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VEHICLE DISPATCHING IN MODULAR TRANSIT NETWORKS: A NONLINEAR MIXED-1 
INTEGER PROGRAMMING MODEL 2 

 3 
 4 

ABSTRACT 5 
Modular vehicle (MV) technology offers the possibility of flexibly adjusting vehicle capacity by 6 
docking/undocking modular pods into vehicles of different sizes en route to meet passenger demand. 7 
Based on the MV technology, a modular transit network system (MTNS) concept is proposed to overcome 8 
the mismatch between fixed vehicle capacity and spatially varying travel demand in traditional public 9 
transportation systems. To achieve the optimal MTNS design, a mixed-integer nonlinear programming 10 
model is developed to balance the tradeoff between the vehicle operation cost and the passenger trip time 11 
cost. The nonlinear model is reformulated into a computationally tractable linear model. The linear model 12 
solves lower and upper bounds to the original nonlinear model, thus producing a near-optimal solution to 13 
the MTNS design. This reformulated linear model can be solved with off-the-shelf commercial solvers 14 
(e.g., Gurobi). Two numerical examples in different contexts are used to demonstrate the proposed model’s 15 
applicability and its effectiveness in reducing system costs. 16 
 17 
Keywords: public transit; modular vehicle; operational design; mixed-integer nonlinear programming 18 
 19 

1. Introduction 20 

Most current public transportation systems (e.g., mass transit) adopt vehicles with fixed capacities that 21 
cannot adapt to temporal and spatial variations in travel demand. This mismatch between the vehicle 22 
capacity and travel demand causes either excessive passenger waiting (e.g., in areas with a high demand 23 
relative to the vehicle capacity) or low vehicle occupancy (e.g., in areas with a high vehicle capacity 24 
relative to the demand). 25 

 26 

    27 
Figure 1 MV concepts proposed by (a) NEXT (source: https://www.next-future-mobility.com) and (b) Ohmio LIFT 28 
(source: https://ohmio.com).  29 

Emerging modular vehicle (MV) technology holds the promise of overcoming these issues. The MV 30 
technology allows modular pods to be dynamically docked/undocked into vehicles of different sizes en 31 
route (Figure 1; Chen et al., 2019, 2020). This technology have been tested by multiple companies, such 32 
as NEXT (Next Future Transport, 2019) and Ohmio LIFT (Ohmio, 2018). We propose a modular transit 33 
network system (MTNS) that uses the MV technology. In the MTNS system, MVs operating in a 34 
transportation network can be quickly reassembled at nodes (or stations) to obtain different capacities that 35 
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suit downstream travel demand. With flexible vehicle capacity adjustment, the MTNS can effectively 1 
reduce passenger waiting time (by forming long MV chains) and improve vehicle occupancy (by forming 2 
short MV chains), thereby overcoming the limitations of traditional public transportation systems. 3 
According to the economies of scale in urban mass transportation, the travel cost of a vehicle is usually a 4 
concave function over the number of modular pods in it (Chen et al., 2020). As a result, this MTNS has 5 
potentials in reduce the system operation cost.  6 

To better understand the MTNS, we compare it with two benchmark systems: the fixed-capacity shuttle 7 
bus system (FSBS) and the passenger car system (PCS). The FSBS can be viewed as a special case of the 8 
MTNS, where each vehicle has a fixed capacity and provides transportation service without intermediate 9 
stops. The FSBS is used mostly in areas where bus stops are sparse and scattered; in these areas, there is 10 
a low economic incentive for intermediate stops because of the long detour distance. Since the vehicles’ 11 
capacities are fixed, performance of the FSBS may be limited if passenger demand exhibits considerable 12 
spatial variation. Specifically, the FSBS may not fully utilize vehicle capacity in places with low demand, 13 
and it may not be able to serve all passengers in places with intensive demand. By contrast, the vehicle 14 
capacity in a general MTNS is adjustable to passenger demand. Therefore, the MTNS better fit varying 15 
passenger demand by dynamically adjusting vehicle capacity. Further, vehicles in a PCS are private 16 
passenger cars (or taxis) with a small fixed capacity. The advantage of a PCS is service convenience for 17 
individual travelers (e.g., no waiting and transfer times, and direct door-to-door service). However, a PCS 18 
may be the most expensive system since more vehicles are needed to serve the same demand. A detailed 19 
comparison of the three systems is provided in Table 1. 20 
Table 1 Comparison of alternative systems 21 

 MTNS FSBS PCS 

Overall cost 
Operation cost; 

Waiting time cost; 
Riding time cost 

Operation cost; 
Waiting time cost; 
Riding time cost 

Operation cost; 
Riding time cost 

Transfer cost Considered Considered No 

Transfer mode Walk In-vehicle transferred No 

Vehicle type Flexible capacity Fixed capacity Fixed capacity 

Occupancy 6 passengers/pod 36~48 passengers/bus 1~4 passengers/car 

Vehicle length 
(48 passengers)  

Flexible; small per passenger 
 

Fixed; small per passenger 
 

Fixed; long per passenger 
Note: Data and figure source: https://www.next-future-mobility.com 22 
A class of related studies has focused on designing a transit system to serve a transportation network. 23 

However, few studies have investigated the design of MTNSs in the literature. Most current studies have 24 
focused on transportation network design to provide comprehensive services to an urban area (Almasi et 25 
al., 2018; Cepeda et al., 2006; Daganzo, 2010; Fan et al., 2018; Guo et al., 2017; Nourbakhsh and Ouyang, 26 
2012; Tong and Wong, 1999; Wu et al., 2016). The goal is to minimize the system cost, which includes 27 
the operation costs (Alshalalfah and Shalaby, 2012; Diana et al., 2006; Nourbakhsh and Ouyang, 2012; 28 
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Pei et al., 2019a; Quadrifoglio et al., 2006, 2007, 2008) and trip time costs (Niu et al., 2015; Pei et al., 1 
2019b; Quadrifoglio et al., 2008), accessibility (Nassir et al., 2016; Owen and Levinson, 2015), and so on. 2 
For example, Ortega and Wolsey (2003) investigated an incapacitated fixed-charge network flow problem 3 
to minimize network design costs and passenger flow costs. Daganzo (2010) analyzed the structure of 4 
urban transit networks to increase accessibility. Ouyang et al. (2014) used the continuum approximation 5 
technique to design bus networks for cities where the travel demand varies gradually in space. The authors 6 
proposed heterogeneous route configurations to reduce the costs for both bus users and the operating 7 
agency. Tong et al. (2015) developed an urban transit network design model to maximize the number of 8 
accessible activity locations in a space-time network within a given travel time budget. Despite these 9 
fruitful developments, most existing transit network design studies have only considered vehicles with 10 
fixed capacity. 11 

A handful of recent studies have investigated MV operations in transit systems. Table 2 provides a 12 
brief summary of these studies. Most of these studies propose a variable-capacity operation approach with 13 
modular transits based on the MV concept. Guo et al. (2018) proposed a simulation-based model for 14 
designing a many-to-one (M-to-1) system in the MV context. (Chen et al., 2019, 2020)proposed both 15 
discrete and continuous models for designing an MV shuttle system under oversaturated traffic conditions. 16 
Rau et al. (2019) propose a dynamic autonomous road transit system by varying the number of modular 17 
pods in each vehicle. Zhang et al.(2020) mathematically modeled a MV transit system with a time-18 
expanded network, thereby reducing the size of the optimization problem. Shi et al. (2020) proposed a 19 
variable-capacity operation approach for two corridors sharing a portion of stations. Caros and Chow 20 
(2020) proposed a two-sided day-to-day learning framework to simulate the performance of a mobility 21 
service using modular autonomous vehicles capable of en-route passenger transfers. Dai et al., (2020) 22 
proposed a joint design of bus capacity and dispatch headway in a mixed traffic environment consisting 23 
of both human-driven vehicles and MVs. Despite these pioneering explorations, most studies have only 24 
considered a shuttle system or a transit line, vehicle dispatching for the proposed MTNS have not been 25 
well studied. While one may be easily tempted by the idea that we can solve the MTNS design with 26 
existing methods since we just only need to design the service frequency and capacity of each shuttle 27 
routes jointly, the problem being investigated is much more complicated for two reasons. First, a network 28 
consists of multiple lines so there are interactions between different lines (e.g., transfer). These interactions 29 
are not modeled in transit line/shuttle studies. Thus, existing methods cannot be used directly. Second, the 30 
problem of designing one transit line is NP-hard (Liu and Ceder, 2017; Sayarshad and Chow, 2015; Wang 31 
and Qu, 2015). Thus, most studies have simply proposed heuristics to solve near-optimal solutions. A 32 
network model would be a harder NP-hard problem due to the many more decision variables (since there 33 
are more lines and transfer decisions) and constraints (since we need to add constraints to describe 34 
interactions between different lines). Thus, most existing solution algorithms for transit network design 35 
likely fail due to the dramatic increase in the solution space. 36 
Table 2 Comparison of current related models and the proposed model 37 

Paper Objective 
function 

Decision 
variable(s) 

Model 
type* 

Constraint 
type 

Vehicle 
type 

Vehicle 
rebalance 

System 
topology 

Model 
approach 

Niu et al. 
(2015) 

Passenger 
waiting time 

Timetable, 
dwelling 
time, and 
speed profile 

MINLP Linear 
constraints 

Fixed-
capacity 
vehicle 

No Corridor Mathematical 
programming 

Chen et al., 
(2020, 
2019) 

Operation 
cost; 
passenger 

Timetable 
and vehicle 
types 

MILP 
& CA 

Linear 
constraints MV No Shuttle 

Mathematical 
programming 
& analytical 



 

4 

waiting time model 

Guo et al. 
(2018) 

Myopic policy 
cost 

Switching of 
transit 
service 

- Linear 
constraints MV No M-to-1 

network Simulation 

Rau et 
al.,(2019) 

Effective use 
of capacity 

Adaptive 
Fleet Size - - MV No Network Simulation 

Caros and 
Chow(202
0) 

operator cost 
and user cost  

En-route 
transfer MILP - MV No Hub-and-

spoke 

Simulation/ 
insertion 
heuristic 

Zhang et 
al.(2020) 

Number of 
served 
requests 

Timetable; 
vehicle 
types; 
module 
match 

MILP Linear 
constraints MV No Network Mathematical 

programming 

Shi et al. 
(2020) 

Operation 
cost; 
passenger 
waiting time 

Timetable; 
vehicle types MILP Nonlinear 

constraints MV No Corridor Mathematical 
programming 

Dai et al., 
(2020) 

Operation 
costs; waiting 
time 

scheduling 
and capacity MINLP Linear 

constraints MV No Corridor Mathematical 
programming 

Our model 
Operation 
cost; total time 
cost 

Transfer 
strategies; 
vehicle types 

MINLP Linear 
constraints MV Considered Network Mathematical 

programming 

Note: MINLP=mixed-integer nonlinear programming; MILP=mixed-integer linear programming; CA=continuum approximation 1 
To bridge these gaps and achieve the vision of MTNSs, this paper proposes a mathematical approach 2 

to describe MTNS operations and determine the optimal MTNS design. The contributions of this paper 3 
are follows. 4 

First, a new modular transit network system (MTNS) is proposed for serving passenger travel 5 
demands across a general road network with the emerging modular vehicle technology. It can optimally 6 
allocate and schedule a MV fleet over a general transportation network and reach a balance between the 7 
operation cost and passenger trip time cost. The strategy decisions include the dispatch frequency and 8 
vehicle capacity for each dispatch. Second, we formulate this problem as a mixed-integer nonlinear 9 
programming (MINLP) model that captures detailed traveler waiting time costs with nonlinear functions 10 
related to vehicle schedules. This model has a complex biconvex function and mixed-integer decision 11 
variables and is thus difficult to solve directly. To facilitate the approach and to obtain the optimal solution, 12 
we mathematically revise the formula to produce a computationally tractable linear model and solve both 13 
lower and upper bounds to the original nonlinear model, thus yielding a near-optimal solution. This revised 14 
mixed-integer linear programming (MILP) model can be solved using off-the-shelf commercial solvers 15 
(e.g., Gurobi). Third, two numerical examples show that the MTNS is more effective than the classic 16 
transit bus and passenger car systems in both urban and freeway settings. 17 

The remainder of this paper is organized as follows. Section 2 introduces the operation characteristics, 18 
notation, concept, and assumptions of the proposed MTNS. Section 3 presents the MTNS model with 19 
alternative systems. Section 4 tests the proposed model with two numerical examples in China and 20 
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conducts sensitivity analyses. Finally, Section 5 provides conclusions and recommends future research 1 
directions. 2 

2. MTNS operation description 3 

This section introduces the MTNS and the underlying assumptions. For the convenience of readers, 4 
notation used throughout the paper is summarized in Table 3. 5 
Table 3 Notation 6 

Sets  
ℐ  Set of service stations (nodes), ℐ ≔ {1, … , 𝐼} 
𝒮 Set of MV types, 𝒮 ≔ {1, ⋯ , 𝑆} 
ℳ Set of a sequence of numbers, ℳ ≔ {1, … , 𝑀} 
Parameters 
𝑖, 𝑗, 𝑘, 𝑙 Service station index, 𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ 
𝑠 MV type index, 𝑠 ∈ 𝒮 
𝑚 Sequence number index, 𝑚 ∈ ℳ 
𝑛 Capacity of a single MV pod 
𝑖𝑗 Link 𝑖𝑗 index for a link starting from station 𝑖 ending at station 𝑗, 𝑖, 𝑗 ∈ ℐ 
𝑑𝑖𝑗 Distance of link 𝑖𝑗, km 
𝑞𝑖𝑗 Passenger demand from origin 𝑖 ∈ ℐ and destination 𝑗 ∈ ℐ 
𝐺𝑖𝑗𝑠 Traffic capacity (i.e., the maximum rate of passing vehicles) on link 𝑖𝑗 specific for type-𝑠 MVs 
𝐺𝑖𝑗 Traffic capacity on link 𝑖𝑗, 𝐺𝑘𝑙 = max

𝑠∈𝒮 
𝐺𝑘𝑙𝑠 

𝐶𝑠 Unit-distance operation cost for type-𝑠 MV, 𝑠 ∈ 𝒮, $/km 
𝐶𝑡 Value of time per passenger, $/h 
𝐶𝐹𝑆𝐵𝑆 Unit-distance operation cost of the fixed-capacity shuttle bus system (FSBS), $/km 
𝐶𝑃𝐶𝑆 Unit-distance operation cost of the passenger car system (PCS), $/km 
𝑣 Constant MV operating speed, km/h 
𝛽 Transfer cost per passenger, $/h 
𝜏𝑚 Waiting time of the 𝑚th segment in the linearized model, 𝑚 ∈ ℳ, h  
𝐹𝑀𝑇𝑆 System cost of the MTNS ($) 
𝐹𝐹𝑆𝐵𝑆 System cost of the FSBS ($) 
𝐹𝑃𝐶𝑆 System cost of the PCS ($) 
Decision variables 
𝑥𝑘𝑙𝑠 Continuous variable; type-𝑠 MV dispatch rate from stations 𝑘 to 𝑙, 𝑥𝑘𝑙𝑠 ∈ ℝ+, 𝑘, 𝑙 ∈ ℐ, 𝑠 ∈ 𝒮 
𝑒𝑘𝑙𝑠 Binary variable; 𝑒𝑘𝑙𝑠 = 1  if MVs from station 𝑘  to station 𝑙  are type 𝑠 ; otherwise, 𝑒𝑘𝑙𝑠 = 0 . 𝑘, 𝑙 ∈

ℐ, and 𝑠 ∈ 𝒮 
𝑦𝑖𝑗𝑘𝑙 Continuous variable; Number of passengers traveling from stations 𝑖 and 𝑗 use MVs from stations 𝑘 to 𝑙 

along their routes; 𝑦𝑖𝑗𝑘𝑙 ∈ ℝ+, and 𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ. 
𝑧𝑘𝑙𝑚 Binary variable; 𝑧𝑘𝑙𝑚 ∈ {0,1} , 𝑧𝑘𝑙𝑚 = 1 if the waiting time of MVs from stations 𝑘  to 𝑙  is in the range 

segment 𝑚; otherwise, 𝑧𝑘𝑙𝑚 = 0. 𝑘, 𝑙 ∈ ℐ, and 𝑚 ∈ ℳ 
𝑤𝑖𝑗𝑘𝑙 Continuous variable; total waiting time of passengers traveling from stations 𝑖 to 𝑗 that use MVs from 

stations 𝑘 to 𝑙 along their routes; 𝑤𝑖𝑗𝑘𝑙 = 𝑦𝑖𝑗𝑘𝑙 ∑ 𝑧𝑘𝑙𝑚𝜏𝑚𝑚∈ℳ ∈ ℝ+, and 𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ.   
𝑥𝑘𝑙

F  Continuous variable; shuttle bus dispatch rate from stations 𝑘 to 𝑙; 𝑥𝑘𝑙
F ∈ ℝ+, and 𝑘, 𝑙 ∈ ℐ. 

𝑥𝑖𝑗
P  Continuous variable; passenger car flow rate from stations 𝑖 to 𝑗; 𝑥𝑖𝑗

P ∈ ℝ+, and 𝑖, 𝑗 ∈ ℐ. 
Note: ℝ+ denotes the set of nonnegative real numbers. 7 
As Figure 2 shows, the MTNS operation is a three-step process: collecting travel requests, optimizing 8 

dispatch strategies, and providing services. First, passengers send their travel requests with their origins 9 
and destinations to a central processing system. Second, the integrated requests are fed into an optimization 10 
model (which will be presented in the next section) to solve the optimal dispatch strategy (i.e., the dispatch 11 
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headway and MV types) and the passenger itineraries (i.e., the MVs a passenger has to ride on to travel 1 
from the origin to the destination ). Next, the optimal dispatch strategy is used to instruct system operations, 2 
and the passenger itineraries are sent to passengers. Passengers will travel according to the optimized 3 
itineraries. Different from existing transit systems, the proposed MTNS adopts a fully automated 4 
passenger transfer process. Before a MV reaching a transfer station, passengers heading a destination 5 
station will be informed to walk to a modular pod that will eventually travel to that station if there is one. 6 
Thus, passengers do not have to all alight the vehicle for transferring, which is expected to lower the 7 
transfer hassle.  8 

Passenger

MTNS

MV

Travel request
Origin

Destination

Integrate travel 
requests

Solve model: obtain 
dispatch strategies

Dispatch headway and MV types

Passenger itineraries

Instruct system operations

Optimal dispatch strategy

Passenger optimized itineraries

Automated passenger transfer process

STEP 1:
  Collect travel requests

STEP 2: 
  Dispatch strategies

STEP 3: 
  Implement services

Follow 
instruction

Transfer by her/hiself

Stay on seat and transfer 
automatically

 9 
Figure 2 Operation process in the MTNS 10 

The MTNS operates in a transportation network consisting of a set of stations (or nodes) ℐ, indexed 11 
as 𝑖 ∈ ℐ, distributed in space and a set of links connecting pairs of stations. We denote a link starting from 12 
station 𝑖 ∈ ℐ and ending at station 𝑗 ∈ ℐ as (𝑖, 𝑗) and its length as 𝑑𝑖𝑗. Let 𝑞𝑖𝑗 denote the passenger demand 13 
from origin 𝑖 ∈ ℐ  to destination 𝑗 ∈ ℐ , and we assume that this demand stays constant throughout the 14 
period investigated in this problem. We denote the set of MV types that can be dispatched to serve the 15 
passengers as 𝒮 ≔ {1, ⋯ , 𝑆}, indexed as 𝑠 ∈ 𝒮. A type-𝑠 MV has 𝑠 modular pods and thus a capacity of 16 
𝑠𝑛, where 𝑛 denote the capacity of a single pod. During the operation, MVs flexibly adjust the vehicle 17 
capacity via docking/undocking to meet passenger demand. This process can be controlled manually or, 18 
in the future, automatically. 19 

To better understand the potential benefits of the MTNS, let us consider a simple illustrative example. 20 
Figure 3 shows an example with five service stations (ℐ = {1, … ,5}) and six types of MVs (𝒮 = {1, ⋯ ,6}). 21 
In this figure, on each link between two stations, the arrows of different colors represent different MV 22 
types, and the line weights represent the MV dispatch frequencies. The OD pairs and sampled demands 23 
associated with station 4 are listed in Table 4. The optimal operation strategy of station 4 is also presented 24 
in Table 4. We see that some passengers take direct MVs without transfers (e. g. , 1 → 4, 2 → 4, 5 → 4, 4 →25 
1, and 4 → 5), and other passengers make multiple transfers to complete the trip (e. g. , 3 → 5 → 4, 4 →26 
5 → 1, 4 → 5 → 2, 4 → 5 → 3). Moreover, passengers with the same origins and destinations may take 27 
multiple routes. For example, for OD 4 → 1, 7.79% of passengers take route 4 → 5 → 1, with an average 28 
waiting time of 0.154 h for the first segment and 0.22 h for the second segment, and 92.21% of passengers 29 
instead take route 4 → 1, with an average waiting time of 0.154 h.  30 
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Table 4 Optimal operation strategies for station 4 1 

1

2 3

4

5

Station

s=2

s=6

s=1

s=4
s=5

s=3

Number of pots

 

OD 
pairs 

Demands 
(𝒒𝒊𝒋) 

Optimal 
operation 
strategies 

Optimal 
vehicle type 

(𝒔) 

Average waiting 
time ( 𝟏

𝟐∗𝒙𝒌𝒍𝒔
) 

1 → 4 22 1 → 4 2 0.198 
2 → 4 15 2 → 4 1 0.2 
3 → 4 10 3 → 5 → 4 4; 4 0.42; 0.22 
5 → 4 23 5 → 4 4 0.22 
4 → 1 21 4 → 1 1 0.154 

4 → 5 → 1 6; 4 0.154; 0.22 
4 → 2 45 4 → 5 → 2 6; 4 0.154; 0.218 
4 → 3 11 4 → 5 → 3 6; 5 0.154; 0.211 
4 → 5 22 4 → 5 6 0.22 

Figure 3 Illustration of optimal MTNS operations 2 
Finally, to facilitate the model formulation, we introduce the following assumptions in the investigated 3 

problem.  4 
Assumption 1. The demands are stationary over the investigated time period. The assumption of static 5 

traffic flow patterns is commonly adopted in transportation network modeling. Moreover, the passenger 6 
arrival follows the random distribution. Thus, the average passenger waiting time is a half of the headway, 7 
which has been widely used in waiting time cost estimation (Ansari Esfeh et al., 2020).  8 

Assumption 2. All passengers waiting at a station follow the transfer policy specified in the MTNS. 9 
Additionally, each link 𝑖𝑗 has a traffic capacity (i.e., the maximum rate of passing vehicles) 𝐺𝑖𝑗𝑠 specific 10 
to each type-𝑠 MVs. Since different types of MVs have different lengths, MVs may have type-specific 11 
traffic capacities on the same link).  12 

Assumption 3. Only one type of MVs can operate on a link. This assumption is made to ensure the 13 
computational tractability of the model. Additionally, this assumption is reasonable since stationary traffic 14 
flow on a link is likely associated with one optimal MV configuration.  15 

Assumption 4. Each station has sufficient space to store the reserved pods to off-set local demand 16 
perturbations at the station. This assumption ensures that each station always dispatch MVs on schedule 17 
according to the optimal dispatch frequency, even with local demand perturbations, and ensures that the 18 
pods are sufficient. Thus, we do not pose a fleet size constraint on the system operation and can dispatch 19 
as many vehicles as we need. We also don’t have to consider the vehicle dwell time and the cost for vehicle 20 
purchase and maintenance. While the fleet planning problem is relevant, it belongs to the planning stage 21 
and can be separated from the operational problem. The optimal fleet size can be determined after the 22 
operational plan is solved. 23 

Assumption 5. The congestion is not considered since only a small portion of the demand takes the 24 
proposed service, which would little impact the road network congestion patterns. Thus, the system design 25 
would not affect each link’s travel time. 26 

3. Methodology 27 

This section provides model formulations for the investigated and related benchmark systems. 28 
3.1 Model formulation for the MTNS system 29 

3.1.1 Original model formulation 30 

The investigated problem involves optimizing the vehicle dispatch strategy (specified by 𝑥𝑘𝑙𝑠 and 31 
𝑒𝑘𝑙𝑠) and passenger itineraries (specified by 𝑦𝑖𝑗𝑘𝑙) to minimize the total system cost. We first introduce the 32 
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following decision variables in the MTNS:  1 
• 𝑥𝑘𝑙𝑠: Continuous variable 𝑥𝑘𝑙𝑠 denotes the dispatch rate of type-𝑠 MVs from stations 𝑘 to 𝑙. We assume 2 

that the traffic demand on any link is much higher than the capacity of an MV, and thus, without 3 
much loss of generality, 𝑥𝑘𝑙𝑠 is set as a continuous decision variable.  4 

• 𝑦𝑖𝑗𝑘𝑙: Continuous variable 𝑦𝑖𝑗𝑘𝑙 denotes the rate of passengers that traveling from stations 𝑖 and 𝑗 use 5 
MVs from stations 𝑘 to 𝑙 along their routes. This flexible notation allows a passenger to transfer 6 
across multiple MV links to complete a trip if it is favorable for the passenger.  7 

• 𝑒𝑘𝑙𝑠: Binary variable 𝑒𝑘𝑙𝑠 denotes whether the MVs from stations 𝑘 to 𝑙 are type 𝑠. If yes, 𝑒𝑘𝑙𝑠 = 1, and 8 
otherwise 𝑒𝑘𝑙𝑠 = 0.  9 

Objective function 10 
The objective function formulated in Equation (1) aims to minimize the overall system cost, which 11 

consists of two components: the operation cost and passenger trip time cost. The passenger trip time cost 12 
can be further calculated by the passenger waiting cost, the riding time cost (in-vehicle travel cost), and 13 
the transfer penalties. Let 𝐶𝑠 denote the operation cost of each type-s MV per unit distance; the operation 14 
cost includes MV depreciation, maintenance, infrastructure investment, electricity, and fuel costs. With 15 
the unit-distance operation cost 𝐶𝑠, the unit-time operation cost for all type-𝑠 MVs in the system is simply 16 
a product of 𝐶𝑠 and the total travel distance per unit time, ∑ 𝑥𝑘𝑙𝑠𝑑𝑘𝑙𝑘∈ℐ,𝑙∈ℐ . This operation yields the system 17 
operation cost as ∑ 𝐶𝑠𝑥𝑘𝑙𝑠𝑑𝑘𝑙𝑘∈ℐ,𝑙∈ℐ,𝑠∈𝒮 , as the first term of Equation (1) specifies. Let 𝐶𝑡 denote value of 18 
time per passenger. With this, the passenger trip time cost, including the passenger waiting time and riding 19 
time, is formulated as the second term of Equation (2). Specifically, the average waiting time of a 20 
passenger riding an MV on link 𝑘𝑙 is 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
, where ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮  is the MV dispatch frequency on link 𝑘𝑙 21 

(Assumption 1). For mathematical convenience, we define the formula 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
 as a large value when the 22 

value of ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮  to 0. Next, with a constant MV operating speed 𝑣, the riding time for a passenger riding 23 
an MV on link 𝑘𝑙 is 𝑑𝑘𝑙

𝑣
. Furthermore, let 𝛽 denote the extra cost for a passenger to make one additional 24 

transfer to capture hassles during the transfer process. Note that the extra cost due to splitting and 25 
reassembling operations of MVs can be included in parameter 𝛽 . Thus, the total transfer cost for the 26 
passenger throughout the trip is the product of 𝛽 and the total number of transfers. Since during a trip a 27 
passenger makes exactly one additional transfer at each leg except the first leg, the total number of 28 
transfers throughout the passenger’s trip is ∑ 𝑦𝑖𝑗𝑘𝑙𝑖∈ℐ,𝑗∈ℐ,𝑘≠𝑖∈ℐ,𝑙∈ℐ . This approach yields to transfer penalty 29 
formulated as the third term in Equation (1). We want to note that although the en-route transfer operations 30 
of MV may reduce the transfer hassle, passengers may still have to wait before the vehicle leaves the 31 
transfer station because of the asynchronous. Thus, objective function (1) incorporates costs related to the 32 
transfer process. These include the transfer cost caused by the transfer time (which is incorporated in 33 
waiting time cost) and transfer inconvenience cost (which is formulated as the transfer penalty component 34 
in the objective function). These components also quantify the tradeoff between serving passengers with 35 
more direct services (i.e., more vehicles) and with more transfers (i.e., less vehicles) in the system.  36 

 37 

min
𝑥𝑘𝑙𝑠,𝑦𝑖𝑗𝑘𝑙,𝑒𝑘𝑙𝑠

𝐹𝑀𝑇𝑆 ≔ ∑ 𝐶𝑠𝑥𝑘𝑙𝑠𝑑𝑘𝑙

𝑘∈ℐ,𝑙∈ℐ,𝑠∈𝒮

+ ∑ 𝐶𝑡𝑦𝑖𝑗𝑘𝑙 (
1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
+

𝑑𝑘𝑙

𝑣
)

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

+ ∑ 𝛽𝑦𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ,𝑘≠𝑖∈ℐ,𝑙∈ℐ

 
(1) 
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Constraints 1 
We consider four groups of constraints in the MTNS. These include vehicle capacity Constraint (2), 2 

pod conservation Constraint (3), passenger flow conservation Constraints (4)-(6), and unique MV type 3 
Constraints (7)-(8), as follows.  4 

∑ 𝑦𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ

≤ ∑ 𝑥𝑘𝑙𝑠𝑠𝑛

𝑠∈𝒮

 ∀𝑘, 𝑙 ∈ ℐ Vehicle capacity 
constraint 

(2) 

∑ 𝑥𝑘𝑙𝑠𝑠

𝑘∈ℐ\{𝑙},𝑠∈𝒮

= ∑ 𝑥𝑙𝑘𝑠𝑠

𝑘∈ℐ\{𝑙},𝑠∈𝒮

 ∀ 𝑙 ∈ ℐ Pod conservation 
constraint  

(3) 

∑ 𝑦𝑖𝑗𝑖𝑙

𝑙∈ℐ\{𝑖}

= 𝑞𝑖𝑗 ∀𝑖, 𝑗 ∈ ℐ Passenger flow 
conservation constraint 

(4) 

∑ 𝑦𝑖𝑗𝑘𝑗

𝑘∈ℐ\{𝑗}

= 𝑞𝑖𝑗 ∀𝑖, 𝑗 ∈ ℐ Passenger flow 
conservation constraint 

(5) 

∑ 𝑦𝑖𝑗𝑘𝑙

𝑘∈ℐ

= ∑ 𝑦𝑖𝑗𝑙𝑘

𝑘∈ℐ

 ∀ 𝑙 ∈ ℐ\{𝑖, 𝑗}, 𝑖, 𝑗 ∈ ℐ Passenger flow 
conservation constraint 

(6) 

∑ 𝑒𝑘𝑙𝑠

𝑠∈𝒮

= 1 ∀𝑘, 𝑙 ∈ ℐ Unique MV type 
constraint 

(7) 

𝑥𝑘𝑙𝑠 ≤ 𝑒𝑘𝑙𝑠𝐺𝑘𝑙𝑠 ∀𝑘, 𝑙 ∈ ℐ, 𝑠 ∈ 𝒮 Unique MV type 
constraint 

(8) 

𝑥𝑘𝑙𝑠 ∈ ℝ+ ∪ {0} ∀𝑘, 𝑙 ∈ ℐ, and 𝑠 ∈ 𝒮 Variable domain (9) 
𝑦𝑖𝑗𝑘𝑙 ∈ ℝ+ ∪ {0} ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ Variable domain (10) 
𝑒𝑘𝑙𝑠 ∈ 𝔹 ∀𝑘, 𝑙 ∈ ℐ, and 𝑠 ∈ 𝒮 Variable domain (11) 

Constraint (2) is the vehicle capacity constraint, which mandates that for each link 𝑘𝑙, the total MV 5 
capacity (shown in the right-hand side, abbr. RHS) is sufficient to serve all the passengers using this link 6 
(shown in the left-hand side, abbr. LHS). Constraint (3) involves the conservation of the MV pods 7 
circulating in the system; i.e., the number of the total MV pods arriving at each station 𝑙 (LHS) is identical 8 
to the number of total MV pods departing from station 𝑙  per unit time (RHS). This pod conservation 9 
constraint ensures that vehicles are balanced; i.e., the number of the total modular pods in the system 10 
remains constant throughout the operation. However, the vehicle balance does not necessarily equate to 11 
passenger flow balance, and thus the model allows imbalanced passenger flows at a station. Constraints 12 
(4), (5), and (6) are related to the conservation of the passenger flows. Constraint (4) requires that 13 
passengers traveling between origin 𝑖 and destination 𝑗 must all leave origin 𝑖. Likewise, Constraint (5) 14 
imposes that passengers traveling between origin 𝑖  and destination 𝑗  must all arrive at destination 𝑗 . 15 
Constraint (6) means that for each station 𝑙, the number of passengers arriving at station 𝑙 (LHS) must 16 
equal that leaving station 𝑙 (RHS). Constraints (7) are proposed to limit only one type of MV to serve link 17 
𝑘𝑙. Further, Constraint (8) specifies that the MV flow on each link should not exceed the traffic capacity. 18 
Constraints (9), (10) and (11) are the variable domains. 19 
3.1.2 Linearization approximation 20 

In objective function (1), the waiting time cost term ∑ 𝐶𝑡𝑦𝑖𝑗𝑘𝑙
1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ  is biconvex since 21 

both ∑ 𝑦𝑖𝑗𝑘𝑙𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ   and ∑
1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
𝑘∈ℐ,𝑙∈ℐ   are convex functions of the corresponding decision 22 



 

10 

variables. It is commonly known that mathematical programming problems with biconvex terms are 1 
difficult to solve directly (Gorski et al., 2007; Liberti and Pantelides, 2006). To facilitate the solution 2 
approach, this section reformulates the waiting time cost component as a linear term via the following two 3 
steps. 4 
Step 1: Bilinear model reformulation 5 

We first reformulate the waiting time cost term as a bilinear term by dividing the feasible region of 6 
the waiting time into 𝑀 segments. We construct a arithmetic sequence 𝜏1, 𝜏2, … , 𝜏𝑚, … , 𝜏𝑀 satisfying 𝜏1 ≤7 

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
< 𝜏𝑀. This sequence can be dynamically changed to reach a lower approximation error (i.e., the 8 

difference between the approximated and original objective values). Then we introduce binary variables 9 
𝑧𝑘𝑙𝑚 ≔ {0,1}, 𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ to denote whether the waiting time of MVs on link 𝑘𝑙 is in the range of the 10 
𝑚th segment. That is, we set 𝑧𝑘𝑙𝑚 = 1 if ∃𝑚 ∈ ℳ\{𝑀}, 𝑠. 𝑡. 𝜏𝑚 ≤

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
< 𝜏𝑚+1; otherwise, 𝑧𝑘𝑙𝑚 =11 

0 . With this, 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
  is then linearized to ∑ 𝑧𝑘𝑙𝑚𝜏𝑚𝑚∈ℳ  , and ∑ 𝐶𝑡𝑦𝑖𝑗𝑘𝑙

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ   in the 12 

original objective function is reformulated to a bilinear component ∑ 𝐶𝑡𝑦𝑖𝑗𝑘𝑙 ∑ 𝑧𝑘𝑙𝑚𝜏𝑚𝑚∈ℳ𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ  13 
subject to linearization Constraints (12)-(15). Constraint (12) postulates that the waiting time can occupy 14 
one and only one segment of the time intervals with 𝑧𝑘𝑙𝑚 = 1  (e.g., [𝜏𝑚, 𝜏𝑚+1) ). Let 𝐺𝑘𝑙  denotes the 15 
traffic capacity on link 𝑖𝑗 (𝐺𝑘𝑙 = max

𝑠∈𝒮 
𝐺𝑘𝑙𝑠). as it shows in Assumption 2, each link 𝑘𝑙 has a traffic capacity 16 

𝐺𝑘𝑙𝑠 (i.e., the maximum rate of passing vehicles) specific to type 𝑠. Constraints (13) and (14) specify that 17 
the value of 2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝑆   falls above 1/𝜏𝑚+1  and below (inclusive) 1/𝜏𝑚  to be consistent with 𝜏𝑚 ≤18 

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
< 𝜏𝑚+1. Note that Constraints (13) and (14) are activated only when 𝑧𝑘𝑙𝑚 = 1 to ensure that 19 

𝑧𝑘𝑙𝑚 indicates the right time interval segment. Constraint (15) specifies 𝑧𝑘𝑙𝑚 as a binary variable. 20 
∑ 𝑧𝑘𝑙𝑚

𝑚∈ℳ

= 1 ∀𝑘, 𝑙 ∈ ℐ (12) 

2 ∑ 𝑥𝑘𝑙𝑠

𝑠∈𝒮

> 2𝐺𝑘𝑙(𝑧𝑘𝑙𝑚 − 1) +
1

𝜏𝑚+1
 ∀𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ (13) 

2 ∑ 𝑥𝑘𝑙𝑠

𝑠∈𝒮

≤
1

𝜏𝑚
+ 2𝐺𝑘𝑙(1 − 𝑧𝑘𝑙𝑚) ∀𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ (14) 

𝑧𝑘𝑙𝑚 ∈ {0,1} ∀𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ (15) 

Step 2: Linear model reformulation 21 

Since the waiting time component in step 1, ∑ 𝑦𝑖𝑗𝑘𝑙 ∑ 𝑧𝑘𝑙𝑚𝜏𝑚𝑚∈ℳ𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ , is a bilinear term that 22 
remains challenging to solve, we further linearize this term. Here, we introduce continuous variables 23 
𝑤𝑖𝑗𝑘𝑙 ∈ ℝ+ , 𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ. With this, we revise the bilinear term to ∑ 𝐶𝑡𝑤𝑖𝑗𝑘𝑙𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ  as a linear term 24 
with the following constraints. Constraints (16) and (17) ensure that the value of 𝑤𝑖𝑗𝑘𝑙  is identical to 25 
∑ 𝑧𝑘𝑙𝑚𝑦𝑖𝑗𝑘𝑙𝜏𝑚𝑚∈ℳ . This is because when 𝑧𝑘𝑙𝑚 = 0, Constraints (16) and (17) always hold for all feasible 26 
values of 𝑤𝑖𝑗𝑘𝑙 allowed by the demand and thus are not activated; only when 𝑧𝑘𝑙𝑚 = 1 does Constraint 27 
(16) yield 𝑦𝑖𝑗𝑘𝑙𝜏𝑚 ≤ 𝑤𝑖𝑗𝑘𝑙  and Constraint (17) yield 𝑤𝑖𝑗𝑘𝑙 ≤ 𝑦𝑖𝑗𝑘𝑙𝜏𝑚 , and thus 𝑤𝑖𝑗𝑘𝑙 = 𝑦𝑖𝑗𝑘𝑙𝜏𝑚 . 28 
Constraint (18) specifies each 𝑤𝑖𝑗𝑘𝑙 as a nonnegative continuous variable. 29 

𝑦𝑖𝑗𝑘𝑙𝜏𝑚 − 𝑞𝑖𝑗𝜏𝑚(1 − 𝑧𝑘𝑙𝑚) ≤ 𝑤𝑖𝑗𝑘𝑙 ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ (16) 
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𝑤𝑖𝑗𝑘𝑙 ≤ 𝑦𝑖𝑗𝑘𝑙𝜏𝑚 + 𝑞𝑖𝑗𝜏𝑚(1 − 𝑧𝑘𝑙𝑚) ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ, 𝑚 ∈ ℳ (17) 

𝑤𝑖𝑗𝑘𝑙 ∈ ℝ+ ∪ {0} ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ ℐ (18) 
With the above linearization steps, the investigated MTNS problem is reformulated as the following 1 

MILP model with objective (19), subject to vehicle capacity Constraint (2), pod conservation Constraint 2 
(3), passenger flow conservation Constraints (4)-(6), unique MV type Constraints (7)-(8), linearization 3 
Constraints (12)-(14) and (16)-(17), and variable domain Constraints (9)-(11), (15), and (18): 4 

min
𝑥𝑘𝑙𝑠,𝑦𝑖𝑗𝑘𝑙,𝑒𝑘𝑙𝑠,𝑧𝑘𝑙𝑚,𝑤𝑖𝑗𝑘𝑙

𝐹𝑀𝑇𝑆 ≔ ∑ 𝐶𝑠𝑥𝑘𝑙𝑠𝑑𝑘𝑙

𝑘∈ℐ,𝑙∈ℐ,𝑠∈𝒮

+ 𝐶𝑡 ( ∑ 𝑤𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

 + ∑ 𝑦𝑖𝑗𝑘𝑙

𝑑𝑘𝑙

𝑣
𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

)

+ ∑ 𝛽𝑦𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ,𝑘≠𝑖∈ℐ,𝑙∈ℐ

 

(19) 

𝑠. 𝑡. 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (18)  
This above process successfully revises the original nonlinear model (NLM) to a linear model (LM), 5 

reducing the solution complexity and enabling the model to be solved with a mixed linear integer 6 
programming solver. However, an approximation error ensues from the revision of the waiting time cost 7 
term in the LM. The following theoretical properties of the relationship between the NLM and the LM 8 
solutions are shown to quantify the approximation error. 9 

Theorem 1. The optimal objective value of the LM is a lower bound to that of the NLM. 10 

Proof. For the NLM, we denote the optimal solution to variables {𝑥𝑘𝑙𝑠, 𝑦𝑖𝑗𝑘𝑙, 𝑒𝑘𝑙𝑠} as {𝑥𝑘𝑙𝑠
∗ , 𝑦𝑖𝑗𝑘𝑙

∗ , 𝑒𝑘𝑙𝑠
∗ } 11 

and the associated optimal objective value as 𝐹NLM
∗ , which is the value of Equation (1) after plugging in 12 

{𝑥𝑘𝑙𝑠
∗ , 𝑦𝑖𝑗𝑘𝑙

∗ , 𝑒𝑘𝑙𝑠
∗ }.  13 

By plugging the dispatch solution {𝑥𝑘𝑙𝑠
∗ , 𝑦𝑖𝑗𝑘𝑙

∗ , 𝑒𝑘𝑙𝑠
∗ } into Constraints (12) and (18), we can solve the 14 

corresponding {𝑧𝑘𝑙𝑚, 𝑤𝑖𝑗𝑘𝑙} values, denoted as {𝑧𝑘𝑙𝑚
∗ , 𝑤𝑖𝑗𝑘𝑙

∗ }. Obviously, {𝑥𝑘𝑙𝑠
∗ , 𝑦𝑖𝑗𝑘𝑙

∗ , 𝑒𝑘𝑙𝑠
∗ , 𝑧𝑘𝑙𝑚

∗ , 𝑤𝑖𝑗𝑘𝑙
∗ } is a 15 

feasible solution to the LM, and we denote the corresponding objective value, i.e., the value of Equation 16 
(19) after plugging in {𝑥𝑘𝑙𝑠

∗ , 𝑦𝑖𝑗𝑘𝑙
∗ , 𝑒𝑘𝑙𝑠

∗ , 𝑧𝑘𝑙𝑚
∗ , 𝑤𝑖𝑗𝑘𝑙

∗ }, as 𝐹LM.  17 
Then, we obtain 18 

𝐹NLM
∗ − 𝐹LM = 𝐶𝑡 ∗ ∑ 𝑦𝑖𝑗𝑘𝑙

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
− ∑ 𝑤𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

.

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

 19 

Since Constraints (16) and (18) ensure that the value of 𝑤𝑖𝑗𝑘𝑙 is identical to ∑ 𝑧𝑘𝑙𝑚𝑦𝑖𝑗𝑘𝑙𝜏𝑚𝑚∈ℳ , 𝐹NLM
∗ −20 

𝐹𝐿 can be reformulated as follows: 21 

𝐹NLM
∗ − 𝐹LM = 𝐶𝑡 ∗ ∑ 𝑦𝑖𝑗𝑘𝑙 (

1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
− ∑ 𝑧𝑘𝑙𝑚𝜏𝑚

𝑚∈ℳ

) .

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

 22 

Note that Constraints (12)-(15) ensure that the value of 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
 falls between 𝜏𝑚 and 𝜏𝑚+1 for the 𝑚 23 

value with 𝑧𝑘𝑙𝑚 = 1. It obviously indicates that 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
≥ ∑ 𝑧𝑘𝑙𝑚𝜏𝑚𝑚∈ℳ  and consequentially 𝐹NLM

∗ ≥24 
𝐹LM.  25 
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Further, by definition, the objective value 𝐹LM corresponding to any feasible solution to the LM is 1 
not less than its optimal objective value, denoted as 𝐹LM

∗ . This yields 𝐹NLM
∗ ≥ 𝐹LM

∗ . This completes the 2 
proof.       3 

Theorem 2. Let {𝑥𝑘𝑙𝑠
′ , 𝑦𝑖𝑗𝑘𝑙

′ , 𝑒𝑘𝑙𝑠
′ , 𝑧𝑘𝑙𝑚

′ , 𝑤𝑖𝑗𝑘𝑙
′ }  denote the optimal solution to the LM. Then, 4 

{𝑥𝑘𝑙𝑠
′ , 𝑦𝑖𝑗𝑘𝑙

′ , 𝑒𝑘𝑙𝑠
′ } is a feasible solution to the NLM, and the corresponding objective value, i.e., the value 5 

of Equation (1) after plugging in {𝑥𝑘𝑙𝑠
′ , 𝑦𝑖𝑗𝑘𝑙

′ , 𝑒𝑘𝑙𝑠
′ }, denoted by 𝐹NLM

′ , constitutes an upper bound to the 6 
optimal objective value of the NLM, 𝐹NLM

∗ .    7 

Proof. The linearization process successfully revises the original NLM to a LM by reformulating the 8 
nonlinear component to a linear term and adding a series of new linear Constraints (12)-(18). Since the 9 
LM and NLM share the same Constraints (2)-(11), the solution {𝑥𝑘𝑙𝑠

′ , 𝑦𝑖𝑗𝑘𝑙
′ , 𝑒𝑘𝑙𝑠

′ }, which is optimal and 10 
thus feasible in the LM, is also feasible in the NLM. Then, 𝐹NLM

′  is a feasible objective value of the NLM, 11 
and thus 𝐹NLM

′ ≥ 𝐹NLM
∗ . Here, we complete the proof.    12 

With the above theoretical properties, by solving the optimal solution to the LM, we obtain a set of 13 
near-optimal solutions to the NLM (i.e., {𝑥𝑘𝑙𝑠

′ , 𝑦𝑖𝑗𝑘𝑙
′ , 𝑒𝑘𝑙𝑠

′ } with objective value 𝐹NLM
′ ) and a lower bound 14 

of the optimal objective value (i.e., 𝐹LM
∗ ). The optimality gap of the near-optimal solution can be evaluated 15 

as (𝐹NLM
′ − 𝐹LM

∗ )/ 𝐹LM
∗ . Note that the approximation error between the NLM and LM is determined by the 16 

sizes of the intervals {[𝜏𝑚, 𝜏𝑚+1]} that contain the corresponding { 1

2 ∑ 𝑥𝑘𝑙𝑠𝑠∈𝒮
} values. Thus, to reduce the 17 

approximation error, we may redistribute the {𝜏𝑚} values according to the obtained {𝑥𝑘𝑙𝑠} solutions as 18 
follows.  19 

a) Evenly divide [0, 𝜏𝑀] into M intervals to solve the LM. This step produces the LM solution and 20 
system cost. Then, plug the LM solution into Equation (1) to calculate the corresponding NLM 21 
objective value.  22 

b) Gather the values of {𝑥𝑘𝑙𝑠} in the LM solution into 𝑘 clusters, and then redistribute the {𝜏𝑚} 23 
values with a higher density around each cluster.  24 

c) Then, solve the LM again with the new {𝜏𝑚} values.  25 
This process can be repeated until the approximation error is acceptable. Note that while these three steps 26 
update the values of {𝜏𝑚}, they do not affect the validity of Theorems 1 and 2 since the theorems take 27 
{𝜏𝑚} as a set of input parameters that can be given any values. 28 

3.2 Alternative systems 29 

To compare with the proposed MTNS, this section describes two benchmark systems: the fixed-30 
capacity shuttle bus system (FSBS) and the passenger car system (PCS). We adapt the above MTNS model 31 
to specify the FSBS and PCS as flows based on the related characteristics. Note that there are many 32 
different possible benchmark systems to compare the proposed MTNS with. However, it is not possible 33 
to enumerate each of them in one study since solving the optimal design for each of these systems is a 34 
very challenging task. Here we simply select two existing benchmark systems to reveal the benefits of the 35 
flexible capacity operations in the MTNS. More studies are needed to fully understand its advantages over 36 
other systems. 37 

In the FSBS, each vehicle has a fixed capacity of 𝑛F and provides direct point-to-point transportation 38 
without intermediate stops. Let 𝐶𝐹𝑆𝐵𝑆 denote the FSBS operation cost per distance. The FSBS model can 39 
be obtained by replacing 𝑥𝑘𝑙𝑠  with 𝑥𝑘𝑙

F   (denoting the shuttle bus dispatch rate on link 𝑘𝑙 ) in objective 40 
function (20), vehicle capacity Constraint (21), pod conservation Constraint (22), and other Constraints 41 
(3)-(6), (9), and (12)-(18) as follows: 42 
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min
𝑥𝑘𝑙

F ,𝑦𝑖𝑗𝑘𝑙,,𝑒𝑘𝑙𝑠

𝐹𝐹𝑆𝐵𝑆 ≔ ∑ 𝐶𝐹𝑆𝐵𝑆𝑥𝑘𝑙
F 𝑑𝑘𝑙

𝑘∈ℐ,𝑙∈ℐ

+ ∑ 𝐶𝑡𝑦𝑖𝑗𝑘𝑙 (
1

2𝑥𝑘𝑙
F

+  
𝑑𝑘𝑙

𝑣
)

𝑖∈ℐ,𝑗∈ℐ,𝑘∈ℐ,𝑙∈ℐ

+ ∑ 𝛽𝑦𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ,𝑘≠𝑖∈ℐ,𝑙∈ℐ

 
(20) 

𝑠. 𝑡. 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3) − (6), (9), (12) − (18)  

∑ 𝑦𝑖𝑗𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ

≤ 𝑥𝑘𝑙
F 𝑛𝐹 ∀𝑘 ∈ ℐ, 𝑙 ∈ ℐ (21) 

∑ 𝑥𝑘𝑙
F

𝑘∈ℐ\{𝑙}

= ∑ 𝑥𝑙𝑘
F

𝑘∈ℐ\{𝑙}

 ∀ 𝑙 ∈ ℐ (22) 

𝑥𝑘𝑙
F ∈ ℝ+ ∪ {0} ∀𝑘 ∈ ℐ, 𝑙 ∈ ℐ (23) 
In the PCS, where private passenger cars and taxis dominate, each vehicle has a small average 1 

occupancy of 𝑛P. Let 𝐶𝑃𝐶𝑆 denote the PCS operation cost per distance. The PCS considers an idealized 2 
situation where taxis and private vehicles transport passengers from their origins directly to their 3 
destinations without transfers, eliminating the need for waiting at the origins or transfer points. Thus, the 4 
system cost includes only the operation cost and passenger riding time cost from the origin to destination. 5 
With this approach, the PCS model can be obtained by replacing 𝑥𝑘𝑙𝑠 with 𝑥𝑖𝑗

P  (denoting the passenger car 6 
flow rate on link 𝑖𝑗 ) in objective (24), pod conservation Constraint (25), passenger flow conservation 7 
Constraint (27), and variable domain Constraints (28)-(29) as follows: 8 

min
𝑥𝑖𝑗

P ,𝑦𝑖𝑗𝑘𝑙,,𝑒𝑘𝑙𝑠

 𝐹𝑃𝐶𝑆: = ∑ 𝐶𝑃𝐶𝑆𝑥𝑖𝑗
P 𝑑𝑘𝑙

𝑖∈ℐ,𝑗∈ℐ

+ ∑ 𝐶𝑡𝑦𝑖𝑗𝑖𝑗

𝑑𝑖𝑗

𝑣
𝑖∈ℐ,𝑗∈ℐ

 (24) 

𝑠. 𝑡.  
𝑦𝑖𝑗𝑖𝑗 ≤ 𝑥𝑖𝑗

P 𝑛𝑃 ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ (25) 

∑ 𝑥𝑖𝑗
P

𝑖∈ℐ\{𝑗}

= ∑ 𝑥𝑗𝑖
P

𝑗∈ℐ\{𝑖}

 ∀𝑗 ∈ ℐ (26) 

𝑦𝑖𝑗𝑖𝑗 = 𝑞𝑖𝑗 ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ (27) 
𝑥𝑖𝑗

P ∈ ℝ+ ∪ {0} ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ (28) 

𝑦𝑖𝑗𝑖𝑗 ∈ ℝ+ ∪ {0} ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ (29) 

4. Numerical example 9 

To illustrate the application of the proposed MTNS model, this section explores two numerical 10 
examples with different network sizes. All experiments were performed on an Intel® Core™ i7-8550U 11 
1.99 GHz CPU with 24 GB of RAM. The code was implemented in MATLAB 2019a and called a 12 
commercial MILP solver Gurobi (Cochran et al., 2011; Fuentes et al., 2019; Zhang et al., 2019) to solve 13 
the linearized model. The default parameter values are set as follows. 14 
Table 5 Default parameter settings 15 

Parameter Value Data source 
 𝒮 [1, 2, 3, 4, 5, 6] NEXT website (https://www.next-future-mobility.com) 
 𝑛 6 passengers NEXT website (https://www.next-future-mobility.com) 
 𝑛F 36 passengers Guangzhou No. 3 Bus Company (http://www.bus3.cn/sitecn/msg.aspx) 

https://www.next-future-mobility.com/
https://www.next-future-mobility.com/
http://www.bus3.cn/sitecn/msg.aspx
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 𝑛P 1.5 passengers Freeway operation report of Guangdong Province, China 
(http://data.eastmoney.com/notices/detail/)  

 𝐶𝑠  [0.143, 0.257, 0.347, 
0.417, 0.471, 0.514] $/km 

Operation cost is not a linear function of the number of dispatched pods; 
NEXT website (https://www.next-future-mobility.com)  

 𝐶𝐹𝐹𝐵𝑆 0.514 $/km Guangzhou No. 3 Bus Company 
 𝐶𝑃𝑇𝑆 0.143 $/km Guangzhou Taxi Company 
 𝐶𝑡 2.86 $/h in Guangzhou Guangzhou Municipal Human Resources and Social Security Bureau 

reports in 2019 (http://gzrsj.hrssgz.gov.cn/english/) 
 𝛽  0.142 $/passenger Passenger transfer cost are determined by referring to the average 

income per capita from Guangzhou Municipal Human Resources and 
Social Security Bureau reports in 2019. 

 𝑣 31.85 km/h Operating speed of MVs on city roads (case 1) 
(http://www.gzjt.gov.cn/gzjt/) 

 60.32 km/h Operating speed of MVs on the freeway (case 2) 
(http://www.0512s.com/lukuang/) 

4.1 Ten-station example 1 

Example 1 is a public transit system in the Guangzhou Higher Education Mega Center, China. As 2 
shown in Figure 4 (a), we selected ten critical bus stops and collected the real-world travel demand data 3 
for each stop to investigate this example. The bus stops in this system are sparse and scattered, and it is 4 
uneconomic to form a transit corridor because of the long deviation cost. The travel demand data and road 5 
distance data were obtained from the Communications Commission of Guangzhou Municipality. In 6 
addition to the default parameter values specified in Table 1, we set 𝑀 = 20 and 𝜏 =[0.02: 0.01: 0.1, 0.2: 7 
0.1: 1, 500, 1000] after extensive experiments. The optimal solution (exact solution) of the proposed model 8 
is obtained within 0.12 h. The optimal MTNS service strategy is shown in Figure 4(b). Different colors 9 
represent different MV types, and the thickness of each arrow illustrates the frequency of the modular 10 
vehicle fleet on the corresponding link. 11 
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(a) MTNS service station information (b) Optimal routing result 

Figure 4 Numerical example from Guangzhou, China 13 
Cost comparisons 14 

We compared the MTNS solutions with those from the FSBS and PCS alternatives. The number of 15 
modular pods in the FSBS vehicles is set to the optimal value of 𝑆 = 6 (see Figure 5(e) for why this is 16 
optimal). In this experiment, we used the system cost (which includes the operation cost, waiting time 17 
cost, riding time cost, and transfer cost) as the criterion to evaluate the performance of different systems. 18 

http://data.eastmoney.com/notices/detail/
https://www.next-future-mobility.com/
http://gzrsj.hrssgz.gov.cn/english/
http://www.gzjt.gov.cn/gzjt/jtzt_sjkf_jtysyb/201903/1e3a6950a5334d40ac4b3db60a837b75.shtml
http://www.0512s.com/lukuang/G94.html
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The results are shown in Table 6, where the percentage of cost reduction is calculated as 𝐹𝐹𝑆𝐵𝑆−𝐹𝑀𝑇𝑆

𝐹𝑀𝑇𝑆
∗1 

100% and 𝐹𝑃𝑇𝑆−𝐹𝑀𝑇𝑆

𝐹𝑀𝑇𝑆
∗ 100%.  2 

We found that the total system cost in the MTNS is less than those in the FSBS and in the PCS. The 3 
MTNS reduces the system cost by 7.10% compared with the FSBS and by 28.96% compared with the 4 
PCS. The cost savings are more pronounced when we remove the fixed free-flow travel time independent 5 
of the optimal decisions. That is, the revised system cost reduction becomes 31.39% compared with the 6 
FSB and 128.03% compared with the PCS. Note that the comparison between the MTNS and the FSBS 7 
is to show that a flexible capacity transit system performs better than a fixed system. The benefits of the 8 
MNTS may not be as evident when we compare it with a transit network system where different lines 9 
operate with vehicles of different sizes (e.g., vans, minibuses). Such a comparison is not offered here since 10 
it requires us to solve another optimal system design problem with the capacity of different lines as 11 
decision variables. This problem is non-trivial and is out of the scope of this paper. Thus, the results here 12 
only offer an upper bound to the benefits of the proposed MNTS with existing transit operations. 13 

Regarding the system cost components, the reduction in the operation cost (33.63%) is the highest when 14 
comparing the MTNS with the FSBS. This is because the flexible vehicle capacity in the MTNS promotes 15 
frequent dispatching of small vehicles. In contrast, the FSBS can only dispatch vehicles with a stationary 16 
capacity, and lead to a frequent rate. The improvements in the riding costs are relatively minor, likely 17 
because the waiting time at the origin and transfer points is much less than the in-vehicle travel time 18 
overall, which is nearly by 77% in this example. While the in-vehicle travel time cost does not change 19 
dramatically, the bulk of the riding time cost is dominated by the travel distance and thus is independent 20 
of the transportation system. If we take away the fixed free-flow travel time, we see a much more 21 
significant improvement in the variable riding time cost affected by the transportation system settings. For 22 
reference, Table 6 provides the revised riding time cost, which is reduced by 1983.78%. Additionally, 23 
compared with the MTNS, the PCS has no waiting time and a shorter riding time because of the direct 24 
service without transfers. However, the PCS operation cost is higher than the MTNS operation cost by 25 
290.86% due to much lower vehicle occupancies in the PCS.  26 

Further, based on Theorems 1 and 2, we obtain a lower bound objective 𝐹LM
∗ = 1457.91 and an upper 27 

bound objective 𝐹NLM
′ = 1465.60. This yields an optimality gap of 0.52%, which is on a lower order of 28 

magnitude than the cost component improvements in Table 6 and thus is acceptable.  29 
Table 6 Cost comparisons of different operating systems (case 1) 30 

  MTNS FSBS PCS 
  Value Value % reduction Value % reduction 

 System cost $1,457.91 $1,561.43 7.10% $1,880.17 28.96% 
Revised system cost*  $329.81 $433.33 31.39% $752.07 128.03% 

 Operation cost $192.41 $257.11 33.63% $752.07 290.86% 
 Waiting time cost $135.34 $144.23 6.57% - - 
 Riding time cost $1,128.47 $1,135.81 0.65% $1,128.10 -0.03% 

Revised riding time cost* $0.37  $7.71  1983.78% - - 
 Transfer cost $1.71 $24.29 1316.67% -  -  

Note: The revised system cost and revised riding time cost are calculated by removing the fixed free-flow travel 31 
time (equal to the riding time cost in the PCS) that is independent of the optimal decisions. 32 

Sensitivity analysis 33 
This section analyzes the sensitivity of cost components to critical parameters the in all three systems. 34 

Only one parameter is varied in each instance, and the other parameters remain at their default values. To 35 
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evaluate the performance for different cases, we compared the overall system cost, operation cost, riding 1 
time cost, waiting time cost, and transfer cost. To simplify the sensitivity analysis for 𝑐𝑠  and 𝑐𝑡 , we 2 
introduced two rates to adjust the values as 𝑐𝑠

′ = 𝛼1 ∗ 𝑐𝑠  and 𝑐𝑡
′ = 𝛼2 ∗ 𝑐𝑡 . Rates 𝛼1  and 𝛼2  are varied 3 

subject to 𝛼1 + 𝛼2 = 2, where 𝛼1, 𝛼2 ∈ ℕ+. The results are plotted in Figure 5. The findings of parameters 4 
𝛼1, 𝛼2, 𝑆, and 𝛽 are briefly summarized as follows. 5 

1. Figure 5(a) and (b) show that the proposed MTNS model effectively reduces the system cost. 6 
Compared with the FSBS, the MTNS always performs better (e.g., with a lower system costs) at 7 
all 𝛼1 and 𝛼2 values. Figure 5(c) plots the operation cost with varying 𝛼1 and 𝛼2 values. The 8 
operation cost of the MTNS becomes higher when the trip time cost dominates (𝛼1 ≤ 0.4, 𝛼2 ≥9 
1.6). Compared with the PCS, the system cost of the MTNS is lower when the operation cost rate 10 
is relatively high over the trip time cost range (𝛼1 ≥ 0.4, 𝛼2 ≤ 1.6). However, when the time cost 11 
dominates (𝛼1 ≤ 0.4, 𝛼2 ≥ 1.6), the PCS may work better than the MTNS due to its time savings 12 
from direct service.  13 

2. Figure 5(d) plots the transfer cost with varying 𝛼1 and 𝛼2 values. We see that the transfer cost in 14 
the FSBS increases significantly with the increase in the operation cost, while that of the MTNS 15 
does not vary much with changes in 𝛼1 and 𝛼2. 16 

3. The system cost decreases as the number of MV types (or 𝑆) increases, as shown in Figure 5(e). 17 
This result is evident since more MV types provide more flexible vehicle capacities. The system 18 
cost in the FSBS is a U-shaped curve with an optimal value of 𝑆 = 6 (i.e., 𝑛𝐹 = 36), which is the 19 
default parameter value we selected in the numerical example.  20 

4. Figure 5(f) shows the sensitivity of the system cost to transfer cost 𝛽. We see that the system cost 21 
increases as the transfer cost rate per passenger increases. However, the transfer cost shares a 22 
rather small percentage of the system cost in the MTNS, the magnitude of the increases system 23 
cost is not substantial. While the transfer cost per passenger increases by 900% (i.e., from 0.07 24 
to 0.71), the total system cost only increases by 0.3% (i.e., from 1456$ to 1461$). 25 

  
(a) System cost performance with 𝜶𝟏, 𝜶𝟐 (b) Cost performance with 𝜶𝟏, 𝜶𝟐 
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(c) Operation cost performance with 𝜶𝟏, 𝜶𝟐 (d) Transfer cost performance with 𝜶𝟏, 𝜶𝟐 

  
(e) System cost performance with MV type 𝐒 for the 

MTNS and 𝒏𝑭 for the FSBS, 𝒏𝑭 = 𝑺 ∗ 𝟔 
(f) System cost performance with transfer cost 𝜷 

Figure 5 Sensitivity analysis of the criterion with different input parameters 1 
Note that the above obtained optimal solutions to the LM may not be the exact optima to the original 2 

NLM. To investigate the approximation errors, we employ Theorems 1 and 2 to quantify the corresponding 3 
approximation gaps for a set of selected instances with different parameter settings, as shown in Table 7. 4 
We see that the approximation gaps are less than 4% for all of these instances, with an average of 1.66%, 5 
which is acceptable for engineering practice. Additionally, if we further refine the linearization 6 
approximation intervals, we would expect the gaps to continue to decrease (though more computational 7 
resources are needed).    8 
Table 7 Sensitivity analysis of the approximation gap with various parameter combinations 9 

Instance 
number 𝜶𝟏 𝜶𝟐 𝑺 𝜷 𝐹LM

∗  𝐹NLM
′  Approximation 

gap 
1 0 2 6 0.142 $2,464.89  $2,520.91  2.22% 
2 0.5 1.5 6 0.142 $2,000.41  $2,054.86  2.65% 
3 1 1 6 0.142 $1,457.91  $1,465.60  0.52% 
4 1.5 0.5 6 0.142 $928.03  $957.41  3.07% 
5 2 0 6 0.142 $364.40  $379.30  3.93% 
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6 1 1 2 0.142 $1,472.78  $1,483.56  0.73% 
7 1 1 4 0.142 $1,459.00  $1,480.25  1.44% 
8 1 1 8 0.142 $1,451.39  $1,464.36  0.89% 
9 1 1 10 0.142 $1,449.00  $1,462.30  0.91% 
10 1 1 6 0.071 $1,456.38  $1,475.15  1.27% 
11 1 1 6 0.213 $1,459.17  $1,475.63  1.12% 
12 1 1 6 0.284 $1,459.38  $1,475.74  1.11% 

Average       1.66% 

4.2 Nineteen-station example 1 

To examine the model performance over different network topologies, we present another example 2 
with more stations (19 stations) and a larger network (the Guangdong Province freeway network). At this 3 
province-level spatial scale, the operations involve a new shared-mobility freeway system where travelers 4 
travel from one freeway station to another freeway station with shared MVs instead of driving their cars. 5 
For example, each traveler chooses a urban transportation service (e.g., bus, metro, BRT, taxi, shared bike, 6 
or MV) from their origin (e.g., home or office) to the nearest shared MTNS freeway service station. An 7 
MV then transports the passenger to the MTNS freeway service station nearest to the passenger destination. 8 
Finally, from this service station, the passenger transfers to another urban transportation service to reach 9 
their destination. This study assumes that local transportation decisions are exogenous to MTNS decisions, 10 
and thus, local transportation costs are not considered. The advantages of this proposed new system are 11 
associated with pooling riders in MVs with high occupancy (as opposed to the low occupancy in the PCS) 12 
and the flexible capacity (as opposed to the fixed capacity in the FSBS). 13 

The input data include 295876 records of vehicles passing through 19 key toll stations in Guangdong, 14 
China (see Figure 6(a)), from 10:00-11:00 in May 2019. With an estimated average occupancy of 1.5 15 
passengers per vehicle (Chow et al., 2010; Johnston and Ceerla, 1996; Siuhi and Mussa, 2007), we obtain 16 
the passenger OD demands as shown in Figure 6(b). We assume 3% of the passengers use the MTNS 17 
service by default. Further, we set 𝑀 = 20, 𝜏 =[0.1: 0.025: 0.45, 0.5, 1, 500, 1000]. 18 

   19 
(a) 19 key toll stations in Guangdong Province, China (b) OD demand data  

Figure 6 The toll station information and OD demand data in Guangdong Province, China 20 
In this case, the optimal results of the three systems are shown in Table 8. Compared with the FSBS, 21 

the MTNS performs well in reducing the system cost (by 4.62%). Again, this result is further improved 22 
(to by 15.98%) when we omit the free-flow travel time cost, which is a constant component in this system. 23 
If we decompose the total system cost into different components, we see significant improvements in the 24 
critical cost components. Specifically, the operation cost and waiting time cost are reduced by 2.29% and 25 
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Freeway  

Station  6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0 7355 4418 886 1487 1754 1406 2541 864 245 137 68 79 674 86 61 103 19 352
2 6825 0 855 1821 2190 395 208 181 2597 534 162 61 84 403 14 11 14 5 35
3 4490 933 0 270 632 6277 1930 258 171 100 41 36 31 209 59 25 35 11 244
4 576 1808 197 0 1409 117 40 37 117 108 204 53 61 634 4 1 3 2 3
5 1392 1786 571 1423 0 313 89 13 65 83 75 28 39 1261 6 7 11 4 20
6 1850 437 6839 141 442 0 3317 82 85 52 19 33 13 199 191 46 87 14 284
7 1265 145 1595 42 66 2643 0 51 44 26 4 5 6 33 234 25 76 24 484
8 2047 159 241 18 10 71 53 0 107 14 7 2 2 14 3 1 0 2 10
9 674 2192 148 97 51 42 42 88 0 223 13 3 3 39 4 3 5 3 14
10 213 470 125 103 73 40 15 13 269 0 130 10 16 35 2 1 2 6 6
11 105 142 42 244 66 33 7 9 5 133 0 154 86 41 0 0 0 1 0
12 71 112 50 80 39 25 12 2 6 38 190 0 421 14 0 0 1 1 4
13 117 135 43 138 54 35 9 4 6 20 121 410 0 32 0 1 2 0 1
14 471 260 199 644 1169 176 35 10 52 31 61 21 17 0 11 1 5 2 8
15 107 4 50 3 8 222 253 5 3 2 1 1 7 4 0 36 149 20 6
16 60 11 26 1 5 59 42 3 4 2 0 1 0 6 49 0 1094 739 19
17 114 13 48 1 9 93 76 4 5 2 1 1 3 9 137 892 0 303 38
18 30 8 13 3 1 16 18 0 3 0 0 0 0 1 14 595 260 0 8
19 338 38 185 9 15 216 448 18 18 13 1 1 2 4 2 3 20 9 0
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9.76%, respectively. This reduction indicates the advantages of the proposed MTNS over the traditional 1 
FSBS. While the riding time cost does not change dramatically, it is dominated by the travel distance 2 
(range of approximately 100 km to 800 km in this case) and thus is not much affected by the transportation 3 
system. If we remove the free-flow travel time cost, we see a much more significant improvement in the 4 
variable riding time cost (by 111.67%). Moreover, the passenger transfer cost is also optimized in the 5 
MTNS. Additionally, compared with the PCS, the MTNS yields dramatic savings in the operation cost 6 
and system cost, but the time costs slightly increase due to added waiting and transfers. Finally, the MTNS 7 
model produces a lower bound 𝐹LM

∗ = 23,082.86 and an upper bound 𝐹NLM
′ = 23,351.55, which yields 8 

an optimality gap of 1.15% with a computational time of 0.3 h. 9 
Table 8 Cost comparison of different operation systems (case 2) 10 
  MTNS FSBS PCS 

  Value Value % reduction Value % reduction 
 System cost $23,082.86  $24,148.43  4.62% $49,026.99  112.40% 

Revised system cost*  $6,667.71  $7,733.29  15.98% $32,611.84  389.10% 
 Operation cost $6,042.37  $6,632.29  9.76% $32,611.84  439.72% 
 Waiting time cost $263.56  $269.59  2.29% - - 
 Riding time cost $16,748.82  $17,121.43  2.22% $16,415.14  -1.99% 

Revised riding time cost* $333.68  $706.29  111.67% - - 
 Transfer cost $28.10  $125.13  345.27% - - 

Note: The revised system cost and revised riding time cost are calculated by removing the fixed free-flow travel 11 
time (equal to the riding time cost of the PCS) that is independent of the optimal decisions. 12 

5. Conclusion 13 

By taking advantage of emerging MV technology, this paper proposes an approach to determine the 14 
optimal MTNS design (i.e., the allocation and scheduling of MV fleets over a general transportation 15 
network) to minimize the operation cost and passenger trip time cost. We formulate this problem into an 16 
MINLP model that captures detailed traveler waiting time costs with nonlinear vehicle scheduling 17 
functions. To facilitate the solution approach, we mathematically revise the MINLP model to produce a 18 
computationally tractable mixed-integer linear programming (MILP) model. This linear model solves both 19 
lower and upper bounds to the original nonlinear model, thus yielding a near-optimal solution with an 20 
optimality gap. This revised MILP model can be solved by using off-the-shelf commercial solvers (e.g., 21 
Gurobi) to obtain the exact solution. We explore two numerical examples to illustrate the applications of 22 
this model and compare it with alternative systems (i.e., the FSBS and PCS). The MTNS is shown to be 23 
more effective than the alternatives in both suburban (reduced by 7.10%, 33.63%, and 6.57% in the system 24 
cost, operation cost, and waiting time cost, respectively, compared with those in the FSBS; and by 25 
290.86% and 28.96% in the operation cost and system cost, respectively, compared with those in the PCS) 26 
and freeway settings (reduced by 4.62% and 9.76% in the system cost and operation cost compared to 27 
those in the FSBS; and by 439.72% and 112.40% in the system cost and operation cost compared with 28 
those of the PCS, respectively). To further explore the robustness of the proposed model with different 29 
input parameters, a sensitivity analysis shows how the MTNS performance is affected by crucial parameter 30 
values and approximation gaps. 31 

Since MV transit network system design is a novel research topic, the proposed model provides a 32 
foundation that may be extended in several directions. The proposed model is formulated as a mixed-33 
integer linear programming problem and is solved with a commercial solver (i.e., Gurobi) in this study. 34 
Future work may focus on designing customized algorithms to further improve solution efficiency. 35 
Additional research is needed to explore dynamic and stochastic demands, en route link transfers, and 36 
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associated vehicle coordination when operating a mixed fleet on the link. Moreover, the proposed model 1 
can be extended to consider the intercedence between system design decisions and traffic congestion 2 
patterns, and heterogeneous passenger behaviors (e.g., preferences regarding time windows, the service 3 
level, the willingness to pay, and the MV type). Moreover, it may be interesting to examine the impact of 4 
combinations of autonomous and electric MVs in future transportation modes. 5 
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