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Dynamical detection of quantum phases and phase transitions (QPT) in quenched systems with
experimentally convenient initial states is a topic of interest from both theoretical and experimental
perspectives. Quenched from polarized states, longitudinal magnetization decays exponentially to
zero in time for the short-range transverse-field Ising model (TFIM) and hence, has a featureless
steady state regime, which prevents it from exhibiting dynamical phase transitions of type-I. In this
paper, we ask whether the transient regimes of such non-equilibrium processes probed by single-site
observables, that is magnetization per site, could encode information about the underlying QPT.
The decay rates of time-dependent and single-site observables exhibit a dynamical crossover that
separates two dynamical regions, ordered and disordered, both of which have distinct nonequilibrium
responses. We construct a dynamical order parameterlike quantity that exhibits a scaling law in
the vicinity of the crossover. Our results reveal that scaling law exponent in short times in the close
vicinity of the dynamical crossover is significantly different than the one predicted by analytical
theory for long times. When integrability is strongly broken, the crossover boundary turns into a
region that separates two other dynamical regions that act like dynamically-ordered and -disordered
regimes.

I. INTRODUCTION

Criticality, defined under Landau paradigm [1], is one
of the milestones in our understanding of matter, pro-
viding us a framework to classify microscopically diverse
phenomena in a handful of universality classes with their
associated critical exponents [2, 3]. Building on this
physical principle, the studies of dynamical criticality,
phase transitions and crossovers could range from dy-
namical detection of equilibrium criticality [4–18], to non-
equilibrium phase transitions that might not necessarily
originate from an equilibrium transition [11, 19–22]. A
commonly applied protocol in some of these studies is a
sudden quench, which results in a nontrivial time evo-
lution of either an observable, e.g. an (equilibrium) or-
der parameter (OP) [11, 12, 14, 16], or Loschmidt echo
[9–12, 23] when the system is quenched from an initial
state that is not an eigenstate of the evolution Hamil-
tonian. A popular choice of initial state in the current
works on quench dynamics is a polarized state, due to its
relevant convenience to prepare in quantum simulators
[11–14, 16, 23]. Dynamical phase transitions of type-
I (DPT-I) is defined when the quench dynamics equili-
brate either to a thermal or a prethermal value in long
times, and hence long-time average of the time-dependent
observable could act like a dynamical OP, demonstrat-
ing a phase boundary. Although DPT-I is well-defined
for magnetization of the long-range transverse field Ising
model (TFIM) [12, 22], there is no persistent dynamic
order for short-range TFIM, simply because the steady
state regime of one-point observables, and likewise two-
time correlators, is featureless [24–26]. The featureless
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steady-state for magnetization originates from the fact
that this observable decays exponentially in time as both
analytically and numerically studied in the integrable
TFIM [24–29]. In fact exponential decay is also shown to
exist in the XXZ model for magnetization [30]. There-
fore, one cannot dynamically detect equilibrium quantum
phase transitions (QPT) of short-range TFIM quenched
from polarized states by focusing on the steady-state
regime of the magnetization dynamics.

Recently higher order observables are shown to ex-
hibit steady-state regimes with a persistent dynamic or-
der in the quench dynamics of short-range TFIM [14, 16].
Ref. [14] proposed measuring out-of-time-order correla-
tors (OTOC) of an arbitrary single-site observable (lon-
gitudinal magnetization per site) both for integrable and
nonintegrable short-range TFIM to access such steady-
state regimes. Later Ref. [16] showed that two-point
nearest-neighbor correlators (averaged over space) could
signal a dynamical phase transition in short-range TFIM,
albeit the dynamical critical point shifts from the equilib-
rium QPT to favor disorder when integrability is broken.

Motivated by the recent research interests in find-
ing dynamical probes of equilibrium QPT in short-range
Hamiltonians [14, 16, 31], in this paper we ask whether
the transient regimes of short-range TFIM quenched from
polarized states and probed by single-site local observ-
ables, that is magnetization per site, could encode in-
formation about the underlying equilibrium QPT. We
stress that we focus on transient regimes of dynam-
ics and single-site observables, instead of steady-state
regimes and global observables. Let us first note that
transient probes of QPT could prove useful in labora-
tory implementations of quantum many-body systems,
given that it might be challenging to reach steady-state
regimes in experimental setups that are naturally cou-
pled to an environment and experiences decoherence [32].
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Both Refs. [32] and [33] utilized transient signatures of
the underlying QPT in the experiments on spinor conden-
sates, e.g. the amplitude and time of the first dip of an
oscillatory nonequilibrium response. Furthermore, quan-
tum simulators are ideal testbeds to study the proper-
ties and potential of single-site observables, which require
only minimal resources for measurement with technolo-
gies like quantum gas microscope [34]. Ref. [14] demon-
strated that OTOC of single-site observables could be
useful to probe the equilibrium QPT, however probing
OTOCs in laboratory requires sophisticated protocols
such as reversing the overall sign of the Hamiltonian to
realize backward time evolution [35, 36], or equally so-
phisticated alternative methods [37–39].

In our work, we focus on the single-site observables
in both open-boundary and closed chains of TFIM.
An open-boundary chain is experimentally more rele-
vant, whereas the results for a periodic TFIM could
be obtained by utilizing a mapping to noninteracting
fermions. Open-boundary chain simulations are per-
formed via time-dependent density-matrix renormaliza-
tion group (t-DMRG). Via utilizing the representation
of noninteracting fermions, we could easily reach hun-
dreds of sites in the integrable TFIM, and compare the
crossover dynamics of small and large system sizes. A
crossover in integrable TFIM probed by single-site ob-
servables was analytically predicted in Ref. [25] for large
times in the space-time limit. This crossover separates
two distinct nonequilibrium responses where the observ-
able decays exponentially without and with oscillations
in the dynamically-ordered and -disordered regimes, re-
spectively. Here we reveal that the scaling predicted
by the analytic theory for long times (β = 1/2) in
the dynamically-ordered regime, significantly changes for
short times (β = 1) in the close vicinity of the crossover
which coincides with the equilibrium QPT in the inte-
grable TFIM, hc = 1. As one moves away from the
vicinity of the crossover, the analytically predicted expo-
nent is recovered, which suggests a smooth crossover be-
tween short and long time dynamics. In the dynamically-
disordered regime, we find that the analytical prediction
conjectured in Ref. [25] is not the only possible descrip-
tion of the dynamics for short times and small system
sizes, e.g. N = 48 spins. Additionally, the angular fre-
quency has a correction for short times and small system
sizes, while we recover the analytically predicted expo-
nent δ = 1/2 for long times when we increase the system
size to N = 192 spins.

We also find that the scaling in the vicinity of the
crossover in the dynamically-ordered regime can be de-
scribed by a logarithmic function regardless of the sys-
tem size and the temporal regime, e.g. short or long time
dynamics. We show that this is consistent with the ana-
lytical predictions. Logarithmic form eventually becomes
useful in proposing a dynamical OP-like quantity in the
vicinity of the crossover. This proposal eases the experi-
mentation of crossover physics discussed in our paper.

We note that the location of the crossover corresponds

to the TFIM Hamiltonian that exhibits the fastest decay
in the set of all Hamiltonians H(h) across both sides of
the equilibrium QPT, in particular for short times. Given
that observables cannot show divergent decay in short-
range interacting systems due to lightcone bounds, it is
reasonable that all decay rates are finite. Hence our data
suggests a link between the fastest decay and the equilib-
rium QPT, confirming Ref. [30]. We use this observation
to mark the boundary between dynamically-ordered and
crossover regions in the nonintegrable TFIM. We break
the integrability by introducing next-nearest neighbor
coupling to TFIM and study how the quench dynam-
ics for single-site magnetization behave. After modeling
the quench dynamics, we notice that three quantitatively
distinct dynamical regimes emerge for the nonintegrable
TFIM. The crossover of the integrable TFIM enlarges
into a region around the equilibrium QPT and separates
two other dynamical regimes which act as -ordered and
-disordered regimes of the integrable TFIM. This means
that the nonintegrable TFIM exhibits a dominant trend
of exponential decay in its dynamically-ordered regime;
and a dominant trend of oscillatory exponential decay in
its dynamically-disordered regime. We study the relevant
decay rate and find that breaking integrability results in
a smooth crossover, a minimum, at hc = 2.278 ± 0.001.
The associated scaling exponent of the dynamical order
parameterlike quantity reads β ∼ 2, consistent with the
smooth crossover of the decay rates.

In Sec. II, we introduce the models and our meth-
ods. Then in Sec. III and IV we focus on the dynamical
crossover of the integrable and nonintegrable TFIMs, re-
spectively. We conclude in Section V.

II. METHODS

In this paper, we work with TFIM with both nearest-
neighbor (NN) and next-nearest-neighbor (NNN) cou-
plings,

H = −J
∑
r

σzrσ
z
r+1 −∆

∑
r

σzrσ
z
r+2 + h

∑
r

σxr , (1)

where σαr are spin− 1
2 Pauli spin matrices. TFIM pre-

serves its gapped long range Ising ground state even when
the interactions (or nonintegrability) ∆ are introduced,
although the transition boundary shifts to favor order as
∆ increases. For all data in the paper, we fix J = 1
as the energy scale. Specifically we focus on the inte-
grable model ∆/J = 0 and nonintegrable model with
∆/J = −1.

Since an open-boundary chain is more experimentally
relevant, we study the open-boundary TFIM with matrix
product states (MPS [40]). To reproduce the decay dy-
namics of an arbitrary site in a periodic chain we focus on
the longitudinal magnetization in the middle of the chain
σzN/2 (Appendix A). Hence the observable’s decay is sim-

ilar to the decay of total magnetization given that total
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FIG. 1. C(t) for h/J = 0.5 upper curves with orange tones
and h/J = 0.9 lower curves with red tones. Each set of curves
have system sizes between N = 24 (dots) and N = 48 (dia-
monds) denoted by different markers. τs and τr are separation
and revival timescales (see text). x-axis is shifted by t∗, the
reference time where the exponential decay starts.

magnetization is M = 1/N
∑
r σ

z
r . We also study an ar-

bitrary site on a periodic TFIM to utilize the mapping to
noninteracting fermions and increase the system size for
the integrable TFIM. To calculate single-site dynamics
in noninteracting fermions, we make use of the cluster
theorem similar to Ref. [25]. See Appendix B for the
details of the mapping in quench dynamics and the lim-
itations due to cluster theorem. In both open-boundary
and closed chains, we focus on the single-site dynamics of
Eq. (1) quenched from a polarized state |ψ0〉 = |↑↑ ... ↑〉:
C(t) = 〈ψ0|σzi (t) |ψ0〉 where i = N/2 for open-boundary
chains.

In DPT-I, one studies steady-state regime where the
dynamics is expected to become independent of the time.
Since such steady-state regimes might exhibit oscillatory
behavior, typically due to finite-size effects in small sys-
tems, often times averaging over a an interval of time
is employed [9, 14, 16]. Averaging over a long interval
of time also makes the dynamic OP to be less sensitive
to where a temporal cutoff is applied in the steady-state
regime. This is because oscillations could alter the dy-
namic OP if one only uses the value at the temporal
cutoff. As a result, exact location of the temporal cut-
off is not significant in the construction of the dynamical
OP based on DPT-I as long as the temporal cutoff is in
steady-state regime. A valid temporal cutoff that can
be utilized in studying DPT-I is a system-size dependent
cutoff, t ∼ αN where the interval of time-averaging is
proportional to the system size [12] up to a coefficient α.

This temporal cutoff does not work for one-point ob-
servables in short-range models, because as already men-
tioned before, these observables are featureless in their
steady state regime, meaning that they decay exponen-
tially to zero. If one were to use a cutoff t ∼ αN ,
we would simply observe a vanishing dynamic OP for

one-point observables [12, 14] (see Appendix C). This
observation aligns with the fact that one cannot con-
struct DPT-I for magnetization in short-range TFIM.
Hence, motivated on working in the transient regime,
we turn our attention to the decay rates of the ini-
tial magnetization, which is known to exhibit a cusp-
like feature at the QPT for the XXZ model [30]. In or-
der to extract the exponential decay in the thermody-
namic limit with finite-size systems, which are the only
experimentally relevant systems, we find the lightcone
bounds [25, 41, 42] on the magnetization per site for the
finite sizes under study. The dynamics that remain in
the lightcone exhibit exponential decay and show finite-
size effects exponentially suppressed in the system size
[43]. Fig. 1 shows the open-boundary integrable TFIM
dynamics for h/J = 0.5 (orange tones) and h/J = 0.9
(red tones) for system sizes N = 24 : 6 : 48. In the
lightcone, data for different system sizes collapse on each
other while each separation point is roughly marked by
τs = N/2vq where vq is the maximum quasi-particle ve-
locity vq = max|dε(h, k)/dk| = 2Jmin(h, 1) [3, 25, 42].
τs is the time for the excitations caused by the quench
to reach the end of the chain, and hence τs probes the
size of the chain. When the chosen bulk spin is not in
the middle of the chain its coefficient changes τs = a/vq
where N/2 ≤ a < N . Revival timescale is marked by
τr = N/vq, which is the time for the excitations to re-
flect back from the boundary to the middle of the chain.
The timescale t∗ is the short-distance cutoff of the tem-
poral axis defined by the lattice constant divided by ve-
locity t∗ ∼ v−1

q . Here, t∗ (τs) serves as the ultravio-
let (infrared) cutoff, below (above) which the physics is
dominated by non-universal microscopic details (finite-
size effects). Thus, we focus on the (intermediate) time
range t∗ < t < τs, where data of different system sizes
collapse on each other and universal behavior arises as
shown in Fig. 1 with an exponential decay [25, 27–29].
The time interval that remains in the lightcone effectively
simulates the decay in the thermodynamic limit.

For our periodic chain results, we are always confined
to the intermediate time range due to the application of
cluster theorem (Appendix B).

III. DYNAMICAL CROSSOVER IN THE
INTEGRABLE TFIM

Integrable TFIM hosts a crossover at hc = 1 that
separates two dynamical regimes. In the dynamically-
ordered regime, single-site observables exhibit an ex-
ponential decay in time, whereas in the dynamically-
disordered regime we observe an oscillatory exponen-
tial decay. We will systematically study the short-time
nonequilibrium response of single-site observables in the
integrable TFIM in this section. In the following, we
focus on the dynamically-ordered regime.
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FIG. 2. Decay rates fΦ for integrable TFIM in dynamically-
ordered (hc − h)/hc > 0 and -disordered (hc − h)/hc < 0
regimes. The inset focuses on the dynamically-ordered regime
in a semilog plot. Blue-circles, red-diamonds and yellow
pluses are data for system sizes N = 48 with open boundaries
(obc), periodic boundaries (pbc) and N = 192 with periodic
boundaries, respectively. Green-dotted line is the logarithmic
fit function for the data N = 48 (pbc) (see text), whereas the
black-solid line is the analytic result for the thermodynamic
limit. In the disordered regime, the shaded region is the un-
certainty for system size N = 48 due to short time evolution.

A. Decay rates

Bounded by the lightcone, we find the decay rates of
magnetization per site around the crossover at hc = 1.
Fig. 2 shows how these decay rates fΦ change with the
reduced control parameter hn = (hc − h)/hc for system
sizes N = 48 with both open (blue-circles) and periodic
(red-diamonds) boundary conditions and N = 192 with
periodic boundary condition (yellow-pluses). A cusplike
feature is observed in Fig. 2, similar to the XXZ model
in Ref. [30]. The dynamically-disordered regime will be
explained in a following subsection.

We first note that our two methods explained in pre-
vious section match perfectly for N = 48. Thus, one
could measure the middle spin in an open-boundary chain
and reproduce the results for an arbitrary site in a pe-
riodic chain. By increasing the system size to N = 192,
we observe a convergence to the prediction by the ana-
lytic theory for the thermodynamic limit (black-solid) for
hn > 10−2. Hence, two remarks follow: (i) Although we
work with data bounded by the lightcone, the data for
small system sizes, e.g. N = 48 still experiences finite-
size effects [43], because the simulation time is restricted
by the system size in the lightcone. (ii) In the close vicin-
ity of the crossover, hn < 10−2, even the large systems,
e.g. N = 192 diverge from the analytic prediction (see
the inset in Fig. 2).

The analytic prediction is calculated based on the
space-time limit derivation given in Ref. [25]. For a

quench from a polarized state, the asymptotic late-time
scaling reads

C(t) ∼
(

1 +
√

1− h2
)1/2

exp (tf∞Φ (h)) , (2)

f∞Φ (h) = − 4

π

(
h+

√
1− h2

[
arcsin

(√
1− h

2

)

− arcsin

(√
1 + h

2

)])
. (3)

For the numerics close to crossover, we propose a log-
arithmic fit function fΦ = log(γhβn exp(−hn/Λ) + C0)
where γ and β are free parameters to be found and Λ
is the exponential cutoff coefficient which is explained
below. We note that such a model for the decay rate
is intuitive and describes the data in a large interval
0 < hn <∼ 0.4, not only in the close vicinity of the
crossover. The constant C0 points to the observation that
the decay rate is never infinite, however the largest at
the crossover. Hence the system thermalizes the quickest
at the crossover. Further C0 is not a free parameter, but
fixed by the data itself at the crossover. Furthermore, an-
alytical prediction for thermodynamic limit at late times
gives C0 = exp(−4/π). Data follows log(γhβn + C0) in
the vicinity of the crossover, while introducing an expo-
nential cutoff [44] to the model lets us describe a bigger
region of hn as well as providing a definition for ‘vicinity
of the crossover’, hn � Λ. For example, the fit parame-
ters for the decay rates of system size N = 48 depicted in
the main panel of Fig. 2 (green-dotted line) are β = 1.05
and Λ = 0.37, meaning that the vicinity of the crossover
could be defined as hn <∼ 0.03. Indeed by using the in-
terval of hn <∼ 0.03, one can precisely determine the scal-
ing exponent as β = 1 in the fit function log(γhβn + C0)
(green-dotted line in the inset of Fig. 2).

We note that the logarithmic function is consistent
with the analytical expression Eq. (3) in the vicinity of
the crossover. This can be seen from the series expan-
sions of Eq. (3) and the logarithmic fit function. The se-
ries expansion of Eq. (3) in the vicinity of the crossover
is,

f∞Φ (hn → 0) ∼ − 4

π
+ 2
√

2hn −
4hn
π

+ · · · , (4)

while the series expansion for the logarithmic fit function
follows

fΦ(hn → 0) ∼ log(C0) +
γ

C0
hβn +O(h2β

n ). (5)

Therefore, in the close vicinity of the crossover the an-
alytic prediction could be written as the logarithmic fit
function with the parameters of C0 = exp(−4/π), β =

1/2 and γ/C0 = 2
√

2, resulting in γ = 2
√

2 exp(−4/π).
In the next subsection, we will see the use of logarith-
mic fit function in experimentation. However now let
us show how it could be helpful in extracting the scal-
ing exponent in the close vicinity of the crossover in the
numerical data.



5

FIG. 3. Scaling of the decay rate function exp(fΦ) − C0

for integrable TFIM in dynamically-ordered (hc − h)/hc > 0
regime. Blue-circles, red-pluses and yellow squares are data
for system sizes N = 48, N = 192 and N = 480 all with
periodic boundaries, respectively. Black-solid line is the ana-
lytic prediction for the thermodynamic limit and late times,
whereas the green-dotted line is the fit to the analytic expres-
sion in the vicinity of the crossover with β = 1/2. The dotted,
dashed and dotted-dashed lines are the fits to the numerical
data in the close vicinity of the crossover with β = 1.

To extract the scaling exponent in the close vicin-
ity of the crossover, we define a decay rate function
exp(fΦ(hn)) − C0 = γhβn. Fig. 3 shows the decay rate
function of both the numerical data and the analyti-
cal expression (black-solid). The green-dotted line is
the fit to the analytical expression in the vicinity of the
crossover with the expected scaling exponent of β = 1/2

and coefficient γ = 2
√

2 exp(−4/π). The blue-circles,
red-pluses and yellow-squares depict the data for system
sizes N = 48, 192, 480 all of which exhibit a scaling ex-
ponent of β = 1. Note that we choose the ultraviolet
cutoff t∗ = κv−1

q where κ for each data set is given in
the legend. Small coefficient κ implies that we focus on
early-time behaviour.

As a result, regardless of system size we observe that
early-time scaling exponent β = 1 is significantly differ-
ent than the late-time scaling exponent of β = 1/2 in the
close vicinity of the crossover. As we move further away
from the vicinity of the crossover, the decay rate function
at any system size converges to the prediction by analyt-
ical expression. Hence we observe a smooth crossover
between different scaling exponents in Fig. 3, whose ex-
act location depends on κ. To visualize the dependence
on κ, we plot Fig. 4 where the system size is fixed to
N = 480 for different κ. As we increase κ, we move the
location of the crossover between analytical late-time and
numerical early-time behaviors, to smaller hn.

We observe that the numerical data mostly follows an-
alytical prediction when hn is sufficiently away from the
crossover, resulting in a nonequilibrium response where

FIG. 4. Scaling of the decay rate function exp(fΦ) − C0 for
integrable TFIM in dynamically-ordered (hc − h)/hc > 0
regime for system size N = 480 for different κ. Blue-
diamonds, yellow-circles, green squares and red-pluses stand
for κ = 2.5, 5, 7.5, 10, respectively. Black-solid line is the an-
alytic prediction for the thermodynamic limit for comparison
with the fits (dotted and dashed lines).

(a) (b)

FIG. 5. The error functions, |C(t) − Cf (t)| (solid) and
|C(t) − Ca(t)| for the fit function and the analytical expres-
sion (dotted), respectively, for a system size of N = 480 at (a)
h = 0.5 and (b) h = 9.9× 10−6. The fit function is calculated
with κ = 5.

early-time behaviour does not really differ from the ana-
lytical prediction. Hence, one can probe analytical pre-
diction by observing early-time behaviour. Fig. 5a shows
the difference between data and its fit function Cf (t)
which is named as an error function |C(t) − Cf (t)| at
κ = 5 for a system size N = 480, and similarly the dif-
ference between the data and its analytical prediction
|C(t) − Ca(t)| at h = 0.5. At early times t < 20/J , fit
function and the analytical expression are equally suc-
cessful in predicting the data. In time interval 20/J <
t < 60/J , fit function is slightly better than the analyti-
cal expression while for later times t > 60/J the opposite
is true, as expected.

At the other end where numerical data exhibits a dis-
tinct scaling exponent of β = 1, crossover physics at
hc = 1 take over with diverging relaxation time [4, 6] and
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(a) (b) (c)

FIG. 6. The scaling in the vicinity of the crossover for integrable TFIM with respect to reduced control parameter hn for (a)
N = 48 with open boundary condition (b) N = 48 and (c) N = 480 with periodic boundary condition. y-axis is rescaled
correctly to obtain the scaling (see text). The temporal cutoffs are (a) either fixed at tL = 2.5, 4 or parametric with α = 5, 8;
fixed at (b) tL = 2.5, 4, 5.5 and (c) tL = 3, 6, 10, 15. The solid, dotted, dashed and dotted-dashed lines are the fits in the vicinity
of the crossover, all giving β ∼ 1 for all subfigures. Error bars are explained in Appendix F.

one cannot reach late-time behavior in accessible times
for any system size that we studied. Fig. 5b shows the
error functions at h = 9.9 × 10−6 where the fit function
is always better to predict the data than the analytical
expression in a time interval of t < 60/J . This suggests
that in the close vicinity of the crossover, the analyti-
cal expression fails for accessible times and likewise we
observe a scaling exponent of β = 1 instead of β = 1/2.

B. Constructing a dynamical order parameterlike
quantity in the dynamically-ordered regime

One can measure the decay rates of magnetization at
each transverse field and probe the crossover between
dynamically-ordered and -disordered regimes in TFIM.
Alternatively, we aim to find a rescaling of the decaying
observable C(t) that can render the rescaled observable
a quantity that acts like a dynamical OP in the ordered
regime right in the vicinity of the crossover. One can see
this procedure as a way to construct a dynamical order
parameterlike quantity with the correct rescaling that is
originated from the scaling behaviour of the decay rates
in the vicinity of the crossover. In DPT-I, the observable
naturally acts as a dynamical OP in a nonzero valued
steady-state. We find that for magnetization per site in
short-range TFIM one needs to correctly rescale the ob-
servable to construct a quantity alike. This, in the end,
presents an alternative way of extracting the scaling ex-
ponent in an experiment, which is less laborious than
measuring the decay rates directly.

Similar to how a dynamical OP in DPT-I is con-
structed by first choosing a temporal cutoff, we consider
two different temporal cutoffs applied at a time either (i)
fixed tL ∼ constant or (ii) parametric tL = αv−1

q where α
is chosen so that the dynamical response remains in the
lightcone, e.g. tL ≤ τs. Note that for all temporal cut-
offs, tL ≥ t∗ holds. Eventually the rescaled dynamical

OP-like quantity should not depend on how we choose
our temporal cutoff. Furthermore, while one can average
the observable for a time between the ultraviolet cutoff
t∗ and the temporal cutoff tL, this would complicate the
functional form of the rescaling needed and it would re-
quire more data to compute/measure. Hence, we simply
measure the observable C(t) at time tL dictated by the
fixed or parametric temporal cutoff.

Let us rewrite the observable in the vicinity of the
crossover by substituting the logarithmic fit function for
the decay rates in,

C(t) = C(t∗) exp(fΦ(t− t∗))
= C(t∗)(γhβn + C0)t−t

∗
. (6)

The scaling of the decay rate as a function of hn reveals a
scaling for the observable in the vicinity of the crossover.
This expression points out to the correct form of rescaling
for the observable to make the procedure independent of
the temporal cutoff. Hence the correct rescaling for the
observable reads,(

C(t)

C(t∗)

)1/(t−t∗)

− C0 = γhβn, (7)

leading us to define a dynamical OP-like quantity,

C ′(hn) =

(
C(t)

C(t∗)

)1/(t−t∗)

− C0, (8)

which is strictly valid in the vicinity of the crossover.
Hence, one can probe the exponent by simply computing
(C(tL)/C(t∗))1/(tL−t∗)−C0 which requires data points at
cutoffs t∗ and tL only, assuming C0 is fixed by numerical
prediction.

Figs. 6 show how the dynamical OP-like quantity
C ′(hn), that is constructed based on different cutoffs,
scales with hn in the vicinity of the crossover for N = 48
with open boundaries in (a), periodic boundaries in (b)
and for N = 480 with periodic boundaries in (c). The
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(a) (b)

FIG. 7. The real time dynamics for the dynamically-
disordered regime at hf = 1.2 in (a) short-times for N = 48
and (b) long-times for N = 192. (a) The short-time dynam-
ics is fitted with analytically predicted fΦ = −4/π (yellow-
dotted) and numerically the best match (red-solid) which
keeps fΦ as a free parameter. (b) For large systems, the ana-
lytical prediction matches the data excellently.

colors yellow, red and blue correspond to cutoffs chosen
at fixed tL = 2.5, 4, 5.5 and at α = 5, 8 for parametric
tL = α/vq. All data at different temporal cutoffs exhibit
the same exponent β ∼ 1. The differences between dif-
ferent temporal cutoffs are detailed in Appendix C. The
error bars originate from the uncertainty in time (Ap-
pendix F). Since Fig. 6a is measured at temporal cutoffs,
while the Figs. 6b and 6c are not, there is no error bars for
Fig. 6a. In our data, the temporal uncertainty increases
as we increase the system size, which explains the biggest
error bars in Fig. 6c. Therefore, by measuring exactly at
the temporal cutoffs these error bars tend to vanish away.

C. Dynamically-disordered regime

The analytical prediction for the dynamically-
disordered regime reads f∞Φ = −4/π in the nonequilib-
rium response

C(t) ∼ (1 + cos(2ωt+ α) + · · · )1/2 exp(tf∞Φ ), (9)

ω(h) = 2
√

1 + h2 − 2, (10)

where · · · means that there are subleading terms and
α is an unknown constant. We work with a slightly
simplified version of this analytical conjecture: C(t) =
γ cos(ωt) exp(tfΦ), which also appears in Ref. [30].

We first focus on short times and small system sizes,
e.g. N = 48 and observe that in this limit, the dynamics
could be equally well described by alternative expression
to the analytical prediction. Fig. 7a shows the dynamical
response for hf = 1.2 where we fit two different curves
to the data. The yellow-dotted line is the fit originated
from the analytical expression where we fix the decay
rate to fΦ = −4/π. We let fΦ be a free parameter in the
red-solid line. Therefore the latter performs slightly bet-
ter than the former, especially for t < 4/J . We plot the
scaling of the decay rates in the dynamically-disordered
regime for the latter in Fig. 2 which turns out to be lin-
ear both for periodic and open boundary calculations.

(a) (b)

FIG. 8. Angular frequency scales with −hn with a power-
law exponent of (a) δ ∼ 0.53 for small system sizes and (b)
δ ∼ 0.5 for larger system sizes in the disordered regime in the
vicinity of the crossover. In (a) we plot the scaling of ω for
both cases where we either fix fΦ = −4/π (orange-squares)
or let it be a free parameter (red-diamonds). The area in
between is shaded which is very negligible.

We also shade the area between the linear scaling and
the constant line at fΦ = −4/π to emphasize the uncer-
tainty in the decay rates for the dynamically-disordered
regime for short times and small system sizes. The cor-
responding scaling for the angular frequency ω is plotted
in Fig. 8a which is δ ∼ 0.533 for both cases where we
either fix the decay rate fΦ = −4/π or let it be a free
parameter. The shaded area in between is negligible.

When we increase the system size to N = 192, we
reach longer times and the analytical expression becomes
the best fit for the general trend of the data, Fig. 7b,
as expected. In this case, the decay rate is constant at
fΦ = −4/π as can be seen in Fig. 2. The corresponding
scaling for the angular frequency ω approaches to δ ∼ 0.5
as can be calculated from the series expansion of the an-
alytical expression Eq. (10) in the close vicinity of the

crossover, ω(hn → 0) ∼ 2
√

2(−hn)1/2 + O((−hn)3/2).
The numerical demonstration of δ = 0.5 is shown in
Fig. 8b with system sizes N = 192, 480.

In conclusion, one observes corrections to the expo-
nents δ∞ = 1/2 and β∞ = 0 in the dynamically-
disordered regime for short times, resulting in δ ∼ 0.533
and β ∼ 1.

IV. DYNAMICAL CROSSOVER IN THE
NONINTEGRABLE TFIM

Having studied the dynamical crossover observed in
the transient regime for a noninteracting model, we now
turn our attention nonintegrable TFIM.

We break the integrability of the model by taking
∆/J = −1 in Eq. 1, which hosts an equilibrium QPT
at hc ∼ 2.46 (Appendix E). Fig. 9a shows the sophisti-
cated dynamical response of this model calculated with
MPS for different h values in the lighcone determined by
data ranging from N = 24 to N = 42. Lightcones are de-
termined similarly by studying the separation timescales
τs of different system sizes. Fig. 9b shows the presence of
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FIG. 9. (a) Nonintegrable TFIM with ∆/J = −1 for different h/J = 1.2, 1.95, 2.5 and dashed lines are the fit function
predictions for dynamical responses. (b) One-point observable for nonintegrable TFIM ∆/J = −1 at h/J ∼ 2 with respect to
time for different system sizes between N = 30− 72. (c) The coefficients γ1 (black-circles) and γ2 (orange-diamonds) of the fit
function for the dynamics of nonintegrable TFIM at ∆/J = −1.

well-defined τs timescales for a range of different system
sizes at h/J = 2.

A. Fit function for the nonintegrable TFIM

An important difference from the noninteracting model
is the oscillations existing in both dynamically-ordered
and -disordered regimes. Hence, we first aim to approxi-
mately model the dynamical response. Since oscillations
are present at every h/J , a fit function that can repro-
duce the important features of the dynamics is,

C(t) = γ1 exp(fΦ,1t) + γ2 exp(fΦ,2t) cosωt. (11)

The dashed lines in Fig. 9a show how well the fit func-
tion can describe the dynamics. The first and the second
terms are analogous terms for the dynamically-ordered
and -disordered regimes of the integrable TFIM, respec-
tively. Thus, an immediate observation is that there
seems no sharply distinct dynamical regimes as in inte-
grable TFIM. We study the parameters γ1, γ2 (depicted
in Fig. 9c) fΦ,1 (depicted in Fig. 10a), fΦ,2 and ω (in
Appendix G) as a function of transverse field.

By studying γ1,2, coefficients of the terms, we first no-
tice that the non-oscillatory term is dominant to the oscil-
latory term in the region h <∼ 2.3. The opposite is true for
h >∼ 2.6. Hence, even though there are not two distinct fit
functions that describe two distinct regimes like in inte-
grable TFIM, there are two limits of one fit function that
exhibit distinct enough features. This behaviour seems
to stem from the sharp crossover in the integrable model.
This is because, the fit function reduces to one term only
where γ2 = 0 in dynamically-ordered regime and γ1 = 0
in the -disordered regime. In this sense, with the fit func-
tion integrable and nonintegrable models are quantita-
tively connected to each other. Note that γ1,2 intersects
at a location very close to the equilibrium QPT and this
is where both terms are equally significant in the nonequi-
librium response. Therefore, one can separate the entire

region roughly into three: (1) h <∼ 2.3 where the dy-
namics can be approximated by only the non-oscillatory
term, and hence acts like the dynamically-ordered regime
in the integrable TFIM. (3) h >∼ 2.6 where the dynamics
can be approximated by only the oscillatory term, and
hence acts like the dynamically-disordered regime in the
integrable TFIM. (2) The intermediate crossover region
where both terms are important.

The fit function for the nonintegrable TFIM could be
tested further with larger system size data and hence, in
longer times in the future studies. Additionally, testing
the fit function against nonintegrability strength ∆/J is
an interesting direction for future studies. In particu-
lar, it would be interesting to study how the regions (1)
through (3) change in a near-integrability model. Finally
let us note that although there might be other equally
accurate models to represent the dynamics of noninte-
grable TFIM, the current model has the least amount of
free parameters and is physically intuitive.

B. Dynamical crossover region and an OP-like
quantity

We focus on the decay rate of the first term, fΦ1 since
this is the term that governs the exponential decay of
the dynamical response, whereas fΦ2 controls the expo-
nential decay of the oscillations. In this sense, fΦ1 is the
analogous parameter to the decay parameter in the in-
tegrable TFIM. In addition to the observation that the
system thermalizes the fastest at the crossover in the inte-
grable TFIM, we notice that the minimum of fΦ1

roughly
coincides with the boundary between the dynamically-
ordered (1) and the crossover (2) regions. Given that
in the integrable TFIM, the cusplike feature emerges in
short time dynamics when the nonequilibrium response
changes nature, it seems that the minimum of fΦ1

im-
plies a possible boundary between the regions (1) and
(2). In this regard, region (1) is where the nonequilib-
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FIG. 10. (a) Decay rate of the first term in the fit function Eq. (11), fΦ,1 shows a minimum at hc = 2.278± 0.001 signaling a
boundary between the ordered regime (yellow-circles) that can be modeled by logarithmic function (black-solid) and crossover
region (blue-diamonds). (b) Decay rate functions exp(fΦ,1) shown with solid flat lines and rescaled observable data according
to the method (i) (see text) around the flat lines for h/J = 1.1, 1.5, 1.8, 2.1, 2.28 with blue-dots, red-pluses, yellow-circles,
purple-diamonds and green-squares, respectively. Data accumulates around the flat lines. (c) Power-law dynamical scaling in
the vicinity of the boundary between regions (1) and (2) with an exponent of β ∼ 2 with blue and yellow data at very early
times t = 0.3, 0.5 with the rescaling method (i) and purple data at the nodes of the oscillations motivated by the method (ii)
(see text). The black-squares are the decay rate function exp(fΦ,1)− C0.

rium response can be approximated well enough with an
exponential decay only; and region (2) is where one can-
not ignore the oscillatory term anymore.

Fig. 10a demonstrates this minimum for fΦ1 . We de-
termine the location of the minimum as hc = 2.278 ±
0.001 which sets the boundary from dynamically-ordered
(1) to the crossover (2) regions. The decay rate in the re-
gion (1) follows previously introduced logarithmic scaling
in hn (Fig. 10a) giving rise Eq. 6 to hold for the nonin-
tegrable model, as long as the oscillations are taken care
of. This could be performed in a couple of different ways,
e.g. averaging over a period T = 2π/ω, working only at
the nodes of the oscillations (π + 2πn)/2ω where n ∈ Z
or simply rescaling the observable by substracting the
oscillatory term from the observable data. Let us briefly
discuss these options.

(i) The first method employed here in the main text
is simple rescaling by subtracting the oscillatory term
from C(t) → C(t) = C(t) − γ2 exp(fΦ,2t) cos(ωt). Hence
the rescaling of the observable C(t) follows similarly to
Eq. (7). In such an expression, γ1, γ2, fΦ,2 and ω are free
parameters. Fig. 10b demonstrates how well the rescaled
data can be explained by an exponential decay when the
observable is rescaled according to method (i). In the
vicinity of the boundary and in early times, data coin-
cides well with the flat lines which are exp(fΦ,1). Overall,
the exponential decay describes the general trend of the
data in region (1).

(ii) The second method is to choose a temporal cut-
off at the nodes of the oscillations. This introduces a
condition on the temporal cutoff time tL as

tL =
π + 2πn

2ω
, n ∈ Z.

For sufficiently long dynamical response, this condition
is not restrictive. When the condition is satisfied, the

rescaled observable reduces to Eq. (7) with only one free
parameter γ1.

(iii) Finally one can think of averaging the observable
data over a period of T . Let us first discuss this case for
the integrable TFIM. By a time-averaging integral over
a period of T around the temporal cutoff tL, the result
reads

1

T
∫ tL+T /2
tL−T /2 dt C(t∗) exp[fΦ(t− t∗)]

= C(t∗) exp[fΦ(t− t∗)] sinh(fΦT /2)

fΦT /2
.

In the limit of T → 0, we recover the result with no av-
eraging. We note that in case of averaging, one needs to
rescale the observable correctly with the averaging inter-
val T as well in order to construct a dynamical OP-like
quantity. Although a similar procedure can be applied
for the nonintegrable model, this method requires fine-
tuning of tL and the averaging interval T based on the
free parameters ω and fΦ,2 to get rid of the oscillatory
term in the fit function. Even though there happens to
be infinite number of possible pairs of temporal cutoff
and averaging interval (tL, T ) in total, there are condi-
tions for viable sets (tL, T ) which introduces fine-tuning.
Since such a method is likely to be inconvenient both for
computation and experiment, we do not discuss it fur-
ther.

We plot the rescaled observable with temporal cutoff
applied at t = 0.3 (blue) and t = 0.5 (yellow) in Fig. 10c
in addition to data at a node of the oscillation with angu-
lar frequency ω (purple). The black-squares are the decay
rate function exp(fΦ,1) − C0 where C0 = exp(fΦ,1)|hc

at the boundary between crossover and dynamically-
ordered regions. All data collapses reasonably well and
can be described by the power-law scaling of β ∼ 2 in the
vicinity hn � Λ = 0.44, which corresponds to h ∼ 2.23.
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The scaling exponent is consistent with the smooth and
continuous crossover. The error bars mainly stem from
the fitting parameters when we model the dynamical re-
sponse via the fit function Eq. (11) applied on our data
limited to short times.

Since a single fit function can describe the data in the
nonintegrable TFIM, here the observed physics clearly
point out to different manifestations of the same quan-
tum phase connected by a smooth crossover. Neverthe-
less finite-size scaling analysis could be applied to learn
about the late-time behavior, since studying larger sys-
tem sizes would provide larger time intervals remaining
in the lightcone. This in turn does not only test the
fit function for late times, but could also lead to more
precise and accurate predictions on these emerging re-
gions of different nonequilibrium responses as a function
of transverse field.

V. CONCLUSIONS

We studied the decay rates of single-site one-point
observables, that is magnetization per site for (non-
)integrable TFIM as a function of transverse field. The
integrable TFIM exhibited cusplike feature in the de-
cay rates at the dynamical crossover hc = 1 between
dynamically-ordered and -disordered regimes in early
times. In the dynamically-ordered regime, the observ-
able exponentially decays to zero, whereas the nonequi-
librium response is an exponential decay superposed with
oscillations in the dynamically-disordered regime. By
studying the scaling of the decay rates in the vicinity
of the crossover, we found a rescaling for the observable
and the rescaled observable exhibited a linear dynami-
cal scaling law with β = 1 in the ordered vicinity of the
crossover in early times in contrast to β∞ = 1/2 predicted
by late time analytical expression. In the dynamically-
disordered regime, we showed that both exponents β = 1
and δ = 0.533 take up correction factors in early times
and differ from the predictions of analytical expression

β∞ = 0 and δ∞ = 1/2.
Next we wrote down a fit function for the nonequi-

librium behavior of the nonintegrable TFIM. Three re-
gions appeared from the model where in (1) h <∼ 2.3
the response is dominated by a smooth exponential de-
cay and hence acting like a dynamically-ordered regime;
(3) h >∼ 2.6 the response is dominated by an oscillatory
exponential decay and hence acting like a dynamically-
disordered regime; and (2) the intermediate crossover re-
gion where none of the terms can be ignored. Hence, we
observe that the point-like crossover boundary in the in-
tegrable TFIM turns into a region in the nonintegrable
model. It is an interesting direction to test this model,
its parameters and the region boundaries against differ-
ent ∆/J . Later we focused on the decay rate of the non-
oscillatory term which showed a minimum at the bound-
ary between dynamically-ordered and crossover regions
hc = 2.278±0.001; and found a dynamical OP-like quan-
tity based on temporal cutoffs in the transient regime
that can probe this feature of the model after rescaling
the observable. The rescaled observable exhibited a dy-
namical scaling law exponent β ∼ 2.

Our work opens new avenues to explore non-
equilibrium order, in particular with local observables,
with no need for reaching the saturation regime which
might be challenging for experiments [32]. There are in-
teresting directions for future, such as (i) whether a sim-
ilar dynamical OP-like quantity could be constructed for
other short-range Hamiltonians with exponential decay,
e.g. the XXZ model; and (ii) whether long-range inter-
acting TFIM [45] could exhibit similar behavior in its
transient temporal regimes.
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Appendix A: Periodic vs. open boundaries

In this section, we demonstrate how the spin opera-
tor (longitudinal magnetization per site) in the middle
of an open-boundary chain exhibits exponential decay
comparable with a spin operator at an arbitrary site in a
periodic chain. Fig. 11 compares the nonequilibrium re-
sponses of these two spins and as observed, the responses
match with each other until the finite-size effects appear.
This is reasonable, because a spin in the middle of the
chain is equally distant to both edges, and hence it should
exhibit behavior closest to a spin in a periodic chain.
Therefore, based on this equivalence we can argue that
the middle spin of an open-boundary chain behaves sim-
ilar to total magnetization in exhibiting an exponential
decay. This is simply because the total magnetization is
an average over all spin operators σzi .
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FIG. 11. C(t) nonequilibrium response of the middle spin of
an open-boundary N = 30, σz

15 (blue-dotted) and a spin at an
arbitrary location σz

6 in a periodic chain N = 30 (red-solid).
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Appendix B: Mapping to noninteracting fermions in
quench dynamics

We map the integrable TFIM to noninteracting
fermionic model in 1D via the transformation [3],

σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (B1)

σxi = 1− 2c†i ci,

σyi = −i
∏
j<i

(
1− 2c†jcj

)(
ci − c†i

)
,

to obtain the noninteracting Hamiltonian

H = −J
∑
i

(
c†i ci+1 + c†i+1ci + c†i c

†
i+1

+ ci+1ci − 2hc†i ci

)
. (B2)

One can immediately see that calculating the dynami-
cal evolution of a bulk spin 〈σzi (t)〉 in the noninteract-
ing picture brings a string of operators and is not really
tractable. Hence we instead calculate equal-time two-
point correlators and invoke the cluster theorem [25],〈

σzi (t)σzi+N/2(t)
〉
∼ 〈σzi (t)〉

〈
σzi+N/2(t)

〉
. (B3)

Cluster theorem holds in the lightcone, meaning for a
time interval up until two sites i and i + N/2 start get-
ting correlated with each other due to operator spread-
ing. The time when the theorem breaks down can be es-
timated based on the maximum quasiparticle velocities
vq, t < ∆x/(2vq) where ∆x = N/2 is the distance be-
tween two spins that are selected symmetrically around
the symmetry center of a periodic chain in Eq. (B3).
Since each site in a periodic chain experiences identical
dynamical response due to translational symmetry, one
can write

〈σzi (t)〉 =

√〈
σzi (t)σzi+N/2(t)

〉
. (B4)

Therefore, we need to calculate equal-time two-point
correlators. Via introducing auxiliary operators, φ±i =

c†i ± ci, one can write〈
σzi (t)σzi+N/2(t)

〉
= 〈C2(t)〉 = (B5)

φ−i (t)

( i+N/2−1∏
j=i+1

φ+
j (t)φ−j (t)

)
φ+
i+N/2(t).

This is called string order parameter (SOP) [46], and to
calculate it one needs to invoke Wick’s theorem, write
Eq. (B5) with two-point contractions and construct a
Pfaffian matrix T (t) at time t to calculate 〈C2(t)〉 =
|Pf(T (t))| [3, 25]. Now we only need to calculate all
possible elementary two-point contractions 〈φpa(t)φqb(t)〉
where p, q = ± and i ≤ a ≤ b ≤ i + N/2. Additionally

we need to incorporate the mechanism of sudden quench
in this picture. For this, we mainly follow the procedure
outlined in Ref. [18]. Let us briefly review this procedure
here.

Since we would like to quench from a polarized state,
this quench point corresponds to hi = 0 where hi is the
transverse field of the initial Hamiltonian in quench pro-
cedure. Therefore, we first solve the initial Hamiltonian
Hi,

Hi =
∑
k

Eikα
†
kαk, (B6)

where Ek and αk are the single particle eigenenergies and
eigenstates, respectively. The solution reads in general
terms, (

α
α†

)
=

(
Gi Fi
Fi Gi

)(
ci
c†i

)
, (B7)

where ci = (c1, c2, · · · , cN )T and similarly for the cre-

ation operator c†i . Note that one can work in this
Bogoliubov-de Gennes (BdG) basis with the size dou-
bled [47], however here we work with the block matrices
G and F [48] which is computationally more efficient. By
solving the eigensystem of

[(Ai −Bi)(Ai +Bi)]
∣∣Φik〉 = (Eik)2

∣∣Φik〉 , (B8)

we obtain the eigenenergies Eik and eigenvectors
∣∣Φik〉.

Here Ai and Bi are the nearest neighbor hopping and
the pairing terms in the Hamiltonian, respectively, so
that the Hamiltonian could be written as,

Hi =

(
Ai Bi
B†i −Ai

)
, (B9)

in (c c†)T basis. Then we use the eigensystem (Eik,
∣∣Φik〉)

to find ∣∣Ψi
k

〉
=

1

Eik

[〈
Φik
∣∣ (Ai −Bi)]T . (B10)

Now we can calculate the Gi and Fi in terms of
∣∣Φik〉 and∣∣Ψi

k

〉
. Noting that

Φi =
[∣∣Φi1〉 ∣∣Φi2〉 · · · ∣∣ΦiN〉] ,

Ψi =
[∣∣Ψi

1

〉 ∣∣Ψi
2

〉
· · ·
∣∣Ψi

N

〉]
,

The block matrices follow

Gi =
1

2

(
ΦTi + ΨT

i

)
, Fi =

1

2

(
ΦTi −ΨT

i

)
. (B11)

A similar procedure follows for the final Hamiltonian Hf

with (
β
β†

)
=

(
Gf Ff
Ff Gf

)(
cf
c†f

)
, (B12)

and corresponding Φf and Ψf . Based on the pairs of
block matrices, we calculate the transfer matrices,

T1 = GfG
T
i + FfF

T
i ,

T2 = GfF
T
i + FfG

T
i .
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Now we want to calculate the Pfaffian matrix elements,

α 〈ψ0| [φpaφ
q
b ]β |ψ0〉α where subscripts imply in which basis

we have the states and the operators. Since we would
like to make use of α |ψ0〉α = 0, we write [φpaφ

q
b ]β in the

α basis.[
φ±b
]
β
|ψ0〉α =

[
c†b(t)± cb(t)

]
β
|ψ0〉α ,

=
[
(GTf ± FTf )

(
eiEtT1 ± e−iEtT2

)
α†
]
b
|ψ0〉α ,

where E is a diagonal matrix with eigenenergies of the

final Hamiltonian as the entries, E = diag[Ef1 E
f
2 · · ·E

f
N ].

Based on this formulation, we construct matrices Mq(t)
in an explicit form,

M+(t) = Φf
(
e−iEtT1 + eiEtT2

)
,

M−(t) =
(
TT1 e

iEt − TT2 e−iEt
)

ΨT
f , (B13)

to utilize in the following contractions,〈
φ+
a (t)φ+

b (t)
〉

= [M+(t)M+(t)†]ab,〈
φ−a (t)φ−b (t)

〉
= −[M†−(t)M−(t)]ab,〈

φ+
a (t)φ−b (t)

〉
= [M+(t)M−(t)]ab,〈

φ−a (t)φ+
b (t)

〉
= −[M†−(t)M†+(t)]ab. (B14)

With these contractions, one can now construct the Pfaf-
fian matrix T (t) [18].

Appendix C: Vanishing dynamical order for
one-point observables

Here we compare the nonequilibrium responses of a
one-point observable and an OTOC, defined at the same
site, middle of an open-boundary and quenched from a
polarized state |ψ0〉 = |↑↑ ... ↑〉. OTOC is defined as,
F (t) = 〈ψ0|σzr (t)σzrσ

z
r (t)σzr |ψ0〉.

Fig. 12a compares F (t) and C(t) for different sys-
tem sizes N computed via time-dependent density ma-
trix renormalization group (t-DMRG) at transverse field
h/J = 0.5 in a time interval of t = N . When we apply a
temporal cutoff of t = N , for OTOC, we observe that the
dynamical order persists indefinitely resulting in a well-
defined dynamical phase boundary for the time-average
or long-time saturation value F̄ in Fig. 12b. Note that
at t ∼ N , F (t) in Fig. 12a starts to demonstrate finite-
size effects, illustrated with black circles, which justifies
the argument that t ∼ N is a sufficiently long-time limit
t→∞ for chosen system sizes. With the same reasoning,
one can plot C(t) in a time interval of t = N in Fig. 12a
and observe the decay of initial magnetization which dra-
matically becomes more pronounced as the system size
increases, resulting in featureless long-time dynamics as
well as a vanishing DPT-I boundary for C̄ as seen in
Fig. 12b. The error bars in Fig. 12b are 1σ standard
deviation of the nonequilibrium response in time (due to
oscillations) around the average of the response.

(a)

0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

(b)

FIG. 12. (a) One-point observable C(t) and OTOC F (t),
both defined at a single site, for different system sizes N for
integrable TFIM at h/J = 0.5; (b) A system-size dependent
temporal cutoff is applied to C(t) and F (t) for a time inter-
val of t = N resulting in C̄ and F̄ with respect to control
parameter h/J .

(a) (b)

FIG. 13. (a) The differences between rescaled observables
with two different temporal cutoffs, parametric 2α/vq and
fixed α for different α values (see legend). (b) The difference
between the rescaled observables with two different fixed tem-
poral cutoffs.

Appendix D: Comparison between fixed and
parametric temporal cutoffs in the open-boundary

In this section, we plot the difference between rescaled
observable values with different choices of temporal cut-
offs: (i) fixed α and parametric 2α/vq (ii) two fixed cut-
offs in integrable TFIM. Even though these are clearly
distinct temporal cutoffs, the differences are bounded for
all h/J values in the dynamically-ordered regime and
more importantly the differences steadily decrease as we
approach the crossover. Fig. 13a demonstrates the differ-
ences between rescaled observable values generated with
two types of temporal cutoffs for different α values. They
are exactly zero in the vicinity of the crossover. This
is likely because two types of temporal cutoffs converge
to each other as we approach the crossover boundary.
Fig. 13b shows the difference between rescaled observ-
able values for two fixed temporal cutoffs. In Fig. 6 in
the main text, these differences seem to be the largest.
Here we explicitly plot the difference and show that it
steadily decreases as we approach the crossover bound-
ary.
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FIG. 14. (a-b) Ground state energy gap analysis with respect to system size N to determine the equilibrium QPT. (a) The
critical point is marked as h∞c = 2.463 in thermodynamic limit via scaling analysis. (b) Energy gap ∆E closes as we approach
the QPT boundary. The scaling exponent is ∆E = N−1. (c) Binder cumulant U for different system sizes ranging between
N = 24− 96, all crossing at hc = 2.477± 0.001.

(a) (b)

FIG. 15. (a) The decay rate fΦ,2 and (b) the angular fre-
quency ω of the fit function for the dynamics of nonintegrable
TFIM at ∆/J = −1.

Appendix E: Equilibrium QPT boundary for the
nonintegrable TFIM

In this section, we present the equilibrium phase tran-
sition boundary via both an analysis of ground state en-
ergy gap and Binder ratio for the nonintegrable TFIM
with ∆/J = −1. Figs. 14a-14b shows the determination
of the QPT via energy gap analysis. We find that the
equilibrium transition happens at hc ∼ 2.463 and the
scaling exponent of the energy gap closing is δ ∼ −1.
Further, we compute the Binder cumulant in Fig. 14c,

U =
3

2

(
1− 1

3

〈
S4
z

〉
〈S2
z 〉

2

)
, (E1)

where Sz =
∑N
i σ

z
i , the total magnetization operator.

This method marks the QPT as h∞c = 2.477±0.001. The
equilibrium transition boundaries determined by these
two different methods are very close.

Appendix F: Error bar calculations

The error bars in Figs. 6b, 6c and 10c are calculated
via error propagation and in Figs. 2, 8a and 10a, they

are 1σ error bars computed via the confidence intervals
of the fittings. C0 is fixed parameter in Eq. (7). In the
case where one uses γ1 parameter in the rescaling expres-
sion instead of C(t∗) data, the free parameter γ1 brings
an uncertainty of ∆γ1 that can be computed via the con-
fidence intervals of the fitting. Based on the data points,
one can have an uncertainty from tL too: ∆t denotes this
uncertainty which is calculated as the difference between
tL and the available data point. Hence, we can calculate
the propagation of error as,

E2 =

(
∂OP

∂t

)2

(∆t)2 +

(
∂OP

∂γ1

)2

(∆γ1)2, (F1)

where OP stands for rescaled observable, or in other
words the dynamical OP-like quantity. Note that if one
uses the rescaling method (i) for nonintegrable TFIM,
additional terms should be added to the expression. The
terms in the expression above reads

∂OP

∂γ1
= −C(t)1/t

t
γ
−1/t−1
1 .

∂OP

∂t
= −t−2

(
C(t)

γ1

)1/t

log

(
C(t)

γ1

)
.

Appendix G: The rest of the fit parameters of the
nonintegrable TFIM

In this appendix section, we plot the decay rate fΦ,2

and angular frequency ω with respect to h/J based on the
fit function utilized for the nonintegrable TFIM. Fig. 15
shows these fit parameters. Interestingly, both plots dip
around h/J ∼ 2.41. Whether these parameters could
signal crossover physics is a question for future research.
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