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Modeling and Analysis of Excess Commuting with Trip Chains 

 

Abstract 

Commuting, like other types of human travel, is complex in nature, such as trip-chaining 

behavior involving making stops of multiple purposes between two anchors. According to the 

2001 National Household Travel Survey, about one half of weekday U.S. workers made a stop 

during their commute. In excess commuting studies that examine a region’s overall commuting 

efficiency, commuting is, however, simplified as nonstop travel from homes to jobs. This 

research fills this gap by proposing a trip-chaining-based model to integrate trip-chaining 

behavior into excess commuting. Based on a case study of the Tampa Bay region of Florida, this 

research finds that traditional excess commuting studies underestimate both actual and optimal 

commute, while overestimate excess commuting. For chained commuting trips alone, for 

example, the mean minimum commute time is increased by 70 percent from 5.48 minutes to 9.32 

minutes after trip-chaining is accounted for. The gaps are found to vary across trip-chaining 

types by a disaggregate analysis by types of chain activities. Hence, policymakers and planners 

are cautioned of omitting trip-chaining behavior in making urban transportation and land use 

policies. In addition, the proposed model can be adopted to study the efficiency of non-work 

travel. 

 

Keywords: excess commuting; trip-chaining; linear programming; jobs-housing balance; non-

work travel 

 

1. Introduction 
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Commuting is the daily repeated journey between home and work, and such regular travel 

activities significantly affect individuals, communities, and society. For example, commuting is 

often associated with the label ‘rush hour’ and regarded as a major source of congestion, journey 

delay, and air pollution in the United States (Sultana, 2002; Lyons and Chatterjee, 2008). 

Besides, it is well related to individuals’ health outcomes. A general finding is that longer 

commute can result in serious health effects, such as high blood pressure, stress, and negative 

mood (Evans et al., 2002; Oliveira et al., 2015). These commuting outcomes are likely to prevail 

as our cities and suburbs expand and densify. Increases in commuting time in recent decades 

have been well documented (Hu and Wang, 2016; Gimenez-Nadal and Molina, 2019). 

According to the U.S. Census Bureau, for example, the average one-way commuting time has 

increased from about 25 minutes in 2009 to 27 minutes in 2018. 

 

In light of this increasing trend, many strategies have been proposed to combat the worsened 

traffic and associated health and environmental outcomes. A solution that has received much 

attention in geography, urban planning, and other related fields is the so-called jobs-housing 

balance approach. The basic premise is to encourage households to live closer to their 

workplaces through planning efforts, thus leading to more efficient regional commuting patterns 

and, as such, less traffic congestion, energy consumption, and air pollution (Cervero, 1989; 

Sultana, 2002; Ma and Banister, 2006a; Antipova et al., 2011; Korsu and Le Néchet, 2017). One 

strand of research focusing on measuring jobs-housing (im)balance and commuting efficiency is 

excess commuting, which is the non-optimal work travel in a given urban form and results from 

individual workers not minimizing their commute (Niedzielski et al., 2020). Excess commuting 

involves the comparison between a region’s actual commute and theoretical optimal (or 
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minimum) commute. Actual commute depicts a region’s average observed commuting length, 

such as distance and time. The minimum commute represents the lowest possible level of 

commuting suggested by existing spatial arrangement of homes and jobs in a region and can be 

obtained by a process of reassigning workers to residences (see Figure 3 (top panel) for an 

illustration) for reducing total commute to a minimum (White, 1988; Horner, 2002). Originally 

known as wasteful commuting in Hamilton’s (1982) seminal work, excess commuting measures 

to what extent the actual commute in a region exceeds the most economic one and can reflect the 

region’s overall commuting efficiency (Korsu and Le Néchet, 2017; Hu and Wang, 2018; 

Schleith et al., 2019; Zhou et al., 2020). Existing excess commuting research has shown a 

consistent trend that a region’s spatial arrangement of housing and jobs would theoretically allow 

much shorter commute than what is observed. As the minimum commute describes the overall 

geographic separation between existing jobs and housing in the region, in essence, it is a measure 

of jobs-housing balance with a lower value suggesting a more balanced relationship of jobs and 

housing (Horner, 2008; Niedzielski, 2006) and often tied to place-based policymaking (Buliung 

and Kanaroglou, 2002; Ma and Banister, 2006a; Layman and Horner, 2010; Niedzielski et al., 

2013; Kanaroglou et al., 2015; Ha et al., 2018). 

 

However, the effectiveness of derived transportation and land use policies would be questionable 

as this particular jobs-housing balance measure fails to consider a realistic travel pattern—trip-

chaining—the travel behavior of making intermediate stops on the way to or from work, such as 

dropping a child off at school, stopping for coffee and gasoline, and shopping at the grocery store 

(see Figure 1 for an illustration). Previous excess commuting research commonly employed a 

simple transportation problem—which assumes commuting being nonstop travel strictly from the 
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residence to workplace—to derive a region’s optimal commute. However, it is often the case that 

commuters make non-work trips during their commute (McGuckin and Srinivasan, 2005). 

According to the 2001 National Household Travel Survey, a majority of all weekday U.S. 

workers (54 percent) made a stop during their commute, about a 12 percent increase from 1995 

(US DOT, 2001; McGuckin and Srinivasan, 2005). This trend reflects the fact that commute has 

become more complex with other purposes of trips involved than simply nonstop home-to-work 

travel. The high proportion of multi-purpose commuting trips is also well documented in other 

empirical studies (Bhat, 1997; Noland and Thomas, 2007; Wang, 2015; Duncan, 2016).  

 

The increasing prevalence of combining nonwork trips into the journey-to-work travel makes it 

challenging for policies of jobs-housing balance to be able to reduce commuting trips and 

mitigate related societal and environmental problems (Ma and Banister, 2006a). As shown in 

Figure 1, the traditional methods not accounting for trip-chaining may significantly 

underestimate actual commute due to possible intermediate non-work stops being made during 

commute. Presumably, these methods may also underrate the minimum commute as the 

reassignment process considers only housing and jobs yet neglects other types of land use 

involved in the actual journey-to-work. With this, the derived jobs-housing balance level from 

the traditional methods may be significantly biased. For example, a seemingly well-balanced 

area suggested by existing methods examining only housing and jobs may actually have greater 

spatial separation of housing and jobs due to detours to intermediate non-work activities, 

particularly when the corresponding non-work activities are close to neither jobs nor housing. As 

such, existing excess commuting approaches that simplify commute as nonstop travel from 

homes to jobs fail to capture the commuting surplus associated with the non-work travel. As 
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many studies examining mixed land use policies contended, it is the intermixing of many urban 

functions—such as services and facilities in addition to housing and employment—that could 

reduce vehicular traffic and promote sustainable development (Ma and Banister, 2006a; 

Antipova et al., 2011). Policies made by examining housing and labor markets alone, therefore, 

may not be effective, especially for areas with a high share of residents chaining non-work 

activities in their commuting trips. 

 

The aim of this research is to fill the aforementioned research gap. This research proposes a trip-

chaining-based linear programming model to account for trip-chaining in assessing commuting 

efficiency. This model is applied to a synthetic traveler itinerary dataset aggregated at the Traffic 

Analysis Zone (TAZ)1 level in the Tampa Bay region of Florida. This dataset was populated by 

high-fidelity simulation with multiple datasets including Public Use Microdata Sample (PUMS), 

Census Transportation Planning Products (CTPP), and National Household Travel Survey 

(NHTS). 

 

This research differs from existing studies in several aspects. First, to the best of our knowledge, 

no empirical studies have considered trip-chaining behavior in the excess commuting framework. 

This integration reflects more realistic travel patterns compared with existing approaches that 

simplify commuting as nonstop travel from homes to jobs and thus help achieve more accurate 

measurement. Second, for calculating the optimal commute, this research generalizes the classic 

nonstop travel-based transportation problem model to a trip-chaining-based one that can consider 

 
1 A traffic analysis zone is a special geographic area delineated by state and/or local transportation officials for 
tabulating transportation data such as commuting statistics. It is usually smaller than a census tract and bigger than a 
census block group. The Tampa Bay region, for example, has 567 census tracts, 1,574 TAZs, and 1,602 census 
block groups. 
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general multi-stop trip chains. The proposed trip-chaining-based model is novel to this field and 

composes a notable methodological contribution. It also enables quantifying to what extent 

overlooking trip-chaining can bias the estimation of excess commuting and accordingly the 

effectiveness of informed transportation and land use policies such as jobs-housing balance. 

Third, it conducts a disaggregate excess commuting analysis by types of trip chains. This study 

design offers a detailed look at the impacts on particular subgroups of workers. Finally, the 

proposed model lays the foundation for extending the excess commuting framework to the 

analysis of non-work travel. 

 

2. The excess commuting framework 

The excess commuting concept was first developed by Hamilton (1982) with a goal to examine 

if the classical monocentric model could be used for estimating the mean commuting length 

within urban areas. To model spatial distributions of residences and workplaces, Hamilton used 

exponential density gradients assuming both population and employment densities decline 

exponentially with increasing distance from the city center. In order to obtain the optimal 

(minimum) commute, Hamilton designed an approach that freely reassigns resident workers to 

new residences. The minimum commuting pattern for monocentric cities could be achieved 

when their residents always commute toward the city center and stop at the nearest workplaces. 

 

White (1988) criticized Hamilton’s (1982) approach for not accounting for the actual spatial 

distributions of homes, jobs, and the road network. Accordingly, White adopted a transportation-

problem-based approach to derive the minimum commute (Tmin) and estimate the percentage of 

excess commuting (Tex). This method repeatedly reassigns the home-to-work flow pattern 
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between zones until the total commuting costs—such as distance or time—reach the lowest level. 

Mathematically, Tmin is: 

 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: = min
{𝑥𝑥𝑖𝑖𝑖𝑖}

1
𝑁𝑁
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1   (1) 

subject to: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑗𝑗=1 ,∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐽𝐽𝑗𝑗𝑚𝑚

𝑖𝑖=1 , 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0,∀𝑖𝑖, 𝑗𝑗,  (2) 

where xij denotes the optimal number (nonnegative) of resident workers living in zone i while 

working in zone j, dij the travel distance or time between zones i and j, Wi the total number of 

workers residing in zone i, Jj the total number of jobs in zone j, m the total number of residential 

zones, n the total number of employment zones, and N the total number of workers in the region. 

The objective function Equation (1) minimizes the average commuting costs and the model 

constraints Equation (2) ensure that each worker is assigned to a workplace and, likewise, each 

workplace is assigned a worker. 

 

Excess commuting (Tex) is defined as the proportion of the observed commute (Tobs) that exceeds 

Tmin and is formulated as Equation (3). It describes the derivation of the observed commute from 

the minimum value given a region’s existing spatial arrangements of housing and jobs. 

Therefore, it reflects the potential for a region to reduce its commute without altering existing 

urban form. A greater value of Tex indicates a higher commute surplus and hence less efficient 

commuting. 

𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

× 100  (3) 

 

For the same U.S. cities examined, Hamilton (1982) found 87 percent excess commuting, 

whereas White (1988) reported only 11 percent. Small and Song (1992) found that the large gap 

arose from the discrepancy in analysis units used between the two studies. Such a scale or zonal 
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effect was later linked to the modifiable areal unit problem (MAUP), a spatial problem well-

known to geographers (Horner and Murray, 2002; Niedzielski et al., 2013). To mitigate the 

impacts of the MAUP, a few recent efforts have developed simulation models for measuring 

excess commuting for individual commuters—the most disaggregated level any geographic 

study could have (Hu and Wang, 2015; 2016; 2018). 

 

The measurement of actual commute Tobs is also worth of further elaboration. Many studies 

derived Tobs by analyzing reported travel costs from survey data such as the U.S. Census 

Transportation Planning Products. However, Hu and Wang (2015) argued that this approach 

could bias the measurement of drove-alone time due to the inclusion of erroneous records and/or 

travel time by such slower transportation modes as transit, cycling, or walking. Instead, they 

suggested using estimated travel distance or time through the road network to reduce the bias. 

This research adopts this method for retrieving Tobs. 

 

Horner (2002) contended that one cannot achieve a complete understanding of a region’s 

commuting pattern by examining Tmin alone as it only represents the lower bound of its commute. 

Horner, therefore, developed the maximum commute Tmax, which reveals the upper bound of a 

region’s commute in the case when workers, on average, relocate to the farthest housing from 

their jobs. The objective function for Tmax is: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: = 𝑚𝑚𝑚𝑚𝑚𝑚
{𝑥𝑥𝑖𝑖𝑖𝑖}

1
𝑁𝑁
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1   (4) 

where the notation and model constraints are identical to the calculation of Tmin as shown in 

Equations (1) and (2). Given that Tmax is exactly the opposite of Tmin, Equation (4) is equivalent 

to the minimization problem of a negative Tmin. 
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With Tmin and Tmax representing, respectively, a region’s best and worst commuting scenario, the 

two combined can uncover the possible commuting capacity or potential in a region. The gap 

between the two commuting metrics, therefore, provides a new perspective to define what 

‘excess’ means in measuring commute. By substituting Tobs with the gap between Tmin and Tmax 

in the denominator of Equation (3), Horner (2002) developed another excess commuting 

metric—commuting potential utilized (Tpu)—as formulated in Equation (5). As Tmax – Tmin 

indicates a region’s commute capacity, Tpu reflects the proportion of capacity that has been 

consumed, and hence a greater value for Tpu suggests less efficient commuting. 

𝑇𝑇𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

× 100  (5) 

 

Charron (2007) criticized the underlying demands for the longest possible commute associated 

with Tmax and asserted that this worst commuting scenario would rarely occur in reality. Instead, 

Charron developed the theoretical random commute (Trnd) as a more meaningful upper bound of 

a region’s commute. In essence, Trnd represents a travel pattern one would expect when the 

commuting cost is irrelevant to workers. It is found to be equivalent to a similar metric, 

proportionally matched commute, proposed by Yang and Ferreira (2008). There exist multiple 

ways to calculate Trnd, and a less computationally demanding method for measuring Trnd is given 

by Yang and Ferreira (2008): 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁2
∑ ∑ 𝑊𝑊𝑖𝑖𝐽𝐽𝑗𝑗𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1   (6) 

where the notations are identical to those previously defined. 
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Using Trnd as the new upper bound, Murphy and Killen (2011) proposed a new excess 

commuting metric, normalized commuting economy (Tce). It calculates the extent to which Tobs is 

below Trnd relative to the expected range Trnd – Tmin given a region’s spatial arrangements of 

housing and jobs. A larger Tce indicates a greater deviation of Tobs from Trnd and thus more 

efficient commuting. Tce is defined as: 

𝑇𝑇𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

× 100  (7) 

Empirical studies suggested that Tmax and Trnd, and as such, Tpu and Tce, are highly correlated in 

practical applications (Kanaroglou et al., 2015). Therefore, Trnd and Tce are not examined in this 

research. More detail about the connections among these metrics can be found in Kanaroglou et 

al. (2015). 

 

3. Methodology 

3.1. Study area and data 

The study area includes Hillsborough and Pinellas Counties in the Tampa Bay region of Florida, 

where such major cities as Tampa, St. Petersburg, and Clearwater are located. The 2006-2010 

American Community Survey 5-Year Estimates data show that 89.5 percent of Hillsborough 

resident workers stayed in Hillsborough for work and 5.2 percent worked in Pinellas County. In 

Pinellas County, 87.1 percent of resident workers stayed for work and 1.1 percent commuted to 

Hillsborough County for employment (Hu and Downs, 2019). The high percentages of workers 

both living and working in the same county make this region ideal for studying excess 

commuting. Figure 2 shows the standard scores (i.e., z-scores) of jobs-housing balance by TAZs 

in the study area, which are derived by subtracting the mean from individual TAZ’s job-to-

worker ratio and then dividing the difference by the standard deviation. TAZs with more jobs 
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than resident workers (orange) have negative values, and TAZs with more workers than jobs 

(tale blue) have positive values. TAZs shown in light grey have balanced jobs/housing. One may 

also refer to Figure 2 in Hu and Downs (2019) for more detail about the spatial patterns of 

commuting in this region. 

 

The data used in this study are obtained from individual-level daily activities and travel 

itineraries from a previous agent-based simulation of travel demand in the Tampa Bay Area. 

Specifically, this research uses data for all individuals in the study region for a typical weekday, 

as simulated by Gurram et al. (2019) using the Person Day Activity and Travel Simulator 

(DaySim) (Bradley et al., 2010). This simulation model is commonly used by transportation 

planning agencies, such as Florida Department of Transportation District 1 and Hillsborough 

Metropolitan Planning Organization, to guide their short- and long-term planning decisions. The 

synthetic individual travel and activity data are generated using an iterative proportional fitting 

approach (Beckman et al., 1996) from real-world travel data including the 2006-2008 PUMS 

(https://www.census.gov/main/www/pums.html), 2006-2010 CTPP 

(https://ctpp.transportation.org), and 2009 NHTS (https://nhts.ornl.gov) data. The simulation 

model was calibrated based on multiple variables, such as land use, transportation network, 

demographic information, trip characteristics, and vehicle availability, to fit these real-world data 

so that the simulated data are representative of the real-world data. For example, the statistics of 

trip duration frequency distributions, TAZ-to-TAZ trips by trip purpose, mode shares by 

purpose, and shares and totals of stops are all consistent between the two datasets, indicating the 

validity of the synthetic data. More detail about the calibration and validation procedures are 

discussed in Bradley and Bowman (2008). The simulated itinerary data contain parcel-level 

https://www.census.gov/main/www/pums.html
https://ctpp.transportation.org/
https://nhts.ornl.gov/
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information on the locations of origins and destinations of trips, the trip sequence, and the timing 

of each hypothetical individual’s daily itinerary (Chen et al., 2019a). The total number of trips 

populated in the whole day for all travelers in the Tampa Bay Area is 11,858,133. The parcel-

level itinerary data are then aggregated into the TAZ level for excess commuting analysis. There 

are 1,574 TAZs in this region with an average area of 0.85 square miles. Spatial boundaries of 

parcels and TAZs are obtained from the Daysim data and Plan Hillsborough (2017), respectively. 

For the simplicity of the analysis, it is assumed that all trips are automobile-based while ignoring 

other modes. According to the U.S. Census data, 94.3 percent of commuting trips in this region 

are by automobile, whereas 1.8 percent by public transit (Hu and Downs, 2019). In addition, 99.2 

percent of total highway trips are automobile-based in the data. Therefore, this assumption is 

reasonable and including other modes makes little difference in the results. 

 

Among all trips in the data, this research selects and analyzes home-to-work trip chains with no 

more than one intermediate stop, though the proposed model can handle trip chains with multiple 

stops (refer to Equations (8)-(13) for more detail). The focus on only home-to-work travel but 

not both directions is for consistency with previous research. The reason for not including trip 

chains with two or more stops in the present study is because these trips are rare in this particular 

dataset, and hence the removal may have negligible impacts on analysis results. For other cases 

where multi-stop trip chains are prominent, the proposed model can be directly applied.  

 

The selected trip chain types and their statistics are shown in Table 1. The type change mode 

means changing modes of transportation such as from driving alone to public transportation. 

Escort means the activities to pick up and drop off someone at certain places such as daycare. 
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Meal refers to the travel to get or eat meal including coffee, ice cream, and snacks. Personal 

business includes family personal business, such as haircut and pet care, and the use of 

professional services like attorney. School represents the travel to school. Shop consists of visits 

to groceries, clothing, hardware stores, and gas stations. Social is activities related to 

entertainment such as theater and sport events and friend visits. After excluding commuters who 

either live or work beyond this region or make multiple stops during their commute, the study 

population of this research includes 747,449 workers who either travel directly from homes to 

jobs or make only one intermediate stop on their way to work. 

 

3.2. Calculations of travel distance and time 

This research uses travel distance and time through the road network as a proxy for commuting 

costs. Interzonal travel distances between two TAZs are measured as the shortest distances 

between their population-weighted centroids. Intrazonal distances within TAZs are approximated 

as the average distances of simulated trips with both trip ends in the same TAZs. Specifically, the 

simulation is achieved by two processes developed by Hu and Wang (2016): (1) randomly 

generating Pi residences and Pi workplaces in the ith TAZ and (2) forming Pi trips by randomly 

connecting simulated residences with unique workplaces. The value Pi is determined as the 

minimum value between the number of resident workers and that of jobs in TAZ i, discounted by 

a scaling factor. A scaling factor resulting in an average of 475 trips—which is determined by 

the ratio of total number of workers (747,449) and that of TAZs (1,574)—across all TAZs in the 

study area is finally chosen for balancing computation accuracy and time. The conventional 

approach to measuring intrazonal distances assumes each zonal unit being approximately circular 

in shape (Frost et al., 1998; O'Kelly and Lee, 2005), while the simulation method adopted here is 
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not restricted by zone shapes and has broader applicability. The final travel distances between 

two TAZs are derived by adding interzonal and intrazonal distances together. Travel times 

between two TAZs are attained in a similar fashion using free-flow speeds on road segments. 

 

3.3. Model formulation 

Adapting from the traditional transportation-problem-based approach in Equations (1) and (2), 

this research proposes a trip-chaining-based linear programing model to measure excess 

commuting with trip-chaining behavior. This is achieved by tracking conservation of multi-leg 

flows in each trip chain type over the transportation network instead of strictly nonstop home-

work flows in the traditional transportation problem. See Figure 3 for an illustration of this 

process. By controlling for the trip-chaining behavior, this model seeks to find the optimal spatial 

allocation of commuting flows that has the lowest (or greatest) commuting length, and hence 

returns a more accurate and meaningful estimate of excess commuting. The proposed model for 

Tmin is formulated as the following: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: = min
{𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}

∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
|𝑐𝑐|−1
𝑘𝑘=1 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗∈ℐ𝑐𝑐∈𝒞𝒞    (8) 

subject to: 

∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐1𝑖𝑖,𝑗𝑗∈ℐ = 𝑟𝑟𝑐𝑐,∀𝑐𝑐 ∈ 𝒞𝒞;  (9) 

∑ ∑ 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐 ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗∈ℐ  |𝑐𝑐|−1
𝑘𝑘=1𝑐𝑐∈𝒞𝒞 ≤ 𝑛𝑛𝑖𝑖𝑖𝑖,∀𝑖𝑖 ∈ ℐ,𝑝𝑝 ∈ 𝒫𝒫;  (10) 

∑ 𝛿𝛿𝑐𝑐|𝑐𝑐|𝑝𝑝 ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(|𝑐𝑐|−1)𝑗𝑗∈ℐ   𝑐𝑐∈𝒞𝒞 ≤ 𝑛𝑛𝑖𝑖𝑖𝑖,∀𝑖𝑖 ∈ ℐ,𝑝𝑝 ∈ 𝒫𝒫;  (11) 

∑ 𝑥𝑥𝑐𝑐𝑗𝑗′𝑖𝑖(𝑘𝑘−1)𝑗𝑗′ − ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 = 0,∀𝑐𝑐 ∈ 𝒞𝒞, 𝑖𝑖 ∈ ℐ,𝑘𝑘 ∈ {2,⋯ , |𝑐𝑐| − 1};  (12) 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 0,∀𝑐𝑐 ∈ 𝒞𝒞, 𝑖𝑖, 𝑗𝑗 ∈ ℐ,𝑘𝑘 ∈ {1,2,⋯ , |𝑐𝑐| − 1}.  (13) 

In this formulation: 
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• 𝒫𝒫 represents a collection of activity (or purpose) types, such as home, work, shop, 

school, and so on; 

•  ℐ is a set of geographic zones in an area, such as TAZs;  

• 𝒞𝒞 denotes a group of all possible trip chain types in accordance with activity types 

defined previously, such as home-shop-work and home-escort-work;  

• 𝑑𝑑𝑖𝑖𝑖𝑖 depicts travel costs, such as distance or time, from 𝑖𝑖 to 𝑗𝑗,∀𝑖𝑖 ∈ ℐ, 𝑗𝑗 ∈ 𝒥𝒥;  

• 𝑛𝑛𝑖𝑖𝑖𝑖 means the number of available activity 𝑝𝑝 sites, such as jobs, in zone 𝑖𝑖,∀𝑖𝑖 ∈ ℐ,𝑝𝑝 ∈ 𝒫𝒫; 

• 𝑐𝑐 = �𝑝𝑝1𝑐𝑐,𝑝𝑝2𝑐𝑐 , … , 𝑝𝑝|𝑐𝑐|
𝑐𝑐 � defines a particular trip chain type with consecutive activity types 

𝑝𝑝1𝑐𝑐,𝑝𝑝2𝑐𝑐 , … , 𝑝𝑝|𝑐𝑐|
𝑐𝑐 ; note that the notation does not restrict the number of intermediate stops 

that a trip chain contains and thus the model can handle multi-stop trip chains (i.e., when 

|𝑐𝑐| ≥ 4); 

• 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐 is a binary indicator set as  𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐 = 1 if 𝑝𝑝𝑘𝑘𝑐𝑐 = 𝑝𝑝 or 0 otherwise, ∀𝑐𝑐 ∈ 𝒞𝒞, 𝑘𝑘 ∈

{1,2,⋯ , |𝑐𝑐| − 1}, 𝑝𝑝 ∈ 𝒫𝒫; 

• 𝑟𝑟𝑐𝑐 is the number of commuters with a type-𝑐𝑐 trip chain ,∀𝑐𝑐 ∈ 𝒞𝒞; 

• 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the variable denoting the number of commuters with a type-𝑐𝑐 trip chain starting 

from zone 𝑖𝑖 with trip purpose 𝑝𝑝𝑘𝑘𝑐𝑐  to zone 𝑗𝑗 with trip purpose 𝑝𝑝𝑘𝑘+1𝑐𝑐 , ∀𝑐𝑐 ∈ 𝒞𝒞, 𝑖𝑖, 𝑗𝑗 ∈ ℐ,𝑘𝑘 ∈

{1, 2,⋯ , |𝑐𝑐| − 1}.  

 

With this notation, objective function (8) aims to minimize the total system cost from all trips in 

the study area, subject to the following constraints. Demand constraint (9) indicates that the 

summation of the first leg flows of all trip chains with the same trip chain type is identical to the 

number of commuters of this trip chain type. Supply constraints (10) and (11) postulate that in 

each zone 𝑖𝑖, the total outgoing (for constraint (10)) or incoming (for constraint (11)) flow with 
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activity type 𝑝𝑝 is bounded by the available type-𝑝𝑝 activity sites in this zone. For example, the 

total number of trip chains originated from homes in zone 𝑖𝑖 shall obviously be no greater than the 

number of homes present in this zone, and likewise the total number of trip chains destinated to 

jobs in zone 𝑖𝑖 shall be no greater than the number of jobs available in this zone. Also, the number 

of trip chains with an intermediate stop in zone 𝑖𝑖 such as dropping off children at daycare shall 

be no greater than the available daycare capacity in this zone. Flow conservation constraint (12) 

ensures the incoming and outgoing flows of each trip chain type are balanced at each zone 𝑖𝑖.  

Constraint (13) simply requires every flow variable has a non-negative value. Note that this 

model can be easily adapted to quantify the maximum commute by replacing objective function 

(8) with: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: = 𝑚𝑚𝑚𝑚𝑚𝑚
{𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}

∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
|𝑐𝑐|−1
𝑘𝑘=1 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗∈ℐ𝑐𝑐∈𝒞𝒞  .   (14) 

 

4. Results 

A key component to calculating excess commuting is the travel cost—represented by either 

travel distance or time in this study—between each pair of study zones (e.g., TAZs). In the 

present study, the interzonal travel distance (and time) matrix is calibrated in ESRI ArcGIS Pro 

and the intrazonal travel matrix is measured using the simulation tool provided in Hu and Wang 

(2018). Each of the final travel distance and time matrices includes a total of 1,574 * 1,574 = 

2,477,476 origin-destination trip records, and the calculation for each matrix took roughly one 

hour on a computer with an Intel Xeon processor running at 3.7 GHz using 64 GB of RAM, 

running Windows 10 Pro Operating System. Selected metrics including Tmin and Tmax, and as 

such, Tex and Tpu, are examined in this study as a result of nearly perfect correlations between 

Tmax and Trnd, and accordingly Tpu and Tce, in practical applications (Kanaroglou et al., 2015). 
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Specifically, these metrics are measured for (i) nonstop home-to-work trips using traditional 

transportation-problem-based approach formulated in Equations (1) – (2) and (ii) home-to-work 

trip chains with non-work intermediate stops using the proposed trip-chaining-based model 

formulated in Equations (8) – (13). Calculations of these metrics are implemented using 

MATLAB, and computation time for Tmin, for example, is about 45 minutes for nonstop home-

to-work trips and five hours2 for chained trips. 

 

To measure the actual commute Tobs, two-leg home-to-work trip chains (i.e., with exactly one 

intermediate stop) is separated from nonstop home-to-work trips due to their distinct travel 

patterns. For each of the two travel types, Tobs is then calculated based on the calibrated TAZ-to-

TAZ travel distance and time matrices. For nonstop trips, for example, Tobs is simply the network 

travel distance (or time) for a TAZ pair. Calculations of Tobs for a two-leg trip chain is more 

complicated. For the proposed method, Tobs is the sum of the actual commute of the two 

consecutive trip legs—network distance (or time) of the first leg, such as home-to-daycare, and 

that of the second leg, such as daycare-to-work3. However, for the traditional method that 

completely neglects any intermediate stops, Tobs for a two-leg trip chain is simply the network 

distance (or time) from the home TAZ to the employment TAZ without considering the 

intermediate stop. Note that this practice of treating two-leg commuting trips as nonstop 

commuting trips between homes and jobs is also used in measuring other commuting and excess 

commuting metrics for the traditional method. Results (see Table 2) show that the actual travel 

time for only nonstop commuting trips is 15.73 minutes. For two-leg trip chains alone, the actual 

 
2 Of the five-hour computation time, 287 minutes were used to initiate variables, load data, and set up model 
constraints, and the remaining 13 minutes were spent on solving the objective function in Equation (8). 
3 Duration of the stop is not considered due to data unavailability. 
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travel time is supposed to be 23.33 minutes. When neglecting the intermediate stops, the actual 

commute is only 15.05 minutes. That being said, the traditional approach assuming commute 

being strictly nonstop trips between residences and workplaces significantly underestimates the 

actual commute (by 55 percent in this case). This is because of commuters’ difficulty in 

optimizing multipurpose trips. It is found that individuals with multi-leg trip chains on their way 

to/from work generally live farther from work and thus travel longer than those without making 

stops (McGuckin et al., 2005; Justen et al., 2013). This added travel to the total commute is also 

evident in the difference between nonstop trips (15.73 minutes) and two-leg trip chains (23.33 

minutes). Combining actual commute for both types of travel, Tobs for the general commuter—

which is observed to be 15.62 minutes by the conventional method—turns out to be 16.91 

minutes (about 8 percent increase). The gap is likely to be more substantial for cities with greater 

proportions of multi-leg commute trip chains. Note that a consistent trend is also observed for 

travel distance4. The above results and discussion suggest the importance of accounting for trip-

chaining behavior in commuting studies. 

 

Due to the more restricted spatial reallocation among resident workers in the proposed method, 

Tmin for the overall workers expectedly increases from 5.42 minutes, measured by the traditional 

transportation-problem-based approach, to 5.62 minutes by the proposed one. This indicates that 

the level of intermixing of job-housing functions in the Tampa Bay region is actually lower 

(about 4 percent) than what the traditional approach suggests. Since not every individual travels 

directly from home to work, the overall spatial separation of housing and jobs is hence greater 

than what the shortest distance between them suggests. Metrics assessing jobs-housing balance 

 
4 In fact, this consistent trend in distance is also observed for other metrics. Therefore, for simplicity, only 
commuting time is discussed hereafter. 
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without recognizing this travel pattern, therefore, may lead to more balanced relationship of jobs 

and housing and hence ineffective policymaking. It should be noted that the moderate gap in 

terms of Tmin between the two methods arises from the much smaller share (15 percent) of multi-

leg trip chains in total commuting trips, relative to the national average (54 percent). Therefore, 

planners and decisionmakers are cautioned of not considering trip-chaining behavior in studying 

jobs-housing relationship, especially for regions with a high prevalence of such travel patterns. 

Values of Tmax increase by 15 percent from 38.88 minutes for the case when the actual trip-

chaining pattern is disregarded to 44.51 minutes for the case otherwise. As the travel pattern 

becomes more complicated when trip-chaining is allowed in the residence exchange process, 

individual workers are more likely to be paired to farther workplaces, leading to an overall 

greater spatial separation between homes and jobs. Looking at the commuting range, Tmax – Tmin, 

the consideration of trip-chaining results in an additional 5.44-minute growth (by 16 percent). 

This increase in range of trip possibilities results from the inconsistent growth rate between Tmin 

(4 percent) and Tmax (15 percent) when trip-chaining is taken into account. 

 

The excess commuting results imply slightly different levels of commuting efficiency between 

the two modeling scenarios. For example, values of Tex are comparable (0.65 vs. 0.67), indicating 

65- or 67-percent excess commuting in the Tampa Bay region. Likewise, the difference with 

respect to Tpu (0.31 vs 0.29) suggests a close proportion of commuting capacity being consumed. 

The approximate agreement in excess commuting between the two methods is because of the 

inflation of values for all Tmin, Tobs, and Tmax after accounting for trip-chaining behavior, due to 

the reasons explained previously. As values for both actual and optimal commute, which are the 

solely two components of excess commuting, change in the same direction, their effects on 
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excess commuting measurement cancel each other out, leaving the final estimates close in value. 

This especially applies to Tex due to only two variables—Tmin and Tobs—being considered, 

compared to Tpu that examines all three metrics. For example, the consideration of trip-chaining 

yields a 3-percent increase in Tex while a 6-percent change in Tpu. 

Several points can be summarized from the above comparisons. First is the need for examining 

both Tmin (and/or Tmax) and Tobs in addition to excess commuting metrics when studying changes 

of excess commuting. Looking at the excess commuting metric alone, such as the observed 3-

percent increase in Tex, may underestimate the actual changes in commuting pattern, such as the 

reported 15-percent change in Tmax. Oftentimes, it is the optimal commute—a measure of urban 

form—that is used to inform policymaking. Therefore, it is not meaningful to evaluate the 

significance of the integration of trip-chaining behavior by examining Tex values alone. Most 

likely, the gap of Tex values between the two methods could be more remarkable in regions 

having a greater share of trip-chaining travels than in the Tampa Bay region (only 15 percent). 

Even for the same region, the difference might intensify as the share of trip chains grows because 

of changes in planning and demographics. It is, therefore, the soundness of methods matters but 

not the derived percentages (Hu and Wang, 2015).  

 

5. Discussion 

Focusing on the general commuters, the previous section compares excess commuting metrics 

between the traditional and proposed methods. This section goes a step further and looks at the 

breakdown of excess commuting by trip chain type (see Table 3). 
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A drastic contrast between excess commuting metrics of the two methods is evident at first 

glance. For example, Tobs for two-leg home-to-work trip chains, regardless of chain type, is 15.05 

and 23.33 minutes (about 55 percent relative change) for the traditional and proposed methods, 

respectively. Of the seven chain types, change mode (42 percent), meal (49 percent), and shop 

(47 percent) have less change rates than the general case, whereas school (109 percent) 

experiences the greatest level of change. This may indicate that travelers’ actual commute is 

relatively less elongated for a needed stop for meal like coffee, shopping, or changing modes of 

commute on their way to work than other stop types. Since these activities are usually in close 

proximity to residences, an intermediate stop for these activities does not add substantial extra 

time to their actual commute. In contrast, schools are much less in quantity and have particular 

locations due to zoning restrictions. Therefore, resident workers generally travel longer to these 

stops, which lengthens their overall commute. This long extra travel is not captured by traditional 

method; in fact, it identifies this trip chain type as the shortest commute (12.10 minutes) among 

all chain types. See Figure 4 for more detail, where the red vertical line represents 15.62 

minutes—Tobs for the overall commuter derived by the traditional method. 

 

Unlike the overall comparison, this disaggregate juxtaposition reveals significant disparities of 

Tmin among trip chain types. The arithmetic mean of Tmin of the seven chain types is 5.48 minutes 

when trip-chaining behavior is excluded from the calculation. It further increases by 70 percent 

towards an average of 9.32 minutes when trip-chaining is accounted for. The substantial increase 

indicates that the actual jobs-housing relationship is far more imbalanced than traditional method 

suggests. A breakdown of Tmin by chain type spotlights three types of activities—change mode 

with an increase by 114 percent, school by 102 percent, and shop by 62 percent. Interestingly, 
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change mode receives the highest rank—the worst jobs-housing balance—by both methods, 

indicating the least likely possibility of economizing commute for workers needing to change 

modes of travel, such as using park and ride or other incentive parking services, on their way to 

work. As these facilities are limited in only certain parts of the city, these users’ commute is 

understandably less likely to be reduced. However, the 114-percent gap between the two 

approaches highlights the considerable downward bias by traditional method. The omission of 

such a lengthy extra travel in measuring commuting efficiency would falsely return much more 

balanced relationship of jobs and housing, resulting in possibly ineffective policies such as 

locations of incentive parking facilities. This notable underestimate by the existing approach is 

also observed for commuting trips involving a stop at schools. The conventional method that 

treats such commuting trips as ones strictly from homes to jobs, surprisingly, yields the lowest 

required commute of 4.84 minutes among all chain types. As explained previously, the spatial 

patterns of schools determined by zoning and other guidelines can make these commuting trips 

the most difficult to economize as well. As a matter of fact, these travelers appear to have the 

second longest required commute, 9.75 minutes, across all chain types when the stopping 

behavior is included in the calculation. Again, policy recommendations like locations of schools 

made by methods not accounting for this travel pattern may lead to inadequate outcomes. As for 

commute involving shopping stops, the greater gap in terms of Tmin indicates that these workers, 

relative to workers of other chain types such as escort, meal, personal business, and social, are 

less able to reduce their commute to the theoretical low suggested by the existing method. This is 

perhaps because of the relatively sparse distribution of these facilities and the complexity in 

consumers’ store choice behavior where distance may not be the most determining factor. Refer 
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to Figure 4 for more detail, where the red vertical line represents 5.42 minutes—Tmin for the 

overall commuter derived by the traditional method. 

 

As Tmax measures the longest possible journey-to-work patterns in a region, the integration of 

trip-chaining behavior would yield greater values for Tmax than otherwise. This assertion is 

verified by the massive difference (about 93 percent relative change) between the two average 

Tmax values across all seven chain types—38.15 minutes and 73.74 minutes. Contradictory to 

Tmin, Tmax for change mode is the lowest for both methods. Apart from the resulting difficulty in 

minimizing total commute, the rather confined spatial distributions of relevant facilities such as 

park and ride also indicates the least possibility of longest feasible commute. Note that the gaps 

between Tmax values associated with the two methods are fairly stable across the seven chain 

categories. 

 

With respect to the efficiency measures, the mean value of Tex across all chain types declines 

marginally (about 5 percent) from 62 (traditional method) to 59 percent (proposed method), 

while that of Tpu decreases noticeably (25 percent) from 28 to 21 percent. The drops in the two 

efficiency measures indicate an overall more efficient commute in the Tampa Bay region than 

what the traditional method suggests. A closer look by trip chain type spotlights the change mode 

chain type that experiences a 43-percent decline in Tex and 56-percent decrease in Tpu, showing a 

disproportionately more economized commute for workers relying on more than one 

transportation modes during their commute. On the contrary, home-to-work travel involving a 

stop at schools show a disproportionately less efficient commute than others (about a 2-percent 

decrease in Tex and 11-percent decline in Tpu). In addition, the reduction rate disparity between 
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Tex and Tpu suggests that Tpu might be a more meaningful excess commuting measure than Tex for 

comparative studies where both optimal and actual commute change in the same direction. 

The above results and discussion indicate that traditional excess commuting studies where 

commute is the travel strictly from homes to workplaces significantly underestimate both optimal 

(Tmin and Tmax) and actual commute while overestimate excess commuting. Researchers and 

policymakers should be aware of the impacts of this behavioral factor in informing transportation 

and land use policies. Additionally, the impacts are found to vary across chain types, implying 

that policies derived based on overall commuting patterns could have varied results when 

focused on particular subgroups of workers. 

 

6. Conclusions 

Existing excess commuting studies only examine trips strictly from homes to jobs, while 

neglecting any intermediate stops workers make during their commute. This research contributes 

to the literature by proposing a new model to integrate trip-chaining behavior into the 

measurement of commuting efficiency for more accurate estimates. Based on a case study of the 

Tampa Bay region of Florida, some key takeaway messages are presented below. 

  

First, it is shown that the traditional excess commuting method that overlooks trip-chaining 

behavior underestimates both optimal and actual commute, whereas overestimates excess 

commuting. The biases are more substantial for certain chain types such as stops for changing 

transportation modes. 
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Second, the proposed methodology lays the foundation for extending the excess commuting 

framework to the analysis of non-work travel. The potential of this extension was theoretically 

assessed in Horner and O’Kelly (2007). One limitation that hinders such attempts is the 

incapability of existing excess commuting methods in recognizing the chained nature of non-

work trips. The developed model in this research fills this very gap. 

 

Third, this research offers some important policy implications. As the optimal commute Tmin 

describes the average shortest distance/time between homes and jobs in a region, it is often 

interpreted as a measure of jobs-housing balance and favored by urban planners and 

policymakers in making transportation and land use policies. It is found that not accounting for 

trip-chaining behavior in the calculations may have serious consequences as the traditional 

method tends to falsely yield significantly more balanced jobs-housing relationship than reality. 

The deviation, measured by percentage change, can be as high as more than 100 percent, leading 

us to question the effectiveness of land use and transportation policies made based on the 

existing method. Policymakers are thus cautioned of not accounting for trip-chaining behavior in 

studying jobs-housing relationship, especially for regions with a high prevalence of this travel 

pattern. In addition, the disaggregate analysis by chain type reveals disparities of the impacts, 

suggesting that policies derived based on the overall commuting patterns could have varied 

results when focused on subgroups of workers with particular travel behaviors. 

 

Fourth, this research casts lights on the choice among commuting metrics. The massive gap of 

Tex (87 vs. 11 percent) between Hamilton’s (1982) and White’s (1988) studies has led to 

questions about whether different commuting cost metrics—distance and time—play a role. In 
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line with most past investigations, this research finds that the two measures show consistent 

trend in commuting length and efficiency but vary with measured values. In terms of excess 

commuting metrics, Tpu appears to be more meaningful than Tex for comparative studies where 

both optimal and actual commute change in the same direction. 

 

Finally, the significance of this research is beyond transportation applications as the proposed 

method can be readily applied to other fields related to geography. For example, the improved 

estimations of travel length by considering trip-chaining are expected to yield more accurate 

measurement of spatial accessibility to services, such as health care, food, education, and 

employment, and hence more meaningful policymaking and positive outcomes. The proposed 

trip-chaining-based optimization model can be extended for aiding location decision-makings 

such as finding the best locations for building hospitals, pharmacies, and other types of 

businesses. 

 

This research, however, is subject to several limitations. First, there are other travel behaviors 

other than trip-chaining, such as route choice, that could play a role and are worth investigating. 

This could be mitigated by additionally considering route choice preferences associated with 

particular subgroups of the population from existing behavioral studies. Second, the study can 

also benefit from integrating traffic condition into the proposed model. Compared to free-flow 

travel times, real-time traffic data obtained from such third-party data sources as Google Maps 

API can make the results more realistic and meaningful. Third, this research examines only 

home-to-work trips for consistency with existing studies. However, trip-chaining patterns could 

be different for work-to-home trips. For example, workers tend to make more stops on their way 
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back home than the other way around (McGuckin and Srinivasan, 2005). This consideration will 

likely lead to a greater number of trip chains with multiple stops and hence may yield more 

substantial gaps in the results between the two methods. This will be investigated in future 

studies. Fourth, in addition to travel behaviors, it is well-known that other contextual variables, 

such as the inhomogeneity of jobs and workers, could influence the level of excess commuting 

(Ma and Banister, 2006b). Efforts that account for these factors simultaneously are thus 

warranted. Fifth, the so-called aggregation errors (Hu and Wang, 2016) are introduced when 

aggregating population or employment in TAZs to their centroids, which may bias the final 

estimations, especially for large TAZs in urban peripheries as shown in Figure 2. Investigations 

into the bias are thus needed. This could be achieved by applying the Monte Carlo simulation 

technique employed in Hu and Wang (2016; 2018) and Hu et al. (2020), which distributes home 

and jobs randomly within each TAZ, and ultimately yielding a lower and upper bound of 

estimations of the commuting/excess commuting metrics. Sixth, as asserted in the present study, 

the marginal difference in excess commuting Tex values for the overall commuters between the 

two methods arises from the low proportion of commuting trips with trip-chaining activities (15 

percent relative to the national figure of 54 percent) in the Tampa Bay region. The difference is 

expected to be more significant for other types of cities with a great number of trip-chaining 

commuters, and this assertation can be further evaluated by future studies applying the proposed 

method to other cities with high proportions of chained commuting trips close to or above the 

national percentage. Lastly, similar to most existing studies, this research is affected by the 

MAUP. To what extent results are biased by this issue remains unclear. This could be 

approached by analyses performed at the individual level using a simulation approach developed 

by Hu and Wang (2015). 
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Table 1. Number and percentage of commuters by trip chain type in the study area 

Trip chain type Number of commuters Percentage of commuters 

Home-work 631755 84.6 

Home-change mode-work 2562 0.3 

Home-escort-work 38276 5.1 

Home-meal-work 10525 1.4 

Home-personal business-work 10809 1.4 

Home-school-work 3742 0.5 

Home-shop-work 39379 5.3 

Home-social-work 10401 1.4 

Total 747449 100 
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Table 2. Results of excess commuting 

 

Modeling scenario N Time (minutes) Distance (miles) 

Commuting metrics Excess 

commuting 

metrics 

Commuting metrics Excess 

commuting 

metrics 

Tmin Tobs Tmax Tex Tpu Tmin Tobs Tmax Tex Tpu 

Traditional 

transportation-

problem-based 

method 

Nonstop H2W trips 631,755 — 15.73 — — — — 9.27 — — — 

H2W trips with one stop 115,694 — 15.05 — — — — 8.72 — — — 

All H2W trips 747,449 5.42 15.62 38.88 0.65 0.31 2.73 9.18 29.60 0.70 0.24 

Proposed trip-

chaining-based 

method 

Nonstop H2W trips 631,755 — 15.73 — — — — 9.27 — — — 

H2W trips with one stop 115,694 — 23.33 — — — — 12.64 — — — 

All H2W trips 747,449 5.62 16.91 44.51 0.67 0.29 2.80 9.79 33.93 0.71 0.22 

Note: H2W stands for home-to-work, N represents total number of commuters, and “—” means not available.
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Table 3. Breakdown of excess commuting by trip chain types 

 

Modeling scenario N Time (minutes) Distance (miles) 

Commuting metrics Excess 

commuting 

metrics 

Commuting metrics Excess 

commuting 

metrics 

Tmin Tobs Tmax Tex Tpu Tmin Tobs Tmax Tex Tpu 

Traditional 

transportation-

problem-based 

method 

Change mode 2,562 6.68 14.55 33.51 0.54 0.29 3.41 8.33 25.68 0.59 0.22 

Escort 38,276 5.62 15.27 39.21 0.63 0.29 2.83 8.88 29.90 0.68 0.22 

Meal 10,525 5.36 15.28 38.69 0.64 0.30 2.63 8.87 29.48 0.70 0.23 

Personal business 10,809 5.24 15.03 39.14 0.65 0.29 2.54 8.66 29.73 0.71 0.22 

School 3,742 4.84 12.10 38.53 0.60 0.21 2.27 6.64 29.36 0.66 0.16 

Shop 39,379 5.31 15.05 38.89 0.65 0.29 2.63 8.72 29.64 0.70 0.23 

Social 10,401 5.36 15.17 39.13 0.65 0.29 2.63 8.82 29.84 0.70 0.23 

Any chain type 115,694 5.36 15.05 38.90 0.64 0.29 2.66 8.72 29.65 0.69 0.22 

Change mode 2,562 14.29 20.68 63.37 0.31 0.13 6.51 10.51 49.02 0.38 0.09 
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Proposed trip-

chaining-based 

method 

Escort 38,276 8.14 24.26 76.59 0.66 0.24 3.89 13.19 58.50 0.71 0.17 

Meal 10,525 8.43 22.86 74.81 0.63 0.22 3.88 12.31 57.10 0.68 0.16 

Personal business 10,809 7.97 23.64 75.66 0.66 0.23 3.73 12.88 57.65 0.71 0.17 

School 3,742 9.75 25.37 74.80 0.62 0.24 4.33 14.23 57.11 0.70 0.19 

Shop 39,379 8.59 22.10 74.64 0.61 0.20 4.03 11.85 57.21 0.66 0.15 

Social 10,401 8.08 24.60 76.32 0.67 0.24 3.79 13.61 58.16 0.72 0.18 

Any chain type 115,694 7.84 23.33 75.31 0.66 0.23 3.73 12.64 57.58 0.71 0.17 

Note: N represents total number of commuters.
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Figure 1. Illustration of nonstop commuting trip and trip-chaining 
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Figure 2. Standard scores of jobs-housing balance 
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Figure 3. Comparison of the optimization process between the two methods 
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Figure 4. Breakdown of Tmin and Tobs by trip chain types by the two methods [Note: red vertical lines represent Tmin (left) and Tobs 

(right) for the overall commuter derived by the traditional method, serving as baselines to highlight the deviations of Tmin (or Tobs) of 

each chain type from that of all commuters for both traditional (grey horizontal bars) and proposed (black horizontal bars) methods.]
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Figure captions: 

Figure 1. Illustration of nonstop commuting trip and trip-chaining 

Figure 2. Standard scores of jobs-housing balance 

Figure 3. Comparison of the optimization process between the two methods 

Figure 4. Breakdown of Tmin and Tobs by trip chain types by the two methods [Note: red vertical 

lines represent Tmin (left) and Tobs (right) for the overall commuter derived by the traditional 

method, serving as baselines to highlight the deviations of Tmin (or Tobs) of each chain type from 

that of all commuters for both traditional (grey horizontal bars) and proposed (black horizontal 

bars) methods. 


