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ABSTRACT

Recent measurement studies show that commercial mmWave 5G
can indeed offer ultra-high bandwidth (up to 2 Gbps), capable of sup-
porting bandwidth-intensive applications such as ultra-HD (UHD)
4K/8K and volumetric video streaming on mobile devices. However,
mmWave 5G also exhibits highly variable throughput performance
and incurs frequent handoffs (e.g., between 5G and 4G), due to its
directional nature, signal blockage and other environmental fac-
tors, especially when the device is mobile. All these issues make
it difficult for applications to achieve high Quality of Experience
(QOE). In this paper, we advance several new mechanisms to tackle
the challenges facing UHD video streaming applications over 5G
networks, thereby making them 5G-aware. We argue for the need to
employ machine learning (ML) for effective throughput prediction
to aid applications in intelligent bitrate adaptation. Furthermore,
we advocate adaptive content bursting, and dynamic radio (band)
switching to allow the 5G radio network to fully utilize the avail-
able radio resources under good channel/beam conditions, whereas
dynamically switched radio channels/bands (e.g., from 5G high-
band to low-band, or 5G to 4G) to maintain session connectivity
and ensure a minimal bitrate. We conduct initial evaluation using
real-world 5G throughput measurement traces. Our results show
these mechanisms can help minimize, if not completely eliminate,
video stalls, despite wildly varying 5G throughput.
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1 INTRODUCTION

With its diverse new radio bands ranging from low-band and mid-
band to high-band mmWave radio, 5G is touted as a key enabler
for a variety of new applications that requires ultra-low latency
and/or ultra-high bandwidth. These applications include 4K/8K
video streaming, interactive 360° and volumetric video streaming,
cloud gaming, Augmented Reality/Virtual Reality (AR/VR), among
others. With a theoretical throughput up to 20 Gbps which is far
beyond 4G [21], mmWave 5G is particularly suited to support these
breeds of bandwidth-intensive video applications. On the other hand,
based on theoretical modeling, simulation studies and limited field
testing, it was widely believed that mmWave radio has limited
ranges and requires line-of-sight (LoS) for good performance. This
is because mmWave signals are highly directional and sensitive to
various environmental factors.

We have conducted a first “in-the-wild” extensive measurement
study [16] of commercial 5G services, focusing in particular on Ver-
izon’s mmWave 5G in several US cities. While confirming some of
known or suspected issues associated with mmWave radio, our mea-
surement study captures the “in-the-wild” performance of today’s
commercially deployed 5G services, and reveals new challenges
and opportunities facing applications that are enabled by mmWave
5G. Through extensive and repeated experiments under various
settings, we find that i) mmWave 5G can indeed offer ultra-high
bandwidth, up to 2 Gbps under good channel conditions and clear
LoS; and ii) even without direct LoS, mmWave 5G can often deliver
throughput higher than 400 Mbps, due to reflections from surround-
ing buildings and other objects. This is in contrast to 4G LTE/LTE
Advanced which has a theoretical peak bandwidth of 150/300 Mbps.
On the other hand, iii) mmWave 5G throughput is highly variable
over time and can fluctuate wildly from 100s Mbps to 1 or 2 Gbps
with slight changes in orientations and locations or due to blockage
from moving objects in the surroundings; and worse, iv) mmWave
5G throughput may at times drops to near zero (5G “dead zones”)
and incur frequent handoffs (e.g., between 5G and 4G), especially
under mobility (see §2 and Fig. 1 for an example). Our findings
not only demonstrate the exciting new opportunities offered by
(mmWave) 5G for enabling new bandwidth-intensive applications,
but also reveal new challenges for these applications.

The paper is centered around the following fundamental prob-
lem: How can we endow bandwidth-intensive applications with the
abilities to fully take advantage of the (potential) ultra-high band-
width offered by (mmWave) 5G while at the same time overcome its
highly variable throughput performance so as to deliver good and
consistent quality-of-experience (QoE) to mobile users? To address
this fundamental challenge, we use mobile volumetric video stream-
ing as a case study. Such application requires bandwidth as high
as 750 Mbps. Using mmWave 5G throughput traces, we first con-
duct trace-driven simulations (see §3) to answer the following two
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basic questions: 1) are (volumetric) video streaming applications
equipped with existing adaptive bitrate (ABR) algorithms ready to
take advantage of 5G’s high throughput? and 2) how does the wild
throughput fluctuations affect the application performance from
the perspective of QoE (measured in terms of video stall times)?
Our investigation reveals that wild fluctuations in 5G throughput
often lead to quick buffer depletion under poor channel conditions,
especially when entering 5G “dead zones,” thereby resulting in a
large stall time that has a significant impact on user’s QoE. Our
findings illustrate that new mechanisms are needed to endow ap-
plications with the abilities to fully utilize the potential of 5G while
overcoming its challenges. We refer to applications endowed with
such capabilities as being 5G-aware.

We advocate new mechanisms to make applications 5G-aware
(§4). We first note that ABR algorithms used in existing video
streaming applications rely mostly on in-situ bandwidth “prob-
ing” for throughput estimation. The highly variable throughput
performance of mmWave 5G, coupled with frequent handoffs, make
such methods ineffectual [18]. We argue that a) more sophisticated
machine learning (ML) methods for effective throughput prediction'
that can account for diverse environmental factors and be able to
forecast 5G throughput over a longer time horizon are needed to
aid applications in intelligent bitrate adaptation. Furthermore, we
advocate b) adaptive content bursting — namely, employing (signifi-
cantly) larger buffers (both at the client side as well as within the
5G radio network) — to allow the 5G radio network to fully utilize
the available radio resources under good channel/beam conditions
to burst as much content as needed to the client so as to prepare for
and bridge over the 5G bandwidth troughs and dead zones. In addi-
tion, ¢) employing dynamic radio (band) switching (e.g., between
5G and 4G or between 5G high, mid, and low bands) is crucial in
maintaining session connectivity and ensuring minimal bitrates.

We conduct trace-driven experiments (§5) to evaluate the effi-
cacy of these strategies in overcoming the wild fluctuations of 5G
throughput performance. Our experimental results demonstrate
that these strategies can consistently deliver high video quality
(compared to the theoretical optimal performance), and in partic-
ular, minimize, and even completely eliminate video stall times,
despite 5G dead zones.

In summary, we identify both the opportunities and challenges
offered by emerging 5G services, and call for new mechanisms to
make applications 5G-aware — namely, enabling applications to take
full advantages of opportunities offered by 5G while overcoming
the new challenges it poses. Our study clearly constitutes only an
initial step towards this direction — much more work needs to be
done by the research community to make applications 5G-aware.

2 CHARACTERISTICS OF 5G NETWORKS

5G-New Radio (5G-NR) supports a very wide range of frequency
spectrum, right from the sub-6 GHz range (which includes both low-
and mid- band 5G) to millimeter wave (mmWave) range. Due to the
physical layer characteristics of wireless signal propagation, perfor-
mance characteristics can dramatically vary across these different

In [15] we have demonstrated that it is feasible to predict (nmWave) 5G throughput
using machine learning algorithms with weighted average F1 score of above 0.95. Such
high accuracy is shown to be adequate for video ABR adaptation [28].

Throughput
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Figure 1: 4G and 5G Throughput Traces While Walking,.

bands. For example, 5G services deployed at the mmWave-range
provides ultra-high bandwidth capacity however posses poor sig-
nal propagation characteristics thus leading to poor coverage. On
the other hand, low-band 5G provides superior coverage but has
low-bandwidth capacity. Using Android APIs, our measurement
tool [17] collects the following fields: timestamp, latitude, longi-
tude, tower 1D, mobility mode {i.e., walking, still, driving}, and
active radio type {5G or 4G}. Experiments were conducted using a
Samsung Galaxy S10 device with 5G capability. We refer to two of
our recent measurement studies to understand the characteristics of
5G networks: (1) [16] looked at the network performance of several
commercial 5G carriers in the US including the mmWave-based
5G networks, (2) Lumos5G[15] further conducts detailed impact
factor analysis to understand how different UE-side factors (such
as geolocation, mobility direction, speed, UE-Panel distance, etc.)
impact mmWave 5G performance. In the context of this paper, we
summarize the key findings of these studies.

(1) With a peak downlink throughput of ~2 Gbps, mmWave 5G
clearly shows its ability to provide ultra-high bandwidth. This is crit-
ical for bandwidth-hungry applications such as volumetric video
streaming or real-time ultra-HD video streaming, which otherwise
are not feasible using existing 4G/LTE services. (2) However, due to
mmWave’s signal propagation issues especially under mobility sce-
narios (e.g., driving or walking), mmWave 5G shows much higher
throughput variation. For instance, comparing real-world through-
put traces of 4G and 5G (see Fig. 1), 5G reports a standard deviation
of 579 Mbps compared to 59 Mbps for 4G. Similarly, Due to the
different 5G-NR bands that have implications on the coverage char-
acteristics, 5G’s performance characteristics can be tricky to map
especially in the case of mmWave 5G. For instance, 5G throughput
can suddenly drop to 0 Gbps where there is no mmWave coverage
(referred to as 5G dead zones). In such spots, 4G/LTE might offer
better performance than 5G (see Fig 1). In other words, mmWave
5G shows wild and frequent fluctuations in performance which can
potentially confuse network and application layer logic such as ABR
video streaming potentially leading to under utilization of the channel
bandwidth and resources provided by the carrier. These issues are
inherent characteristics of 5G mmWave due to its physical nature.
Such performance characteristics of commercial 5G coupled with
the different deployment strategies (e.g., NSA v/s SA?) have adverse
implications on application performance that is not well explored
or understood. We use volumetric video streaming application as
a case study to first use real-world 5G traces to illustrate the new
challenges posed by today’s commercial 5G offerings. Secondly, we
also propose new mechanisms that can help overcome them.

%In this paper, we address mmWave’s signal propagation characteristics which will
remain the same regardless of its deployment strategy (NSA or SA).
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3 VIDEO STREAMING PERFORMANCE
UNDER 5G THROUGHPUT

Volumetric videos® differ from regular and 360° videos in that they
are truly 3D, with each frame consisting of a 3D point cloud. During
playback, users wearing a mixed reality (MR) headset can freely
navigate themselves with six degrees of freedom (6 DoF) movement,
gaining an immersive telepresence experience. A volumetric video
can have 350K points per frame played at 30 frames per second
(FPS). Each point takes 9 bytes (3 bytes for RGB color and 6 bytes
for its 3D location). This yields a total of 350Kx30x9%8 = 756 Mbps
when uncompressed. While the 756 Mbps throughput requirement
far exceeds the capacity of existing 4G LTE service, it is well within
the ultra-high bandwidth offered by the commercial mmWave 5G
service. Unfortunately, decoding (compressed) point cloud data re-
quires heavy-weight algorithms such as octree [8, 13, 24] that cannot
be effectively supported by today’s mobile phones at the 30 FPS
frame rate [19]. Thus, streaming uncompressed volumetric videos
to mobile phones is the only practical solution at the moment.

To understand the impact of the large, wild fluctuations of 5G
throughput on existing video streaming applications, we use the
5G trace from Fig. 1* as a representative trace to stream a volumet-
ric video for 500 seconds played at a constant rate of 350K points
per frame (see §5.1 for experiment settings). We measure the per-
formance by total stall time; a stall (rebuffering) occurs for every
missing frame at its playback time till the frame is downloaded
from the server. This results in a total stall time of 90 seconds (18%).

Despite the very high throughput of 5G, this “non-smooth” QoE
to users with frequent stalls is attributed to the sudden and quick
drop in 5G throughput. Also, existing video streaming applications
do not take full-advantage of the extra available throughput (that
can reach as high as 2 Gbps) thus might end up being wasted. This
is indicated in Fig. 2 which shows that the maximum number of
frames at any point in the buffer corresponds to 4.2 secs (i.e., 126
frames) which are not enough to cover long 5G dead zones which
can extend to 20 secs. Only, when the network throughput varies
“smoothly”, client-side buffering would work reasonably well and
help further “smooth out” the effects of short-term throughput
fluctuations, which clearly is not the case for mmWave 5G. This
raises the questions of i) how long the buffer should be to cover 5G
dead zones, and ii) which bitrate quality to request as it affects the
time and bandwidth required to download each frame.

The bitrate is often determined by the estimated throughput.
However, traditional bandwidth estimation approaches which rely
on the short-term past history and use methods like harmonic mean
or other methods (e.g., [11]) are not adequate for 5G throughput due
to its wild and non-smooth variation. Moreover, 3G/4G networks
can rely on location to predict the cellular performance [14, 25],
however mmWave 5G throughput is more complicated as it is
affected by multiple factors and is very sensitive to the surrounding
environment. Hence, traditional location-based prediction models
are insufficient.

3 A sample of a high-quality volumetric video streaming can be found at https://www.
youtube.com/watch?v=feGGKasvamg.

4Throughout this paper, we use mobility traces to study and overcome the impact
of 5G dead zones, on top of 5G throughput variability which occurs for stationary
users. These user mobility scenarios are likely to happen for Autonomous Vehicle
applications and vehicle to everything (V2X) technology.
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This trace-driven simulation points out both the opportunities and
challenges in mmWave 5G, and shows that existing video streaming
applications do not work well over mmWave 5G. Hence, we need
to rethink about the way these applications are built to become
5G-aware. There is a need to come up with novel mechanisms to
effectively utilize the extra high bandwidth offered by 5G whenever
available while at the same time coping with the wild fluctuations
and occasional “dead zones” to improve the user’s QoE.

4 5G-AWARE VIDEO STREAMING

We propose new mechanisms to make bandwidth-intensive appli-
cations 5G-aware so as to take full advantage of 5G networks while
overcoming their new challenges. First, we highlight the need for
new ML throughput prediction mechanisms, then put forth sev-
eral cross-layer mechanisms to effectively utilize the available radio
resources and improve user’s QoE despite 5G’s high throughput
variability and dead zones.

4.1 Need for ML 5G Throughput Prediction

Despite the wild variability of 5G throughput compared to 4G,
our recent study [15] argues, through extensive experiments and
statistical analysis, that by controlling the key user-side (UE) fac-
tors affecting 5G, the throughput can largely be characterized and
can be predictable. These key factors include for example user’s
geolocation, mobility mode, mobility speed, and user’s compass
direction. Then, it proposes Lumos5G — a composable machine
learning framework which considers different combinations of con-
textual and environmental factors, and applies the state-of-the-art
machine learning algorithms for making context-aware 5G through-
put predictions with a higher accuracy over existing traditional
prediction methods. As an example, Fig. 3 shows the distribution (or
spread) of variation seen in 5G throughput traces (aggregated using
40 runs collected over a span of 20 days) along a walking route: the
dark center curve represents the average throughput and shaded
areas represent the 25% to 75% percentile range. From this figure,
we can notice that there are some patches when the throughput is
consistently high, while others the throughput is consistently low.
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Although not shown, we also observe that the throughput charac-
teristics and variation drastically vary when the user is walking in
the opposite direction. This signifies the importance of compass
direction as a key factor in characterizing 5G throughput.

Ideally these ML models can be deployed at 5G base stations,
users can collect the UE key factors, and report them to the 5G
base station to train the ML models. In return, the user receives a
bandwidth prediction map containing 5G dead zones (with a start
position and a length) as well as the current/future throughput
prediction over a longer time horizon for different routes®. With
the ability to predict the near future 5G performance in/around the
current user’s location, video streaming applications can then make
intelligent decisions to download video frames as explained next to
provide exceptional QoE while at the same time adapt smoothly to
5G’s high variation and fluctuations. Additionally, these throughput
prediction models can also be used by cellular networks themselves
for adaptive beam forming, resource allocation, preemptive hand-
offs, and improving network coverage.

4.2 Adaptive Streaming Mechanisms

We put forth several mechanisms to enable applications to fully
take advantage of ultra-high bandwidth afforded by (mmWave) 5G
while also mitigate the impact of high throughput variability due
to fast varying frequency radio bands.

e Adaptive Content Bursting. The goal of this mechanism is two-
fold: 1) to “burst” sufficient amount of application data to the 5G
radio network so that the 5G radio resource control sub-layer can
fully take advantage of available radio resources whenever possible,
e.g., when a clear LoS path or good quality high-frequency channel
is available; and 2) to bridge over 5G low-bandwidth troughs and
“dead zones” by delivering as much data as needed to a user/UE
when the channel conditions are good. Goal 1) requires provisioning
larger buffer at the radio network, and is motivated by the fact that
radio resource allocation and transmission scheduling are often
based on the amount of per-user data in the radio network buffer.
If a high-quality radio channel or LoS beam is available to a UE
but there is little data in the per-user buffer, the 5G radio network
cannot fully take advantage of the ultra-high bandwidth offered by
5G. Ensuring there is always sufficient data in the per-user buffer
via adaptive content bursting will avoid such “lost opportunities”.
Goal 2) entails allocating larger buffer at the UE/client side. Clearly,
for both to work effectively, the ability to predict channel conditions
and (future) 5G throughput, e.g., based on the user orientation,
mobility and environmental factors, with ML techniques, is crucial,
so that the amount of burst data can be dynamically adapted to
balance buffer requirement, QoFE, and radio resource utilization.

e Dynamic Radio Switching. Through our extensive experiments,
we find that in some patches while UE is connected to 5G (but with
poor channel quality), 4G in fact yields a higher throughput (see
Fig. 1). In other times, UE may enter a 5G dead zone while still
under 4G coverage. Hence proactively switching between 5G and
4G based on estimated/predicted channel conditions or through-
put performance will be crucial in maintaining connectivity and
ensuring a minimal bitrate, especially during user mobility. Like-
wise, dynamically switching between diverse radio channels/bands

SSee [15] for more details about the bandwidth prediction maps and ML deployment.
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is also essential in coping with diverse and fast varying channel
characteristics (e.g., bandwidth, bit error rate).

In a nutshell, we believe that combining these new (cross-layer)
mechanisms, coupled with effective ML-based throughput predic-
tion, will be the key to enable a new class of bandwidth-intensive
applications such as volumetric video streaming. Incorporating
these new mechanisms entails re-designing the adaptive bitrate
(ABR) and other algorithms used in existing video streaming appli-
cations so that they can fully utilize the ultra-high bandwidth and
other capabilities afforded by (mmWave) 5G, while also help them
mitigate various PHY-layer challenges posed by mmWave 5G radio
- in other words, making them 5G-aware.

5 EVALUATION

In this section, we conduct trace-driven experiments to demonstrate
the benefits of these mechanisms. In particular, we investigate how
effectively adaptive content bursting will allow the 5G network to
fully take advantage of ultra-high bandwidth when available and
help the application to bridge over 5G bandwidth troughs and dead
zones. We will also use the real-world 5G/4G throughput traces we
have collected to emulate dynamic radio (band) switching (between
5G and 4G) to examine its potential benefits in maintaining session
connectivity and in further enhancing the user’s QoE. These mech-
anisms will be aided by ML-based 5G throughput prediction [15].
We will in particular prioritize video stall times, and compare the re-
sults obtained with the theoretical bounds on the best video quality
achieved without any stalls (see Appendix A.1).

5.1 Experimental Setup

Currently there is no way to do radio(band) switching, hence, we
built our own emulated video player, using the TCP/IP protocol
stack and C++, to fetch video frames from the server to show its ef-
fectiveness using real 5G commercial traces. The client player has a
large playback buffer (virtually unlimited) to ensure our emulation’s
performance metrics are able to reflect the network’s performance
as opposed to the device’s hardware specifications. Using our mea-
surement tool, we have collected 4G and 5G traces simultaneously
3 times every day for more than 20 days using Samsung Galaxy
S10 5G devices while walking in a dense 5G deployment area in
downtown Minneapolis for Verizon’s NSA 5G Service. These traces
share a common behavior as shown in Fig. 3, hence we pick a repre-
sentative 5G & 4G network traces shown in Fig. 1 captured during
our study while the user is walking at a speed of ~ 1.4 m/s, and
replay it using tc [6] to throttle the bandwidth to match the 4G and
5G throughput. We use BBR as TCP congestion control algorithm
developed by Google to reduce the impact of TCP slow start due
to wild fluctuations. In these experiments, we request frames us-
ing constant bitrate® (i.e., all frames are requested with the same
number of points per frame 350K), and we use the stall time (i.e.,
rebuffering duration) as a metric for user’s QoE. We emulate watch-
ing the video using 3 modes: 1) 5G Only: by only using the 5G
throughput trace shown in Fig. 1. 2) Dynamic 5G/4G Switching:
with the bandwidth estimation knowledge, the player proactively
switches between 4G and 5G networks depending on which one
has the higher available bandwidth. 3) Content Bursting + Dynamic

®See Appendix A.2 for variable bitrate quality.
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Figure 4: Buffer Occupancy and Stall Time During a 500 SEC Video Streamed With Quality 350K.

Switching: in addition to the dynamic switching, the video player
also proactively bursts future content as much as possible when
extra high bandwidth is available as estimated by the bandwidth
estimation module to handle the 5G dead zones shown in Fig. 1. We
emulated a 500 seconds video requested at 350K points per frame
for these modes, each experiment was repeated at least 3 times with
minimal differences among runs, hence a representative run from
each mode is shown in Fig. 4 for buffer occupancy and stall time.

5.2 Experimental Results

o Buffer Occupancy and Stall Time. 1) 5G Only mode: Fig. 4a
shows the user experiences a large stall time of around 90 secs (out
of 8-min walk) with 17.92% of the video frames experiencing stalls.
This is due to having a maximum throughput of 200 Mbps in 5G
dead zones which is not enough to receive and play frames of 350K
points which require a total of 350Kx30x9x8 = 756 Mbps. Thus,
the user has to wait till they pass these dead zones and get back
5G connectivity to resume fetching frames. Also, the buffer occu-
pancy never exceeds 126 (i.e., a playback length of 4.2 secs) which
is clearly not enough to cover 5G dead zones which have longer
duration. 2) Dynamic Switching mode: Fig. 4b shows that with the
bandwidth estimation knowledge, switching to 4G shields 5G dead
zones reducing the stall time to 70 secs experienced by 14.04% of
the video frames. This is attributed to 4G’s omnidirectional radio
which helps maintain the basic data connectivity during mobility.
3) Content Bursting + Dynamic Switching mode: Fig. 4c shows when
the client player utilizes the ultra-high bandwidth of 5G to proac-
tively request additional frames from the server, the stall time is
reduced to 21 secs but was not completely eliminated. However,
we can notice that the maximum buffer occupancy increased to 724
frames which helped overcome some 5G dead zones but not all.

o Selecting Appropriate Bitrate. Applying Theorem 1, listed
in Appendix A.1, to the given trace in Fig. 1, we found that re-
questing frames using the video quality at 300K points eliminates
any stalls, while other higher video qualities always result in a stall
time. We repeated the same experiments by streaming the video
using a quality of 300K points per frame with Content Bursting +
Dynamic Switching mode. The stall time was completely eliminated
while maintaining the full frame quality overcoming the throughput
fluctuation and dead zones in the 5G throughput trace. We noticed
that when the video quality increases, the buffer takes more time
to build and consequently gets depleted quickly before/at the dead
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Table 1: Stall Time for Video Playback.

[ Points/Frame [ 300K 350K [ 400K |
[ Required Throughput [ 648 Mbps [ 756 Mbps [ 864 Mbps ]
5G Only 82 sec. 90 sec. 106 sec.
Dynamic 5G/4G Switching | 52 sec. 70 sec. 79 sec.
Content Bursting +
Dynamic Switching 0 sec. 21 sec. 68 sec.
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Figure 5: Radio Time for 4G and 5G During a 500 SEC Video
Streamed With Quality 300K.

zones increasing the stall time even when Content Bursting + Dy-
namic Switching mode is employed. The reason for this behavior
is that requesting a bitrate higher than what can be supported by
the available bandwidth prevents the buffer from building up as it
requires more time to download each frame. Table 1 summarizes
the stall time for the different modes and video qualities.

e Radio Time for 4G & 5G. We use the time spent using each
radio (4G/5G) shown in Fig. 5 as a simplified representation for the
consumed energy during streaming the video using 300K points
per frame. When Dynamic 5G/4G Switching mode is used, 4G is
enabled for a limited time when its throughput is higher than 5G,
and the stall time is minimized to 52 secs and hence 5G radio time
decreased. Using Content Bursting + Dynamic 5G/4G Switching leads
to completely eliminating the stall time, and both radios were ON
for the shortest time.

6 RELATED WORK

Several studies have been conducted on mmWave deployments
from theoretical point of view [7, 9, 22, 23, 29, 31], however, [16]
is the first measurement study on the performance of commercial
5G services by different US carriers. Using 5G traces, the authors
in [18] illustrate why current video streaming ABR algorithms do
not work well with 5G mmWave. One of the main reasons is attrib-
uted to the inaccurate 5G throughput estimation, as was also shown



5G-MeMU’21, August 23, 2021, Virtual Event, USA

by Zou et al. in [32] that better throughput prediction can indeed
improve the video performance in cellular networks. Lumos5G [15]
was the first ML model to predict 5G throughput with high ac-
curacy illustrating the inefficiency of existing 3G/4G throughput
prediction ML-based and data models which can only rely on user
location [14, 25]. These studies further support our argument for
the need to build robust 5G ML throughput prediction models in
video streaming apps as well as the need for new mechanisms to
make them 5G-aware.

Volumetric video streaming is a hot topic which has been recently
investigated. For example [12] proposes a manifest file format for
volumetric video streaming following the DASH standard. Neb-
ula [19] utilizes edge servers to decode the 3D data and generates a
2D video instead. ViVo [10] applies visibility-aware optimizations
to enable real-time streaming. These techniques are complementary
to our work and can be integrated with our proposed strategies.
Other research studies focus on evaluating the QoE performance for
video streaming using simulated 5G traces such as [20, 27]. To the
best of our knowledge, our paper is the first to study the issues in
using commercial mmWave 5G for volumetric video streaming us-
ing real-world 5G throughput traces, and propose new mechanisms
to build 5G-aware applications.

7 DISCUSSION & FUTURE WORK

In this section, we elaborate on future directions for video streaming
applications to further enhance their performance.

o Scalable Video Coding (SVC). Most video players use advanced
video coding (H.264/MPEG-4 AVC) standardized in 2003 [1] which
encodes a video frame into different bitrate versions independently
of each other leading to redundant information. A major drawback
in AVC encoding is that it cannot adapt to the high fluctuations of
5G bandwidth. Thus, another alternative encoding Scalable Video
Coding (SVC) was developed which is an extension to H.264 stan-
dardized in 2007 [26]. In SVC, a frame is encoded in a base layer
(lowest quality), and multiple enhancement layers which can be
used to improve the quality in an incremental way. For each frame,
if the base layer is missing at the playback time, a stall will occur;
if the higher-quality enhancement layers are missing but not the
base layer, the frame will be played at a low quality to avoid stalls;
if all layers are present, the frame will be played at the original
(highest) quality. This resolves the wasted bandwidth problem of
AVC by using layering technique and hence can just download the
additional layers up to the specified quality level. SVC comes at
the cost of decoding overheads at the client, however nowadays
hardware decoders using GPU are available in smart phones.

o Adaptive Bitrate Algorithms (ABR). When the available band-
width changes, instead of prefetching frames with a constant bitrate,
a more judicious decision can be made to decide which quality to
use based on the predicted future bandwidth, its variability, and the
buffer occupancy. Thus, avoid requesting frames with the highest
quality which yields only few frames in the buffer that will be de-
pleted quickly. The goal is to develop an adaptive algorithm which
can avoid stalls while at the same time deliver the highest possible
quality with smooth quality variation instead of frequent changes
from the highest quality to the lowest quality which degrade user’s
QoE (see Appendix A.2 for more details).
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e Multi-Band Aggregation. 5G supports a broad and diverse
range of frequency spectrum. The low-band frequency provides
maximum coverage but limited bandwidth, while high-band pro-
vides very high bandwidth but its signals are highly sensitive and
vulnerable to obstacles thus limiting its coverage. Between both
these extremes lies the mid-band range, which provides higher band-
width capacity than low-band & better coverage than high-band.
Since the debut of commercial 5G deployments, carriers supported a
single class of frequency range. While high-band (mmWave) range
can provide very high bandwidth capacity, its suffers from limited
coverage. Hence, several carriers now consider deploying multiple
classes to leverage multiple frequency bands which is known as
multi-band 5G, enabling carriers to aggregate multiple channels to
achieve higher data rates. In such situations, low-band and mid-
band 5G will allow carriers to provide stable 5G service with wider
coverage, while offering mmWave 5G to support bandwidth-heavy
applications [2, 4, 5]. Multi-band 5G is now also supported by 5G
chip manufacturers who have developed a single-chip which sup-
ports multi-band, e.g., Qualcomm’s Snapdragon X55 5G modem-RF
supports both mmWave and sub-6 GHz 5G new radio [3]. Streaming
uncompressed volumetric videos makes it easier to adopt a flexible,
layered approach for multi-band 5G deployment and video bitrate
adaptation. Low-band and reliable radio channels with good con-
ditions can be used to stream the base layer with the minimum
video quality & bandwidth requirement, while simultaneously mid-
band/high-band 5G are used to stream higher quality enhancement
layers by dynamically adapting to the available network bandwidth
through adjusting the resolution (i.e., increasing or decreasing the
number of points) of an entire (or portions of) 3D video frame.

e Cross-layer Design. Due to the new challenges posed by 5G,
we believe cross-layer mechanisms are required to improve user’s
QOoE such as e.g., dynamic radio resource allocation (see [30] for
discussion), PHY-layer/MAC-Layer/RRC-Layer info passed to the
transport layer so that congestion control (CC) algorithms can
work well. E.g., due to frequent handoffs in mmWave 5G, packet
loss might affect the congestion window (cwnd). If signal strength
improves and if we know it is going to be stable, then we might
want to increase the cwnd sooner than following the CC algorithm
approach which might under-utilize the available bandwidth.

8 CONCLUSION

This paper points out both the opportunities for UHD video stream-
ing applications as well as the challenges they face in mmWave 5G
affecting their performance. We argued for the need to shift the way
we develop applications for 5G to utilize ML throughput prediction,
adaptive content bursting, dynamic radio(band) switching to make
video streaming applications 5G-aware. Using real-world 5G traces,
our results show these mechanisms can improve user’s QoE, despite
wildly varying 5G throughput.
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A APPENDIX

A.1 Theoretical Bounds for Choosing Video
Quality for 5G Throughput

Increasing the video quality (number of points for each frame) leads
to increasing the stall time if the current network conditions can
not support the requested quality as the client’s buffer would not
be able to maintain a threshold number of frames. Thus, selecting
the appropriate quality given the network conditions is crucial as
it impacts the user’s QoE. We attempt to answer this question by
considering an ideal case where we have perfect knowledge of the
available 5G network throughput over a period of time, and derive
theoretical bounds on the best video quality we can achieve without
any stalls.

Suppose we start streaming a video of length T seconds at time
tsrarr- With a start delay of d seconds, the playback begins at t; =
tstarr +d, and ends at t,,g = t1 + T. Let F be the frame rate (e.g.,
F = 30); n = T = F is the total number of frames to be played,
with a rate of one frame played every 1/F seconds. (We will use
T, k = 1, ..., n, to denote the playback time of the kth frame, where
71 = t; and 7, = tppg.) Given a trace of available 5G bandwidth
from tsqrt to teng (see Fig. 1 for example), we are interested in
finding out what is the best achievable video quality Q defined as
the highest constant (thus the “smoothest”) bitrate without any stalls.
We obtain the following theorem for the upper- and lower-bound
of Q using content bursting to fully utilize the available bandwidth.

THEOREM 1. Given a trace of (instantaneous) network throughput
rate b(t), tstary < t < tong(= tstars +d+T), let B(t) = ftt, byt
Then the highest achievable constant bitrate without any stall is given
by Q« < Q < QF, where Q. = n}cin B(tx)/k and Q* = B(tena)/n,

1<k<n
wheren =T % F.

We remark that in the statement of the theorem, we are ignoring
the network latency (and round trip delays) between a mobile client
and a video streaming server. We are essentially assuming that this
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Figure 6: Illustration of the Proof

latency is negligible, e.g., when the video streaming server is located
in a mobile edge cloud (e.g., co-located with the cell towers) very
close to the mobile user. With a non-negligible network latency A,
we need to subtract A and use, e.g., ténd = topd — A, in the statement
of the theorem so as to ensure the last bit of a kth video frame has
arrived at the mobile client side before its scheduled playback time

T

Proof of Theorem 1. The proof is illustrated in Fig. 6, where
we have plotted the cumulative throughput B(?),
tstart < t < teng (= tstarr +d + T) as a function of time. Note
that given a constant bitrate video of quality Q, namely, each frame
contains Q bits, the total amount of bandwidth required for the
video delivery at this level is Q * n, where n is the total number
of frames in the video. Since B(t,,) is the maximum cumulative
network bandwidth available between times ts;qr; and te,g = 7n,
the maximal video quality achievable is at most Q* = B(tg,q)/n =
B(t,)/n. More generally, we note that by ;. (the playback time at
the kth frame, at least Q xk amount of data must have been delivered
to the client in order for the client player not to stall. In other words,
we must have B(rg) > Q * k. It is not hard to see the minimal
video quality level we can achieve with no stalls is given by Q. =
11<1}cn<1 B(7x)/k. The minimum buffer size required to avoid stalls

SK=sn
max

(B(t) -

tstart <t <tend
R(t)) which represents the maximum difference between the two
curves B(t), R(t). O

while serving frames with quality Q is buf =

When dynamic 5G/4G switching is employed along with content
bursting, this is equivalent to using a modified network throughput
trace b(t), tsrars < t < to,q which uses the maximum value of the
5G throughput and the 4G throughput. The theoretical bounds can
then be obtained via Theorem 1 with {b(t)}.

A.2 Streaming Variable Quality Levels

A video can be delivered using either: i) a constant bitrate level
which requests all frames with the same quality (i.e., same number
of points per frame); or ii) variable bitrate levels in which the video

player switches between different quality levels for different frames.

This decision depends on the network condition, its variability, and
the buffer occupancy. Thus, instead of using the minimum constant
bitrate level to avoid stalls as defined by Theorem 1, the video bitrate
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level can change over time according to the predicted throughput
with the goal of eliminating stalls while maintaining video quality
smoothness (i.e., avoid bitrate fluctuations which degrade user’s
QOoE). For example, when the user mobility mode (still, walking,
driving) changes, the mobility speed affects the available bandwidth.
Hence, instead of prefetching frames with a very high quality, a
more judicious decision can be made based on the predicted future
bandwidth to decide which quality to use to avoid stalls. Thus, avoid
requesting frames with the highest quality which yields only few
frames in the buffer that will be depleted quickly. The goal is to
develop an adaptive algorithm which can avoid stalls while at the
same time deliver the highest possible quality with smooth quality
variation instead of frequent changes from the highest quality to
the lowest quality.

Theorem 1 not only demonstrates how to obtain bounds on
achievable best video qualities, but also hints on how we may
perform adaptive bitrate (ABR) selection for achieving best video
qualities given bandwidth prediction for the upcoming X seconds.
At the current time t, given the predicted network bandwidth
l;(t) over (,t + At]. Using the predicted total available bandwidth

B(t,t + At) = /tH—At b(t)dt, we employ Theorem 1 to determine
the best video qualities for the next Ak = At * F frames to be
fetched. To account for uncertainty in the bandwidth prediction, a
more conservative approach can be followed to assign priorities (or
“deadlines”) for fetching (future) content of different qualities: by
prioritizing using the current (stable) available bandwidth to burst
lower qualities of future Ak frames first than using it to increase
the qualities of more recent frames. This will ensure a minimal
video quality to users with no stalls while “smoothly” adapting to
higher qualities whenever possible. This illustrates the power and
utility of ML bandwidth prediction in enabling new mechanisms
for 5G-aware applications to utilize the ultra-high bandwidth of 5G
and overcome its wild fluctuation and dead zones. This deserves
a separate paper to explore these design decisions and find the
optimal algorithm.



