

1 **Variable-Capacity Operations with Modular Transits for Shared-Use Corridors**

2 **Xiaowei Shi**

3 Department of Civil and Environmental Engineering
4 University of South Florida, Tampa, Florida, 33620
5 Email: xiaoweishi@mail.usf.edu

6 **Zhiwei Chen**

7 Department of Civil and Environmental Engineering
8 University of South Florida, Tampa, Florida, 33620
9 Email: zhiweic@mail.usf.edu

10 **Mingyang Pei**

11 Department of Civil and Transportation Engineering
12 South China University of Technology
13 381 Wushan Street, Guangzhou 510641, China
14 Email: ratherthan@foxmail.com

15 **Xiaopeng Li**

16 Department of Civil and Environmental Engineering
17 University of South Florida, Tampa, Florida, 33620
18 Email: xiaopengli@usf.edu

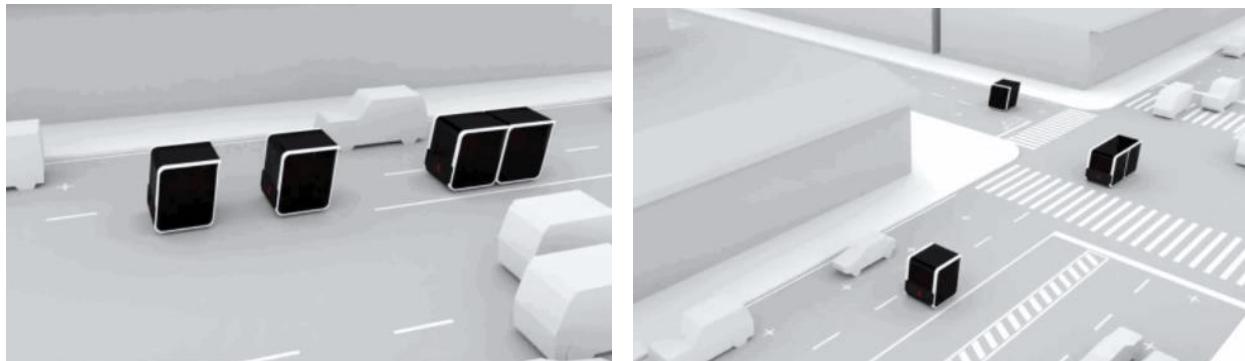
19 Word Count: 5,347 words + 6 tables = 6,847 words

20 *Submitted [07/30/2019]*

1 **ABSTRACT**

2 Since passenger demand in urban transit systems is asymmetrically distributed across different periods in a
3 day and different geographic locations across the cities, the tradeoff between vehicle operating cost and
4 service quality has been a persistent problem in transit operational design. The emerging modular vehicle
5 technology offers us a new perspective to solve this problem. Based on this concept, we propose a variable-
6 capacity operation approach with modular transits for shared-use corridors, in which both dispatch headway
7 and vehicle capacity are decision variables. This problem is rigorously formulated as a mixed integer linear
8 programming model that aims to minimize the overall system cost, including passenger waiting time cost
9 and vehicle operating cost. Because the proposed model is linear, the state-of-the-art commercial solvers
10 (e.g. Gurobi) can be used to obtain the optimal solution of the investigated problem. With numerical
11 experiments, we demonstrate the feasibility of the mathematical model, verify the effectiveness of the
12 proposed model in reducing overall system cost in transit systems, as well as the robustness of the proposed
13 model with different parameter settings.

14 **Keywords:** Transit, Modular Vehicle, Variable-Capacity Operation, Shared-Use Corridors

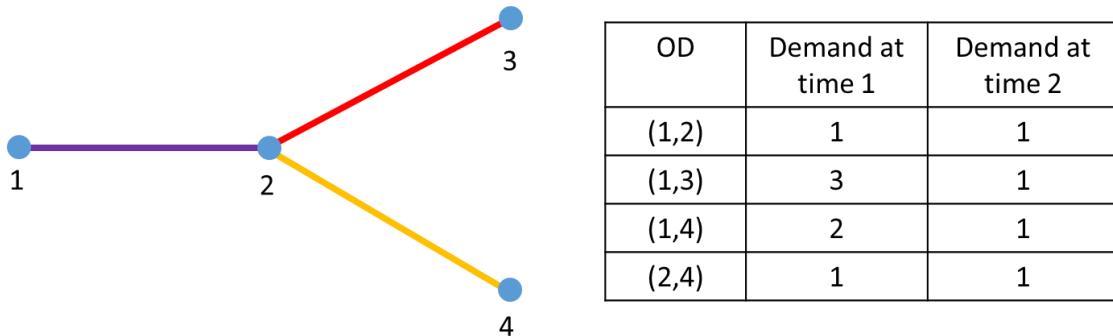

15

1 INTRODUCTION

2 A characteristic in many urban transit (UT) networks is that several routes share an overlapping
 3 section, also known as shared-use corridors. Because of the limited resources and safety considerations in
 4 UT systems, transit vehicles are dispatched at discrete time points separated with a minimum dispatch
 5 headway while passengers arrive at each station continuously. As a result, vehicles are usually overcrowded
 6 in shared-use corridors (with high demand) during peak hours and relatively empty in non-overlapping
 7 segments (with low demand) during off-peak hours. Furthermore, it is almost inevitable for passengers to
 8 wait at transfer stations for boarding another vehicle due to the synchronization issue between different
 9 routes. These issues result in a substantial increase in the vehicle operational cost (e.g. energy cost) and
 10 passenger waiting cost in many UT systems (1).

11 This paper is interested in investigating an innovative solution to the aforementioned issues with
 12 the emerging modular vehicle (MV) technology. MVs (see Figure 1), currently being developed and tested
 13 by several for-profit organizations such as **NEXT** (2), Ohmio LIFT (3), feature a flexible adjustment of
 14 vehicle capacity through dynamically assembling multiple MVs into one or splitting one into multiple. With
 15 the MV technology, vehicles that are operating separately on different routes can be concatenated together
 16 into one longer vehicle on the shared-use corridor. When reaching a transfer station, the combined vehicle
 17 can be detached into multiple shorter ones, each of which heads to the destination of a route in the non-
 18 overlapping segment. This seemingly simple operation paradigm can introduce substantial benefits for UT
 19 systems with overlapping routes. Specifically, the operational cost can be reduced due to its sub-additive
 20 nature (4) and a lower possibility of moving empty vehicle units in non-overlapping segments. Also, the
 21 passenger waiting cost may be reduced because of the larger transportation capacity in the shared-use
 22 corridor and possibly more frequent dispatches in non-overlapping segments. Further, the MV technology
 23 also allows en-route transfer in the future. **Specifically, passengers heading to different destinations can be**
 24 **assigned to modular units that will ultimately take them to their final destinations.** This en-route transfer
 25 operation could release passengers from the additional waiting time and inconvenience caused by
 26 transferring.

27



28
 29 **Figure 1 MV concept proposed by NEXT (2). Vehicles in black represent MVs while others are conventional**
 30 **vehicles with a fixed capacity. The number of modular units in a MV is adjusted according to the number of**
 31 **passengers onboard. MVs with more passengers contain more units (e.g., 2 in the figure) while those with**
 32 **fewer passengers consist of fewer units (e.g., 1 in the figure).**

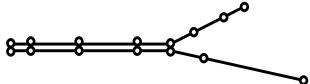
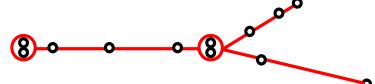
33

34 To better understand the potential benefits of MV-based operation paradigm, let us consider a
 35 simple illustrative example as shown in Figure 2. There are two routes in the network, with one of them
 36 traveling through stations 1, 2, 3 named by route 1 and the other stations 1, 2, 4 named by route 2. The
 37 distance between each two linked stations is 1. Let the dispatch cost of a vehicle with l modular units be
 38 $10l^{0.7}$ and the unit-time passenger waiting cost be 2. Note that here the dispatch cost of a vehicle is assumed
 39 to be a concave function over the number of modular units in it to reflect the economics of scale in urban
 40 mass transportation; this assumption has been applied in various studies (4, 5). Suppose that in the exiting

1 practice, only vehicles with six units can be dispatched. Then the optimal solution is to dispatch vehicles
 2 with 6 units on both route 1 and 2 at time 2, resulting in a passenger waiting cost of 14 and a vehicle dispatch
 3 cost of 140. Yet, if the proposed operation paradigm is introduced, a solution with two dispatches can be
 4 found. At time 1, dispatch a vehicle with 6 units to travel from stations 1 to 2 and then it splits into two
 5 vehicles with 3 units running from stations 2 to 3 and from stations 2 to 4, respectively. At time 2, dispatch
 6 a vehicle with 3 units to travel from stations 1 to 2 and then it splits into a vehicle with 1 unit running from
 7 stations 2 to 3 and another vehicle with 2 units from stations 2 to 4. This solution produces a passenger
 8 waiting cost of 0 and a vehicle dispatch cost of 126. Therefore, the proposed MV-based operation paradigm
 9 can reduce both the passenger waiting cost and vehicle dispatch cost in this case.
 10

11
 12 Figure 2 An illustrative example
 13

14 In light of these potential benefits, this paper focuses on designing operational plans for UT systems
 15 with the variable capacity design and shared-use corridor such that the total cost in the systems can be
 16 minimized. The operational decisions in the investigated problem include the time and number of modular
 17 units for each dispatch. The contributions of this paper are twofold. First, we propose an innovative MV-
 18 based operation paradigm for UT systems with shared-use corridor and formulate the operational decision
 19 problem as a rigorous mathematical programming model. The model is linear in its nature and therefore
 20 can be solved to optimality with state-of-the-art commercial solvers, e.g. Gurobi. Second, we conduct a
 21 case study based on real-world passenger demand data collected from Pinellas Suncoast Transit Authority
 22 (PSTA), the public transit provider for Pinellas County, FL. Results demonstrate the feasibility of the
 23 mathematical model, verify the advantage of the MV-based operation paradigm, and shed other interesting
 24 managerial insights. Overall, this paper provides for UT operators valuable insights on future integration
 25 of MVs into conventional transit services and offers a numerical method for designing optimal operational
 26 plans for this integrated system.



27 The remainder of this paper is organized as follows. Section 2 provides a brief review of related
 28 studies. Section 3 formally introduces the investigated problem. In Section 4, a mixed integer linear
 29 programming formulation of the investigated problem is presented, which allows the solution approach of
 30 commercial solvers. Section 5 presents results from the case study. Finally, Section 6 briefly summarizes
 31 the paper and discusses future research directions.
 32

33 LITERATURE REVIEW

35 Shared-use corridor is a common feature in many UT networks in areas with high passenger
 36 demand. In the operation, because the dispatched vehicle will share not only the corridors but also the
 37 dispatch headway, the crowded situation will inevitably happen even when vehicles are dispatched
 38 extremely frequently (6). To solve this problem, a plenty of research has been conducted based on adjusting
 39 timetable and dispatch plan (7–15). Though excellent works have been done in these studies, the
 40 improvement of the proposed solutions still are limited. One possible reason is the current operation mode
 41 restricts the further development of the shared-use corridor systems. However, to the best of the research

team's knowledge, few of existing studies have considered the innovative operation mode proposed in this study. MV operation is an innovative concept that is rapidly developed in recent years. The outstanding performance of this technology has already been approved by several research in UT systems (1, 16). Following these studies, we aims to propose a new operation mode that can further extend this emerging technology to the UT system with overlapping routes. TABLE 1 compares the model for the proposed operation mode with the recent related studies in terms of characteristics and solution approaches.

TABLE 1 Comparison between existing models and our model

	Existing models	Existing MV models	Our model
Structure			
Objective function	Transfer cost, operating cost, passenger waiting time	Operating cost, passenger waiting time	Operating cost, passenger waiting time
Decision Variable	Timetable, dwelling time and speed profile	Timetable and vehicle types	Timetable, vehicle types and vehicle concatenated and detached operation process
Model	Linear, nonlinear and simulation-based	Linear and simulation-based	Linear
Vehicle type	Fixed capacity vehicle	MV	MV
Overlapping route operation	Considered	No	Considered
Solution approaches	Optimization, heuristic algorithms and simulation techniques as state in TABLE 2.	Optimization, simulation techniques	Optimization
Publication	(5–14)	Chen et al.(1); Guo et al. (16)	-

Existing studies have revealed the difficulty in handling the real-world transit scheduling problem due to its large problem scale and complicated formulation structure (15). Three types of approach have been proposed to tackle this problem, including optimization method, heuristic algorithms, and simulation techniques. TABLE 2 summarizes these three approaches in the recent literature. It can be observed that optimization methods and heuristics algorithms are the most widely adopted solution methods for the transit scheduling problem (7, 12, 17–20). Optimization methods aim to obtain the exact optimal or near optimal solutions while the heuristic algorithms usually will be stuck in local optimum. Thus, if the computation resources are available, the priority should be given to optimization methods. As a result, comprehensively taking into account several kinds of factors (e.g. resources occupancy, performance and computation time), this study focuses on developing an optimization method for the investigated problem.

TABLE 2 Summary of previous studies on timetable algorithms

Solution methods	Classifications	References
------------------	-----------------	------------

	Existing commercial solvers	CPLEX GAMS Gurobi	Sun et al., 2014 (21) Niu et al., 2015 (7); Yang et al., 2016(17) Chen et al., 2019 (1)
Optimization methods		Branch and bound	Albrecht, 2009 (18)
	Customized algorithms	Branch and cut Branch and price	Barrena et al., 2014 (12) Lin and Kwan, 2016 (19)
		Lagrangian decomposition	Zhou and Teng, 2016
	Tabu search		Paquette et al., 2013(22); Kirchler and Wolfner Calvo, 2013(23); Detti et al., 2017(24)
	Simulated annealing		Reinhardt et al., 2013(25); Braekers et al. 2014(26)
Heuristics algorithms	Neighborhood search		Braekers and Kovacs, 2016(27); Masmoudi et al., 2016(28); Detti et al., 2017(24); Molenbruch et al., 2017(29)
	Genetic algorithms		Núñez et al., 2014(30); Muñoz-Carpintero et al., 2015(31)
	Hybrid algorithms		Molenbruch et al., 2017(29); Pimenta et al., 2017(32); Lim et al., 2017(33); Schönberger, 2017(34)
Simulation techniques			Adamski and Turnau (1988) (35); Yang et al. (2016) (36)

1

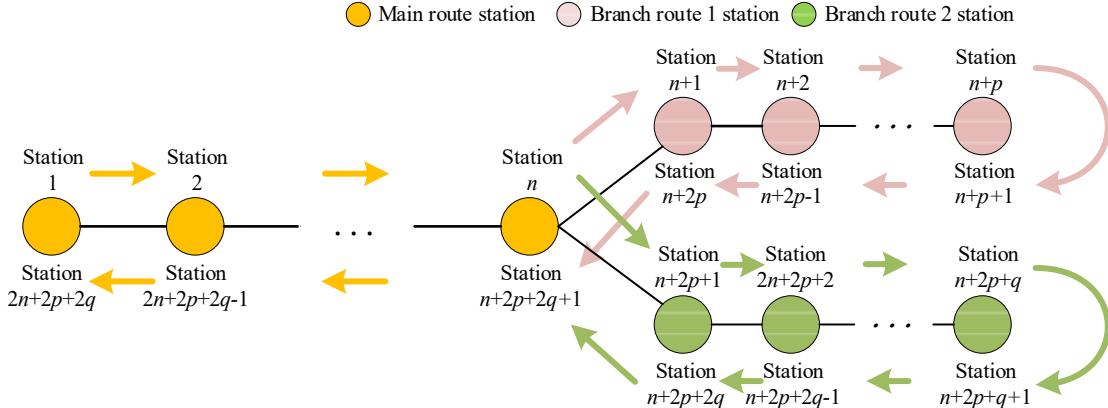
2 PROBLEM DESCRIPTION

3 For the convenience of the readers, the key notation used throughout the paper is summarized in
4 TABLE 3.

5 TABLE 3 Notation

Parameters

\mathcal{J}_1	Set of main route stations from station 1 to n . $\mathcal{J}_1 = \{1, 2, \dots, n\}$
\mathcal{J}_2	Set of branch route 1 stations. $\mathcal{J}_2 = \{n + 1, n + 2, \dots, n + 2p\}$
\mathcal{J}_3	Set of branch route 2 stations. $\mathcal{J}_3 = \{n + 2p + 1, n + 2p + 2, \dots, n + 2p + 2q\}$
\mathcal{J}_4	Set of main route stations from direction n to 1. $\mathcal{J}_4 = \{n + 2p + 2q + 1, \dots, 2n + 2p + 2q\}$
\mathcal{J}	Set of stations. $\mathcal{J} = \{\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4\} = \{1, 2, \dots, 2n + 2p + 2q\}$
\mathcal{J}_i^+	Set of stations behind of station i . $\mathcal{J}_i^+ = \{i + 1, i + 2, \dots, I\}$ $i \in \mathcal{J} \setminus \{I\}$
\mathcal{J}_i^-	Set of stations in front of station i . $\mathcal{J}_i^- = \{1, 2, \dots, i - 1\}$ $i \in \mathcal{J} \setminus \{1\}$
\mathcal{T}	Set of time intervals. $\mathcal{T} = \{1, 2, \dots, T\}$
\mathcal{L}	Set of units of vehicle. $\mathcal{L} = \{1, 2, \dots, L\}$
δ	Length of one time interval.
$p_{ijt'}$	Number of passengers arriving at station i at time interval $[t' - 1, t']$ destined to station j . $\forall i \in \mathcal{J}, j \in \mathcal{J}_i^+, t' \in \mathcal{T}$
C	Capacity of one single unit.
H	Minimum headway.
e_l	General dispatch cost of a vehicle with l modular unites. $l \in \mathcal{L}$
w	Coefficient to convert the waiting time to waiting cost.


Decision variables

y_{lt}	=1, if a vehicle dispatched at time t with l units. =0, otherwise. $l \in \mathcal{L}, t \in \mathcal{T}$
r_{lt}	=1, if a vehicle dispatched at time t goes to branch route 1 with l units. =0, otherwise. $l \in \mathcal{L}, t \in \mathcal{T}$
o_{lt}	=1, if a vehicle dispatched at time t goes to branch route 2 with l units. =0, otherwise. $l \in \mathcal{L}, t \in \mathcal{T}$

u_{lt}	=1, if a vehicle dispatched at time t leaves station $n + 2p + 2q + 1$ with l units. =0, otherwise. $l \in \mathcal{L}, t \in \mathcal{T}$
c_{it}	Capacity for vehicle that dispatches at time t arrives at station i
$b_{ijt't}$	Boarding passengers at station i destined to station j arrived at time t' board vehicle dispatched at time t
$z_{ijt't}$	Waiting passengers at station i destined to station j arrived at time t' when vehicle dispatched at time t coming.

1 We consider a UT system consisting of two bi-directional routes with an overlapping segment and
2 two non-overlapping segments, as shown in Figure 3. **We name the overlapping segment as the main route**
3 **and the non-overlapping segments branch route 1 and branch route 2, respectively.** The number of stations
4 on the main route, branch route 1 and branch route 2 are n , p , and q , respectively. Note that because this
5 paper considers both directions of each route, we assume that there are two stations corresponding to
6 opposite directions at the same physical station. Therefore, the set of stations of the main routes from
7 direction 1 to n and that from direction n to 1 are denoted as $\mathcal{J}_1 := [1, 2, \dots, n]$ and $\mathcal{J}_4 := [n + 2p + 2q +$
8 $1, \dots, 2n + 2p + 2q]$, respectively. Likewise, the set of stations on branch route 1 is denoted as $\mathcal{J}_2 :=$
9 $\{n + 1, n + 2, \dots, n + p\} \cup \{n + p + 1, \dots, n + 2p\}$ and the set of stations on branch route 2 is denoted as
10 $\mathcal{J}_3 := \{n + 2p + 1, n + 2p + 2, \dots, n + 2p + q\} \cup \{n + 2p + q + 1, \dots, 2n + 2p + 2q\}$. Thus, the set of
11 stations in the UT systems can be defined as $\mathcal{J} := \mathcal{J}_1 \cup \mathcal{J}_2 \cup \mathcal{J}_3 \cup \mathcal{J}_4$, indexed as $i, j \in \mathcal{J}$. Further, we denote
12 the set of downstream and upstream stations of station i as $\mathcal{J}_i^+ := \{i + 1, i + 2, \dots, I\}, \forall i \in \mathcal{J} \setminus \{I\}$ and $\mathcal{J}_i^- :=$
13 $\{1, 2, \dots, i - 1\}, \forall i \in \mathcal{J} \setminus \{1\}$, respectively, where $I := 2n + 2p + 2q$ is the number of stations in the UT
14 system.

15

16
17 Figure 3 The investigated UT system

18 The operational horizon is divided into T intervals with an equal length of δ by a set of discrete
19 time points $\mathcal{T} := \{1, 2, \dots, T\}$. During the operational horizon, passengers arrive at each station continuously
20 and we denote the number of passengers arriving at station i at time interval $[t' - 1, t']$ destined to station
21 j as $p_{ijt'}$, $\forall i \in \mathcal{J}, j \in \mathcal{J}_i^+, t' \in \mathcal{T}$. For the convenience of the notation, define $p_{ijo} = 0, \forall i \in \mathcal{J}, j \in \mathcal{J}_i^+$. To
22 serve these passengers, vehicles will be dispatched to serve the passengers with a minimum headway H .
23 The number of modular units in each vehicle can be selected from a set of available units $\mathcal{L} := [1, 2, \dots, L]$,
24 indexed as $l \in \mathcal{L}$, where L is the maximum number of units in a vehicle. The capacity of a vehicle with l
25 modular units are lC , with C being the capacity of a single modular unit. In the proposed MV-based
26 operation paradigm, each dispatched vehicle starts its journey at station $1 \in \mathcal{J}$ and detaches into two
27 vehicles at station $n \in \mathcal{J}$. Afterwards, one of the detached vehicles commences a round trip starting from
28 station $n \in \mathcal{J}$ and visits all stations in branch route 1 (i.e. stations in \mathcal{J}_2) sequentially. Likewise, the other

1 vehicle commences a round trip starting from station $n \in \mathcal{J}$ and visits all stations in branch route 2 (i.e.
 2 stations in \mathcal{J}_3) sequentially. When these two detached vehicles come back to station n , they will be
 3 concatenated together as one vehicle and then heads back to station $1 \in \mathcal{J}$.

4 The purpose of this paper is to find an optimal operation plan (including the time and number of
 5 modular units for each dispatch) for the investigated UT system such that the system cost can be minimized.
 6 Following previous studies (e.g. (1, 37)), this study considers two cost components for the investigated UT
 7 systems. First, we consider the general cost spent on dispatching vehicles, which can include energy cost,
 8 driver cost, crew salary, and so on. We denote the general dispatch cost of a vehicle with l modular units
 9 as $e_l, \forall l \in \mathcal{L}$. The other cost component we consider is the passenger waiting cost, a measure commonly
 10 adopted to evaluate the service quality of UT systems. To this end, we introduce a coefficient w to convert
 11 the waiting time to waiting cost.

12 Finally, to facilitate the model formulation, we introduce the following assumptions in the
 13 investigated problem. These assumptions have been used in other studies on operational design for UT
 14 systems.

15 **Assumption 1.** First, we assume that oversaturated situation is not permitted at each station $i \in \mathcal{J}$. That is,
 16 all passengers waiting at a station can board the first vehicle after the arrival (7, 8). Interested readers can
 17 refer to (38, 39) for transit operation research under oversaturated situation, which will shed insights into
 18 adapting the proposed model to address the case where oversaturated traffic is present. Additionally, there
 19 are also plenty of routes with unsaturated passenger demand at each station in the real world, at least during
 20 the off-peak hours if not the entire day. Hence, the unsaturated study proposed here remains important.

21 **Assumption 2.** Further, we assume a constant dwelling time at stations and running time between two
 22 consecutive stations for all dispatches (21).

23 **Assumption 3.** Finally, we assume that the vehicle stock is always sufficient at station 1 and station $n \in \mathcal{J}$.
 24 This way, there are always vehicles with any feasible numbers of modular units available for dispatch (1,
 25 5, 9). While the fleet planning problem is relevant, but it belongs to the planning stage and can be separated
 26 from the operational problem. Thus, we do not pose a fleet size constraint on the system operation. Note
 27 that after solving the optimization model, the optimal fleet size, i.e., the number of modular units, can be
 28 determined.

30 MATHEMATICAL MODEL

31 To mathematically formulate the investigated problem, we consider three groups of constraints in
 32 the system, i.e., constraints on vehicle operation, constraints on passenger behavior, and constraints on the
 33 feasible range of decision variables, as follows.

34 Original formulation

35 Constraints on vehicle operation

36 Different from conventional transit operations, vehicles concatenation and detachment may happen
 37 at station 1 and n in the proposed UT system. To formulate this operation process in this system, we first
 38 introduce the following decision variables:
 39

40 y_{lt} : Equals 1 if a vehicle with l units is dispatched at time t at station 1; otherwise 0.

41 r_{lt} : Equals 1 if a vehicle dispatched at time t goes to branch route 1 with l units; otherwise 0.

42 o_{lt} : Equals 1 if a vehicle dispatched at time t goes to branch route 2 with l units; otherwise 0.

43 u_{lt} : Equals 1 if a vehicle dispatched at time t will travel back to station 1 with l units; otherwise 0.

44 With these, we formulate the vehicle operation constraints as follows.

$$\sum_{l \in \mathcal{L}} \sum_{t=t'}^{t'+H} y_{lt} \leq 1 \quad \forall t' \in \{1, 2, \dots, T - H\} \quad (1)$$

$$\sum_{l \in \mathcal{L}} lr_{lt} + \sum_{l \in \mathcal{L}} lo_{lt} = \sum_{l \in \mathcal{L}} ly_{lt} \quad \forall t \in \mathcal{T} \quad (2)$$

$$c_{(2n+2p+2q+1)t} = \sum_{l \in \mathcal{L}} lu_{lt}C \quad \forall t \in \mathcal{T} \quad (3)$$

$$\sum_{l \in \mathcal{L}} u_{lt} \leq 1 \quad \forall t \in \mathcal{T} \quad (4)$$

$$\sum_{l \in \mathcal{L}} r_{lt} \leq 1 \quad \forall t \in \mathcal{T} \quad (5)$$

$$\sum_{l \in \mathcal{L}} o_{lt} \leq 1 \quad \forall t \in \mathcal{T} \quad (6)$$

1 Due to the limited units in stock and safety considerations in UT system, Constraint (1) suggests
2 that the vehicle dispatch headway between two consecutive vehicles cannot be less than the minimum
3 dispatch headway (i.e. H). Constraint (2) and (3) are related to the vehicle concatenation and detachment
4 operation. Constraint (2) is the conservation requirement on modular units; i.e., the sum of modular units
5 assigned to each branch route must equal that in the vehicle running on the main route. Since the cycle time
6 for transit system usually is not short, to improve the robustness of the proposed UT system, Constraint (3)
7 allows the vehicle to adjust its capacity at station $n + 2p + 2q + 1$ after the vehicles from branch route
8 concatenate with each other. Constraint (4) - (6) ensures that only one vehicle can be dispatched at an
9 arbitrary time interval.

10 Constraints on passenger behavior

11 This set of constraints considers the passenger behavior in the proposed UT system. To formulate
12 this passenger behavior in this system, we introduce the following decision variables.

13 $b_{ijt't}$: Number of passengers arriving during interval $[t' - 1, t']$ at station i destined to station j
14 that board the vehicle dispatched at time t .

15 $z_{ijt't}$: Number of passengers arriving during interval $[t' - 1, t']$ at station i destined to station j
16 that are waiting when vehicle dispatched at time t is arriving at station i .

17 c_{it} : Capacity of vehicle dispatched at time t arrives at station i .

18 With these three variables, we formulate the passenger behavior as follows.

$$b_{ijt't} = \sum_{l \in \mathcal{L}} z_{ijt't} y_{lt} \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (7)$$

$$z_{ijt't} = p_{ijt'} - \sum_{t''=1}^{t-1} b_{ijt't''} \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (8)$$

$$\sum_{t \geq t' \in \mathcal{T}} b_{ijt't} = p_{ijt'} \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \in \mathcal{T} \quad (9)$$

$$c_{(i+1)t} = c_{it} - \sum_{j \in \mathcal{J}_i^+, t' \leq t \in \mathcal{T}, t \in \mathcal{T}} b_{ijt't} + \sum_{j \in \mathcal{J}_i^-, t' \leq t \in \mathcal{T}, t \in \mathcal{T}} b_{j�t't} \quad \forall i \in \mathcal{I} \setminus \{1, n, n + 2p, n + 2p + 2q\} \quad (10)$$

$$c_{1t} = \sum_{l \in \mathcal{L}} ly_{lt}C \quad \forall t \in \mathcal{T} \quad (11)$$

$$c_{(n+1)t} = \sum_{l \in \mathcal{L}} lr_{lt}C - \sum_{i \in \mathcal{J}_1, j \in \mathcal{J}_2, t' \leq t \in \mathcal{T}} b_{ijt't} \quad \forall t \in \mathcal{T} \quad (12)$$

$$c_{(n+2p+1)t} = \sum_{l \in \mathcal{L}} lo_{lt}C - \sum_{i \in \mathcal{J}_1, j \in \mathcal{J}_3, t' \leq t \in \mathcal{T}} b_{ijt't} \quad \forall t \in \mathcal{T} \quad (13)$$

$$c_{(n+2p+2q+1)t} = \sum_{l \in \mathcal{L}} l u_{lt} c - \sum_{i \in \mathcal{I}_2, j \in \mathcal{I}_4, t' \leq t \in \mathcal{T}} b_{ijt'} t - \sum_{i \in \mathcal{I}_3, j \in \mathcal{I}_4, t' \leq t \in \mathcal{T}} b_{ijt'} t \quad \forall t \in \mathcal{T} \quad (14)$$

Since oversaturated situation is not permitted in this paper, Constraint (7) is imposed to ensure that all waiting passengers can board the first arriving vehicle. Constraint (8) presents the relationship between passenger demand (i.e. $p_{ijt'}$), waiting passengers (i.e. $z_{ijt'} t$) and boarded passengers (i.e. $\sum_{t''=1}^{t-1} b_{ijt'} t''$). Constraint (9) suggests that all passengers waiting at all stations must be served at the end of the operational horizon.

Constraints (10) - (14) are related to passenger boarding and alighting behavior. Constraint (10) indicates that the available capacity for a vehicle at station $i + 1$ equals to the available capacity for this vehicle at station i minus the boarding passengers at station i and plus the alighting passengers at station $i + 1$. Due to vehicle concatenation or detachment, this available capacity calculation method is not suitable for all the stations. Therefore, for these specific stations, station $1, n, n + 2p, n + 2p + 2q$, we propose constraints (11) - (14) to calculate the available capacity.

Variable domains

The following constraints define feasible region of each decision variable.

$$y_{lt}, r_{lt}, o_{lt}, u_{lt} \in \mathbb{B} \quad \forall l \in \mathcal{L}, t \in \mathcal{T} \quad (15)$$

$$c_{it}, b_{ijt'} t, z_{ijt'} t \in \mathbb{N} \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (16)$$

Constraint (15) is a set of domain constraints that are related to vehicle operation states. Since the left capacity of the vehicle, boarding passengers and waiting passengers should always be nonnegative integer number, here we propose constraint (16) to achieve it.

Objective function

$$\min_{y_{lt}, r_{lt}, o_{lt}, u_{lt}, c_{it}, b_{ijt'} t, z_{ijt'} t} w \sum_{i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T}} \delta b_{ijt'} t (t - t') + \sum_{l \in \mathcal{L}, t \in \mathcal{T}} y_{lt} e_l \quad (17)$$

The objective function aims to minimize the total passenger waiting time and operation consumption cost.

Revised formulation

It can be seen, all the proposed constraints except for Constraint (7) and objective function are linear in the original formulation. The right-hand side in Constraint (7) is a bi-linear term involving the multiplication of two decision variables. To simplify the model formulation and thus enable the solution approach of existing commercial solvers for integer linear programs (e.g. Gurobi), here we linearize Constraint (7). Specifically, we replace Constraint (7) with the following Constraints (18) - (21).

$$b_{ijt'} t \leq M \sum_{l \in \mathcal{L}} y_{lt} \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (18)$$

$$b_{ijt'} t \leq z_{ijt'} t \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (19)$$

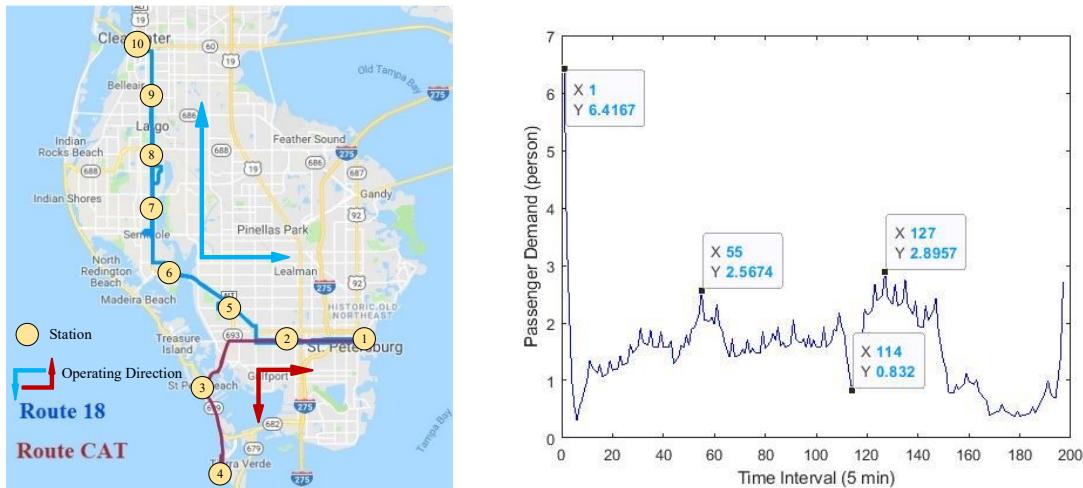
$$b_{ijt'} t \geq z_{ijt'} t - M \left(1 - \sum_{l \in \mathcal{L}} y_{lt} \right) \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (20)$$

$$b_{ijt'} t \geq 0 \quad \forall i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T} \quad (21)$$

where M is a given large positive number.

Therefore, the investigated problem can be formulated as a mixed integer linear programming model as follows.

$$\min_{y_{lt}, r_{lt}, o_{lt}, u_{lt}, c_{it}, b_{ijt'} t, z_{ijt'} t} w \sum_{i \in \mathcal{I}, j > i \in \mathcal{I}, t' \leq t \in \mathcal{T}, t \in \mathcal{T}} \delta b_{ijt'} t (t - t') + \sum_{l \in \mathcal{L}, t \in \mathcal{T}} y_{lt} e_l \quad (22)$$


$$\text{s. t. (1) - (6), (8) - (14), (15) - (16), (18) - (21)}$$

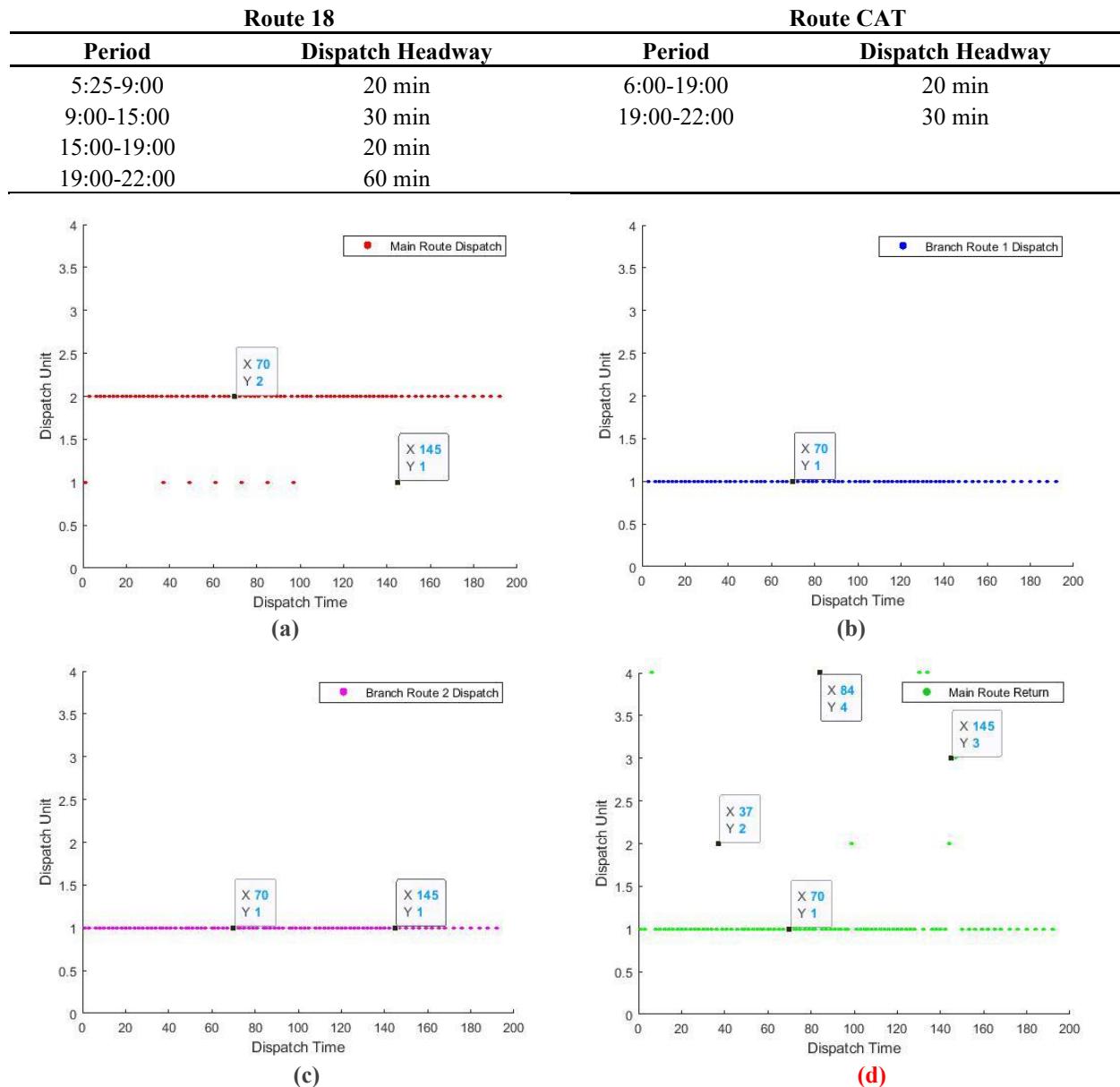
1 NUMERICAL EXAMPLES

2 This section presents a set of numerical experiments with real-world travel data to assess the
 3 feasibility of the proposed model and the effectiveness of the proposed MV operational paradigm. The data
 4 were collected from Pinellas Suncoast Transit Authority (PSTA), the public transit provider for Pinellas
 5 County, FL. In this section, we use the state-of-the-art solver, Gurobi, to solve the proposed model. The
 6 numerical tests were performed on a PC with Windows 7 platform, Intel(R) Core(TM) i7-2130 with 2.7
 7 GHz CPU and 8.00 GB memory. The code was implemented in MATLAB 2017.

9 Experiment description and parameter settings

10 To test the effectiveness of the proposed variable-capacity operation approach, two routes from the
 11 PSTA system, Route 18 and Route CAT, are selected for the numerical experiments. Route 18 and route
 12 CAT are both bi-directional UT routes and they share an overlapping segment, i.e., the segment between
 13 station 1 and 2 in Figure 4 (a). Each of these two routes have hundreds of stations but in practice, PSTA
 14 operators only consider several stations with intensive demand when designing their timetable. Thus,
 15 following their practice, in this study we also use these stations for the operational design. Specifically, 8
 16 and 4 stations are selected for Route 18 and CAT, respectively. The passenger demand data used in the
 17 experiments are obtained from the historic passenger count data from PSTA during weekdays, **and the**
 18 **average passenger demand over all stations along the investigated routes during one weekday is exhibited**
 19 **in Figure 4 (b)**. It can be observed that the passenger demand distinctly fluctuates across different periods,
 20 which renders these two lines an **ideal** testbed for the proposed operation paradigm. In addition, default
 21 values of all other parameters in the numerical experiments are summarized in TABLE 4.

22
 23 Figure 4 (a) Route 18 and CAT in PSTA (b) **Time-varying passenger demand of Route 18 and Route CAT (X**
 24 **represents the time interval index, and Y represents the corresponding passenger demand)**


25
 26
 27 TABLE 4 Default parameter settings

Parameter	Value	Note
\mathcal{L}	[1,2,3,4]	
C	40 pax/unit	Information from <i>Overview of Transit Vehicles</i> (40).
H	10 min	Minimum headway from PSTA existing operation schedule.
w	0.28 \$/min	Based on average household income in Tampa in 2019 https://www.deptofnumbers.com
e_l	$12 \$/\text{mile} * l * d$	d denotes the distance. For convenience, here we assume that the operating cost is a linear function of the number of dispatched units.
δ	5 min	

1 Computational results

2 With the aforementioned input data, we used Gurobi to solve the proposed model. After running
 3 for nearly 2 hrs, Gurobi produced an optimal operation schedule for the proposed operation mode as shown
 4 in Figure 5 (a)-(d). To evaluate the proposed operation schedule, here we set the real-world operation of
 5 these two routes as a benchmark, as shown in TABLE 5 (<https://www.psta.net/>). In this experiment, we use
 6 the number of served passengers, the number of dispatched units, passenger Average Waiting Time (AWT),
 7 passenger Waiting Time Cost (WTC), Vehicle Operating Cost (VOC) and Overall System Cost (OSC) as
 8 the criteria to evaluate the performance of the operation mode. The final results are shown in TABLE 6.
 9

10 TABLE 5 Existing dispatch headway of Route 18 and Route CAT on weekdays

15 Figure 5 Optimal operation schedule for Route 18 and Route CAT

16 TABLE 6 Comparison between real-world operation and proposed operation mode

Served Passengers	Dispatched Units	AWT (min)	WTC (\$)	VOC (\$)	OSC (\$)

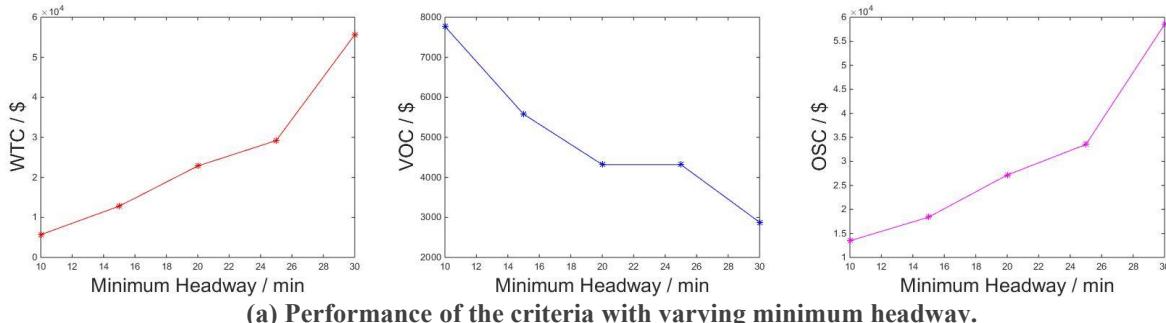

Route 18	3,193	32	7.66	6,930	2,304	9,235
Route CAT	3,434	45	7.42	7,220	1,620	8,841
Routes 18 and CAT	6,627	77	7.54	14,150	3,924	18,076
Proposed Mode	6,627	86	3.03	5,689	7,722	13,411

Figure 5 (a) - (d) present the operation schedule for Route 18 and Route CAT with the proposed operation mode. Since there are plenty of dispatches during the operational horizon, for illustrative purpose, we randomly select two dispatches, i.e. vehicles dispatched at time interval 70 and 145, as instances to explain the operation schedule. It can be observed in Figure 5 (a) that vehicle dispatched at time interval 70 consists of 2 units at Station 1. At Station 2, this vehicle will detach to two vehicles and one goes to Route 18 with 1 unit and the other goes to Route CAT with 1 unit (see Figure 5 (b) and (c)). After these two vehicles accomplish their own operation tasks in these branch routes, they return to Station 2 again. Based on the passenger demand on the main route in this specific scenario, the new formed vehicle is comprised of only one unit as shown in Figure 5 (d). For the vehicle dispatched at time interval 145, it leaves Station 1 with only 1 unit due to the low passenger demand, as can be seen from Figure 5 (a). At Station 2, this vehicle goes to Route CAT and no vehicle is sent to Route 18 due to sparse passenger demand on this route, as shown in Figure 5 (b) and (c). When this vehicle returns to Station 2, according to Figure 5 (d), 2 units are added to the vehicle to serve the high passenger demand on the main route. Therefore, a new formed vehicle with 3 units travels back to Station 1 through the main route. Moreover, since we allow the new formed vehicle to change its number of units at Station 2 according to the passenger demand on the main route, the proposed operation mode performs flexible capability adjustment at this station as well, which can be observed from the different kinds of dispatches as shown in Figure 5 (d).

Then we move to the comparison between real-world operation and the proposed operation mode. As can be seen from TABLE 6, both the existing operation mode and proposed variable-capacity mode can successfully serve all the passenger demand. Note that for the existing mode, the values of the served passengers, dispatched units, WTC, VOC, and OSC are the summations of the corresponding values for Route 18 and Route CAT. The AWT for the existing mode is the average AWT for Route 18 and Route CAT. Compared with the existing operation, the proposed operation dispatches 11.68% more units, which naturally results in an increase of VOC. However, the more frequent dispatches with variable capacity produces a substantial decrease in AWT (by 59.81%) and accordingly WTC (by 59.80%). As a result, the proposed operation mode is able to reduce OSC in the investigated system by 25.81%. These results demonstrate the effectiveness of the proposed operation mode.

Sensitivity analysis

To further explore whether the proposed model can still achieve the expected performance in other transit systems when the system parameters may not be the same as the default values, this section carries out **sensitivity analysis** on several input parameters. In each experiment, only one operation-correlated parameter is varied and the other parameters keep the same as default value. To evaluate the performance of different experiments, again, here we use WTC, VOC and overall system cost as the criteria. The performance of all experiments are plotted in Figure 6.

(a) Performance of the criteria with varying minimum headway.

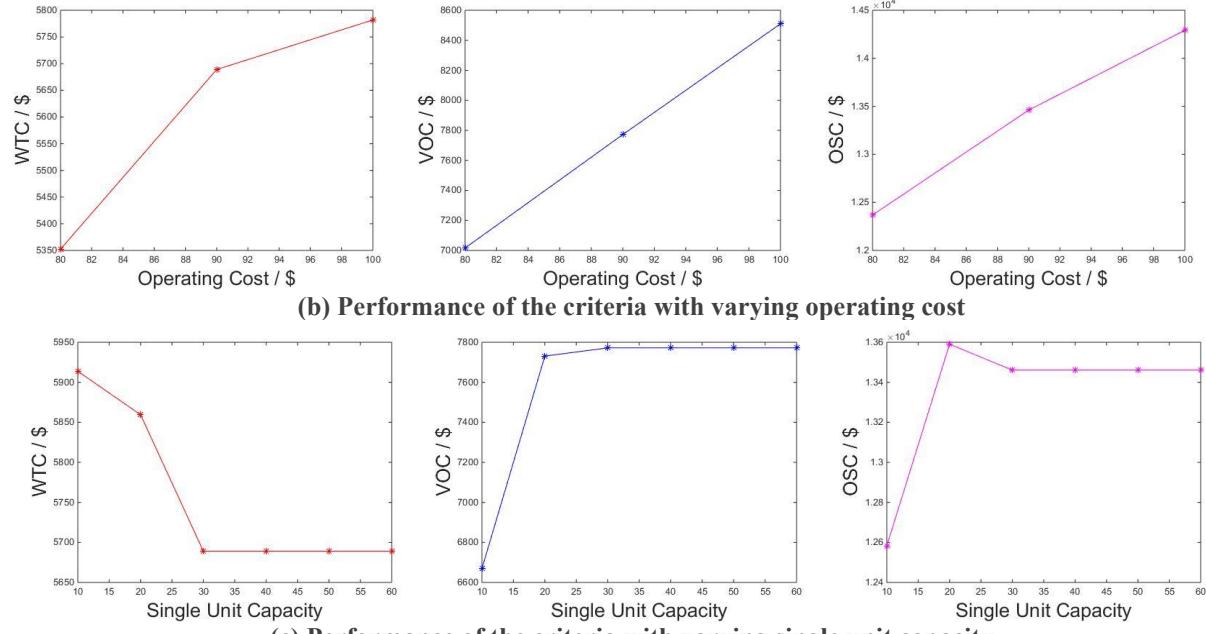


Figure 6 Sensitivity analysis of the criteria with different input parameters

Figure 6 (a) shows that as the minimum headway increases, both WTC and OSC will increase as well, but VOC will keep a decreasing trend. This is because the longer the minimum headway is, the lower the dispatch frequency will be, which intuitively will increase the WTC and OSC. On the other hand, the VOC will obviously be reduced because of the lower dispatch frequency. However, the VOC will be unchanged finally even the minimum headway keep increasing because that all passenger demands must be satisfied.

Figure 6 (b) indicates that as the operating cost per unit per mile increases, WTC, VOC and OSC all appear an increasing trend. The operating cost per unit per mile is positively correlated with VOC, so it is easy to understand why the curve of VOC and OSC goes upward as shown in Figure 6 (b). The reason for the increasing WTC cannot be identified without an analysis of the model structure. In the formulated model, the objective is to minimize the OSC, i.e., the summation of WTC and VOC. Once the operating cost per unit per mile increases, to minimize the OSC, our model will make a tradeoff between WTC and VOC. If VOC of dispatching a vehicle is higher than WTC, our model prefers to cancel this dispatch to achieve the minimum OSC. Thus, increasing the operating cost per unit per mile will make WTC increases.

Figure 6 (c) describes the trend of WTC, VOC and OSC as the single unit capacity increases. It can be observed that VOC and OSC experience an increasing trend while the WTC curve a decreasing trend at the beginning. Yet, when the single unit capacity is larger than 30, all three curves remain relatively stable regardless of the change in the single unit capacity. This trend is easy to understand since the passenger demand during a specific dispatch period is fixed, when the current dispatched vehicle already can accommodate all the waiting passengers, further increasing the capacity of the dispatched vehicle can affect neither WTC nor VOC. The decreasing trend of WTC and increasing trend of VOC at the beginning also can be explained by the tradeoff of our model.

In conclusion, the experiments show that the proposed model can effectively work with different input parameters, suggesting the relatively strong robustness of the proposed model.

CONCLUSIONS

This paper proposes a new solution to address the asymmetric demand in UT systems with the emerging MV technology. To solve the joint design problem of dispatch headway and vehicle capacity for UT systems with shared-use corridors, a new mathematical model is proposed. This model is essentially a mixed integer linear programming model that can be solved by state-of-the-art commercial solvers (e.g.,

1 Gurobi). Numerical experiments based on real-world data collected from Route 18 and Route CAT in the
 2 PSTA system are conducted to evaluate the effectiveness of the proposed model. Experiment results
 3 indicate that the proposed operation method can not only effectively reduce the overall system cost but also
 4 decrease the passenger average waiting time. To further explore the robustness of the proposed model with
 5 different input parameters, **sensitivity analysis** is performed, indicating that the proposed model presents
 6 relatively stable performance with different parameter settings.

7 Since the proposed model in this paper is a linear programming problem, we simply used a
 8 commercial solver for integer programming (i.e. Gurobi) to solve the investigated problem. Future works
 9 can focus on designing customized algorithms to further improve the solution efficiency. Besides, **in the**
 10 **current model setting, one MV must wait for another to make a concatenation. In the future study, whether**
 11 **a MV should wait for another to concatenate can be included as a decision variable in the optimization**
 12 **model. Additionally, this study demonstrates potential benefits of the MV-based operation on a shared-use**
 13 **corridor. The emerging on-demand transit services (e.g., microtransits) may receive similar benefits should**
 14 **they incorporate a flexible capacity adjustment in response to the fluctuating passenger demand in their**
 15 **operational design. The proposed model can serve as a starting point for developing more sophisticated**
 16 **models to analyze the application of MVs in on-demand transit service, which will be an interesting future**
 17 **research direction. Finally, this paper especially focuses on studying the modular transit operation with**
 18 **predicted passenger demand, and stochastic passenger demand can be taken into consideration in the future**
 19 **studies.**

21 ACKNOWLEDGMENTS

22 Comments and data provided by Mr. Labutka and Mrs. Borchers from Pinellas Suncoast Transit
 23 Authority and specialists from ITE annual meeting are gratefully appreciated.

24 AUTHOR CONTRIBUTIONS STATEMENT

25 The authors made the following contributions to the paper: study conception and design: Xiaowei
 26 Shi, Zhiwei Chen, Mingyang Pei and Xiaopeng Li; data collection: Mingyang Pei, Zhiwei Chen; analysis
 27 and interpretation of results: Xiaowei Shi; draft manuscript preparation: Xiaowei Shi, Zhiwei Chen,
 28 Mingyang Pei. All authors reviewed the results and approved the final version of the manuscript.

32 REFERENCES

1. Chen, Z., X. Li, and X. Zhou. Operational Design for Shuttle Systems with Modular Vehicles
 2 under Oversaturated Traffic: Discrete Modeling Method. *Transportation Research Part B: Methodological*, Vol. 122, No. June, 2019, pp. 1–19. <https://doi.org/10.1016/j.trb.2019.01.015>.
2. Next Future Transportation Incorporation [online]. Available from: <http://www.next-future-mobility.com/>.
3. Ohmio [online]. Available from: <https://ohmio.com/>.
4. Daganzo, C. F. *Logistics Systems Analysis*. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.
5. Chen, Z., X. Li, and X. Zhou. Operational Design for Shuttle Systems with Modular Vehicles
 6 under Oversaturated Traffic: Continuous Modeling Method. *Transportation Research Part B: Methodological*, 2019. <https://doi.org/10.1016/J.TRB.2019.05.018>.
6. Han, A. F., and N. H. M. Wilson. The Allocation of Buses in Heavily Utilized Networks with
 7 Overlapping Routes. *Transportation Research Part B: Methodological*, Vol. 16, No. 3, 1982, pp.
 8 221–232. [https://doi.org/10.1016/0191-2615\(82\)90025-X](https://doi.org/10.1016/0191-2615(82)90025-X).
7. Niu, H., X. Zhou, and R. Gao. Train Scheduling for Minimizing Passenger Waiting Time with
 8 Time-Dependent Demand and Skip-Stop Patterns: Nonlinear Integer Programming Models with
 9 Linear Constraints. *Transportation Research Part B: Methodological*, Vol. 76, 2015, pp. 117–135.
<https://doi.org/10.1016/j.trb.2015.03.004>.

1 8. Yin, J., L. Yang, T. Tang, Z. Gao, and B. Ran. Dynamic Passenger Demand Oriented Metro Train
 2 Scheduling with Energy-Efficiency and Waiting Time Minimization: Mixed-Integer Linear
 3 Programming Approaches. *Transportation Research Part B: Methodological*, Vol. 97, 2017, pp.
 4 182–213. <https://doi.org/10.1016/j.trb.2017.01.001>.

5 9. Newell, G. F. Dispatching Policies for a Transportation Route. *Transportation Science*, Vol. 5, No.
 6 1, 1971, pp. 91–105. <https://doi.org/10.1287/trsc.5.1.91>.

7 10. Guo, X., H. Sun, J. Wu, J. Jin, J. Zhou, and Z. Gao. Multiperiod-Based Timetable Optimization for
 8 Metro Transit Networks. *Transportation Research Part B: Methodological*, Vol. 96, 2017, pp. 46–
 9 67. <https://doi.org/10.1016/j.trb.2016.11.005>.

10 11. Liu, T., and A. (Avi) Ceder. Deficit Function Related to Public Transport: 50 Year Retrospective,
 11 New Developments, and Prospects. *Transportation Research Part B: Methodological*, Vol. 100,
 12 2017, pp. 1–19. <https://doi.org/10.1016/j.trb.2017.01.015>.

13 12. Barrena, E., D. Canca, L. C. Coelho, and G. Laporte. Single-Line Rail Rapid Transit Timetabling
 14 under Dynamic Passenger Demand. *Transportation Research Part B: Methodological*, Vol. 70,
 15 2014, pp. 134–150. <https://doi.org/10.1016/j.trb.2014.08.013>.

16 13. Hassold, S., and A. A. Ceder. Public Transport Vehicle Scheduling Featuring Multiple Vehicle
 17 Types. *Transportation Research Part B: Methodological*, Vol. 67, 2014, pp. 129–143.
 18 <https://doi.org/10.1016/j.trb.2014.04.009>.

19 14. Cordone, R., and F. Redaelli. Optimizing the Demand Captured by a Railway System with a
 20 Regular Timetable. *Transportation Research Part B: Methodological*, Vol. 45, No. 2, 2011, pp.
 21 430–446. <https://doi.org/10.1016/j.trb.2010.09.001>.

22 15. Xu, Y., B. Jia, A. Ghiasi, and X. Li. Train Routing and Timetabling Problem for Heterogeneous
 23 Train Traffic with Switchable Scheduling Rules. *Transportation Research Part C: Emerging
 24 Technologies*, Vol. 84, 2017, pp. 196–218. <https://doi.org/10.1016/j.trc.2017.08.010>.

25 16. Guo, Q. W., J. Y. J. Chow, and P. Schonfeld. Stochastic Dynamic Switching in Fixed and Flexible
 26 Transit Services as Market Entry-Exit Real Options. *Transportation Research Part C: Emerging
 27 Technologies*, Vol. 94, 2018, pp. 288–306. <https://doi.org/10.1016/j.trc.2017.08.008>.

28 17. Yang, L., J. Qi, S. Li, and Y. Gao. Collaborative Optimization for Train Scheduling and Train
 29 Stop Planning on High-Speed Railways. *Omega (United Kingdom)*, Vol. 64, 2016, pp. 57–76.
 30 <https://doi.org/10.1016/j.omega.2015.11.003>.

31 18. Albrecht, T. Automated Timetable Design for Demand-Oriented Service on Suburban Railways.
 32 *Public Transport*, Vol. 1, No. 1, 2009, pp. 5–20. <https://doi.org/10.1007/s12469-008-0003-4>.

33 19. Lin, Z., and R. S. K. Kwan. A Branch-and-Price Approach for Solving the Train Unit Scheduling
 34 Problem. *Transportation Research Part B: Methodological*, Vol. 94, 2016, pp. 97–120.
 35 <https://doi.org/10.1016/J.TRB.2016.09.007>.

36 20. Zhou, W., and H. Teng. Simultaneous Passenger Train Routing and Timetabling Using an
 37 Efficient Train-Based Lagrangian Relaxation Decomposition. *Transportation Research Part B:
 38 Methodological*, Vol. 94, 2016, pp. 409–439. <https://doi.org/10.1016/J.TRB.2016.10.010>.

39 21. Sun, L., J. G. Jin, D. H. Lee, K. W. Axhausen, and A. Erath. Demand-Driven Timetable Design
 40 for Metro Services. *Transportation Research Part C: Emerging Technologies*, Vol. 46, 2014, pp.
 41 284–299. <https://doi.org/10.1016/j.trc.2014.06.003>.

42 22. Paquette, J., J. F. Cordeau, G. Laporte, and M. M. B. Pascoal. Combining Multicriteria Analysis
 43 and Tabu Search for Dial-a-Ride Problems. *Transportation Research Part B: Methodological*,
 44 Vol. 52, 2013, pp. 1–16. <https://doi.org/10.1016/j.trb.2013.02.007>.

45 23. Kirchler, D., and R. Wolfler Calvo. A Granular Tabu Search Algorithm for the Dial-a-Ride
 46 Problem. *Transportation Research Part B: Methodological*, Vol. 56, 2013, pp. 120–135.
 47 <https://doi.org/10.1016/J.TRB.2013.07.014>.

48 24. Detti, P., F. Papalini, G. Zabalo, and M. De Lara. A Multi-Depot Dial-a-Ride Problem with
 49 Heterogeneous Vehicles and Compatibility Constraints in Healthcare \$. *Omega*, Vol. 70, 2017, pp.
 50 1–14. <https://doi.org/10.1016/j.omega.2016.08.008>.

1 25. Reinhardt, L. B., T. Clausen, and D. Pisinger. Synchronized Dial-a-Ride Transportation of
2 Disabled Passengers at Airports. *European Journal of Operational Research*, Vol. 225, No. 1,
3 2013, pp. 106–117. <https://doi.org/10.1016/J.EJOR.2012.09.008>.

4 26. Braekers, K., A. Caris, and G. K. Janssens. Exact and Meta-Heuristic Approach for a General
5 Heterogeneous Dial-a-Ride Problem with Multiple Depots. *Transportation Research Part B:
6 Methodological*, Vol. 67, 2014, pp. 166–186. <https://doi.org/10.1016/J.TRB.2014.05.007>.

7 27. Braekers, K., and A. A. Kovacs. A Multi-Period Dial-a-Ride Problem with Driver Consistency.
8 *Transportation Research Part B: Methodological*, Vol. 94, 2016, pp. 355–377.
9 <https://doi.org/10.1016/J.TRB.2016.09.010>.

10 28. Masmoudi, M. A., M. Hosny, K. Braekers, and A. Dammak. Three Effective Metaheuristics to
11 Solve the Multi-Depot Multi-Trip Heterogeneous Dial-a-Ride Problem. *Transportation Research
12 Part E: Logistics and Transportation Review*, Vol. 96, 2016, pp. 60–80.
13 <https://doi.org/10.1016/j.tre.2016.10.002>.

14 29. Molenbruch, Y., K. Braekers, and A. Caris. Operational Effects of Service Level Variations for the
15 Dial-a-Ride Problem. *Central European Journal of Operations Research*, Vol. 25, No. 1, 2017,
16 pp. 71–90. <https://doi.org/10.1007/s10100-015-0422-7>.

17 30. Núñez, A., C. E. Cortés, D. Sáez, B. De Schutter, and M. Gendreau. Multiobjective Model
18 Predictive Control for Dynamic Pickup and Delivery Problems. *Control Engineering Practice*,
19 Vol. 32, 2014, pp. 73–86. <https://doi.org/10.1016/J.CONENGPRAC.2014.07.004>.

20 31. Muñoz-Carpintero, D., D. Sáez, C. E. Cortés, and A. Núñez. A Methodology Based on
21 Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid
22 Predictive Control Approach. *Transportation Science*, Vol. 49, No. 2, 2015, pp. 239–253.
23 <https://doi.org/10.1287/trsc.2014.0569>.

24 32. Pimenta, V., A. Quilliot, H. Toussaint, and D. Vigo. Models and Algorithms for Reliability-
25 Oriented Dial-a-Ride with Autonomous Electric Vehicles. *European Journal of Operational
26 Research*, Vol. 257, No. 2, 2017, pp. 601–613. <https://doi.org/10.1016/J.EJOR.2016.07.037>.

27 33. Lim, A., Z. Zhang, and H. Qin. Pickup and Delivery Service with Manpower Planning in Hong
28 Kong Public Hospitals. *Transportation Science*, Vol. 51, No. 2, 2017, pp. 688–705.
29 <https://doi.org/10.1287/trsc.2015.0611>.

30 34. Schönberger, J. Scheduling Constraints in Dial-a-Ride Problems with Transfers: A Metaheuristic
31 Approach Incorporating a Cross-Route Scheduling Procedure with Postponement Opportunities.
32 *Public Transport*, Vol. 9, No. 1–2, 2017, pp. 243–272. <https://doi.org/10.1007/s12469-016-0139-6>.

34 35. Adamski, A., and A. Turnau. Simulation Support Tool for Real-Time Dispatching Control in
35 Public Transport. *Transportation Research Part A: Policy and Practice*, Vol. 32, No. 2, 1998, pp.
36 73–87. [https://doi.org/10.1016/S0965-8564\(97\)00019-0](https://doi.org/10.1016/S0965-8564(97)00019-0).

37 36. Yang, X., A. Chen, B. Ning, and T. Tang. A Stochastic Model for the Integrated Optimization on
38 Metro Timetable and Speed Profile with Uncertain Train Mass. *Transportation Research Part B:
39 Methodological*, Vol. 91, 2016, pp. 424–445. <https://doi.org/10.1016/J.TRB.2016.06.006>.

40 37. Niu, H., and X. Zhou. Optimizing Urban Rail Timetable under Time-Dependent Demand and
41 Oversaturated Conditions. *Transportation Research Part C: Emerging Technologies*, Vol. 36,
42 2013, pp. 212–230. <https://doi.org/10.1016/j.trc.2013.08.016>.

43 38. Shang, P., R. Li, Z. Liu, L. Yang, and Y. Wang. Equity-Oriented Skip-Stopping Schedule
44 Optimization in an Oversaturated Urban Rail Transit Network. *Transportation Research Part C:
45 Emerging Technologies*, Vol. 89, No. February, 2018, pp. 321–343.
46 <https://doi.org/10.1016/j.trc.2018.02.016>.

47 39. Zhao, X., Z. Hou, J. Chen, Y. Zhang, and J. Sun. Urban Rail Transit Scheduling under Time-
48 Varying Passenger Demand. *Journal of Advanced Transportation*, Vol. 2018, 2018, pp. 1–9.
49 <https://doi.org/10.1155/2018/7285148>.

50 40. Overview of Transit Vehicles [online]. Available from: <https://www.codot.gov>.

51