), where @ refers to a vector of parameters of
the density function (i.e., mean and variance). Then, the outcome
probability of a mixed logit model, which accounts for unobserved
heterogeneity in the collected data, can be derived as (Train, 2009):

C Ko
Pi(nlp) = /Wf(ﬁn'tp)dﬂn ®))

net”

where Py(n| @) represents the probability that the accessibility outcome
of individual i is n given a vector of parameters ¢ of the density function.
Obviously, the probability shown in Eq. (2) is a weighted average of the
probabilities of a set of standard multinomial logit models correspond-
ing to different values of .

For model estimation, we used a popular statistical analysis software,
NLOGITS5. We considered various probability distributions in the model
estimation, including normal, lognormal, triangular, and uniform dis-
tributions. The model estimation was realized using the simulated
likelihood method with 200 Halton draws, which has been shown to
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result in sufficiently accurate parameter estimation (McFadden and
Train, 2000). Marginal effects were computed as (OE[ Yp;| Xpil)/(0Xni) by
NLOGIT5 (Greene, 2007) to quantify the influence that one-unit in-
crease in an explanatory variable X,; has on the accessibility outcome
probabilities Yy; to further interpret the model estimation results.

Apart from analyzing the accessibility distribution of the Coast Bike
Share system using the individual data, we also aggregated the data to
both the parcel- and TAZ-level to investigate the impacts of data ag-
gregation on the unobserved heterogeneity. For example, we computed
the mean for all numerical values (e.g., accessibility, age) for all in-
dividuals residing in a land parcel. For sociodemographic attributes with
factorial values (e.g., race, gender), we computed the proportion of the
population that belongs to a group in each land parcel. Similar aggre-
gations were also applied to TAZs. Then, we estimated mixed logit
models to analyze the accessibility distribution with the aggregated data
also using NLOGIT 5.

2.4.2. Statistical evaluation criteria

To make sure that the included variables in the models are statisti-
cally significant and representative, we applied four statistical evalua-
tion criteria during the model estimation process. First, the p-values of
all included variables should be less than 0.05, indicating that the var-
iables are statistically significant given a confidence level of 95%. Sec-
ond, the sample size of the included variables should account for at least
10% and at most 90% of the population because we cannot determine
causality if the number of observations in a subgroup is too high or too
small. By applying this rule, the sample size of each subgroup repre-
sented by an indicator variable will be between 7,569 and 68,127, which
would provide enough observations for causality inference. Third, we
computed the McFadden p? statistic to assess the overall model fitness
(McFadden, 1973). The formulation of the pz statistic is

> L(p)

7 =10 ©)

where LL(f) is the log-likelihood at convergence with parameter vector f
and LL(0) is the log-likelihood at zero (i.e., with all parameters set to 0).
This statistic is similar to R? in ordinary least square regression models,
whose value ranges from 0 to 1. A p? statistic value close to 1 indicates
that the model can predict the outcomes with near certainty. Finally, to
statistically determine whether we need a mixed logit model rather than
a fixed parameters logit model for the investigated dataset, we carried
out a likelihood ratio test. Specifically, we computed the likelihood ratio
test statistic as (Washington et al., 2010)

X2 = -2 [LL( ﬁxed) - LL(ﬂmixed)} (4)

where LL(fmixed) is the log-likelihood at convergence of the mixed logit
model and LL(fgixeq) is the log-likelihood at convergence of the fixed
parameters logit model with the same explanatory variables but all their
estimated coefficients remain constant across observations. The result-
ing X2 is 42 distributed, with degrees of freedom equaling to the differ-
ence between the numbers of parameters in the mixed and fixed
parameters logit models. Then we used the Chi-Square Calculator (Stat
Trek, 2019) to determine whether the null hypothesis stating that the
parameters in the logit model are constant across observations (i.e.,
there is no unobserved heterogeneity in the data) can be rejected.

3. Results and discussion

This section discusses the results of our analyses. Section 3.1 presents
the variables used for model estimation and summary statistics for bike-
sharing accessibility computed by each variable that represents a pop-
ulation subgroup. Results from the disaggregated (i.e., individual-level)
data analysis are presented in Section 3.2. Finally, Section 3.3 compares
the results from the disaggregated model with those from the aggregated
(i.e., parcel-level and TAZ-level) data analyses.
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3.1. Descriptive statistics

Table 2 summarizes the variables used for model estimation and
summary statistics for bike-sharing accessibility by each variable (or
population subgroup) in the analysis area.

As seen in Table 2, there are 75,697 individuals in the final dataset
used for the model estimation. The sampled population is divided into
different subgroups, each of which corresponds to an indicator variable
defined by a sociodemographic attribute. We see that from the last row
in Table 2 that the mean bike-sharing accessibility for the population in
southern Tampa is 0.0027. A 75th percentile value of 0 indicates that at
least 75% of the population in southern Tampa does not have bike-
sharing accessibility at all. This finding is consistent with those from
Chen et al. (2019), which also reveals relatively low bike-sharing
accessibility and an extremely skewed distribution of the bike-sharing
accessibility in southern Tampa overall.

The bike-sharing accessibility is distributed among the individuals in
each subgroup following a similar skewed distribution, with the 75th
percentiles of all subgroups being 0. However, there is an obvious
disparity of the mean bike-sharing. Specifically, the mean bike-sharing
accessibility for certain subgroups (i.e., individuals with the commute
time by car less than 29 min, people aged between 19 and 34, those with
an annual household income higher than $74,999, males, Asians, non-
Hispanics, native American, people who never married, university stu-
dents, individuals living in household without kids under 16 years old,
and those who live in a household without university students) are
higher than the population mean. However, certain groups receive
lower bike-sharing accessibility than the entire population on average,
including individuals with the commute time by car more than 29 min,
people aged over 34, those with an annual household income from
$25,000 to $74,999, females, black people, Hispanics, non-Native
American, individuals who have married at least once, workers, those
living in a household with at least 2 workers, and those living in a
household with retired adults. For the rest of the subgroups, the mean
bike-sharing accessibility is the same as the population mean. These
results describe a seemingly uneven distribution of the bike-sharing
accessibility among different population subgroups in southern
Tampa. However, the difference of the mean bike-sharing accessibility
values between different subgroups is relatively small (i.e., less than
0.01). Thus, it is not clear whether the disparity in the mean bike-sharing
accessibility between different subgroups is statistically significant or
not; probably this disparity can be ignored if it is statistically insignifi-
cant. An in-depth analysis using statistical methods (e.g., analysis of
variance, regression modeling) is needed to answer this question. We
will present results from the estimated mixed logit model in the
following subsection for this purpose.

3.2. Model estimation results using individual-level data

The mixed logit model estimation results using individual-level data
are presented in Table 3. Parameter distribution of the random param-
eters in the mixed logit model is reported in Table 4. Results of the
likelihood ratio tests are presented in Table 5.

We first analyze the statistical performance of the mixed logit model.
As shown in Table 3, 12 variables (including a constant) are included in
the estimated mixed logit model and their absolute values of the t-sta-
tistics are all greater than 1.96 (i.e., the p-values are less than 0.05),
indicating that the variables in the estimated mixed logit model are
statistically different from zero when conducting a two-tailed t-test.
Note that not all variables with a mean accessibility unequal to the
population mean is found to be statistically significant in the estimated
model (e.g., age group 3). This observation highlights an advantage of
using statistical modeling for assessing the equity impacts of trans-
portation outcomes over comparisons of simple summary statistics: they
can filter out population subgroups that are slightly over-/under-rep-
resented so that focuses can be placed on groups facing substantial
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Table 2
Variable definition and summary statistics for the bike-sharing accessibility by
each variable (or population subgroup). Source: Created by the authors.

Variable Sample

size (%)

Descriptive statistics of accessibility

Min  25th Median  Mean 75th Max
% ile % ile

Indicator variables
Very short trip: 8096 0 0 0
1 if the (10.70)
commute
time by car
is less than
10 min;
0 otherwise
Short trip: 1 if 21,875 0 0 0
the (28.90)
commute
time by car
is between
10 and 19
min and
0 otherwise
Medium trip: 1 17,923 0 0 0
if the (23.68)
commute
time by car
is between
20 and 29
min and
0 otherwise
Long trip: 1 if 27,803 0 0 0
the (36.73)
commute
time by car
is more than
29 min and
0 otherwise
Age group 1: 1
if the age
ranges from
19 to 34;

0 otherwise
Age group 2: 1
if the age
ranges from

35 to 44,

0 otherwise
Age group 3: 1
if the age

ranges from
45 to 64;
0 otherwise
Age group 4: 1 4137 0 0 0
if the age is (5.47)
greater than
64;
0 otherwise
Low income: 1 8804 0 0 0
if the annual (11.63)
household
income is
less than
$25,000;
0 otherwise
Middle
income: 1 if
the annual
household
income
ranges from
$25,000 to
$74,999;
0 otherwise
High income:1
if the annual
household
income is

0.0031 0 0.32

0.0029 0 0.35

0.0029 0 0.35

0.0023 0 0.41

26,015 0 0 0 0.0038 0 0.41

(34.37)

18,152 0 0 0
(23.98)

0.0025 0 0.28

27,393 0 0 0 0.0018 0 0.34

(36.19)

0.0020 O 0.32

0.0027 0 0.32

34,783 0 0 0
(45.95)

0.0022 0 0.35

32,110 0 0 0 0.0031 0 0.41

(42.42)

(continued on next page)
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Table 2 (continued) Table 2 (continued)
Variable Sample Descriptive statistics of accessibility Variable Sample Descriptive statistics of accessibility
size (%) Min 25th Median Mean 75th Max size (%) Min 25th Median  Mean 75th Max
% ile % ile % ile % ile
higher than married or
$74,999; under 15
0 otherwise years old;
Male: 1 if the 39,000 0 0 0 0.0028 0 0.41 0 otherwise
gender is (51.52) Worker: 1 if an 73,806 0 0 0 0.0026 0 0.41
male; individual is (97.50)
0 otherwise a worker;
Female: 1 if 36,697 0 0 0 0.0025 0 0.35 0 otherwise
the gender is (48.48) University 1800 0 0 0 0.0053 0 0.27
female; student: 1 if (2.38)
0 otherwise an
White: 1 if the 59,505 0 0 0 0.0027 0 0.41 individual is
race is (78.61) a university
white; student;
0 otherwise 0 otherwise
Black: 1 if the 10,256 0 0 0 0.0022 0 0.30 Household 46,465 0 0 0 0.0022 0 0.41
race is black; (13.55) with (61.38)
0 otherwise workers: 1 if
Asian: 1 if the 2182 0 0 0 0.0028 0 0.20 an
race is (2.88) individual
Asian; lives in an
0 otherwise household
Other: 1 if the 3754 0 0 0 0.0027 0 0.29 with at least
race is not (4.96) 2 workers;
white, black 0 otherwise
or Asian; Household 16,011 0 0 0 0.0013 0 0.30
0 otherwise with retired (21.15)
Hispanic: 1 if 15,625 0 0 0 0.0023 0 0.35 adults: 1 if
the ethnicity (20.64) an
is Hispanic; individual
0 otherwise lives in
Non-Hispanic: 60,072 0 0 0 0.0028 0 0.41 household
1 if the (79.36) with at least
ethnicity is 1 retired
not adult;
Hispanic; 0 otherwise
0 otherwise Household 53,715 0 0 0 0.0033 0 0.41
Native: 1 if an 57,976 0 0 0 0.0028 0 0.41 without kids (70.96)
individual is (76.59) under 16
native years old: 1
American; if an
0 otherwise individual
Non-native: 1 17,721 0 0 0 0.0021 0 0.35 lives in a
if an (23.41) household
individual is with no kid
not native under 16
American; years old;
0 otherwise 0 otherwise
Married: 1 if 23,699 0 0 0 0.0015 0 0.29 Household 70,891 0 0 0 0.0026 0 0.41
the marital (31.31) without (93.65)
status is university
married; students: 1 if
0 otherwise an
Widowed: 1 if 2031 0 0 0 0.0017 0 0.28 individual
the marital (2.68) lives in an
status is household
widowed; without
0 otherwise university
Divorced: 1 if 15,228 0 0 0 0.0024 0 0.32 students;
the marital (20.12) 0 otherwise
status is The entire 75,697 0 0 0 0.0027 0 0.41
divorced; population (100)
0 otherwise
Separated: 1 if 3057 0 0 0 0.0025 0 0.26
the marital (4.04) disparities. Also, the estimated model shows a good overall statistical fit
status is with a p? value of 0.70 (Anastasopoulos and Mannering, 2009, 2011).
separated; s .
0 otherwise The results also reveal the superiority to use a heterogeneity model.
Never married: 31,682 0 0 0 0.0037 0 0.41 We see that the t-statistics of the standard deviations (i.e., the t-statistics
1 if the (41.85) in parenthesis) of 8 variables are greater than 1.96, indicating the
marital standard deviations of the density functions of these parameters are
status is

statistically different from zero in a two-tailed t-test (at a confidence

never .« L.
level of 95%). Thus, these random parameters are statistically
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Table 3

Mixed logit model results of the individual-level bike-sharing accessibility in
southern Tampa. (Standard deviation of parameter estimate, in parentheses).
Source: Created by the authors.

Variable Estimated t-Stat. Marginal
parameter effects
Constant —1.67 (0.82) —8.95 -
(45.28)
Number of tours 0.31 (0.12) 14.71 0.018
(15.35)
Age group 1: 1 if the age ranges from  0.55 16.69 0.032
19 to 34; 0 otherwise
Age group 2: 1 if the age ranges from  0.13 (0.80) 3.65 0.008
35 to 44; 0 otherwise (21.37)
Female: 1 if the gender is female; —0.29 (0.83) -10.24 —0.017
0 otherwise (31.53)
Never married: 1 if the marital status ~ 0.12 4.31 0.007
never married or under 15 years
old; 0 otherwise
High income: 1 if the annual 0.31 (0.13) 12.61 0.018
household income is higher than (5.18)
$74,999; 0 otherwise
Long trip: 1 if the commute time by —0.08 (0.28) -3.13 —0.005
car is more than 29 min and (9.47)
0 otherwise
Number of workers in the household —0.44 (0.33) —23.96 —0.025
(34.46)
Number of retired adults in the —0.64 (0.92) —-16.15 —0.037
household (23.22)
Household without kids under 16 0.60 17.71 0.035
years old: 1 if an individual lives in
a household with no kid under 16
years old; O otherwise
Mean distance between activity —0.16 —8.37 —0.009
locations to the nearest bike-
sharing hubs
Model statistics
Number of observations 75,697
Log-likelihood at zero, LL(0) —52,449.53
Log-likelihood at convergence, LL(f) —15,734.86
p? =1 — LL()/LL(0) 0.70

Table 4

Parameter distribution of random parameters of the mixed logit model using
individual-level bike-sharing accessibility in southern Tampa. Source: Created
by the authors.

Variable Above Below
0 (%) 0 (%)

Constant 2.08 97.92

Number of tours 0.49 99.51

Age group 2: 1 if the age ranges from 35 to 44; 56.45 43.55
0 otherwise

Female: 1 if the gender is female; 0 otherwise 36.34 63.66

High income:1 if the annual household income is higher =~ 99.15 0.85
than $74,999; 0 otherwise

Long trip: 1 if the commute time by car is more than 29  38.75 61.25
min and 0 otherwise

Number of workers in the household 9.12 90.88

Number of retired adults in household 24.33 75.67

significant (Anastasopoulos et al., 2011); the effects of these indepen-
dent variables on the dependent variable varies across the observations
following a normal distribution. Note that we also tried other distribu-
tions, including lognormal, triangular, and uniform distributions, but
the empirical analysis shows that no distribution was statistically su-
perior to the normal distribution. Further, the log-likelihood ratio test
results in Table 5 indicate that the null hypothesis can be rejected at a
confidence level of 100%, and thus not all coefficients of the included
variables in the model are constant across the observations. This result
confirms the existence of unobserved heterogeneity in the investigated
individual-level dataset. It also confirms that the mixed logit model
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Table 5
Results of the likelihood ratio tests. Source: Created by the authors.
Item Random Fixed
parameters parameters

Model using individual-level data

Number of parameters 20 12
Log-likelihood at convergence, LL(f) —15,734.86 —15,752.87
X? = — 2[LL(Bsixed) — LLBmixed)] 36.02
Degree of freedom 8
Probability of rejecting the null 100%
hypothesis
Model using parcel-level data
Number of parameters 17 13
Log-likelihood at convergence, LL(f8) -10,231.11 -10,256.13
X2 = = 2[LL(Bixed) — LLBmixea)] 50.04
Degree of freedom 4
Probability of rejecting the null 100%
hypothesis
Model using TAZ-level data
Number of parameters 7 6
Log-likelihood at convergence, LL(f) —77.84 —82.27
X* = — 2[LL(Bfixed) — LL(Bmixed)] 8.86
Degree of freedom 1
Probability of rejecting the null 99.70%
hypothesis

provides a more statistically superior model fit compared with the
traditional fixed parameters logit model. Therefore, we should adopt a
mixed logit model that can capture possible unobserved heterogeneity in
the dataset to achieve a better model fit.

Turning to the explanatory variables with fixed parameters, we see
from Table 3 that four of the included parameters are fixed across the
individual observations. Specifically, the marginal effects of variable age
group 1 and variable never married indicate that if an individual is aged
between 19 and 34 or never married, the probability of them having
bike-sharing accessibility will increase by 0.032 and 0.007, respectively.
Likewise, the marginal effect of variable household without kids under 16
yeards old reveals that if an individual lives in a household without kids
under 16 years old, his/her probability of having bike-sharing accessi-
bility is higher than the general population by 0.035. Further, the
marginal effect of variable mean distance between activity locations to the
nearest bike-sharing hub indicates that a 1 unit increase in the mean
distance between an indivudual’s activity locations to the nearest bike-
sharing hub decreases the probability of having bike-sharing accessi-
bility by 0.009. Note that to account for possible endogeneity between
the distance-related variable and the accessibility metric, an instru-
mental variable approach was employed: the distance-related variable
was regressed against all exogenous variables and their instruments
were used as independent variables.

These results reveal that population subgroups represented by these
variables are entirely overrepresented (i.e., subgroups with positive
marginal effects) or underrepresented (i.e., subgroups with negative
marginal effects) in terms of the bike-sharing accessibility distribution.
When policymakers intend to decrease/eliminate the disparity between
subgroups defined by these sociodemographic attributes, they should
formulate policies to improve the bike-sharing accessibility for all in-
dividuals in these subgroups that are underrepresented as a whole. In the
case of southern Tampa, people having longer distance from their daily
activity locations to the bike-sharing hubs are those who consistently
experience lower likelihoods of having bike-sharing accessibility than
the general population. If the Coast Bike Share operator intends to
bridge the bike-sharing accessibility gap between this group and the
general population, measures can be adopted such as deploying more
bike-sharing facilities to communities with few bike-sharing hubs, of-
fering a discounted membership or lower payment option, and pro-
moting bike-sharing services among individuals in this subgroup.
Individuals need not be treated differently in these policies since there is
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no unobserved heterogeneity between individuals.

Next, we focus on the explanatory variables with random parame-
ters, i.e., parameters with t-statistics in parenthesis. The disparity di-
rection related to these variables are not consistent across the
population; not all individuals in a related subgroup follow the same
disparity direction as the subgroup mean reveals. For instance, the
constant produces a negative mean parameter, indicating that the pop-
ulation in southern Tampa is more likely to not have bike-sharing
accessibility on average. However, as shown in Table 4, the specified
normal distribution for the constant suggests that 97.92% of the popu-
lation in southern Tampa has a negative constant term while 2.08% has
a positive one. This result indicates that despite the low likelihood for
individuals to have bike-sharing accessibility in southern Tampa, a small
portion (2.08%) is more likely to receive bike-sharing accessibility than
others. Since the constant term does not involve any sociodemographic
attributes (i.e., individuals are treated as similar), this observation
indeed implies that the bike-sharing accessibility is not evenly distrib-
uted among the population in southern Tampa from the horizontal eq-
uity perspective. This result is consistent with those in Chen et al.
(2019), indicating the validity and correctness of the estimated model.
Likewise, variable age group 2 produces a normally distributed positive
parameter with a mean of 0.13 and a standard deviation of 0.80. This
result reveals that 56.45% of individuals aged between 35 and 64 have a
higher likelihood of having bike-sharing accessibility (with estimated
parameters above 0) while 43.55% of individuals in this subgroup have
a lower probability (with estimated parameters below 0). Other vari-
ables resulting in random parameters can be interpreted in a similar way
using the parameter distributions summarized in Table 4. These results
indicate that there are discrepancies between the accessibility received
by different population subgroups, i.e.; the accessibility distribution in
southern Tampa is not equal from the vertical equity perspective. These
findings on parameters with unobserved heterogeneity offer important
managerial insights for policy makers as we discuss below.

The measures that can be applied for subgroups without unobserved
heterogeneity may not be as effective in addressing the inequality issues
between population subgroups defined by variables with random pa-
rameters. For subgroups with negative mean parameters (meaning that
these subgroups are underrepresented on average), there might be an
evident portion of individuals resulting in positive estimated parameters
or vice versa. For example, 43.55% of the individuals aged between 35
and 44 produce a negative parameter despite a positive mean parameter
for this subgroup. In contrast, 36.34% of females lead to a positive
parameter although this subgroup results in a negative mean parameter.
Therefore, it may be a waste of investment to enact a policy simply
targeting all individuals in underrepresented subgroups with unob-
served effects. Worse still, this kind of policy may exasperate the
inequality issue between different subgroups. For instance, if more bike-
sharing stations are sited in areas with a higher proportion of females in
southern Tampa, it is likely that the 36.34% of females who already
produce a positive parameter will receive more bike-sharing accessi-
bility owing to the improvement. As a result, this increase will drive the
disparity further to the point that females will eventually be over-
represented on average.

Therefore, to design effective policies for subgroups with unobserved
heterogeneity, policymakers should spend efforts on identifying people
who are truly underrepresented in these subgroups, e.g., the 63.66% of
females with a negative parameter. With this, equitable system
improvement plans can be designed to target these individuals only
rather than all individuals in an underrepresented subgroup. However,
differentiating these individuals from others in the same subgroups is a
challenging task that needs more sophisticated models; it involves an
analysis of the distributions of individual sociodemographic and acces-
sibility outcomes. A relevant study (Qian and Niemeier, 2019) can shed
insights into in the development of such methods. It proposes a new
index-based method to determine the priority to site bike-sharing sta-
tions at different geographic units of analysis so that the expanded
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system can better serve low income and minority households. Addi-
tionally, even though such sophisticated methods have not been avail-
able yet, results from the mixed logit model can be integrated to better
define disadvantaged subgroups at which the equitable system
improvement measures should target. One way is to simply prioritize
subgroups with higher proportions of individuals producing negative
parameter estimates. Equitable improvement investments can then be
allocated to address the accessibility gaps between subgroups with high
priority and those with low priority. Also, several sociodemographic
attributes with higher proportions of individuals having negative
parameter estimates can be weighted to define a composite index that
reflects to what extent the population in a geographic unit of analysis is
deprived of bike-sharing accessibility. The index can then be used to
determine the priority of equitable improvement for different
geographic units of analysis with their sociodemographic profiles.

3.3. Model estimation results using parcel-level and TAZ-level data

To investigate the impacts of data aggregation on revealing unob-
served heterogeneity in transportation equity effects, we present and
discuss the results from estimated models using the parcel-level and
TAZ-level data. We also present the spatial distribution of the accessi-
bility results and three representative sociodemographics to visualize
the unobserved heterogeneity. The estimated parcel-level and TAZ-level
models are summarized in Table 6 and Table 7, respectively. Results of
the likelihood ratio test for these models are shown in Table 5. Spatial
distributions of the accessibility and population subgroups are shown in
Figs. 2 and 3.

As seen from Table 6, when data are aggregated to land parcels,

Table 6

Mixed logit model results of the parcel-level bike-sharing accessibility in
southern Tampa. (Standard deviation of parameter estimate, in parentheses).
Source: Created by the authors.

Variable description Estimated t-Stat. Marginal
parameter effects
Constant -2.773 -7.71 /
(2.573) (59.02)
Average number of tours 0.491 (0.068) 12.52 0.007
(5.60)
Proportion of people aged from 19 0.014 13.12 2.00E-4
to 34 years old
Proportion of people aged from 35 0.008 7.95 1.20E-4
to 44 years old
Proportion of people aged from 44 0.003 2.82 0.40E-4
to 65 years old
Proportion of people who never 0.002 4.01 0.27E-4
married
Proportion of people whose annual 0.006 15.30 0.87E-4
household income is higher than
$74,999
Proportion of people with the —0.002 —4.77 —0.30E-4
commute time greater than 29
min
Proportion of Native Americans —0.002 —3.41 —0.24E-4
(0.001) (3.29)
Average number of people in a —0.881 —25.73 -0.013
household (0.782) (49.27)
Average number of workers in a 0.460 11.56 0.007
household
Proportion of people whose —0.004 —4.90 —0.52E-4
household has no kid under 16
years old
Mean distance between activity —0.183 -5.31 —0.003
locations to the nearest bike-
sharing hubs
Model statistics
Number of observations 41,380
Log-likelihood at zero, LL(0) —28,419.75
Log-likelihood at convergence, LL(f) -10,231.11
p* =1 — LL(B)/LL(0) 0.64
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Table 7

Mixed logit model results of the TAZ-level bike-sharing accessibility in southern
Tampa. (Standard deviation of parameter estimate, in parentheses). Source:
Created by the authors.

Variable description Estimated t-Stat. Marginal
parameter effects

Constant —10.46 -3.31 /

Proportion of people with the 0.18 291 0.0037
commute time ranging from 20 to
29 min

Proportion of people with the 0.13 2.50 0.0028
commute time more than 29 min

Proportion of people whose annual 0.04 2.82 0.0008
household income is higher than
$74,999

Proportion of people that is in the 1.09 (1.11) 4.75 0.0230
combined other racial group (4.67)

Proportion of households without kids ~ —0.06 -2.31 —0.0012
under 16 years old

Model statistics

Number of observations 178

Log-likelihood at zero, LL(0) —123.56

Log-likelihood at convergence, LL(#) —77.84

p% =1 — LL(B)/LL(0) 0.37

many of the variables that are significant in the estimated individual-
level model are still statistically significant, with the absolute values
of their t-statistics greater than 1.96 (i.e., p-values less than 0.05). Most
of the estimated parameters show the same signs and thus indicate the
same disparity direction as the individual-level model does. However,
several subgroups (e.g., females) are not statistically significant in the
parcel-level model, revealing that data aggregation dilutes the disparity
among individuals in groups defined by these sociodemographic attri-
butes. Interestingly, variable proportion of people whose household has no
kid under 16 years old produces a negative sign, meaning that people
living in households with higher proportions of kids aged 16 are less
likely to have bike-sharing accessibility, which contradicts the finding

Accessibility
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from the individual-level data. However, this result is not very surprising
because it has been well-known in geography that analytical results from
multivariate analysis using aggregated data are dependent on the
geographic units used for the analysis; different geographic scales may
even result in contradictory results. This so-called modifiable unit areal
problem (MUAP) poses a major challenge to using multivariate analysis
of aggregated spatial data to formulate policies (Fotheringham and
Wong, 1991).

Further, although results from the log-likelihood ratio test confirm
the necessity of using a mixed logit model for analyzing the parcel-level
data at a confidence level of 100% (see Table 5), most individual un-
observed heterogeneity revealed by the random parameters are absor-
bed. Specifically, there are only four statistically significant random
parameters in the parcel-level model. For example, the constant follows
a normal distribution with a mean of —2.773 and a standard deviation of
2.573, meaning that the estimated coefficients are greater than O for
14.06% of the land parcels and less than O for 85.94% of them. This
result indicates the distribution of bike-sharing accessibility is not hor-
izontally equitable at the land parcel levels in southern Tampa, either.
Additionally, variable average number of people in a household follows a
normal distribution with a mean of —0.881 and a standard deviation of
0.782, revealing that the corresponding parameter is positive for 13% of
the parcels and negative for 87% of them. This result indicates that when
data are aggregated, the unobserved heterogeneity is also likely absor-
bed along with the observable individual heterogeneity.

When data are further aggregated to the TAZ level, the number of
variables that are included in the estimated model (with p-values less
than 0.05) is much fewer, meaning that more heterogeneity that could
have been captured in the disaggregated dataset tends to be diluted.
Specifically, only three variables statistically significant in the
individual-level model are also significant in the TAZ-level model,
including the proportion of people with the commute time more than 29 min,
the proportion of people whose annual household income is higher than
$74,999, and the proportion of households without kids under 16 years old.
Again, the number of university students in a household shows an
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Fig. 2. Spatial distribution of bike-sharing accessibility in southern Tampa. Dots represent land parcels. The left figure contains all TAZs and parcels with bike-
sharing accessibility greater than 0.001. The right figure contains all TAZs and parcels with bike-sharing accessibility less than and equal to 0.001. Source:

Created by the authors.
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Fig. 3. Spatial distribution of sociodemographic attributes in southern Tampa. Dots represent land parcels. Three attributes are selected: (a) average number of
people in a household, which is statistically significant in the parcel-level model but not in the TAZ-level model; (b) proportion of people whose households have no
kids under 16 years old, which is statistically significant in both models; and (c) proportion of people that are in the combined other racial group, which is statistically
significant in the TAZ-level model but not in the parcel-level model. Source: Created by the authors.

opposite impact on the distribution of bike-sharing accessibility as that
in the individual-level model. Further, several variables that do not
show significant impacts on the distribution of bike-sharing accessibility
in the individual-level model are found to be statistically different from
zero in a two-tailed t-test in the TAZ-level model. These variables
include the proportion of people with commute time ranging from 20 to 29
min and the proportion of people that is in the combined other racial group.

The model estimated with TAZ-level data also produces different
results in terms of unobserved heterogeneity. Only the parameter esti-
mate for variable proportion of people that is in the combined other racial
group is found to follow the normal distribution across TAZs. However,
the variable pertinent to individuals with high annual household in-
come, whose parameter estimate follows the normal distribution in the
individual-level data, is found to be fixed across TAZs. These inconsis-
tent results are, again, rooted in the fact that data aggregation absorbs
the heterogeneity between different individuals. Note that in this case,
we observe that as the aggregation level increases (i.e., the geographic
unit of analysis becomes larger), the results tend to be more deviant from
those in the individual-level model. However, this finding may not be a
universal rule that holds for other transportation systems. As pointed out
by Fotheringham and Wong (1991), the impact of the modifiable unit
areal problem in multivariate analysis is unpredictable since the in-
teractions between changes in the variance and covariance of different
independent variables cannot be anticipated.

The spatial distributions of the accessibility metric and sociodemo-
graphic offer a better understanding of the above statistical analysis
results. Fig. 2 confirms that the bike-sharing accessibility is concentrated
in only a small portion of parcels and TAZs, mainly located in Downtown
Tampa. Fig. 2 also reveals the smoothing effect of data aggregation. We
see that within a large portion of TAZs, there are parcels with bike-
sharing accessibility beyond the accessibility levels of these TAZs (e.g.,
red dots in TAZs shaded blue). Fig. 3(a) shows that parcels in the north
side of the study area have higher average numbers of people in the
households. These include parcels in the downtown where the bike-
sharing accessibility is generally higher. Thus, the parcel-level model
produces a positive parameter estimate for this attribute. Meanwhile,
not all parcels in the north side are in the downtown and therefore have
a bike-sharing accessibility less than 0.001. Thus, variable average
number of people in a household produces a random parameter in the
parcel-level model. However, at the TAZ level, the average number of
people in a household is relatively homogenous (i.e., most areas are
shaded green). As a result, this variable is not statistically significant in
the TAZ-level model. From Fig. 3(b), we see that both TAZs and parcels
beyond the downtown area have a higher proportion of people living in
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households without kids under 16 years old. These areas are where the
bike-sharing accessibility is low. Therefore, this attribute has a negative
parameter estimate in both models. Finally, while the proportion of
people that is in the combined other racial group is almost evenly
distributed across different parcels, TAZs in the north side generally
have higher proportions, as shown in Fig. 3(c). As a result, this attribute
only produces a statistically significant parameter in the TAZ-level
model. Again, because the north side covers areas with high and low
bike-sharing accessibility, variable proportion of people that is in the
combined other racial group generates a random parameter in the TAZ-
level model.

These results offer strong evidence of the modifiable unit areal
problem and unobserved heterogeneity in using aggregated data for
transportation equity analysis. Data aggregation involves a smoothing
effect so that the variation in a variable that could have been captured by
the disaggregated data (observed heterogeneity) or could be modeled by
heterogeneity models (unobserved heterogeneity) decreases as the ag-
gregation level increases. Thus, different aggregation levels usually lead
to different or even contradictory analytical results. This inconsistency
raises a question whether it is reliable to use multivariate analysis results
from data at a particular aggregation level for decision making and
policy formulation. Fortunately, as evidenced in other studies (Bills and
Walker, 2017; Hu and Wang, 2015), using individual-level dis-
aggregated data can help mitigate the impacts of the MUAP. Thus, the
disaggregated analysis approach presented in this paper shall be
promising in addressing the MUAP as well. Thus, the use of dis-
aggregated data along with unobserved heterogeneity modeling tech-
niques, when available, is beneficial for transportation equity analysis.
However, here we do not intend to claim that using aggregated data in
transportation equity analysis is unreasonable or not useful. Instead, for
planning agencies that do not have access to disaggregated data, the
only feasible solution is aggregated data. However, equity analysts must
bear in mind that analyses based on aggregated data may miss signifi-
cant factors and/or unobserved heterogeneity. Thus, they should exert
cautions while interpreting the analysis results from aggregated data.
The purpose of this study is to provide empirical evidence of the exis-
tence of unobserved heterogeneity in transportation equity analysis.

4. Conclusions

Using individual data on bike-sharing accessibility and sociodemo-
graphic in southern Tampa, this paper carries out a case study on the
existence of unobserved heterogeneity in analyzing the equity impacts
of the Coast Bike Share system in terms of the accessibility it brings to
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society. By grouping the individual accessibility values into two out-
comes of having bike-sharing accessibility and not having bike-sharing
accessibility, a mixed logit model was estimated to investigate the
relationship between the accessibility outcomes and various socio-
demographic attributes. Furthermore, models were also estimated using
data aggregated to the parcel- and TAZ- levels to explore the impacts of
data aggregation on model estimation results. The main findings are:

o Bike-sharing accessibility is relatively low in southern Tampa,
resulting in a higher likelihood for individuals to not have bike-
sharing accessibility in general. The bike-sharing accessibility is
not evenly distributed in southern Tampa from both the horizontal
and vertical equity perspectives. Specifically, the bike-sharing
accessibility is concentrated in 2.08% of the individuals. Bike-
sharing accessibility is higher for people with a higher number of
tours in their daily travel itineraries, people aged between 19 and 44,
individuals who have never married, those with an annual household
income greater than $74,999, and those living in a household with
no kids under 16 years old on average. In contrast, females, married
people, individuals with commute time greater than 29 min by car,
those living in households with higher numbers of workers and
retired adults, and those have longer mean distances between ac-
tivity locations to the nearest bike-sharing hubs are underrepre-
sented on average.

A number of parameters follow normal distributions with different
values of mean and standard deviation in the model estimated using
individual-level data, demonstrating the presence of unobserved
heterogeneity in the disaggregated dataset. Unobserved heteroge-
neity is also found in the parcel-level and TAZ-level models but with
a fewer number of random parameters. The existence of unobserved
heterogeneity reveals that relevant parameter estimates do not pro-
duce the same sign across the observations, therefore revealing
different disparity directions for individuals in a population sub-
group. Ignoring this effect would likely lead to incorrect parameter
estimates and thus ineffective policy formulation. Thus, this finding
demonstrates the necessity and importance of addressing unobserved
heterogeneity in transportation equity analysis.

Data aggregation absorbs the variation of a variable that could have
been captured by the disaggregated data (observed heterogeneity) or
been modeled by heterogeneity models (unobserved heterogeneity).
As a result, as the aggregation level increases, fewer variables are
statistically significant or produce a random parameter in the esti-
mated models. Worse still, due to the modifiable unit areal problem,
the use of aggregated data likely leads to different analytical results
at different aggregation levels. This inconsistency makes it unreliable
to apply modeling results from a particular level of aggregation for
decision making and policy formulation. Instead, incorporating dis-
aggregated data into transportation equity analysis when available
can avoid this issue. Thus, it is preferable to use disaggregated data
with heterogeneity methods for transportation equity analysis if
possible.

This study provides empirical evidence for the existence of unob-
served heterogeneity in transportation equity analysis and offers a
timely alert for transportation equity analysts to this intriguing issue.
However, only the most popular heterogeneity modeling approach (i.e.,
random parameters model) is investigated. Applying other relevant
approaches such as latent class models, random parameters models with
heterogeneity in mean and standard deviation and comparing the results
would offer important methodological and planning implications for
transportation planners. Further, for variables with random parameters,
how to differentiate individuals truly underrepresented from others in
the same subgroup is a challenging future research direction. Such
research would be insightful for policymakers but requires more so-
phisticated modeling techniques that allow an analysis of the distribu-
tions of individual sociodemographic and transportation outcomes.
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Also, the bike-sharing system investigated in this paper serves a limited
geographic scale. Heterogeneity models are a sophisticated statistical
modeling technique that can be applied to data sets of various sizes. We
were not able to apply the analysis methods to other bike-sharing sys-
tems due to the lack of data. It would be an interesting and meaningful
future research direction to apply the heterogeneity models to other
transportation systems of different sizes (e.g., Citi Bike in New York) and
structures (e.g., systems without station clusters). Finally, the estimation
of a random parameters model using a huge amount of disaggregated
data takes expensive computational and time resources. The develop-
ment of efficient model estimation methods would also be an interesting
and meaningful future research direction.
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