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ABSTRACT

Given the prevalence of independent component analysis (ICA)
for signal processing, many methods for improving the convergence
properties of ICA have been introduced. The most utilized meth-
ods operate by iterative rotations over pre-whitened data, whereby
limiting the space of estimated demixing matrices to those that are
orthogonal. However, a proof of the identifiability conditions for or-
thogonal ICA methods has not yet been presented in the literature.
In this paper, we derive the identifiability conditions, starting from
the orthogonal ICA maximum likelihood cost function. We then re-
view efficient optimization approaches for orthogonal ICA defined
on the Lie group of orthogonal matrices. Afterwards, we derive a
new efficient algorithm for orthogonal ICA, by defining a mapping
onto a space of constrained matrices which we define as hyper skew-
symmetric. Finally, we experimentally demonstrate the advantages
of the new algorithm over the pre-existing Lie group methods.

Index Terms— Independent Component Analysis, Constrained
Optimization, Lie Group Methods, Identifiability

1. INTRODUCTION

Independent component analysis (ICA) is a data-driven technique
commonly used for blind source separation (BSS), as well as for
studying the latent structure of datasets. ICA decomposes a dataset
into latent sources according to the assumption that the sources are
statistically independent. ICA has been successfully used in a di-
verse range of applications across the sciences [1-7].

ICA is typically performed on pre-whitened data. A key con-
sequence of pre-whitening is that as both the pre-whitened data and
the true sources are uncorrelated, then the true demixing matrix must
be orthogonal (or nearly orthogonal for large number of samples 7T').
This is exploited in many popular ICA algorithms to limit the so-
lution space to orthogonal matrices, leading to considerably more
efficient ICA algorithms [8, 9]. Despite the popularity of these or-
thogonal algorithms, in the literature there lacks a proof of how or-
thogonality constraint theoretically affects maximum likelihood es-
timation of ICA. Thus, in this paper we produce this proof: first writ-
ing the cost function of orthogonal ICA under maximum likelihood,
then deriving the gradient, the Fisher Information matrix (FIM), and
the orthogonal ICA identifiability conditions.

We then discuss existing methods for the orthogonal ICA, and
focus on symmetric updates as these are preferable in ICA due to
their robustness with respect to estimation error. We present sev-
eral methods, all that can be considered as Lie Group methods, and
compare their convergence properties.
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Optimization based on Lie theory is useful in that it both reduces
the complexity of the problem, and defines a natural connection be-
tween unconstrained and constrained optimization. However, while
Lie group methods have proven useful, it is also useful for optimiza-
tion methods to have limits on the degree of change, e.g., to ensure
stability for stochastic or second order updates. We thus derive a
new orthogonal algorithm that allows this limiting behavior to oc-
cur naturally in mapping an unconstrained search direction to the
constraint. This algorithm generalizes well across multiple types of
data, and in general does not require any initial parameter tuning to
achieve nearly the fastest convergence we observed (for fixed param-
eters chosen in the range of possible parameter values).

The paper is organized as follows. Section 2 outlines maximum
likelihood for orthogonal ICA, after which the gradient, FIM, and
identifiability conditions of orthogonal ICA are derived, and the ex-
isting Lie group methods are described. Section 3 presents a new
orthogonal algorithm based on the derivation of a matrix type which
we call hyper skew-symmetric. Section 4 compares the performance
of these algorithms across real and simulated data, and Section 5
concludes with takeaways on the new algorithm.

2. ORTHOGONAL ICA: THEORY AND METHODS

2.1. ICA preliminaries

We consider the general ICA problem where the observed data is
modeled as a random process. With s(t) = [s1(t), ..., sn(t)] | €
RY denoting the N underlying sources at some sample index ¢, ICA
assumes that sources are mixed by unknown invertible matrix A €
RM*N | to produce observed mixtures x(t) = [z1(t), ..., zn ()] "
€ RY. Here, (.) " denotes the transpose. The ICA generative model
is thus represented as:

x(t)=As(t), or X=AS (1)
across 1" observed samples of the random process. Here X, S €
RY*T X =[xi,...,xn]" and 8 =[sy, ..., sn] . Here x,, and

s, are column vectors of X and S respectively, forn = 1,2, ...,
N. ICA estimates a demixing matrix W € RY*¥ that maximizes
independence between the source estimates Y = WX, with Y €
RY*T and Y =[y1, ..., yN}T,
The maximum likelihood cost function for ICA is given by:
N
Jica(W) = log ps, (yn) + T log (detW) ,  (2)
n=1

where ps,, (yn) is the probability distribution function (PDF) of the
nth underlying independent source. Maximization of the likelihood
in (2) can be shown to be equivalent to the minimization of the mu-
tual information among the source estimates.
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When deriving ICA using the likelihood formulation for sources
S, one presumes a differentiable probability density ps(S), associ-

ated with the function @ : RNV X7 — RV*T
0 log ps(S) n=12..., N
@ S n — ; 7 b b
[©(S)]ns  sn(t) t=1,2,...,T

This is called the score function for density model ps(S). The
score function matrix @ € RY*T is expressed for true sources by
Dg = [q)sl, e (I)SN] and for source estimates by @y = [q)yl,

., cbyN]T, for sourcesn = 1,2, ..., N.

In our derivations, we assume that mixtures X, and sources S,
are each standardized. Due to this, and the independence of sources,
sources are both orthogonal with respect to themselves, and their
respective score function components [10]. This is represented re-
spectively by the identities, for source indices 1 < m,n < N:

E{sm(t) sn(t)} = Omn , E{dm(t) sn(t)} = Omn,
where dp,, = 1 if m =n, and 0, = 0 otherwise.

In order to accurately estimate the demixing matrix, use of
orthogonal ICA algorithms requires that the data X must be pre-
whitened. The reasoning is that given standardized X, it follows
from the first identity that Rs = E{s(t)s’(t)} = I, thus
Ry = E{x(t)x'(t)} = AAT. Thus, AAT = Iis only
guaranteed when X is pre-whitened. Note that R in practice will
be approximated by a sample average R for finite T', hence Rg = I
is satisfied only as 7' — oo, provided that the random process is
covariance-ergodic. However, given pre-whitened data with suffi-
cient T such that R¢ ~ I, then AA " ~ I, thus justifying using an
orthogonal algorithm to find the orthogonal solution nearest to A.

2.2. Orthogonal ICA: cost function and gradient

We start by applying the constraint WW ' —I = 0 € RV*V
to the unconstrained ICA maximum likelihood cost function:
Tica(W) =N log ps,, (yn) + T log (detW). To incorporate
the constraint into the cost, we use the Lagrangian function [11] as
applied to constrained matrices:

LW, A) = Tiea(W) — %tr (A (WWT - I))

where tr(.) is the trace operator, and A is the Lagrangian multiplier.
Because WW T is symmetric, the multiplier A corresponding to
WW ' is also symmetric, thus A = AT

We solve for A such that % =0at W = A~' Firstap-
plying the derivative to the constraint term, we get w
2A'W. With unconstrained ICA cost gradient, given by

—Oy X+ T (W'

BJICA(W)

we form the derivative of the Lagrang1an,

given by ZEVA) — _@yXT + T (W) — AW, At
% = 0, we have WA = Iy,and Y = S. We thus

set the Lagrangian equal to O to solve for A, and obtain A =
—®sS" + T 1Iy.

We thus plug in A into
8. RTH () . .
cost gradient, —S:=—=. We can now compare this gradient (3) to
the gradient of unconstrained ICA (4), derived from the maximum
likelihood cost without the constraint:

0T T (W)

va\(’/\) and form the orthogonal ICA

W = —OyvX' +DsSTW 3)
(9\:7c (W) 1\ T
laévv = —OyX' +T (W) &)
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In comparing these, we first note that W = (W_l) " when W
is orthogonal. Then due to our earlier identity E {$. (¢) sn(t)} =
Omn, wWe have that lim 7_, oo g ST =71 , at which point (3) and
(4) are equivalent. Thus, given that W is orthogonal, the derivatives
in (3) and (4) become asymptotically equivalent as 1" approaches
infinity. In the next section, we consider the FIM of orthogonal ICA
when dealing with finite samples.

2.3. Orthogonal ICA: Fisher Information Matrix

We now consider the elementwise FIM:

S 0T BH(W)\ (0T BHW)\ "
[F (W)]m2n2 =F { ( 8Wm1n1 8Wm2n2 ’

(&)

which is given as the covariance of the elementwise orthogonal ICA

ORTH
gradient ‘7‘537() It is easy to show that the elementwise gradient
of (3) (defined as Ap,n) is given by
Amn = - ;mxn + Z W]kn (b;rmsk (6)
k=1

As these are scalars, they are equal to their own transpose, which
we use in forming the interior of the FIM expectation For simplicity,
we denote a; = (b;,rm Xp;,and by £ SN (Wi, ¢; sy . Thus
using this shonhand notation, the interior of the FIM is given by:
AmnAmn = a1a2 -+ ble — bgal — b1a2 .

For identifiability, we can study what values the interior of the
expectation (5) takes at the optimal solution, WA = I. To simplify
this quantity, due to the equivariance of the maximum likelihood
estimator, we can evaluate this quantity at A = I, W = I, at which
Y:X:S, and(DY:(Ds.

To evaluate the interior of the expectation, it is easy to show that
for the 4 terms in the sum:

a1a2|A I—b1b2|A 1—b2a1\A I=b1a2T|A:I @)
=I Ww=I w=I

Given this result, the 4 terms in the interior of the FIM summed
together cancel out completely. Therefore,

aAW=A=1I [F(W)™" =0 (8)

m2anz

Thus at the true solution, the orthogonal ICA FIM is always sin-
gular. Given this result, it is important to understand what can lead to
a singular FIM. This can occur when there is a true singularity, e.g.,
for ICA, when the data consists of two or more Gaussian sources.
However, a singular FIM can also occur when the parameters do not
cover the entire space of interest. This is the case for orthogonal
ICA: from section 2.1, when Rs = I, then AAT = Lbut Rs = I
is satisfied only in the limit as 7" — oco. For finite samples, or when
X is not whitened, AAT # 1, and the FIM will be singular.

As shown in section 2.2, the estimated gradient of orthogonal
ICA asymptotically reaches the true gradient of unconstrained ICA
as T' — oo. As the FIM is the covariance of the gradient, this
asymptotic equivalence also extends to the FIM of unconstrained
and orthogonal ICA, thus the FIM of orthogonal ICA asymptotically
reaches the true FIM of unconstrained ICA as T — co. With the
identifiability conditions defined on the FIM, this means that in the
limit, given pre-whitened X, orthogonal ICA has the same identifi-
ability conditions as unconstrained ICA. Therefore, with orthogonal
ICA, sources can be sufficiently estimated even for finite 7", with this
estimate further improved for larger 7" (reflective of improved statis-
tical power, in addition to the true A being closer to orthogonal).
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Having shown that orthogonal ICA asymptotically achieves the
identifiabilty conditions of unconstrained ICA, in the next section
we introduce the methods used to perform orthogonal ICA.

2.4. Methods for orthogonal ICA: Lie Group Methods

Orthogonal methods operate via rotations, called special orthogonal
matrices (denoted by SO(N)). The SO(/N) manifold forms a Lie
group corresponding to a vector space called a Lie algebra, which
for SO(V) are the skew-symmetric matrices (D + D' = 0). The
Lie group O(XV) is fully characterized by the connection between
the Lie group and Lie algebra, via a mapping called the exponential
map. This reduces the number of parameters from N? to W
considerably reducing the complexity of the optimization problem.
These orthogonal methods thus operate by first calculating an uncon-
strained search direction, then mapping the direction to the nearest
skew-symmetric matrix, mapping the skew-symmetric matrix to the
method’s corresponding rotation matrix R, and then updating W by
the rotation W — RW [9, 12].

One method of calculating R is via the matrix exponential, often
called the Geodesic Flow method [9,13]. However, calculation of the
matrix exponential is in general only an approximation. In contrast,
the Cayley Transform calculates this without approximation by us-
ing matrix inversion, and is popular for SO(/V) optimization [11]. As
these methods can have significant computational complexity, an-
other method produces an approximation of the rotation by use of
only matrix multiplication [14]. This technique, Infinitesimal skew-
symmetrix rotation, or INF-SSM, converts the skew-symmetric ma-
trix into an infinitesimal rotation by a chosen scaling factor %, then
scales the rotation back by raising the infinitesimal rotation to the
power (3. Given stepsize « and skew-symmetric matrix D, these
three techniques have the update rotation matrix R of the form:

Reopesic row (o, D) = exp(aD) 9

s

Recaviey transrorm (o, D) = (I — %D)_l(l + %D) (10)

Rinrssw(a, D) = (I + %aD)f’ (11

These techniques are useful in operating within a vector space,
where linear operators are defined and the norm of the original un-
constrained direction is proportional to the degree of the orthogonal
rotation (e.g., multiplying D by some scalar y is equivalent to rais-
ing the corresponding rotation R to the exponent w). However, in
optimization it may be useful to naturally limit the norm of a search
direction, e.g., for cases where stability is not guaranteed. In the
next section, we define a hyper skew-symmetric matrix, and use it to
create a new algorithm for orthogonal ICA.

3. IGLOO: DERIVATION FOR A HYPER
SKEW-SYMMETRIC MATRIX

Given an orthogonal matrix W, we would like to find update
W 4+ DW, such that this updated matrix is still orthogonal. To
see what this entails, we can look at what is required to make
W + DW orthogonal:

(W+DW)(W+DW) =I+D+D' +DD' =1 (12)

This expression shows that in order for W + DW to remain or-
thogonal, we require that matrix D satisfy the constraint D+ DT +
DD’ = 0. Given the similarity to the skew symmetric matrices,

we call these hyper skew-symmetric matrices. Our goal is to develop
a mapping of any square matrix D, into this constraint D. There are
some observations that emerge out of this constraint:
I=I+D+D' +DD' =(1+D)(I+D)" (13)
The result of this shows that any hyper skew-symmetric matrix
D, plus an identity matrix, always equals some orthogonal matrix.
While it is not immediately clear how to map a matrix D,, onto the
space of hyper skew-symmetric matrices D, we can map D,, onto
its image in the space of orthogonal matrices, O (D,):

O(Dp) =D, (D;Dp) (14)

Thus, one possible way to map a matrix D,, into a hyper skew-
symmetric matrix, is to orthogonalize D, and then subtract an iden-
tity matrix. This is given by D = O (D,) — I. While this is one
possible mapping, it may not be the optimal mapping: we desire
the optimal image of D,, onto the space of hyper skew-symmetric
matrices. This ambiguity is realized by arbitrary rotations W, :
I=(I+D)W, W, (I+D)".

Here we have the subscript on arbitrary orthogonal matrix W,
to distinguish it from our ICA parameter W. Given this ambigu-
ity, we can represent any mapping into the space of hyper skew-
symmetric matrices by the following:

D=0(D,) W, -1 (15)

This shows the ambiguity of possible mappings by existence of
arbitrary rotation W,.. To find W,. that gives the optimal mapping,
we seek W, that minimizes the distance between D and D ,:

L T
ml‘I;lv(;llSt (O (D)W, -1 | Dp)

1
2

To isolate W, in this expression, we can add I to both quantities,
and then rotate by an ortogonal matrix O (Dp)T, and the problem

will remain the same: mi‘rilvdist (VVTT , 0(D,)" (D, + I))

Now because we know that W,! is an orthogonal matrix, W,
can thus be obtained by mapping O (D,,) " (D, + I) to the nearest
orthogonal matrix, using (14):

W] =0 (o (D,)" (D, +1)) —0(D,) 0D, +1I) (16)

Having found optimal W, , we incorporate it into (15) to get the
optimal hyper skew-symmetric matrix:

D=0D,+I -1 17

This technique can be applied to any search direction U, by rep-
resenting U as UW T W, then mapping D, = UW ' to the nearest
hyper skew-symmetric matrix via (17).

It is easy to show that this technique achieves a natural limiting
behavior on the rotation when the norm of D, is large. In apply-
ing a stepsize o to Dy, as a — oo, the rotation asymptotically
approaches a fixed rotation:

lim O(aD, +1)—I1=0(D,) -1 (18)
oa—r 00

Clearly this applies to both o and the norm of D,,. While this
limiting behavior has benefits for optimization, the limit to the ro-
tation may be too restrictive. Therefore, we can extend it via intro-
ducing a stretch parameter [3: allowing the extension on the limit by
raising the rotation matrix to the power 3. This generalization of
the hyper skew-symmetric mapping is what we introduce as IGLOO
for ICA: Independence by Geometrically Limited Orthogonal Opti-
mizer. Like methods (9) (10) (11), we give the imposed rotation on
‘W, given direction U, stepsize «, and stretch parameter (:

RicLoo(a, U) = O(@UW " +1)° (19)
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While this can be applied to any search direction U, below we
give the pseudocode for the update rule of IGLOO applied specifi-
cally to the relative gradient algorithm for ICA [6,15] :

IGLOO applied to the relative gradient:

1. source estimates: Y = WX

2. unconstrained direction: U = (I - ®vY )W

3. IGLOO rotation: R(a,U) =0(aUW' +1)?

4. "W update: W =RW

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

We demonstrate the performance of these methods over simulated
and real data. Intersymbol interference (ISI) is the standard metric
for measuring ICA performance when the true mixing A is known,
such as for simulated studies [16]. Smaller ISI values reflect a supe-
rior demixing performance.

We apply these orthogonal techniques on the relative gradient
algorithm for ICA [6,15]. As the ICA cost function is costly to com-
pute, and because optimal stepsize varies considerably between un-
constrained and orthogonal ICA, line search is not economical for or-
thogonal ICA when algorithmic efficiency is a priority. Thus a fixed
stepsize can be implemented, and thus we explore algorithm perfor-
mance across different stepsize choices. For a range of stepsizes,
we simulate 200 different mixed datasets (either all super-Gaussian
or sub-Gaussian sources, 10 sources of each 80000 samples), and
report the average ISI and number of iterations to convergence for
these methods. We also note that the number of iterations was nearly
exactly proportional to wall time performance, due to the methods’
calculation of rotation mappings taking a negligible proportion of
the total computational cost per each update. We also experimented
over real satellite image data [17], where we likewise mix the data
over 200 different mixing matrices. Fig. 1 compares performance
across the methods. For INF-SSM, we fixed S to be 229 and ob-
served that varying 8 did not significantly affect the performance.
For IGLOO, we included 4 choices of 3 to show how choice of 3
affects performance.

Optimal performance of IGLOO was nearly identical to that of
the Lie group methods (e.g., for super-Gaussian data, 12.5 iters for

Lie group methods with o = 3.5, vs. 11.5 iters for IGLOO with
a = 10, 8 = 4 ). However, IGLOO demonstrated the ability to
converge even when the stepsize was very high; in fact IGLOO per-
formed nearly optimally for both arbitrarily chosen higher stepsizes
and higher value of 8. However, IGLOO is not completely immune
to when both the stepsize and 5 may be too high (see IGLOO (5 =
8) in Fig.1 (a) ). Despite this, this shows IGLOO has a larger range
on the direction norm where the algorithm can still converge.

The primary utility in IGLOO’s mapping is that when the search
direction norm is not economical to control, IGLOO can appropri-
ately limit the corresponding rotation, even in general where param-
eters o and (8 are not optimally chosen. Furthermore, these parame-
ters can generally be chosen with arbitrary large values, and IGLOO
will perform nearly optimally with respect to parameter choice. As
the Lie group methods have a much smaller region of stepsize where
the algorithms are able to converge, this presents a considerable ad-
vantage of IGLOO for general use in an ICA setting.

We should note that our derivation of IGLOO and the hyper
skew-symmetric matrix are not necessarily limited to ICA; both are
also applicable to other problems where optimization is done over
orthogonal matrices. IGLOO could also be useful in these other
applications, especially in situations where this stability property is
even more useful than it is for ICA optimization.

5. CONCLUSIONS

In this paper, we provide a comprehensive analysis of orthogonal
ICA starting with the maximum likelihood cost function, proving
that orthogonal ICA asymptotically has the same identifiability con-
ditions as unconstrained ICA.

After describing the commonly used natural ways of optimiz-
ing over orthogonal matrices, we introduce a new algorithm for or-
thogonal ICA optimization by deriving a matrix we call hyper skew-
symmetric. We demonstrate that the new algorithm IGLOO is dis-
tinct from the Lie group methods by its ability to naturally limit the
orthogonal rotation imposed by the search direction, all with min-
imal use of hyperparameter tuning to obtain optimal performance.
These results present IGLOO as an efficient and highly generaliz-
able approach to orthogonal ICA.
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