Modeling and Analysis of Excess Commuting with Trip Chains

Abstract

Commuting, like other types of human travel, is complex in nature, such as trip-chaining
behavior involving making stops of multiple purposes between two anchors. According to the
2001 National Household Travel Survey, about one half of weekday U.S. workers made a stop
during their commute. In excess commuting studies that examine a region’s overall commuting
efficiency, commuting is, however, simplified as nonstop travel from homes to jobs. This
research fills this gap by proposing a trip-chaining-based model to integrate trip-chaining
behavior into excess commuting. Based on a case study of the Tampa Bay region of Florida, this
research finds that traditional excess commuting studies underestimate both actual and optimal
commute, while overestimate excess commuting. For chained commuting trips alone, for
example, the mean minimum commute time is increased by 70 percent from 5.48 minutes to 9.32
minutes after trip-chaining is accounted for. The gaps are found to vary across trip-chaining
types by a disaggregate analysis by types of chain activities. Hence, policymakers and planners
are cautioned of omitting trip-chaining behavior in making urban transportation and land use
policies. In addition, the proposed model can be adopted to study the efficiency of non-work

travel.
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1. Introduction



Commuting is the daily repeated journey between home and work, and such regular travel
activities significantly affect individuals, communities, and society. For example, commuting is
often associated with the label ‘rush hour’ and regarded as a major source of congestion, journey
delay, and air pollution in the United States (Sultana, 2002; Lyons and Chatterjee, 2008).
Besides, it is well related to individuals’ health outcomes. A general finding is that longer
commute can result in serious health effects, such as high blood pressure, stress, and negative
mood (Evans et al., 2002; Oliveira et al., 2015). These commuting outcomes are likely to prevail
as our cities and suburbs expand and densify. Increases in commuting time in recent decades
have been well documented (Hu and Wang, 2016; Gimenez-Nadal and Molina, 2019).
According to the U.S. Census Bureau, for example, the average one-way commuting time has

increased from about 25 minutes in 2009 to 27 minutes in 2018.

In light of this increasing trend, many strategies have been proposed to combat the worsened
traffic and associated health and environmental outcomes. A solution that has received much
attention in geography, urban planning, and other related fields is the so-called jobs-housing
balance approach. The basic premise is to encourage households to live closer to their
workplaces through planning efforts, thus leading to more efficient regional commuting patterns
and, as such, less traffic congestion, energy consumption, and air pollution (Cervero, 1989;
Sultana, 2002; Ma and Banister, 2006a; Antipova et al., 2011; Korsu and Le Néchet, 2017). One
strand of research focusing on measuring jobs-housing (im)balance and commuting efficiency is
excess commuting, which is the non-optimal work travel in a given urban form and results from
individual workers not minimizing their commute (Niedzielski et al., 2020). Excess commuting

involves the comparison between a region’s actual commute and theoretical optimal (or



minimum) commute. Actual commute depicts a region’s average observed commuting length,
such as distance and time. The minimum commute represents the lowest possible level of
commuting suggested by existing spatial arrangement of homes and jobs in a region and can be
obtained by a process of reassigning workers to residences (see Figure 3 (top panel) for an
illustration) for reducing total commute to a minimum (White, 1988; Horner, 2002). Originally
known as wasteful commuting in Hamilton’s (1982) seminal work, excess commuting measures
to what extent the actual commute in a region exceeds the most economic one and can reflect the
region’s overall commuting efficiency (Korsu and Le Néchet, 2017; Hu and Wang, 2018;
Schleith et al., 2019; Zhou et al., 2020). Existing excess commuting research has shown a
consistent trend that a region’s spatial arrangement of housing and jobs would theoretically allow
much shorter commute than what is observed. As the minimum commute describes the overall
geographic separation between existing jobs and housing in the region, in essence, it is a measure
of jobs-housing balance with a lower value suggesting a more balanced relationship of jobs and
housing (Horner, 2008; Niedzielski, 2006) and often tied to place-based policymaking (Buliung
and Kanaroglou, 2002; Ma and Banister, 2006a; Layman and Horner, 2010; Niedzielski et al.,

2013; Kanaroglou et al., 2015; Ha et al., 2018).

However, the effectiveness of derived transportation and land use policies would be questionable
as this particular jobs-housing balance measure fails to consider a realistic travel pattern—irip-
chaining—the travel behavior of making intermediate stops on the way to or from work, such as
dropping a child off at school, stopping for coffee and gasoline, and shopping at the grocery store
(see Figure 1 for an illustration). Previous excess commuting research commonly employed a

simple transportation problem—which assumes commuting being nonstop travel strictly from the



residence to workplace—to derive a region’s optimal commute. However, it is often the case that
commuters make non-work trips during their commute (McGuckin and Srinivasan, 2005).
According to the 2001 National Household Travel Survey, a majority of all weekday U.S.
workers (54 percent) made a stop during their commute, about a 12 percent increase from 1995
(US DOT, 2001; McGuckin and Srinivasan, 2005). This trend reflects the fact that commute has
become more complex with other purposes of trips involved than simply nonstop home-to-work
travel. The high proportion of multi-purpose commuting trips is also well documented in other

empirical studies (Bhat, 1997; Noland and Thomas, 2007; Wang, 2015; Duncan, 2016).

The increasing prevalence of combining nonwork trips into the journey-to-work travel makes it
challenging for policies of jobs-housing balance to be able to reduce commuting trips and
mitigate related societal and environmental problems (Ma and Banister, 2006a). As shown in
Figure 1, the traditional methods not accounting for trip-chaining may significantly
underestimate actual commute due to possible intermediate non-work stops being made during
commute. Presumably, these methods may also underrate the minimum commute as the
reassignment process considers only housing and jobs yet neglects other types of land use
involved in the actual journey-to-work. With this, the derived jobs-housing balance level from
the traditional methods may be significantly biased. For example, a seemingly well-balanced
area suggested by existing methods examining only housing and jobs may actually have greater
spatial separation of housing and jobs due to detours to intermediate non-work activities,
particularly when the corresponding non-work activities are close to neither jobs nor housing. As
such, existing excess commuting approaches that simplify commute as nonstop travel from

homes to jobs fail to capture the commuting surplus associated with the non-work travel. As



many studies examining mixed land use policies contended, it is the intermixing of many urban
functions—such as services and facilities in addition to housing and employment—that could
reduce vehicular traffic and promote sustainable development (Ma and Banister, 2006a;
Antipova et al., 2011). Policies made by examining housing and labor markets alone, therefore,
may not be effective, especially for areas with a high share of residents chaining non-work

activities in their commuting trips.

The aim of this research is to fill the aforementioned research gap. This research proposes a trip-
chaining-based linear programming model to account for trip-chaining in assessing commuting
efficiency. This model is applied to a synthetic traveler itinerary dataset aggregated at the Traffic
Analysis Zone (TAZ)! level in the Tampa Bay region of Florida. This dataset was populated by
high-fidelity simulation with multiple datasets including Public Use Microdata Sample (PUMS),
Census Transportation Planning Products (CTPP), and National Household Travel Survey

(NHTS).

This research differs from existing studies in several aspects. First, to the best of our knowledge,
no empirical studies have considered trip-chaining behavior in the excess commuting framework.
This integration reflects more realistic travel patterns compared with existing approaches that
simplify commuting as nonstop travel from homes to jobs and thus help achieve more accurate
measurement. Second, for calculating the optimal commute, this research generalizes the classic

nonstop travel-based transportation problem model to a trip-chaining-based one that can consider

! A traffic analysis zone is a special geographic area delineated by state and/or local transportation officials for
tabulating transportation data such as commuting statistics. It is usually smaller than a census tract and bigger than a
census block group. The Tampa Bay region, for example, has 567 census tracts, 1,574 TAZs, and 1,602 census
block groups.



general multi-stop trip chains. The proposed trip-chaining-based model is novel to this field and
composes a notable methodological contribution. It also enables quantifying to what extent
overlooking trip-chaining can bias the estimation of excess commuting and accordingly the
effectiveness of informed transportation and land use policies such as jobs-housing balance.
Third, it conducts a disaggregate excess commuting analysis by types of trip chains. This study
design offers a detailed look at the impacts on particular subgroups of workers. Finally, the
proposed model lays the foundation for extending the excess commuting framework to the

analysis of non-work travel.

2. The excess commuting framework

The excess commuting concept was first developed by Hamilton (1982) with a goal to examine
if the classical monocentric model could be used for estimating the mean commuting length
within urban areas. To model spatial distributions of residences and workplaces, Hamilton used
exponential density gradients assuming both population and employment densities decline
exponentially with increasing distance from the city center. In order to obtain the optimal
(minimum) commute, Hamilton designed an approach that freely reassigns resident workers to
new residences. The minimum commuting pattern for monocentric cities could be achieved

when their residents always commute toward the city center and stop at the nearest workplaces.

White (1988) criticized Hamilton’s (1982) approach for not accounting for the actual spatial
distributions of homes, jobs, and the road network. Accordingly, White adopted a transportation-
problem-based approach to derive the minimum commute (7i,) and estimate the percentage of

excess commuting (7). This method repeatedly reassigns the home-to-work flow pattern



between zones until the total commuting costs—such as distance or time—reach the lowest level.

Mathematically, Toin is:

.1
T = i T2 Ty »
ij

subject to: Z}lzl xij = Wi, Xt xij = Jj, x5 = 0,Vi,j, (2)
where x;; denotes the optimal number (nonnegative) of resident workers living in zone i while
working in zone j, dj; the travel distance or time between zones i and j, W; the total number of
workers residing in zone 7, J; the total number of jobs in zone j, m the total number of residential
zones, n the total number of employment zones, and N the total number of workers in the region.
The objective function Equation (1) minimizes the average commuting costs and the model
constraints Equation (2) ensure that each worker is assigned to a workplace and, likewise, each

workplace is assigned a worker.

Excess commuting (7.) is defined as the proportion of the observed commute (7,s,) that exceeds
Tmin and is formulated as Equation (3). It describes the derivation of the observed commute from
the minimum value given a region’s existing spatial arrangements of housing and jobs.
Therefore, it reflects the potential for a region to reduce its commute without altering existing
urban form. A greater value of 7%, indicates a higher commute surplus and hence less efficient

commuting.

T,, = ets—Imin 10 (3)

obs

For the same U.S. cities examined, Hamilton (1982) found 87 percent excess commuting,
whereas White (1988) reported only 11 percent. Small and Song (1992) found that the large gap

arose from the discrepancy in analysis units used between the two studies. Such a scale or zonal



effect was later linked to the modifiable areal unit problem (MAUP), a spatial problem well-
known to geographers (Horner and Murray, 2002; Niedzielski et al., 2013). To mitigate the
impacts of the MAUP, a few recent efforts have developed simulation models for measuring
excess commuting for individual commuters—the most disaggregated level any geographic

study could have (Hu and Wang, 2015; 2016; 2018).

The measurement of actual commute 7o 1s also worth of further elaboration. Many studies
derived To»s by analyzing reported travel costs from survey data such as the U.S. Census
Transportation Planning Products. However, Hu and Wang (2015) argued that this approach
could bias the measurement of drove-alone time due to the inclusion of erroneous records and/or
travel time by such slower transportation modes as transit, cycling, or walking. Instead, they
suggested using estimated travel distance or time through the road network to reduce the bias.

This research adopts this method for retrieving Tops.

Horner (2002) contended that one cannot achieve a complete understanding of a region’s
commuting pattern by examining 7,.;» alone as it only represents the lower bound of its commute.
Horner, therefore, developed the maximum commute 75..c, Which reveals the upper bound of a
region’s commute in the case when workers, on average, relocate to the farthest housing from

their jobs. The objective function for 7y 1s:

1
T = i S 51, T gy w
ij

where the notation and model constraints are identical to the calculation of 7i» as shown in
Equations (1) and (2). Given that Ty is exactly the opposite of T,.i», Equation (4) is equivalent

to the minimization problem of a negative 7.



With T, and Tax representing, respectively, a region’s best and worst commuting scenario, the
two combined can uncover the possible commuting capacity or potential in a region. The gap
between the two commuting metrics, therefore, provides a new perspective to define what
‘excess’ means in measuring commute. By substituting 7,5s with the gap between Truin and Tinax
in the denominator of Equation (3), Horner (2002) developed another excess commuting
metric—commuting potential utilized (7,,)—as formulated in Equation (5). AS Tinax — Tmin
indicates a region’s commute capacity, T, reflects the proportion of capacity that has been

consumed, and hence a greater value for 7, suggests less efficient commuting.

T

o — Tobs—Tmin X 100 (5)

Tmax—Tmin

Charron (2007) criticized the underlying demands for the longest possible commute associated
with Tyqx and asserted that this worst commuting scenario would rarely occur in reality. Instead,
Charron developed the theoretical random commute (77,¢) as a more meaningful upper bound of
a region’s commute. In essence, 7,4 represents a travel pattern one would expect when the
commuting cost is irrelevant to workers. It is found to be equivalent to a similar metric,
proportionally matched commute, proposed by Yang and Ferreira (2008). There exist multiple
ways to calculate 7,uq4, and a less computationally demanding method for measuring 7,4 is given

by Yang and Ferreira (2008):
1
Trna = 53 2 Y= WiJjd;; (6)

where the notations are identical to those previously defined.



Using Trxa as the new upper bound, Murphy and Killen (2011) proposed a new excess
commuting metric, normalized commuting economy (7¢.). It calculates the extent to which 7o 1s
below T4 relative to the expected range 7.0 — Tmin given a region’s spatial arrangements of
housing and jobs. A larger Tc. indicates a greater deviation of Toss from 7, and thus more

efficient commuting. 7c. is defined as:

T,, = —rmd=Tobs 5 10Q) (7

Trnd=Tmin
Empirical studies suggested that 75,4 and 7,4, and as such, 7, and 7., are highly correlated in
practical applications (Kanaroglou et al., 2015). Therefore, T/xs and T¢. are not examined in this
research. More detail about the connections among these metrics can be found in Kanaroglou et

al. (2015).

3. Methodology

3.1. Study area and data

The study area includes Hillsborough and Pinellas Counties in the Tampa Bay region of Florida,
where such major cities as Tampa, St. Petersburg, and Clearwater are located. The 2006-2010
American Community Survey 5-Year Estimates data show that 89.5 percent of Hillsborough
resident workers stayed in Hillsborough for work and 5.2 percent worked in Pinellas County. In
Pinellas County, 87.1 percent of resident workers stayed for work and 1.1 percent commuted to
Hillsborough County for employment (Hu and Downs, 2019). The high percentages of workers
both living and working in the same county make this region ideal for studying excess
commuting. Figure 2 shows the standard scores (i.e., z-scores) of jobs-housing balance by TAZs
in the study area, which are derived by subtracting the mean from individual TAZ’s job-to-

worker ratio and then dividing the difference by the standard deviation. TAZs with more jobs
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than resident workers (orange) have negative values, and TAZs with more workers than jobs
(tale blue) have positive values. TAZs shown in light grey have balanced jobs/housing. One may
also refer to Figure 2 in Hu and Downs (2019) for more detail about the spatial patterns of

commuting in this region.

The data used in this study are obtained from individual-level daily activities and travel
itineraries from a previous agent-based simulation of travel demand in the Tampa Bay Area.
Specifically, this research uses data for all individuals in the study region for a typical weekday,
as simulated by Gurram et al. (2019) using the Person Day Activity and Travel Simulator
(DaySim) (Bradley et al., 2010). This simulation model is commonly used by transportation
planning agencies, such as Florida Department of Transportation District 1 and Hillsborough
Metropolitan Planning Organization, to guide their short- and long-term planning decisions. The
synthetic individual travel and activity data are generated using an iterative proportional fitting
approach (Beckman et al., 1996) from real-world travel data including the 2006-2008 PUMS

(https://www.census.gov/main/www/pums.html), 2006-2010 CTPP

(https://ctpp.transportation.org), and 2009 NHTS (https://nhts.ornl.gov) data. The simulation
model was calibrated based on multiple variables, such as land use, transportation network,
demographic information, trip characteristics, and vehicle availability, to fit these real-world data
so that the simulated data are representative of the real-world data. For example, the statistics of
trip duration frequency distributions, TAZ-to-TAZ trips by trip purpose, mode shares by
purpose, and shares and totals of stops are all consistent between the two datasets, indicating the
validity of the synthetic data. More detail about the calibration and validation procedures are

discussed in Bradley and Bowman (2008). The simulated itinerary data contain parcel-level
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information on the locations of origins and destinations of trips, the trip sequence, and the timing
of each hypothetical individual’s daily itinerary (Chen et al., 2019a). The total number of trips
populated in the whole day for all travelers in the Tampa Bay Area is 11,858,133. The parcel-
level itinerary data are then aggregated into the TAZ level for excess commuting analysis. There
are 1,574 TAZs in this region with an average area of (.85 square miles. Spatial boundaries of
parcels and TAZs are obtained from the Daysim data and Plan Hillsborough (2017), respectively.
For the simplicity of the analysis, it is assumed that all trips are automobile-based while ignoring
other modes. According to the U.S. Census data, 94.3 percent of commuting trips in this region
are by automobile, whereas 1.8 percent by public transit (Hu and Downs, 2019). In addition, 99.2
percent of total highway trips are automobile-based in the data. Therefore, this assumption is

reasonable and including other modes makes little difference in the results.

Among all trips in the data, this research selects and analyzes home-to-work trip chains with no
more than one intermediate stop, though the proposed model can handle trip chains with multiple
stops (refer to Equations (8)-(13) for more detail). The focus on only home-to-work travel but
not both directions is for consistency with previous research. The reason for not including trip
chains with two or more stops in the present study is because these trips are rare in this particular
dataset, and hence the removal may have negligible impacts on analysis results. For other cases

where multi-stop trip chains are prominent, the proposed model can be directly applied.

The selected trip chain types and their statistics are shown in Table 1. The type change mode

means changing modes of transportation such as from driving alone to public transportation.

Escort means the activities to pick up and drop off someone at certain places such as daycare.
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Meal refers to the travel to get or eat meal including coffee, ice cream, and snacks. Personal
business includes family personal business, such as haircut and pet care, and the use of
professional services like attorney. School represents the travel to school. Shop consists of visits
to groceries, clothing, hardware stores, and gas stations. Social is activities related to
entertainment such as theater and sport events and friend visits. After excluding commuters who
either live or work beyond this region or make multiple stops during their commute, the study
population of this research includes 747,449 workers who either travel directly from homes to

jobs or make only one intermediate stop on their way to work.

3.2. Calculations of travel distance and time

This research uses travel distance and time through the road network as a proxy for commuting
costs. Interzonal travel distances between two TAZs are measured as the shortest distances
between their population-weighted centroids. Intrazonal distances within TAZs are approximated
as the average distances of simulated trips with both trip ends in the same TAZs. Specifically, the
simulation is achieved by two processes developed by Hu and Wang (2016): (1) randomly
generating P; residences and P; workplaces in the ith TAZ and (2) forming P; trips by randomly
connecting simulated residences with unique workplaces. The value P; is determined as the
minimum value between the number of resident workers and that of jobs in TAZ i, discounted by
a scaling factor. A scaling factor resulting in an average of 475 trips—which is determined by
the ratio of total number of workers (747,449) and that of TAZs (1,574)—across all TAZs in the
study area is finally chosen for balancing computation accuracy and time. The conventional
approach to measuring intrazonal distances assumes each zonal unit being approximately circular

in shape (Frost et al., 1998; O'Kelly and Lee, 2005), while the simulation method adopted here is
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not restricted by zone shapes and has broader applicability. The final travel distances between
two TAZs are derived by adding interzonal and intrazonal distances together. Travel times

between two TAZs are attained in a similar fashion using free-flow speeds on road segments.

3.3. Model formulation

Adapting from the traditional transportation-problem-based approach in Equations (1) and (2),
this research proposes a trip-chaining-based linear programing model to measure excess
commuting with trip-chaining behavior. This is achieved by tracking conservation of multi-leg
flows in each trip chain type over the transportation network instead of strictly nonstop home-
work flows in the traditional transportation problem. See Figure 3 for an illustration of this
process. By controlling for the trip-chaining behavior, this model seeks to find the optimal spatial
allocation of commuting flows that has the lowest (or greatest) commuting length, and hence
returns a more accurate and meaningful estimate of excess commuting. The proposed model for

Tmin 1s formulated as the following:

Trmin: = {)rgcliijr;}zcee Yijes Z}fl_ll dij Xcijk )
subject to:

Yijer Xcij1 = T, V¢ € C; ©)
Sece Tieky Oekp Ljer Xeijre < Mip, Vi € 9,p € P; (10)
Yicee Ociclp 2jer Xcji(lel-1) < Nip, Vi€ T, p EP; (11)
X Xcjli(k=1) —YjXcijx =0,VcEC,i €T, k€2, [c| -1} (12)
Xeije = 0,V € Cij €7,k € {12, |c| - 1}. (13)

In this formulation:
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P represents a collection of activity (or purpose) types, such as home, work, shop,
school, and so on;

J is a set of geographic zones in an area, such as TAZs;

C denotes a group of all possible trip chain types in accordance with activity types
defined previously, such as home-shop-work and home-escort-work;

d;; depicts travel costs, such as distance or time, from i to j,Vi € J,j € J,

n;, means the number of available activity p sites, such as jobs, in zone i, Vi € J,p € P,
c= [pf, DS, s pfd] defines a particular trip chain type with consecutive activity types
Pi, D5, e, pfd; note that the notation does not restrict the number of intermediate stops
that a trip chain contains and thus the model can handle multi-stop trip chains (i.e., when
lcl = 4);

Ockp 18 a binary indicator set as &gy, = 1 if pg = p or 0 otherwise, Vc € C, k €

{12, lcl -1}, p e P;

7. is the number of commuters with a type-c trip chain, Vc € C;

X¢ijk 18 the variable denoting the number of commuters with a type-c trip chain starting
from zone i with trip purpose py, to zone j with trip purpose pf,,, Vc € C,i,j €I,k €

{1,2,,|c| = 1}.

With this notation, objective function (8) aims to minimize the total system cost from all trips in

the study area, subject to the following constraints. Demand constraint (9) indicates that the

summation of the first leg flows of all trip chains with the same trip chain type is identical to the

number of commuters of this trip chain type. Supply constraints (10) and (11) postulate that in

each zone i, the total outgoing (for constraint (10)) or incoming (for constraint (11)) flow with
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activity type p is bounded by the available type-p activity sites in this zone. For example, the
total number of trip chains originated from homes in zone i shall obviously be no greater than the
number of homes present in this zone, and likewise the total number of trip chains destinated to
jobs in zone i shall be no greater than the number of jobs available in this zone. Also, the number
of trip chains with an intermediate stop in zone i such as dropping off children at daycare shall
be no greater than the available daycare capacity in this zone. Flow conservation constraint (12)
ensures the incoming and outgoing flows of each trip chain type are balanced at each zone i.
Constraint (13) simply requires every flow variable has a non-negative value. Note that this
model can be easily adapted to quantify the maximum commute by replacing objective function

(8) with:

Tmax = max Yeee Xijes Ty dij Xeiji - (14)
cij

4. Results

A key component to calculating excess commuting is the travel cost—represented by either
travel distance or time in this study—between each pair of study zones (e.g., TAZs). In the
present study, the interzonal travel distance (and time) matrix is calibrated in ESRI ArcGIS Pro
and the intrazonal travel matrix is measured using the simulation tool provided in Hu and Wang
(2018). Each of the final travel distance and time matrices includes a total of 1,574 * 1,574 =
2,477,476 origin-destination trip records, and the calculation for each matrix took roughly one
hour on a computer with an Intel Xeon processor running at 3.7 GHz using 64 GB of RAM,
running Windows 10 Pro Operating System. Selected metrics including 7Tinin and Tinax, and as
such, Tex and 7., are examined in this study as a result of nearly perfect correlations between

Tnax and Trna, and accordingly 7y, and T, in practical applications (Kanaroglou et al., 2015).

16



Specifically, these metrics are measured for (i) nonstop home-to-work trips using traditional
transportation-problem-based approach formulated in Equations (1) — (2) and (i1) home-to-work
trip chains with non-work intermediate stops using the proposed trip-chaining-based model
formulated in Equations (8) — (13). Calculations of these metrics are implemented using
MATLAB, and computation time for 75.i», for example, is about 45 minutes for nonstop home-

to-work trips and five hours? for chained trips.

To measure the actual commute 7,55, two-leg home-to-work trip chains (i.e., with exactly one
intermediate stop) is separated from nonstop home-to-work trips due to their distinct travel
patterns. For each of the two travel types, Tons is then calculated based on the calibrated TAZ-to-
TAZ travel distance and time matrices. For nonstop trips, for example, 7, is simply the network
travel distance (or time) for a TAZ pair. Calculations of 7, for a two-leg trip chain is more
complicated. For the proposed method, 75ss is the sum of the actual commute of the two
consecutive trip legs—network distance (or time) of the first leg, such as home-to-daycare, and
that of the second leg, such as daycare-to-work?>. However, for the traditional method that
completely neglects any intermediate stops, T,ss for a two-leg trip chain is simply the network
distance (or time) from the home TAZ to the employment TAZ without considering the
intermediate stop. Note that this practice of treating two-leg commuting trips as nonstop
commuting trips between homes and jobs is also used in measuring other commuting and excess
commuting metrics for the traditional method. Results (see Table 2) show that the actual travel

time for only nonstop commuting trips is 15.73 minutes. For two-leg trip chains alone, the actual

2 Of the five-hour computation time, 287 minutes were used to initiate variables, load data, and set up model
constraints, and the remaining 13 minutes were spent on solving the objective function in Equation (8).
3 Duration of the stop is not considered due to data unavailability.
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travel time is supposed to be 23.33 minutes. When neglecting the intermediate stops, the actual
commute is only 15.05 minutes. That being said, the traditional approach assuming commute
being strictly nonstop trips between residences and workplaces significantly underestimates the
actual commute (by 55 percent in this case). This is because of commuters’ difficulty in
optimizing multipurpose trips. It is found that individuals with multi-leg trip chains on their way
to/from work generally live farther from work and thus travel longer than those without making
stops (McGuckin et al., 2005; Justen et al., 2013). This added travel to the total commute is also
evident in the difference between nonstop trips (15.73 minutes) and two-leg trip chains (23.33
minutes). Combining actual commute for both types of travel, T,»s for the general commuter—
which is observed to be 15.62 minutes by the conventional method—turns out to be 16.91
minutes (about 8 percent increase). The gap is likely to be more substantial for cities with greater
proportions of multi-leg commute trip chains. Note that a consistent trend is also observed for
travel distance*. The above results and discussion suggest the importance of accounting for trip-

chaining behavior in commuting studies.

Due to the more restricted spatial reallocation among resident workers in the proposed method,
Tmin for the overall workers expectedly increases from 5.42 minutes, measured by the traditional
transportation-problem-based approach, to 5.62 minutes by the proposed one. This indicates that
the level of intermixing of job-housing functions in the Tampa Bay region is actually lower
(about 4 percent) than what the traditional approach suggests. Since not every individual travels
directly from home to work, the overall spatial separation of housing and jobs is hence greater

than what the shortest distance between them suggests. Metrics assessing jobs-housing balance

4 In fact, this consistent trend in distance is also observed for other metrics. Therefore, for simplicity, only
commuting time is discussed hereafter.
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without recognizing this travel pattern, therefore, may lead to more balanced relationship of jobs
and housing and hence ineffective policymaking. It should be noted that the moderate gap in
terms of 7y, between the two methods arises from the much smaller share (15 percent) of multi-
leg trip chains in total commuting trips, relative to the national average (54 percent). Therefore,
planners and decisionmakers are cautioned of not considering trip-chaining behavior in studying
jobs-housing relationship, especially for regions with a high prevalence of such travel patterns.
Values of Tyax increase by 15 percent from 38.88 minutes for the case when the actual trip-
chaining pattern is disregarded to 44.51 minutes for the case otherwise. As the travel pattern
becomes more complicated when trip-chaining is allowed in the residence exchange process,
individual workers are more likely to be paired to farther workplaces, leading to an overall
greater spatial separation between homes and jobs. Looking at the commuting range, Tmax — Tomin,
the consideration of trip-chaining results in an additional 5.44-minute growth (by 16 percent).
This increase in range of trip possibilities results from the inconsistent growth rate between Tyin

(4 percent) and Truax (15 percent) when trip-chaining is taken into account.

The excess commuting results imply slightly different levels of commuting efficiency between
the two modeling scenarios. For example, values of 7., are comparable (0.65 vs. 0.67), indicating
65- or 67-percent excess commuting in the Tampa Bay region. Likewise, the difference with
respect to Ty, (0.31 vs 0.29) suggests a close proportion of commuting capacity being consumed.
The approximate agreement in excess commuting between the two methods is because of the
inflation of values for all T}, Toss, and Tax after accounting for trip-chaining behavior, due to
the reasons explained previously. As values for both actual and optimal commute, which are the

solely two components of excess commuting, change in the same direction, their effects on
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excess commuting measurement cancel each other out, leaving the final estimates close in value.
This especially applies to Tex due to only two variables—7,;» and T,5—being considered,
compared to T, that examines all three metrics. For example, the consideration of trip-chaining
yields a 3-percent increase in 7., while a 6-percent change in 7).

Several points can be summarized from the above comparisons. First is the need for examining
both T}in (and/or Tnax) and Topss in addition to excess commuting metrics when studying changes
of excess commuting. Looking at the excess commuting metric alone, such as the observed 3-
percent increase in 7ex, may underestimate the actual changes in commuting pattern, such as the
reported 15-percent change in T Oftentimes, it is the optimal commute—a measure of urban
form—that is used to inform policymaking. Therefore, it is not meaningful to evaluate the
significance of the integration of trip-chaining behavior by examining 7e, values alone. Most
likely, the gap of T, values between the two methods could be more remarkable in regions
having a greater share of trip-chaining travels than in the Tampa Bay region (only 15 percent).
Even for the same region, the difference might intensify as the share of trip chains grows because
of changes in planning and demographics. It is, therefore, the soundness of methods matters but

not the derived percentages (Hu and Wang, 2015).

5. Discussion
Focusing on the general commuters, the previous section compares excess commuting metrics
between the traditional and proposed methods. This section goes a step further and looks at the

breakdown of excess commuting by trip chain type (see Table 3).
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A drastic contrast between excess commuting metrics of the two methods is evident at first
glance. For example, 7o for two-leg home-to-work trip chains, regardless of chain type, is 15.05
and 23.33 minutes (about 55 percent relative change) for the traditional and proposed methods,
respectively. Of the seven chain types, change mode (42 percent), meal (49 percent), and shop
(47 percent) have less change rates than the general case, whereas school (109 percent)
experiences the greatest level of change. This may indicate that travelers’ actual commute is
relatively less elongated for a needed stop for meal like coffee, shopping, or changing modes of
commute on their way to work than other stop types. Since these activities are usually in close
proximity to residences, an intermediate stop for these activities does not add substantial extra
time to their actual commute. In contrast, schools are much less in quantity and have particular
locations due to zoning restrictions. Therefore, resident workers generally travel longer to these
stops, which lengthens their overall commute. This long extra travel is not captured by traditional
method; in fact, it identifies this trip chain type as the shortest commute (12.10 minutes) among
all chain types. See Figure 4 for more detail, where the red vertical line represents 15.62

minutes— 7,55 for the overall commuter derived by the traditional method.

Unlike the overall comparison, this disaggregate juxtaposition reveals significant disparities of
Tmin among trip chain types. The arithmetic mean of 7y, of the seven chain types is 5.48 minutes
when trip-chaining behavior is excluded from the calculation. It further increases by 70 percent
towards an average of 9.32 minutes when trip-chaining is accounted for. The substantial increase
indicates that the actual jobs-housing relationship is far more imbalanced than traditional method
suggests. A breakdown of T,.i» by chain type spotlights three types of activities—change mode

with an increase by 114 percent, school by 102 percent, and shop by 62 percent. Interestingly,
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change mode receives the highest rank—the worst jobs-housing balance—by both methods,
indicating the least likely possibility of economizing commute for workers needing to change
modes of travel, such as using park and ride or other incentive parking services, on their way to
work. As these facilities are limited in only certain parts of the city, these users’ commute is
understandably less likely to be reduced. However, the 114-percent gap between the two
approaches highlights the considerable downward bias by traditional method. The omission of
such a lengthy extra travel in measuring commuting efficiency would falsely return much more
balanced relationship of jobs and housing, resulting in possibly ineffective policies such as
locations of incentive parking facilities. This notable underestimate by the existing approach is
also observed for commuting trips involving a stop at schools. The conventional method that
treats such commuting trips as ones strictly from homes to jobs, surprisingly, yields the lowest
required commute of 4.84 minutes among all chain types. As explained previously, the spatial
patterns of schools determined by zoning and other guidelines can make these commuting trips
the most difficult to economize as well. As a matter of fact, these travelers appear to have the
second longest required commute, 9.75 minutes, across all chain types when the stopping
behavior is included in the calculation. Again, policy recommendations like locations of schools
made by methods not accounting for this travel pattern may lead to inadequate outcomes. As for
commute involving shopping stops, the greater gap in terms of 7., indicates that these workers,
relative to workers of other chain types such as escort, meal, personal business, and social, are
less able to reduce their commute to the theoretical low suggested by the existing method. This is
perhaps because of the relatively sparse distribution of these facilities and the complexity in

consumers’ store choice behavior where distance may not be the most determining factor. Refer
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to Figure 4 for more detail, where the red vertical line represents 5.42 minutes—7,in for the

overall commuter derived by the traditional method.

As Tnax measures the longest possible journey-to-work patterns in a region, the integration of
trip-chaining behavior would yield greater values for 7., than otherwise. This assertion is
verified by the massive difference (about 93 percent relative change) between the two average
Tmax values across all seven chain types—38.15 minutes and 73.74 minutes. Contradictory to
Tmin, Tmax for change mode is the lowest for both methods. Apart from the resulting difficulty in
minimizing total commute, the rather confined spatial distributions of relevant facilities such as
park and ride also indicates the least possibility of longest feasible commute. Note that the gaps
between T values associated with the two methods are fairly stable across the seven chain

categories.

With respect to the efficiency measures, the mean value of 7., across all chain types declines
marginally (about 5 percent) from 62 (traditional method) to 59 percent (proposed method),
while that of 7}, decreases noticeably (25 percent) from 28 to 21 percent. The drops in the two
efficiency measures indicate an overall more efficient commute in the Tampa Bay region than
what the traditional method suggests. A closer look by trip chain type spotlights the change mode
chain type that experiences a 43-percent decline in 7., and 56-percent decrease in 7,,, showing a
disproportionately more economized commute for workers relying on more than one
transportation modes during their commute. On the contrary, home-to-work travel involving a
stop at schools show a disproportionately less efficient commute than others (about a 2-percent

decrease in Tex and 11-percent decline in 73,). In addition, the reduction rate disparity between
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Tex and T, suggests that 7p,, might be a more meaningful excess commuting measure than 7, for
comparative studies where both optimal and actual commute change in the same direction.

The above results and discussion indicate that traditional excess commuting studies where
commute is the travel strictly from homes to workplaces significantly underestimate both optimal
(Tmin and Tax) and actual commute while overestimate excess commuting. Researchers and
policymakers should be aware of the impacts of this behavioral factor in informing transportation
and land use policies. Additionally, the impacts are found to vary across chain types, implying
that policies derived based on overall commuting patterns could have varied results when

focused on particular subgroups of workers.

6. Conclusions

Existing excess commuting studies only examine trips strictly from homes to jobs, while
neglecting any intermediate stops workers make during their commute. This research contributes
to the literature by proposing a new model to integrate trip-chaining behavior into the
measurement of commuting efficiency for more accurate estimates. Based on a case study of the

Tampa Bay region of Florida, some key takeaway messages are presented below.

First, it is shown that the traditional excess commuting method that overlooks trip-chaining
behavior underestimates both optimal and actual commute, whereas overestimates excess
commuting. The biases are more substantial for certain chain types such as stops for changing

transportation modes.
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Second, the proposed methodology lays the foundation for extending the excess commuting
framework to the analysis of non-work travel. The potential of this extension was theoretically
assessed in Horner and O’Kelly (2007). One limitation that hinders such attempts is the
incapability of existing excess commuting methods in recognizing the chained nature of non-

work trips. The developed model in this research fills this very gap.

Third, this research offers some important policy implications. As the optimal commute 7;x
describes the average shortest distance/time between homes and jobs in a region, it is often
interpreted as a measure of jobs-housing balance and favored by urban planners and
policymakers in making transportation and land use policies. It is found that not accounting for
trip-chaining behavior in the calculations may have serious consequences as the traditional
method tends to falsely yield significantly more balanced jobs-housing relationship than reality.
The deviation, measured by percentage change, can be as high as more than 100 percent, leading
us to question the effectiveness of land use and transportation policies made based on the
existing method. Policymakers are thus cautioned of not accounting for trip-chaining behavior in
studying jobs-housing relationship, especially for regions with a high prevalence of this travel
pattern. In addition, the disaggregate analysis by chain type reveals disparities of the impacts,
suggesting that policies derived based on the overall commuting patterns could have varied

results when focused on subgroups of workers with particular travel behaviors.

Fourth, this research casts lights on the choice among commuting metrics. The massive gap of

Tex (87 vs. 11 percent) between Hamilton’s (1982) and White’s (1988) studies has led to

questions about whether different commuting cost metrics—distance and time—yplay a role. In
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line with most past investigations, this research finds that the two measures show consistent
trend in commuting length and efficiency but vary with measured values. In terms of excess
commuting metrics, 7,, appears to be more meaningful than 7%, for comparative studies where

both optimal and actual commute change in the same direction.

Finally, the significance of this research is beyond transportation applications as the proposed
method can be readily applied to other fields related to geography. For example, the improved
estimations of travel length by considering trip-chaining are expected to yield more accurate
measurement of spatial accessibility to services, such as health care, food, education, and
employment, and hence more meaningful policymaking and positive outcomes. The proposed
trip-chaining-based optimization model can be extended for aiding location decision-makings
such as finding the best locations for building hospitals, pharmacies, and other types of

businesses.

This research, however, is subject to several limitations. First, there are other travel behaviors
other than trip-chaining, such as route choice, that could play a role and are worth investigating.
This could be mitigated by additionally considering route choice preferences associated with
particular subgroups of the population from existing behavioral studies. Second, the study can
also benefit from integrating traffic condition into the proposed model. Compared to free-flow
travel times, real-time traffic data obtained from such third-party data sources as Google Maps
API can make the results more realistic and meaningful. Third, this research examines only
home-to-work trips for consistency with existing studies. However, trip-chaining patterns could

be different for work-to-home trips. For example, workers tend to make more stops on their way
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back home than the other way around (McGuckin and Srinivasan, 2005). This consideration will
likely lead to a greater number of trip chains with multiple stops and hence may yield more
substantial gaps in the results between the two methods. This will be investigated in future
studies. Fourth, in addition to travel behaviors, it is well-known that other contextual variables,
such as the inhomogeneity of jobs and workers, could influence the level of excess commuting
(Ma and Banister, 2006b). Efforts that account for these factors simultaneously are thus
warranted. Fifth, the so-called aggregation errors (Hu and Wang, 2016) are introduced when
aggregating population or employment in TAZs to their centroids, which may bias the final
estimations, especially for large TAZs in urban peripheries as shown in Figure 2. Investigations
into the bias are thus needed. This could be achieved by applying the Monte Carlo simulation
technique employed in Hu and Wang (2016; 2018) and Hu et al. (2020), which distributes home
and jobs randomly within each TAZ, and ultimately yielding a lower and upper bound of
estimations of the commuting/excess commuting metrics. Sixth, as asserted in the present study,
the marginal difference in excess commuting 7., values for the overall commuters between the
two methods arises from the low proportion of commuting trips with trip-chaining activities (15
percent relative to the national figure of 54 percent) in the Tampa Bay region. The difference is
expected to be more significant for other types of cities with a great number of trip-chaining
commuters, and this assertation can be further evaluated by future studies applying the proposed
method to other cities with high proportions of chained commuting trips close to or above the
national percentage. Lastly, similar to most existing studies, this research is affected by the
MAUP. To what extent results are biased by this issue remains unclear. This could be
approached by analyses performed at the individual level using a simulation approach developed

by Hu and Wang (2015).
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Table 1. Number and percentage of commuters by trip chain type in the study area

Trip chain type Number of commuters Percentage of commuters
Home-work 631755 84.6

Home-change mode-work 2562 0.3

Home-escort-work 38276 5.1

Home-meal-work 10525 1.4

Home-personal business-work 10809 1.4

Home-school-work 3742 0.5

Home-shop-work 39379 53

Home-social-work 10401 1.4

Total 747449 100
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Table 2. Results of excess commuting

Modeling scenario N Time (minutes) Distance (miles)

Commuting metrics | Excess Commuting metrics | Excess
commuting commuting
metrics metrics

Toin | Tobs | Tmax | Tex | Tpu | Tmin | Tobs | Tmax | Tex | Tpu

Traditional Nonstop H2W trips 631,755 | — | 15.73 | — — | — — 1927 | — — | —
transportation- H2W trips with one stop 115,694 | — | 15.05 | — — | — — 872 | — — | —
problem-based All H2W trips 747,449 | 5.42 | 15.62 | 38.88 | 0.65 | 0.31 |2.73 [9.18 |29.60 | 0.70 | 0.24
method

Proposed trip- Nonstop H2W trips 631,755 | — | 15.73 | — — | — — 1927 | — — | —
chaining-based H2W trips with one stop 115,694 | — | 2333 | — — | — — | 12.64 | — — | —
method All H2W trips 747,449 | 5.62 | 16.91 | 44.51 | 0.67 | 0.29 |2.80[9.79 |33.93|0.71 | 0.22

Note: H2W stands for home-to-work, N represents total number of commuters, and “—” means not available.
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Table 3. Breakdown of excess commuting by trip chain types

Modeling scenario N Time (minutes) Distance (miles)

Commuting metrics | Excess Commuting metrics | Excess
commuting commuting
metrics metrics

Twin | Tobs | Tmax | Tex | Tpu | Twmin | Tobs | Tmax | Tex | Tpu

Traditional Change mode 2,562 6.68 | 14.55|33.5110.54]0.29 | 3.41 |8.33 |2568|0.59 |0.22
transportation- Escort 38,276 | 5.62 | 15.27]39.21|0.63 |0.29 | 2.83|8.88 [29.90|0.68 | 0.22
problem-based Meal 10,525 |5.36 |15.28 | 38.69|0.64 | 0.30 | 2.63 | 8.87 |29.48|0.70 | 0.23
method Personal business 10,809 |5.24 |15.03|39.14 | 0.65|0.29 [2.54 |8.66 |29.73|0.71 | 0.22
School 3,742 4.84 |12.10 | 38.530.60 | 0.21 | 2.27 | 6.64 |29.36|0.66 | 0.16
Shop 39,379 | 5.31 | 15.05|38.89]0.65]0.29 |2.63 |8.72 |29.64|0.70 | 0.23
Social 10,401 |5.36 |15.17]39.13|0.65|0.29 |2.63 |8.82 |29.84|0.70 | 0.23
Any chain type 115,694 | 5.36 | 15.05 | 38.90 | 0.64 | 0.29 | 2.66 | 8.72 |29.65|0.69 | 0.22
Change mode 2,562 14.29 | 20.68 | 63.37 | 0.31 | 0.13 | 6.51 | 10.51 | 49.02 | 0.38 | 0.09
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Proposed trip-
chaining-based

method

Escort 38,276 | 8.14 |24.26|76.59|0.66 | 0.24 | 3.89 | 13.19 | 58.50 [ 0.71 | 0.17
Meal 10,525 | 8.43 |22.86|74.81|0.63 |0.22 | 3.88 | 12.31 | 57.10 | 0.68 | 0.16
Personal business 10,809 | 7.97 |23.64 | 75.66 | 0.66 | 0.23 | 3.73 | 12.88 | 57.65 | 0.71 | 0.17
School 3,742 9.75 2537 |74.80|0.62 | 0.24 | 433 | 14.23 | 57.11 | 0.70 | 0.19
Shop 39,379 | 8.59 |22.10|74.64|0.61|0.20 | 4.03 | 11.85 | 57.21 | 0.66 | 0.15
Social 10,401 | 8.08 |24.60 | 76.32|0.67 |0.24 |3.79 | 13.61 | 58.16 | 0.72 | 0.18
Any chain type 115,694 | 7.84 | 23.33 | 75.31 | 0.66 | 0.23 | 3.73 | 12.64 | 57.58 | 0.71 | 0.17

Note: N represents total number of commuters.
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Figure 3. Comparison of the optimization process between the two methods
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5.42 minutes = Tmin for the overall commuter derived by the traditional method
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Figure 4. Breakdown of T5.in and Tops by trip chain types by the two methods [Note: red vertical lines represent Tin (left) and Tops

(right) for the overall commuter derived by the traditional method, serving as baselines to highlight the deviations of 75, (or Tons) of

each chain type from that of all commuters for both traditional (grey horizontal bars) and proposed (black horizontal bars) methods.]
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Figure captions:

Figure 1. Illustration of nonstop commuting trip and trip-chaining

Figure 2. Standard scores of jobs-housing balance

Figure 3. Comparison of the optimization process between the two methods

Figure 4. Breakdown of T5.in and Tops by trip chain types by the two methods [Note: red vertical
lines represent T,.i» (left) and Tops (right) for the overall commuter derived by the traditional
method, serving as baselines to highlight the deviations of T5uin (or Toss) of each chain type from
that of all commuters for both traditional (grey horizontal bars) and proposed (black horizontal

bars) methods.
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