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Abstract: While urban transit systems (UTS) often have fixed vehicle capacity and relatively constant 6 
departure headways, they may need to accommodate dramatically fluctuating passenger demands over 7 
space and time, resulting in either excessive passenger waiting or vehicle capacity and energy waste. 8 
Therefore, on the one hand, optimal operations of UTS rely on accurate modeling of passenger queuing 9 
dynamics, which is particularly complex on a multi-stop transit corridor. On the other hand, capacities of 10 
transit vehicles can be made variable and adaptive to time-variant passenger demand so as to minimize 11 
energy waste, especially with the emergence of Modular Vehicle (MV) technologies. This paper investigates 12 
operations of a multi-stop transit corridor where vehicles may have different capacities across dispatches. 13 
We specify skewed time coordinates to simplify the problem structure while incorporating traffic 14 
congestion. Then we propose a mixed integer linear programming model that determines the optimal 15 
dynamic headways and vehicle capacities over study time horizon to minimize the overall system cost for 16 
the transit corridor. In particular, the proposed model considers a realistic Multi-Stop-First-In-First-Out 17 
(MSFIFO) rule that gives the same boarding priority to passengers arriving at a station in the same time 18 
interval yet with different destinations. A customized Dynamic Programming (DP) algorithm is proposed 19 
to solve this model efficiently. To circumvent the rapid increase of the state space of a typical DP algorithm, 20 
we analyze the theoretical properties of the investigated problem and identify upper and lower bounds to a 21 
feasible solution. The bounds largely reduce the state space during the DP iterations and greatly improve 22 
the efficiency of the proposed DP algorithm. The state dimensions are also reduced with the MSFIFO rule 23 
such that all queues with different destinations at the same origin can be tracked with a single boarding 24 
position state variable at each stage. A hypothetical example and a real-world case study show that the 25 
proposed DP algorithm greatly outperforms a state-of-the-art commercial solver (Gurobi) in both solution 26 
quality and time.  27 

Key words: Modular vehicle; variable-capacity operation; schedule; overall system cost; dynamic programming. 28 

1. Introduction 29 

Despite facing dramatic fluctuations of passenger demand over both time and space, urban transit 30 
systems (UTS) often feature relatively constant departure headways and fixed transit vehicle capacity. This 31 
demand-supply mismatch may cause either excessively long customer waiting time (e.g. in peak-hours or 32 
densely populated areas) or waste of vehicle capacity and energy (e.g. in off-peak hours or areas with sparse 33 
demand), which often results in deteriorating service quality and increased safety risk and operating cost 34 
(Li and Lo, 2014; Gao et al., 2016; Yang et al., 2016; Cacchiani et al., 2016; Shi et al., 2018). A report 35 
conducted by the New York UTS (https://toddwschneider.com) shows that the average waiting time for 36 
passengers in a day varies widely from 2 to 30 minutes.  37 

A classical method of reducing passenger waiting time is the dynamic adjustment of the vehicle 38 
dispatch headway to better accommodate demand variations, e.g., a smaller headway for higher demands 39 
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(Barrena et al., 2014a; Canca et al., 2014; Huang et al., 2016; Niu et al., 2015). Yet due to limited resources 1 
(e.g., limited vehicle capacity) and minimum safety headway constraints, this method may not completely 2 
eliminate passenger queues in peak hours. Passenger demand greatly exceeding UTS capacity supply may 3 
result in long passenger queues, and some passengers may have to wait for several trains to pass before 4 
being able to board. The phenomenon of a passenger queue that exceeds the capacity of the passing vehicles, 5 
compelling some passengers to wait for later vehicles, is called oversaturated queuing (Niu and Zhou, 2013; 6 
Zhao et al., 2018; Chen et al., 2019). Dynamics of the Oversaturated Queuing Phenomenon (OQP) poses 7 
significant challenges to UTS modeling. In particular, when the OQP is present in a multi-stop transit 8 
corridor where passengers in the same queue at a station may have different destinations, it is quite 9 
challenging to model the boarding orders of passengers with different destinations.  10 

Only a handful of studies address the OQP on a transit corridor with multiple destinations (e.g. Niu 11 
and Zhou, 2013; Yin et al., 2016; Shang et al., 2018; Shi et al., 2018). Despite these successes, it is yet 12 
inconclusive how to both efficiently and realistically model actual passenger boarding orders in practice, 13 
i.e. passengers arriving earlier than excepted to board sooner, or the first-in-first-out queuing rule (FIFO). 14 
To ensure the realistic FIFO rule, some studies (e.g., Niu and Zhou, 2013; Shang et al., 2018) divide the 15 
entire time horizons into time intervals such that no more than one passenger arrives at a station in the same 16 
time interval. This single-arrival setting eliminates the difficulty of assigning the boarding portions of 17 
passengers with different destinations in a time interval (since only one passenger with one destination 18 
needs to be assigned at a time). However, when the demand is high (e.g. peak hours), many passengers may 19 
arrive at a station in a rather short period. Then the validity of the single-arrival setting requires the time 20 
horizon to be divided into an extremely large number of small intervals to ensure no more than one 21 
passenger arrives in one interval. This would dramatically increase the problem size and associated 22 
complexity and render the model computationally intractable for realistic large-scale instances.  23 

However, the boarding priorities of passengers with different destinations arriving in the same interval 24 
become a modeling challenge. One way to circumvent this challenge is to assume that even if an oncoming 25 
vehicle has vacant seats but cannot accommodate all waiting passengers that arrived in one time interval, 26 
none of the passengers is allowed to board the vehicle (e.g. Yin et al., 2016). While this All-Or-Nothing 27 
Boarding Setting (AONBS) largely simplifies the problem structure and enables the development of 28 
computationally-tractable models, it cannot incorporate the realistic case where waiting passengers 29 
continue to board the vehicle until all vacant seats are filled. Figure 1 illustrates the problem of the all-or-30 
nothing setting with a simple three-station example. In this example, among 100 passengers arriving at 31 
Station 1 in the first time interval, 50 are destined for Station 2 and the other 50 for Station 3. In this first 32 
time interval, suppose that the two groups of passengers with different destinations are all in the same 33 
waiting queue, then the realistic FIFO rule yields that the numbers (or the portions) of the two passenger 34 
groups boarding the same vehicle are always identical. Further, all 50 passengers arriving at Station 2 in 35 
time interval 1 are destined for Station 3. Suppose a vehicle with the capacity of 50 arrives at Station 1 at 36 
the end of time interval 1, and then at Station 2 at the end of time interval 2. The boarding result from the 37 
realistic FIFO rule is shown on the left in Fig. 1. We see that the boarding numbers from the two passenger 38 
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groups are identical: 25 passengers from each group boards the vehicle in time interval 2, which fills up the 1 
vehicle capacity and leaves 25 passengers of each group remaining in the queue. After the vehicle arrives 2 
at Station 2, the 25 passengers from Station 1 destined for Station 2 alight, making 25 vacant seats, and then 3 
25 passengers from the queue at Station 2 board the vehicle, leaving 25 remaining in the queue. Overall, a 4 
total of 75 passengers complete the trip with this vehicle. However, as shown on the right in Fig. 1, with 5 
the AONBS (as opposed to the realistic FIFO rule), since the capacity of the vehicle cannot accommodate 6 
all 100 passengers arriving in the same time interval waiting at Station 1, no passenger is allowed to board 7 
the vehicle. As a result, an empty vehicle arrives at Station 2 and takes away all 50 passengers waiting at 8 
Station 2. This is apparently unrealistic. 9 
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Fig. 1 An instance to illustrate the boarding result of the AONBS (pax is short for passengers). 11 

To avoid the vacant seat problem of the AONBS, other studies (e.g., Shi et al., 2018; Zhao et al., 2018) 12 
let the model optimize the boarding priorities of the passengers arriving in the same interval to minimize 13 
the number of the dispatched vehicles (e.g., via maximizing the number of cumulative boarding passengers 14 
served per vehicle). While this Priority Boarding Setting (PBS) ensures that all passengers will be seated 15 
whenever the vehicle capacity allows, it may lead to a boarding order quite different from the actual FIFO 16 
rule. Note that in the FIFO rule, passengers are not really coordinated in their boarding orders, and whoever 17 
arrives at the station earlier should board the vehicle sooner regardless of their destinations. For example, 18 
Fig. 2 illustrates the problem of the PBS with the same instance as Fig. 1, where again passengers with 19 
different destinations arrive simultaneously at a station in each time interval. To minimize the number of 20 
the dispatched vehicles (or maximize the number of cumulative boarding passengers), it is observed on the 21 
right in Fig. 2 that only passengers destined for Station 2 is allowed to board the vehicle at Station 1, 22 
resulting in a total number of cumulative boarding passengers of 100, which is greater than the boarding 23 
result (i.e. 75) from the actual FIFO rule.  24 
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Fig. 2 An instance to illustrate the boarding result of the PBS. 2 

Most studies addressing the OQP only consider fixed-capacity vehicles since many traditional transit 3 
vehicle technologies do not allow flexible changes of vehicle capacity during operations. Yet this fixed 4 
capacity constraint may be relaxed due to the emergence of Modular Vehicle (MV) technology. With this 5 
technology, a vehicle can be composed of an indefinite number of Modular Units (MU) and thus can 6 
flexibly vary its capacity by concatenating or detaching MUs across different dispatches. This MV concept 7 
of variable-capacity operations has been investigated in multiple transportation modes, including transit 8 
bus scheduling (Ceder, 2011; Hassold and Ceder, 2014), suburban railway scheduling (Albrecht, 2009), 9 
transit switching (Guo et al., 2018; Caros, 2019), and shuttle design (Chen et al., 2019a, 2019b). Please see 10 
Liu and Ceder (2017) for a recent review on this topic. The results from these studies suggest the potential 11 
of the variable-capacity operations on reducing overall system cost and increasing service quality. However, 12 
as far as we know, there is still a shortage of studies investigating the MV concept in the corridor transit 13 
system, in particular when the OQP is present. The most relevant study to our work is Mo et al. (2019). It 14 
incorporates the MV concept in an urban rail transit corridor and proposes a nonlinear integer programming 15 
model to obtain the optimal train schedule with minimum system cost. However, the paper does not 16 
consider the OQP, and the quality of the solution obtained by a tabu-search-based algorithm can be further 17 
improved.  18 

In addition, due to variations in traffic pattern, travel time may also vary across different dispatch time. 19 
In the literature, Barrena et al. (2014b) and Gao et al. (2016) consider that travel time may be impacted by 20 
dynamic passenger demand patterns. Niu and Zhou (2013) consider time-dependent travel time due to 21 
periodic traffic congestion (i.e. travel time is only determined by the vehicle dispatch time). However, time-22 
dependent travel time, albeit relevant, is not addressed in the OQP context while incorporating the MV 23 
concept. 24 

To fill these research gaps, this paper develops an operation design model for a transit corridor with 25 
variable-capacity MVs considering the OQP. The investigated problem is presented in time coordinates 26 



5 

 

skewed for each station to offset the MV travel time, which greatly simplifies the problem structure while 1 
incorporating time-dependent travel time due to traffic congestion. We first tackle the challenge of 2 
formulating the realistic FIFO boarding orders under the OQP by devising a computational, efficient Multi-3 
Stop-FIFO (MSFIFO) rule. The MSFIFO rule assumes that passengers with different destinations arrive 4 
simultaneously at a station in each time interval and treats the passengers with the same destination arriving 5 
at the station in the same time interval as a passenger group. This arrival pattern imposes that if a vehicle’s 6 
capacity cannot accommodate all passengers arriving in one-time interval at a station, the number of 7 
boarding passengers from each group is proportional to the group size. The proposed MSFIFO rule specifies 8 
a set of auxiliary continuous variables and an associated queuing structure to overcome the challenge of 9 
tracking the boarding portion of each group as time elapses. This innovation not only correctly tracks the 10 
passenger boarding counts but also reduces the problem dimensionality from dealing with passengers 11 
individually (Niu and Zhou, 2013; Shang et al., 2018) to processing them in batches, which consequently 12 
improves the solution efficiency.  13 

The proposed MSFIFO rule enables the formulation of a compact Mixed Integer Linear Programming 14 
(MILP) model for the joint design of optimal dynamic headways and vehicle capacities under the OQP. 15 
The optimization objective includes passenger waiting cost and MV operating cost as a trade-off, subject 16 
to constraints on vehicle dispatch, vehicle capacity, and the MSFIFO rule. Due to the complex nature of the 17 
investigated problem, despite the compact form of the proposed model, state-of-the-art commercial solvers 18 
(e.g. Gurobi) still cannot solve the large-scale real-world instances. To overcome this limit, this paper 19 
studies the theoretical properties of the investigated problem and identifies upper and lower bounds to a 20 
feasible solution. The theoretical findings lead to the development of a customized efficient Dynamic 21 
Programming (DP) algorithm with a reduced state space. The state dimensions are also reduced with the 22 
MSFIFO rule such that all queues with different destinations at the same origin can be tracked with a single 23 
boarding position state variable at each stage. Numerical results show that the customized DP algorithm 24 
greatly outperforms a state-of-the-art commercial solver (Gurobi). Further, they reveal interesting insights 25 
into the advantages of the joint design of dynamic headway and variable vehicle capacity over existing 26 
operation paradigms. The developments in this paper will serve as a theoretical and methodological basis 27 
for UTS operations, particularly for near-future systems with emerging MV technology.  28 

The rest of this paper is organized as follows. Section 2 states the investigated problem of MV 29 
Operations Design on an Oversaturated Corridor (MODOC) and formulates it into a MILP model with the 30 
MSFIFO rule. Section 3 proposes a customized DP algorithm to solve the proposed model efficiently. 31 
Section 4 conducts two case studies (including an illustrative hypothetical case and a large-scale real-world 32 
case based on the operation data from Beijing Subway Line 6) to demonstrate the efficiency of the proposed 33 
solution approach and draw managerial insights. Section 5 briefly discusses conclusions and further 34 
research directions.35 
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2. Mathematical formulation 1 

2.1 Notation 2 

For readers’ convenience, the notion in this paper is summarized in Tab. 1. 3 

Tab. 1 Notation list. 4 
Parameters 

ℐ Set of stations, ℐ = {1,2,⋯ , 𝐼}. 

ℐ𝑖
+ Set of stations downstream of Station 𝑖, ℐ𝑖+ = {𝑖 + 1, 𝑖 + 2,⋯ , 𝐼 + 1}  ∀𝑖 ∈ ℐ. Station 𝐼 + 1 is 

a dummy station without arriving and departure passengers. 

ℐ𝑖
− Set of stations upstream of Station 𝑖, ℐ𝑖− = {0,1,2,⋯ , 𝑖 − 1}  ∀𝑖 ∈ ℐ. Station 0 is a dummy 

station without arriving and departure passengers. 
𝒯 Set of time intervals, 𝒯 = {1,2,⋯ , 𝑇}. 
ℒ Set of MV capacity levels ℒ = {1,2,⋯ , 𝐿}; 𝑙 ∈ ℒ also denotes the number of MUs of the MV. 
𝛿 Duration of a time interval (e.g. 1 min, 2 min, 5min). 

𝑝𝑖𝑗𝑡′ 
Size of passenger group 𝑖𝑗𝑡′, i.e., the group of passengers arriving at Station 𝑖 at time interval 
𝑡′ destined for Station 𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ𝑖+, 𝑡′ ∈ 𝒯. 

𝐶 Capacity of one single MU. 
𝑉 Total number of MUs in stock. 
𝐻 Minimum headway. 
𝑃 Operational cycle. 
𝑒(𝑙) Operating cost consumed in dispatching a level-𝑙 MV, ∀𝑙 ∈ ℒ. 
𝑤 Value of waiting time for each passenger. 
𝑔𝑡 MU pipeline stock state in dynamic programming. 
𝑜𝑡 MU terminal stock state in dynamic programming. 
𝑣𝑡 Boarding position state in dynamic programming. 
𝑀𝑡 Total cost till Stage 𝑡 in dynamic programming. 

Decision variables 

𝑦𝑙𝑡 
=1, if a level-𝑙 MV (with 𝑙 MUs) is dispatched at the end of time interval 𝑡; =0, otherwise, 
∀𝑙 ∈ ℒ, 𝑡 ∈ 𝒯. 

𝑐𝑖𝑡 
Amount of vacant seat of the MV dispatched at the end of time interval 𝑡 on arriving at 
Station 𝑖, ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯. 

𝑥𝑖𝑡′𝑡 
=1, if all passengers in group 𝑖𝑡′ board the MV till the end of time interval 𝑡; =0, otherwise, 
∀𝑖 ∈ ℐ, 𝑡′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯. We omit index 𝑗 since this percentage is the same across all 
passenger groups arriving at Station 𝑖 in time interval 𝑡′ due to the MSFIFO rule. 

𝑢𝑖𝑡′𝑡 
Cumulative boarding percentage of passenger group 𝑖𝑗𝑡′ till the end of time interval 𝑡,  ∀𝑖 ∈
ℐ, 𝑗 ∈ ℐ𝑖

+, 𝑡′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯. 
𝑌𝑡 Decision variable in dynamic programming. 

2.2 Problem statement 5 

The investigated problem of MV Operations Design on an Oversaturated Corridor (MODOC) is 6 
illustrated in Fig. 3. The MV UTS corridor contains 𝐼 stations denoted as set ℐ = {1,2,⋯ , 𝐼}, where the 7 
index increases from upstream to downstream. Let [0, 𝐷] denote the study time horizon. To facilitate the 8 
model construction, we divide the time horizon equally into 𝑇 fixed-length time intervals 𝒯 = {1,2,⋯ , 𝑇}, 9 
each with duration 𝛿. The set of MV levels is ℒ = {1,2,⋯ , 𝐿}, where 𝑙 ∈ ℒ also denotes the number of 10 
MUs of the corresponding MV. The capacity of a single MU is 𝐶, and thus a level-𝑙 MV has capacity of 11 
𝑙𝐶. Let 𝑒(𝑙) denote the operating cost of dispatching a level-𝑙 MV. By referring to Chen et al. (2019a), we 12 
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find that the operating cost function 𝑒(𝑙) is concave over the MV level 𝑙, and it can be expressed by 𝑒(𝑙) =1 
𝜆𝐹 + 𝜆𝑉(𝑙𝐶)𝛼 ∀𝑙 ∈ ℒ, where 𝜆𝐹 is the fixed energy cost, 𝜆𝑉 is a positive coefficient related to the number 2 
of dispatched MUs, and power index 𝛼 ≤ 1. In general, the operating cost of dispatching a vehicle with 𝐶 3 
seats is far less than the passenger waiting cost arising from the corresponding number of passengers (i.e. 4 
𝐶) waiting for one time interval. Since the operating cost function is concave, the relationship between the 5 
operating cost and passenger waiting cost is expressed by 𝑒(1) ≪ 𝑤𝛿𝐶 , where 𝑤 denotes the value of 6 
waiting time for each passenger. There are 𝑉 MUs in stock circulating on the corridor. Each MV takes 𝑃 7 
time intervals to complete an operational cycle from being dispatched from Station 1 to circulating back to 8 
Station 1. After each operational cycle, MUs in an MV can be immediately re-organized into other MVs of 9 
different lengths for the following dispatches. The minimum dispatch headway between any two 10 
consecutive vehicles is 𝐻 time intervals. Fig. 3 provides a toy instance of the system. It investigates a UTS 11 
with 3 stations in a time horizon divided into 4 time intervals (i.e. 𝐼=3, 𝑇=4). The maximum capacity level 12 
is 6 and the capacity of a single MU is 5 passengers (i.e. 𝐿=6, 𝐶=5). There are 10 MUs in stock (i.e. 𝑉=10). 13 
The operational cycle and minimum dispatch headway are 2 and 1 time intervals respectively (i.e. 14 
𝑃=2,𝐻=1). The operating cost of dispatching a level-𝑙 MV is 𝑙. 15 
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Fig. 3 Problem illustration. 17 

We assume that the travel time (including the dwell time) of an MV between any two consecutive 18 
stations only depends on the MV’s dispatch time, regardless of vehicle capacity levels (since capacity does 19 
not affect travel speed) or passenger boarding and aligning amounts (assuming the dwell time at each station 20 
is fixed), and no overtaking is allowed in the operation. Motivated by Sun et al. (2014), we skew each 21 
station’s time coordinates, such that in the skewed coordinates the time when an MV arrives at the station 22 
is identical to the MV’s dispatch time at Station 1. This time coordinates skewing operation is described in 23 
Fig. 4. We see that vehicles 1 and 2 are dispatched from Station 1 at time interval 1 and time interval 3, 24 
respectively. The travel time for vehicle 1 from Station 1 to 2 is one time interval, and that from Station 2 25 
to 3 is one time interval as well. The travel time for vehicle 2 from Station 1 to 2 is three time intervals, and 26 
that from Station 2 to 3 is one time interval, as shown on the left in Fig. 4. With that, we can skew the time 27 
coordinates of Stations 2 and 3, and make the arriving time of vehicles 1 and 2 at each station consistent 28 
with its dispatch time, as shown on the right in Fig. 4. Now, vehicles 1 and 2 have the same arriving time 29 
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at each station during its operation process with the skewed time coordinates. To specify it, define a 1 
mapping function 𝐾𝑖(𝑡)  ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯  to denote the original time point before the skewing operation 2 
corresponding to time 𝑡 in the skewed time coordinates at Station 𝑖. In this instance (i.e., Fig. 4), 𝐾1(1)=1, 3 
𝐾1(2)=2, 𝐾1(3)=3; 𝐾2(1)=2, 𝐾2(2)=4, 𝐾2(3)=6; 𝐾3(1)=3, 𝐾3(2)=5, 𝐾3(3)=7. 4 
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Fig. 4 The process for arriving time revision. 6 

Note that the time coordinates skewing operation may also skew the arrival demand. In the original 7 
time coordinates, let 𝑝𝑖𝑗𝑡′

0  denote the size of passenger group 𝑖𝑗𝑡′, i.e. the group of passengers arriving at 8 

Station 𝑖 in original time interval 𝑡′ destined for Station 𝑗. If 𝑡′> 𝑇, we denote 𝑝𝑖𝑗𝑡′
0 =0; if 𝑡′=0, 𝑝𝑖𝑗00 =0. Then, 9 

in the skewed time coordinates, the corresponding size of passenger group 𝑝𝑖𝑗𝑡′can be obtained by 𝑝𝑖𝑗𝑡′ ∶10 

= ∑ 𝑝𝑖𝑗𝑡′
0𝐾𝑖(𝑡

′)
𝐾𝑖(𝑡

′−1)   ∀𝑡′ ∈ 𝒯 , i.e. the group of passengers arriving at Station 𝑖 in skewed time interval 𝑡′ 11 

destined for Station 𝑗. As illustrated in Fig. 4, squares represent identical passenger groups, and each group 12 
includes 5 passengers. In the original time coordinates, one passenger group arrives at each station in one 13 
time interval, as shown on the left in Fig. 4. In the skewed time coordinates, at Station 1, the arrival demand 14 
is the same as the arrival demand in the original time coordinates; at Station 2, according to the proposed 15 
equation, the size of the passenger groups arriving at time 1 equals 10 passengers (i.e. 16 
(∑ 𝑝𝑖𝑗0𝑖,𝑗 +∑ 𝑝𝑖𝑗1𝑖,𝑗 +∑ 𝑝𝑖𝑗2𝑖,𝑗 )⋅5), the size of the passenger groups arriving at time 2 equals 10 passengers 17 
(i.e. (∑ 𝑝𝑖𝑗3𝑖,𝑗 +∑ 𝑝𝑖𝑗4𝑖,𝑗 ) ⋅5), and the size of the passenger groups arriving at time 3 equals 10 passengers 18 
(i.e., (∑ 𝑝𝑖𝑗5𝑖,𝑗 +∑ 𝑝𝑖𝑗6𝑖,𝑗 ) ⋅5). 19 

This time coordination conversion greatly simplifies the notation. In the skewed time coordinates, note 20 
that the same MV will arrive at each station at the same time. Thus, we can just use capacity level and 21 
dispatch time to index an MV, i.e. MV 𝑙𝑡 denoting the MV with the level-𝑙 capacity dispatched from station 22 
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1 at the end of time interval 𝑡 (or at time 𝑡 for short). The operations design decisions include the time and 1 
level of each MV dispatch, which is denoted by the binary variable 𝑦𝑙𝑡 = 1 if a level-𝑙 MV is dispatched at 2 
time 𝑡. With the skewed time coordinates, the proposed model no longer needs to track a vehicle’s arrival 3 
time at each single station as required in the literature (e.g., Barrena et al., 2014b; Cacchiani et al., 2016; 4 
Gao et al., 2016; Yin et al., 2017), and this greatly simplifies the model structure. Further, it incorporates 5 
time-dependent travel time in the presence of periodic traffic congestion, which is seldom investigated in 6 
the related transit literature. 7 

We assume that in each time interval, each passenger group’s arrival rate is constant, and thus the 8 
passenger arrival, queueing and boarding behavior follows the MSFIFO rule. With this MSFIFO rule, if a 9 
vehicle’s vacant seats cannot accommodate all passengers arriving in one time interval at a station, the 10 
number of boarding passengers from each group is proportional to the group size. As a result, the boarding 11 
percentages of different passenger groups arriving at the same station in the same time interval are all 12 
identical. In a case where passengers cannot board immediately upon arrival, again 𝑤 denotes the value of 13 
waiting time for each passenger. In the toy instance, we set 𝑤 to 1. 14 

The MODOC problem is to find the optimal MV dispatch schedules and the corresponding capacity 15 
levels in the study time horizon to balance the trade-off between the passenger waiting cost and vehicle 16 
operating cost. As shown in Fig. 3, for this instance, a level-3 MV is dispatched at the end of time interval 17 
1, and a level-6 MV is dispatched at the end of time interval 3 to minimize the passenger waiting cost (i.e., 18 
85) and vehicle operating cost (i.e., 9). The operation process can be described as follows. At the end of 19 
time interval 1, a level-3 MV is dispatched and the number of MUs in stock becomes 7 (i.e., 𝑉=7). At 20 
Station 1, 5 passengers board the level-3 MV; at Station 2, 10 passengers board the level-3 MV; all 21 
passengers alight at Station 3. At the end of time interval 2, due to the minimum dispatch headway, no MV 22 
is dispatched thus 5 and 10 passengers arriving in time interval 2 have to wait at Stations 1 and 2, 23 
respectively. At the end of time interval 3, the level-6 MV is dispatched and the number of MUs in stock 24 
becomes 1 (i.e., 𝑉=1). At Station 1, 5 passengers arriving at time interval 2 and 5 passengers arriving at 25 
time interval 3 board the level-6 MV; at Station 2, 10 passengers arriving at time interval 2 and 10 26 
passengers arriving at time interval 3 board the level-6 MV; and all passengers alight at Station 3. At the 27 
end of time interval 4, no MV is dispatched due to the minimum dispatch headway, and 3 MUs dispatched 28 
at time interval 1 go back to the stock (i.e., 𝑉=4).  29 

2.3 Model Formulation 30 

This section formulates the studied problem into a MLIP model. The model includes three sets of 31 
constraints on the vehicle dispatch, vehicle capacity and MSFIFO rule, respectively, and an objective 32 
function including passenger waiting cost and vehicle operating cost.  33 

2.3.1 Vehicle dispatch constraints 34 

The set of constraints related to vehicle dispatches are formulated as Equations (1)-(3). Constraint (1) 35 
indicates that in an operational cycle 𝑃, the total number of the dispatched MUs cannot exceed the number 36 
of MUs in stock. Constraint (2) guarantees two consecutive MV dispatches are separated at least by a safety 37 
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time headway of 𝐻 intervals. Constraint (3) sets the binary domain of vehicle dispatch variables (noting 1 
that 𝑦𝑙𝑡=1 if a level-𝑙 MV (with 𝑙 MUs) is dispatched at time, or 𝑦𝑙𝑡=0 otherwise).  2 

∑ ∑𝑙𝑦𝑙𝑡
𝑙∈ℒ

𝑡′′+𝑃

𝑡=𝑡′′

≤ 𝑉, ∀𝑡′′ ∈ {1,2,⋯ , 𝑇 − 𝑃}, (1) 

∑ ∑𝑦𝑙𝑡
𝑙∈ℒ

𝑡′′+𝐻

𝑡=𝑡′′

≤ 1, ∀𝑡′′ ∈ {1,2,⋯ , 𝑇 − 𝐻}, 
(2) 

𝑦𝑙𝑡 ∈ {0,1}, ∀𝑙 ∈ ℒ, 𝑡 ∈ 𝒯. (3) 

2.3.2 Vehicle capacity constraints 3 

The set of constraints related to vehicle capacity are formulated as Equations (4)-(7). To clearly 4 
describe passenger boarding and alighting dynamics, we define two sets of auxiliary decision variables, i.e., 5 
vacant seat variables {𝑐𝑖𝑡 ∈ ℝ+, ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯} and cumulative boarding percentage variables {𝑢𝑖𝑡′𝑡  ∈6 
[0,1], ∀𝑖 ∈ ℐ, 𝑡′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯}. Variable 𝑐𝑖𝑡 represents the amount of vacant seats of the MV dispatched 7 
at the end of time interval 𝑡 on arriving at Station 𝑖 before passengers boarding or alighting. We consider 8 
𝑐𝑖𝑡 ≫ 1 for most of the time, and thus defining it as a continuous variable is reasonable from a macroscopic 9 
perspective. Variable 𝑢𝑖𝑡′𝑡 indicates the cumulative boarding percentage of passenger group 𝑖𝑗𝑡′ (i.e., the 10 
group of passengers arriving at Station 𝑖 in time interval 𝑡′ destined for Station 𝑗) till the end of time interval 11 
𝑡 (equal to or greater than their arrival time 𝑡′).  12 

Constraint (4) describes the dynamics of vacant seats of a MV during two consecutive stations, i.e., 13 
the number of vacant seats at Station 𝑖 + 1 equals that of the same MV at Station 𝑖 plus the alighting amount 14 
and minus the boarding amount. For simplification purpose, we denote upstream and downstream stations 15 
of Station 𝑖 by ℐ𝑖− = {0,1,2,⋯ , 𝑖 − 1} and ℐ𝑖+ = {𝑖 + 1, 𝑖 + 2,⋯ , 𝐼 + 1}, ∀𝑖 ∈ ℐ. Station 0 and Station 𝐼 +16 
1 are dummy stations thus the number of arriving and departure passengers for these two stations is 0 during 17 
the study time horizon (i.e., 𝑝0𝑗𝑡 = 0, ∀𝑗 ∈ ℐ, 𝑡 ∈ 𝒯 , 𝑝𝑖(𝐼+1)𝑡 = 0, ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯). Constraint (5) sets the 18 
initial number of vacant seats of an MV before arriving at Station 1 to its corresponding capacity. Constraint 19 
(6) postulates that the number of vacant seats throughout all stations are non-negative to ensure that the MV 20 
capacity is not exceeded. Constraint (7) indicates the range of cumulative boarding percentage of passenger 21 
group 𝑖𝑗𝑡′ till the end of time interval 𝑡, which is between 0 and 1 (or 100%). 22 

 
𝑐(𝑖+1)𝑡 = 𝑐𝑖𝑡 + ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′

𝑗∈ℐ𝑖
−,𝑡′≤𝑡∈𝒯

− ∑ (𝑢𝑖𝑡′𝑡 − 𝑢𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′

𝑗∈ℐ𝑖
+,𝑡′≤𝑡∈𝒯

, ∀𝑖

∈ ℐ\{𝐼}, 𝑡 ∈ 𝒯\{1}, 

(4) 

 𝑐1𝑡 =∑𝑙𝐶𝑦𝑙𝑡
𝑙∈ℒ

, ∀𝑡 ∈ 𝒯, (5) 

 0 ≤ 𝑐𝑖𝑡 ≤ 𝐿𝐶, ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯, (6) 

 𝑢𝑖𝑡′𝑡  ∈ [0,1], ∀𝑖 ∈ ℐ, 𝑡
′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯. (7) 
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2.3.3 MSFIFO rule constraints 1 

The set of constraints related to the MSFIFO rule are formulated as Equations (8)-(13). To address the 2 
MSFIFO rule, two sets of auxiliary decision variables, i.e., cumulative boarding percentage variables 3 
{𝑢𝑖𝑡′𝑡  ∈ [0,1] ∀𝑖 ∈ ℐ, 𝑡

′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯} and boarding state variables {𝑥𝑖𝑡′𝑡  ∈ 𝔹 ∀𝑖 ∈ ℐ, 𝑡′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈4 
𝒯} are defined. Binary variable 𝑥𝑖𝑡′𝑡 indicates the boarding state of passenger group 𝑖𝑗𝑡′ till the end of time 5 
interval 𝑡. That is, 𝑥𝑖𝑡′𝑡=1 if all passengers in group 𝑖𝑗𝑡′ board the MV till the end of time interval 𝑡, or 6 
𝑥𝑖𝑡′𝑡=0 otherwise. 7 

Constraint (8) indicates that passenger group 𝑖𝑗𝑡′cannot board the MV earlier than group 𝑖𝑗(𝑡′ − 1). 8 
Constraint (9) imposes that if the cumulative boarding percentage of passenger group 𝑖𝑗𝑡′ till the end of 9 
time interval 𝑡 does not equal 1, variable 𝑥𝑖𝑡′𝑡 does not equal 1 as well. Constraint (10) means that the 10 
cumulative boarding percentage should be non-decreasing. Constraint (11) is proposed to guarantee that 11 
passengers at upstream stations have higher boarding priority than those at downstream stations. Without 12 
this constraint, to minimize the number of dispatched MVs (or maximize the number of cumulative 13 
boarding passengers), the model may force passengers at upstream stations to yield to passengers at 14 
downstream stations, which is however inconsistent with practice. Constraint (12) supposes that all 15 
passenger demand must be satisfied at the end of the time horizon and constraint (13) indicates variable 16 
𝑥𝑖𝑡′𝑡 is a binary variable. 17 

 𝑢𝑖𝑡′𝑡 ≤ 𝑥𝑖(𝑡′−1)𝑡, ∀𝑖 ∈ ℐ, 𝑡
′ ∈ 𝒯\{1}, 𝑡 ≥ 𝑡′ ∈ 𝒯, (8) 

 𝑥𝑖𝑡′𝑡 ≤ 𝑢𝑖𝑡′𝑡 , ∀𝑖 ∈ ℐ, 𝑡 ≥ 𝑡
′ ∈ 𝒯, (9) 

 𝑢𝑖𝑡′(𝑡−1) ≤ 𝑢𝑖𝑡′𝑡, ∀𝑖 ∈ ℐ, 𝑡 ≥ 𝑡
′ + 1 ∈ 𝒯, (10) 

 𝑐(𝑖+1)𝑡(1 − 𝑥𝑖𝑡𝑡) = 0, ∀𝑖 ∈ ℐ\{𝐼}, 𝑡 ∈ 𝒯, (11) 

 𝑢𝑖𝑡′𝑇 = 1, ∀𝑖 ∈ ℐ, 𝑡
′ ∈ 𝒯, (12) 

 𝑥𝑖𝑡′𝑡  ∈ 𝔹, ∀𝑖 ∈ ℐ, 𝑡
′ ∈ 𝒯, 𝑡 ≥ 𝑡′ ∈ 𝒯. (13) 

2.3.4 Objective function 18 

The overall system cost is comprised of two cost components, i.e., MV operating cost and passenger 19 
waiting cost. The MV operating cost is the summation of the costs of all MV dispatches, i.e., ∑ 𝑒𝑙𝑦𝑙𝑡𝑙∈ℒ,𝑡∈𝒯 , 20 
where 𝑒𝑙 is the operating cost for dispatching a level-𝑙 MV. The passenger waiting time at each time interval 21 
is calculated by the number of waiting passengers at each time interval (i.e. 𝑝𝑖𝑗𝑡′(1 − 𝑢𝑖𝑡′𝑡)) multiple the 22 

duration of each time interval (𝛿). Multiplying the time value for each passenger (i.e. 𝑤) and summing the 23 
passenger waiting time at each time interval together, we obtain the passenger waiting cost during the study 24 
time horizon as ∑ 𝑤[𝛿𝑝𝑖𝑗𝑡′(1 − 𝑢𝑖𝑡′𝑡)]𝑖∈ℐ,𝑗∈ℐ𝑖

+,𝑡′∈𝒯,𝑡≥𝑡′∈𝒯 . 25 

Then the objective function can be written as the summation of the passenger waiting cost and MV 26 
operating cost as shown in Equation (14).  27 
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 min
𝑦𝑙𝑡,𝑐𝑖𝑡,𝑥𝑖𝑡′𝑡,𝑢𝑖𝑡′𝑡

∑ 𝑒(𝑙)𝑦𝑙𝑡
𝑙∈ℒ,𝑡∈𝒯

+ ∑ 𝑤[𝛿𝑝𝑖𝑗𝑡′(1 − 𝑢𝑖𝑡′𝑡)]

𝑖∈ℐ,𝑗∈ℐ𝑖
+,𝑡′∈𝒯,𝑡≥𝑡′∈𝒯

. (14) 

2.3.5 Linearization 1 

It can be seen except constraint (11), all the other constraints and the objective function are linear in 2 
the original formulation. The left-hand in constraint (11) is a bi-linear term involving the multiplication of 3 
a continuous variable and a binary variable. To simplify the model formulation to suit existing commercial 4 
solvers for integer linear programs (e.g. Gurobi), we equivalently replace constraint (11) with the following 5 
linear constraints (15). According to constraints (15), 𝑥𝑖𝑡𝑡 = 0 together with constraints (6) indicates that 6 
𝑐(𝑖+1)𝑡 = 0, and 𝑥𝑖𝑡𝑡 = 1 indicates that 𝑐(𝑖+1)𝑡 is constrained no more than constraints (6), which is exactly 7 
equivalent to constraints (11).  8 

 𝑐(𝑖+1)𝑡 − 𝐿𝐶𝑥𝑖𝑡𝑡 ≤ 0, ∀𝑖 ∈ ℐ\{𝐼}, 𝑡 ∈ 𝒯. (15) 

With that, the final model formulation is obtained as follows. It can be seen that the proposed MODOC 9 
problem is formulated with integer and continuous variables, and all the constraints and objective function 10 
are linear. Thus, the proposed problem is a MILP problem. 11 

 
min

𝑦𝑙𝑡,𝑐𝑖𝑡,𝑥𝑖𝑡′𝑡,𝑢𝑖𝑡′𝑡
∑ 𝑒(𝑙)𝑦𝑙𝑡

𝑙∈ℒ,𝑡∈𝒯

+ ∑ 𝑤[𝛿𝑝𝑖𝑗𝑡′(1 − 𝑢𝑖𝑡′𝑡)],

𝑖∈ℐ,𝑗∈ℐ𝑖
+,𝑡′∈𝒯,𝑡≥𝑡′∈𝒯

 

s. t.       Constraints (1) − (10), (12), (13), (15). 

(16) 

3. Solution approaches 12 

The operation design problem in UTS is very computationally intensive, which may not be suitable 13 
real-world applications that demand a reasonable solution time. To overcome this challenge, this section 14 
aims to developing a solution algorithm that can efficiently obtain the optimal schedule for the investigated 15 
MODOC problem in an acceptable time. Section 3.1 identifies the theoretical upper and lower bounds to a 16 
feasible solution. Based on these two bounds and the clearance constraint (12), Section 3.2 proposes a 17 
customized DP algorithm to solve the investigated problem efficiently.   18 

3.1 Theoretical properties 19 

3.1.1 Upper bound to an optimal dispatch solution 20 

Theorem 1. In an optimal solution to MODOC with dispatches {𝑦𝑙𝑡} and vacant seats {𝑐𝑖𝑡}, for any 21 
𝑡′′ ∈ 𝒯, 𝑙′ ∈ ℒ with 𝑦𝑙′𝑡′′ = 1, then 𝑐𝑖𝑡′′ < 𝐶, ∃𝑖 ∈ ℐ. 22 

Proof. This theorem is proven by contradiction. If the above statement does not hold, then ∃𝑡′′ ∈23 
𝒯, 𝑙′ ∈ ℒ  with 𝑦𝑙′𝑡′′ = 1  and 𝑐𝑖𝑡′′ ≥ 𝐶, ∀𝑖 ∈ ℐ . With this, we construct a new feasible solution with 24 
dispatches {𝑦̂𝑙𝑡}, vacant seats {𝑐̂𝑖𝑡}, cumulative boarding percentages {𝑢̂𝑖𝑡′𝑡} and boarding states {𝑥𝑖𝑡′𝑡}, 25 
where {𝑦̂𝑙𝑡} equals {𝑦𝑙𝑡} except that 𝑦̂(𝑙′−1)𝑡′′ = 1 and 𝑦̂𝑙′𝑡′′ = 0, and {𝑐̂𝑖𝑡}, {𝑢̂𝑖𝑡′𝑡}, {𝑥𝑖𝑡′𝑡} can be uniquely 26 

solved by plugging {𝑦̂𝑙𝑡} into constraints (4)-(10),(12),(13),(15). This means that the new solution removes 27 
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one MU from the MV dispatched at time 𝑡′′. Because 𝑐𝑖𝑡′′ ≥ 𝐶, ∀𝑖 ∈ ℐ, it indicates that in the optimal 1 
solution, all passenger groups at each station fully board the MV dispatched at time 𝑡′′, and there are at least 2 
𝐶 seats without occupancy at each station. For example, if in an optimal dispatch solution, an MV with 4 3 
MUs is dispatched. However, there is always 𝐶 seats without occupancy at each station. Then an MV with 4 
3 MUs also can satisfy the same passenger demand. After removing one MU from the MV dispatched at 5 
time 𝑡′′ in the new solution, the vacant seats shall satisfy 𝑐̂𝑖𝑡′′ = 𝑐𝑖𝑡′′ − 𝐶, ∀𝑖 ∈ ℐ. Further, it is easy to 6 
verify with constraints (4),(7)-(10),(12),(13),(15) that {𝑢̂𝑖𝑡′𝑡} = {𝑢𝑖𝑡′𝑡} and {𝑥𝑖𝑡′𝑡} = {𝑥𝑖𝑡′𝑡}. Note that the 7 
new solution meets the passenger demand with the same passenger waiting cost. While the new solution 8 
incurs less MV operating cost than the original solution that dispatches one more MU. Thus, the new 9 
feasible solution even yields less overall system cost than the original solution, which contradicts the 10 
optimality of the original solution. This completes the proof.   11 

With Theorem 1, to guarantee the optimality of one solution, the number of MUs in the MV dispatched 12 
at the end of time interval 𝑡 ∈ 𝒯 must be less than the minimum 𝑙′ ≔ ∑ 𝑙 ⋅ 𝑦𝑙𝑡𝑙∈ℒ  that has 𝑐𝑖𝑡 ≥ 𝐶, ∀𝑖 ∈ ℐ. 13 
Thus, the set of values of 𝑙′  at time intervals 𝑡 ∈ 𝒯  serves as an upper bound to the optimal dispatch 14 
solution.  15 

3.1.2 Lower bound to an optimal dispatch solution 16 

Theorem 2. With an optimal solution to MODOC with dispatches {𝑦𝑙𝑡} and vacant seats {𝑐𝑖𝑡}, if 17 
∃𝑡′′ ∈ 𝒯, 𝑙′ ∈ ℒ with 𝑦𝑙′𝑡′′ = 1, and 𝑐𝑖𝑡′′ = 0, ∀𝑖 ∈ ℐ\{1}. Then we construct a new feasible solution with 18 
dispatches {𝑦̂𝑙𝑡}  obtained by copying {𝑦𝑙𝑡}  except for setting 𝑦̂𝑙′′𝑡′′ = 1  and 𝑦̂𝑙′𝑡′′ = 0  for any 𝑙′′ ∈19 
{𝑙 + 1, 𝑙 + 2,⋯ , 𝐿} (which means to only increase the MV capacity level dispatched at time 𝑡′′ while 20 
keeping the rest the same), and vacant seats {𝑐̂𝑖𝑡}, cumulative boarding percentage {𝑢̂𝑖𝑡′𝑡}, and boarding 21 
state {𝑥𝑖𝑡′𝑡} obtained from constraints (4)-(10),(12),(13),(15), the new solution must satisfy 𝑐̂𝑖𝑡′′ > 0, ∃𝑖 ∈22 
ℐ\{1}. 23 

Proof. This theorem is also proven by contradiction. If the above statement does not hold, then 𝑐̂𝑖𝑡′′ =24 
0, ∀𝑖 ∈ ℐ\{1} in the new feasible solution. 25 

To visualize the conversion from the original optimal solution to the new solution, we transform {𝑦𝑙𝑡} 26 
to a 1 × 𝑇 array such that {𝑌𝑡} and 𝑌𝑡 = ∑ 𝑙𝑦𝑙𝑡𝑙∈ℒ  ∀𝑡 ∈ 𝒯. Now {𝑌𝑡} indicates whether an MV is dispatched 27 
or not at any time 𝑡 (i.e., yes if 𝑌𝑡 > 0 or no if 𝑌𝑡 = 0) and how many MUs are dispatched at time 𝑡 (i.e., 28 
the value of 𝑌𝑡 ). Thus, {𝑌𝑡} and {𝑦𝑙𝑡} are equivalent and transferable from one to another. Further, we 29 
transform {𝑦̂𝑙𝑡} to {𝑌̂𝑡} in the same way. As illustrated in the toy example in Fig. 5, in the original optimal 30 
solution, a level-3 MV is dispatched at time 𝑡′′ = 5 (i.e., 𝑌5 = 𝑙′ = 3), while in the new solution, a longer 31 
level-6 MV is dispatched instead (i.e., 𝑌̂5 = 𝑙′′ = 6) yet the rest remains the same. Note that with the above 32 
assumption, we know that 𝑐𝑖𝑡′′ = 𝑐̂𝑖𝑡′′ = 0, ∀𝑖 ∈ ℐ\{1}. 33 
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Fig. 5 Solution construction process. 2 

With this, we construct another solution with dispatches {𝑦̃𝑙𝑡} by integrating {𝑦𝑙𝑡} and {𝑦̂𝑙𝑡}. Again, 3 
we use {𝑌̃𝑡} to equivalently represent {𝑦̃𝑙𝑡} after the same transformation. Since 𝑐𝑖𝑡′′ = 𝑐̂𝑖𝑡′′ = 0, ∀𝑖 ∈4 
ℐ\{1}, then we know that in solution {𝑦𝑙𝑡}, at minimum (𝑙′′ − 𝑙′)𝐶 passengers are waiting to board at each 5 
station after time 𝑡′′, which will be cleared by later dispatches in {𝑦𝑙𝑡} to meet clearance constraint (12). 6 

This indicates that ∃𝑡∗ > 𝑡′′  such that ∑ 𝑌𝑡
𝑡∗

𝑡=𝑡′′+1 ≥ 𝑙′′ − 𝑙′  and ∑ 𝑌𝑡
𝑡∗−1
𝑡=𝑡′′+1 < 𝑙′′ − 𝑙′ . Then we can 7 

construct {𝑦̃𝑙𝑡}  by setting 𝑌̃𝑡′′ = 𝑌̂𝑡′′  and 𝑌̃𝑡 = 0, ∀𝑡′′ < 𝑡 < 𝑡∗ , 𝑌̃𝑡∗ = ∑ 𝑌𝑡
𝑡∗

𝑡=𝑡′′+1 − (𝑙′′ − 𝑙′)  and 𝑌̃𝑡 =8 
𝑌𝑡′′ , ∀𝑡 < 𝑡

′′or > 𝑡∗. As illustrated in Fig. 5, in the solution {𝑌̃𝑡}, a level-6 MV is dispatched at time 𝑡′′ =9 
5 (i.e., 𝑌̃5 = 6) and a level-1 MV is dispatched at time 𝑡∗ = 7 (i.e., 𝑌̃7 = 1) instead of dispatching a level-10 
4 MV at that time. The corresponding {𝑐̃𝑖𝑡}, {𝑢̃𝑖𝑡′𝑡}, and {𝑥̃𝑖𝑡′𝑡} values are calculated by plugging {𝑦̃𝑙𝑡} into 11 
equation (17)-(19). 12 

{
  
 

  
 𝑐̃1𝑡 =∑𝑙𝐶𝑦̃𝑙𝑡

𝑙∈ℒ

, ∀𝑡 ∈ 𝒯,

𝑐̃𝑖𝑡 =∑𝑙𝐶𝑦̃𝑙𝑡
𝑙∈ℒ

+ ∑ ( ∑ (𝑢̃𝑗𝑡′𝑡 − 𝑢̃𝑗𝑡′(𝑡−1))𝑝𝑗𝑖′𝑡′

𝑗∈ℐ
𝑖′
−,𝑡′≤𝑡∈𝒯

− ∑ (𝑢̃𝑖′𝑡′𝑡 − 𝑢̃𝑖′𝑡′(𝑡−1))𝑝𝑖′𝑗𝑡′

𝑗∈ℐ
𝑖′
+,𝑡′≤𝑡∈𝒯

)

𝑖−1

𝑖′=1

  

∀𝑖 ∈ ℐ\{1}, 𝑡 ∈ 𝒯\{1},

 (17) 

𝑢̃𝑖𝑡′𝑡 =

{
 
 
 
 

 
 
 
 𝑢̃𝑖𝑡′(𝑡−1), 𝑖𝑓 ∑ 𝑦̃𝑙𝑡

𝑙∈ℒ

= 0;

1, 𝑖𝑓 𝐴 ≤ 𝐵;

{
1, ∀𝑡′ < 𝑡
𝐸, ∀𝑡′ = 𝑡

,  𝑖𝑓 𝐴 > 𝐵 𝑎𝑛𝑑 𝐷 ≤ 𝐸;

{

1, 𝑖𝑓 𝑡′ < 𝑡𝑠

0, 𝑖𝑓 𝑡′ > 𝑡𝑠

𝐹, 𝑖𝑓 𝑡′ = 𝑡𝑠
, 𝑖𝑓 𝐴 > 𝐵 𝑎𝑛𝑑 𝐷 > 𝐸,

 

where 

(18) 
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𝐴:= ∑ ((1 − 𝑢̃𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′ + 𝑝𝑖𝑗𝑡)

𝑗∈ℐ𝑖
+,𝑡′≤𝑡−1∈𝒯

, 

𝐵:= 𝑐̃𝑖𝑡 + ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′

𝑗∈ℐ𝑖
−,𝑡′≤𝑡∈𝒯

, 

𝐷:= ∑ (1 − 𝑢̃𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′

𝑗∈ℐ𝑖
+,𝑡′≤𝑡−1∈𝒯

, 

𝐸:= (∑(1 − 𝑢𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′

𝑡−1

𝑡′=1

+ 𝑝𝑖𝑗𝑡 − 𝑐̃𝑖𝑡 − ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′

𝑗∈ℐ𝑖
−,𝑡′≤𝑡∈𝒯

)/𝑝𝑖𝑗𝑡 , 

𝐹:= (∑(1 − 𝑢𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′

𝑡𝑠

𝑡′=1

− 𝑐̃𝑖𝑡 − ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′

𝑗∈ℐ𝑖
−,𝑡′≤𝑡∈𝒯

)/𝑝𝑖𝑗𝑡𝑠 , 

and 𝑡𝑠 is the arriving time of passenger group that cannot fully board the MV dispatched at time 𝑡. 𝑡𝑠 can 1 

be obtained by ∑ (1 − 𝑢𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′
𝑡𝑠−1
𝑡′=1 ≤ 𝑐̃𝑖𝑡 + ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′𝑗∈ℐ𝑖

−,𝑡′≤𝑡∈𝒯  and ∑ (1 −𝑡𝑠

𝑡′=12 

𝑢𝑖𝑡′(𝑡−1))𝑝𝑖𝑗𝑡′ > 𝑐̃𝑖𝑡 + ∑ (𝑢𝑗𝑡′𝑡 − 𝑢𝑗𝑡′(𝑡−1))𝑝𝑗𝑖𝑡′𝑗∈ℐ𝑖
−,𝑡′≤𝑡∈𝒯 . 3 

𝑥̃𝑖𝑡′𝑡 = {
0, 𝑖𝑓 𝑢̃𝑖𝑡′𝑡 ≠ 1

1, 𝑖𝑓 𝑢̃𝑖𝑡′𝑡 = 1
, ∀𝑖 ∈ ℐ, 𝑡 ≥ 𝑡′ ∈ 𝒯. (19) 

Because 𝑐̃𝑖𝑡′′ = 0,∀𝑖 ∈ ℐ\{1} and 𝑌̃𝑡′′ + 𝑌̃𝑡∗ = 𝑌𝑡′′ + 𝑌𝑡∗ , it indicates we dispatch 𝑙′′ − 𝑙′ MUs 𝑡∗ −4 
𝑡′′ time intervals earlier than the optimal solution. By plugging {𝑐̃𝑖𝑡}, {𝑢̃𝑖𝑡′𝑡}, and {𝑥̃𝑖𝑡′𝑡} of the constructed 5 
solution to constraints (4)-(10),(12),(13),(15), all constraints are satisfied. Thus, this newly constructed 6 
solution is feasible. Then, it is obvious that more passenger waiting cost will be occurred by the optimal 7 
solution compared with the newly constructed solution. Further, we mentioned that the operating cost 8 
function 𝑒(𝑙) is concave over the level of MV (i.e., 𝑙), and the operating cost of dispatching a vehicle with 9 
𝐶 seats is far less than the passenger waiting cost if we let the corresponding number of passengers wait for 10 
one more time interval (i.e., 𝑒(1) ≪ 𝑤𝛿𝐶). Thus the overall system cost of dispatching 𝑌̃𝑡′′ and 𝑌̃𝑡∗ MUs 11 
at time 𝑡′′ and 𝑡∗ is less than that of dispatching 𝑌𝑡′′ and 𝑌𝑡∗ MUs at time 𝑡′′ and 𝑡∗. The optimal solution 12 
has higher overall system cost than the constructed solution, which contradicts the optimality of the original 13 
solution. This completes the proof.   14 

With Theorem 2, to guarantee the optimality of one solution, the number of MUs in the MV dispatched 15 
at the end of time interval 𝑡 ∈ 𝒯 must be greater than or equal to the maximum 𝑙′ ≔ ∑ 𝑙 ⋅ 𝑦𝑙𝑡𝑙∈ℒ  that has 16 
𝑐𝑖𝑡 = 0,∀𝑖 ∈ ℐ\{1}. Thus, the set of values of 𝑙′ at time intervals 𝑡 ∈ 𝒯 serves as a lower bound to the 17 
optimal dispatch solution.  18 

3.2 Dynamic Programming Algorithm 19 

This section proposes a customized DP algorithm to solve the investigated MODOC problem. The 20 
outstanding challenge to the investigated problem is that the passenger queues at each time interval are 21 
originally unbounded, which much increases the state space and thus increases the problem complexity. 22 
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Thanks to the theoretical properties studied in Section 3.1, which provides relatively tight upper and lower 1 
bounds to a feasible solution, the state space can be largely reduced to a narrow band at each stage. Tab. 2 2 
lists the basic elements of the customized DP algorithm, and the explicit explanation of each element 3 
follows. 4 

Tab. 2 Basic elements of the customized DP algorithm. 5 
No. Elements Notation No. Elements Notation 

1 Stage 𝑡 ∈ {0} ∪ 𝒯 4 MU terminal stock state 𝑜𝑡 

2 Decision variable 𝑌𝑡 5 Boarding position state 𝑣𝑡 

3 MU pipeline stock state 𝑔𝑡 6 Cost function 𝑀𝑡 

1) Stages 6 

Consider each discrete time interval 𝑡 ∈ 𝒯 as a stage of the studied problem. Set 𝑡 = 0 is a dummy 7 
stage for the convenience of the notations. 8 

2) Decision variables 9 

The numbers of dispatched MUs at Stage 𝑡, denoted as 𝑌𝑡, is the decision variable in the customized 10 
DP algorithm. It is a nonnegative integer no greater than the MU terminal stock (i.e., 𝑜𝑡; see the next section 11 
for the definition) and the maximum number of MUs that a MV can have (i.e., 𝐿), i.e., 12 

 𝑌𝑡 ∈ {0,1,⋯ ,min(𝑜𝑡 , 𝐿)}, ∀𝑡 ∈ 𝒯. (20) 

3) States 13 

There are three sets of state variables in the proposed DP algorithm, and they are the MU pipeline 14 
stock, the MU terminal stock, and the boarding positions of the passenger groups. 15 

The MU pipeline stock at a given Stage 𝑡, denoted by 𝑔𝑡 ≔ [𝑔𝑡𝑡′]∀𝑡′∈{1,2,⋯,𝑃}, is an 1 × 𝑃 array with 16 

non-negative integer elements. 𝑔𝑡𝑡′ denotes the number of MUs that will return to Station 1 at the beginning 17 
of Stage 𝑡 + 𝑡′. For example, if 𝑔𝑡1 equals 0, no MU returns to Station 1 at the beginning of Stage 𝑡 + 1; 18 
otherwise, the value of 𝑔𝑡1 means the number of MUs returning to Station 1 at the beginning of Stage 𝑡 +19 
1. The initial values of [𝑔𝑡𝑡′] are set to 0 at Stage 0, since all vehicles are assumed to be stored at Station 1 20 
before operations and thus no vehicles are being circulated across other stations to return to Station 1 at the 21 
beginning.  22 

The MU terminal stock state, denoted by 𝑜𝑡, pertains to the maximum number of MUs that can be 23 
dispatched from Station 1 at the beginning of Stage 𝑡. It is a nonnegative integer, and the initial value of 𝑜𝑡 24 
is set to 𝑉 at Stage 0.  25 

The boarding positions of the passenger groups, denoted by 𝑣𝑡 ≔ [𝑣𝑖𝑡]∀𝑖∈ℐ, mark the last arrival time 26 
of boarded passengers at each Station 𝑖 at the end of Stage 𝑡. Note that due to the MSFIFO, at each Stage 27 
𝑡, all passenger groups with different destinations at the same origin Station 𝑖 have the same boarding 28 
position, and thus we do not need to track queues with different destinations separately, which much reduces 29 
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the state space. 𝑣𝑖𝑡 is a nonnegative real number. The value of ⌊𝑣𝑖𝑡⌋ denotes the arrival time interval of the 1 
last group of passengers who has boarded at Station 𝑖  at the end of Stage 𝑡. The value of 𝑣𝑖𝑡 − ⌊𝑣𝑖𝑡⌋ 2 
indicates the boarding portion of the passenger group arriving at time interval ⌊𝑣𝑖𝑡⌋ + 1 at the end of Stage 3 
𝑡 . For example, 𝑣𝑖𝑡 = 7.3  indicates that the passenger groups arriving at Station 𝑖  at time interval 4 
{1,2,⋯ ,7} have all boarded MVs at the end of Stage 𝑡. The boarding portion of each passenger group 5 
arriving at Station 𝑖 at time interval 8 is 0.3 (or 30%) at the end of Stage 𝑡. The initial values of [𝑣𝑖𝑡] are set 6 
to 0 at stage 0. 7 

4) State transition function 8 

The state space at each Stage 𝑡 is denoted by 𝑆𝑡 ≔ {(𝑔𝑡 , 𝑜𝑡 , 𝑣𝑡)}. The state transition function is shown 9 
in Equation (21). By plugging the states (i.e., 𝑆𝑡−1 ≔ {(𝑔𝑡−1, 𝑜𝑡−1, 𝑣𝑡−1)}) and decision variable (i.e., 𝑌𝑡−1) 10 
at Stage 𝑡 − 1 into Equation (21), the states at Stage 𝑡 (i.e., 𝑆𝑡 ≔ {(𝑔𝑡, 𝑜𝑡 , 𝑣𝑡)}) can be obtained.  11 

𝑇 ([

𝑔𝑡−1
𝑜𝑡−1
𝑣𝑡−1

] , 𝑌𝑡−1) =

[
 
 
 
 
 𝑔𝑡 ≔ [𝑔𝑡𝑡′ = 𝑔(𝑡−1)(𝑡′+1), ∀𝑡

′ ∈ {1,2,⋯ , 𝑃 − 1}, 𝑔𝑡𝑃 = 𝑌𝑡−1]

𝑜𝑡 ≔ 𝑜𝑡−1 + 𝑔(𝑡−1)1 − 𝑌𝑡−1

𝑣𝑡 ≔ [

𝑣1𝑡 = 𝑎𝑟𝑔 max
𝑡′′∈[⌊𝑣1(𝑡−1)⌋,𝑡]

𝐺(1, 𝑡′′) ≥ 𝑐1𝑡 ≔ 𝑌𝑡−1𝐶

𝑣𝑖𝑡 = 𝑎𝑟𝑔 max
𝑡′′∈[⌊𝑣𝑖(𝑡−1)⌋,𝑡]

𝐺(𝑖, 𝑡′′) ≥ 𝑐𝑖𝑡 + 𝑎(𝑖, 𝑡), ∀𝑖 ∈ ℐ\{1}
]

]
 
 
 
 
 

, ∀𝑡

∈ 𝒯, 

where 

𝑐𝑖𝑡: = max{𝑐(𝑖−1)𝑡 + 𝑎(𝑖 − 1, 𝑡) − 𝐺(𝑖 − 1, 𝑡), 0} , ∀𝑖 ∈ ℐ\{1}, 𝑡 ∈ 𝒯, 

𝑎(𝑖, 𝑡) ≔ ∑ [ ∑ min{(𝑣𝑖′𝑡 − 𝑡
′), 1} 𝑝𝑖′𝑖𝑡′

⌊𝑣𝑖′𝑡⌋

𝑡′=⌊𝑣𝑖′(𝑡−1)⌋+1
𝑖′∈ℐ𝑖

−

+ (⌊𝑣𝑖′(𝑡−1)⌋ + 1 − 𝑣𝑖′(𝑡−1))𝑝𝑖′𝑖⌊𝑣
𝑖′(𝑡−1)

⌋+1
] , ∀𝑖 ∈ ℐ\{1}, 𝑡 ∈ 𝒯, 

𝑎(1, 𝑡) = 0, ∀𝑡 ∈ 𝒯, 

𝐺(𝑖′, 𝑡′′):= ∑ [(𝑡′′ − ⌊𝑡′′⌋)𝑝𝑖′𝑗(⌊𝑡′′⌋+1) + ∑ min{(𝑡′ − 𝑣𝑖(𝑡−1)), 1} 𝑝𝑖′𝑗𝑡′

⌊𝑡′′⌋

𝑡′=⌊𝑣𝑖(𝑡−1)⌋+1

 ]

𝑗∈ℐ
𝑖′
+

, ∀𝑖′

∈ ℐ, 𝑡′′ ∈ [⌊𝑣𝑖(𝑡−1)⌋, 𝑡]. 

(21) 

Consistent with Section 2, 𝑐𝑖𝑡 denotes the amount of vacant seats of the MV dispatched at the end of 12 
Stage 𝑡 on arriving at Station 𝑖. Function 𝑎(𝑖, 𝑡) denotes the number of alighting passengers when the MV 13 
dispatched at the end of Stage 𝑡 arrives at Station 𝑖. The number of alighting passengers at Station 1 is set 14 
to 0 for each MV (i.e., 𝑎(1, 𝑡) = 0, ∀𝑡 ∈ 𝒯 ). Function 𝐺(𝑖′, 𝑡′′) denotes the number of the passengers 15 
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waiting at Station 𝑖′ at Time 𝑡′′. We slightly abuse the notation to allow 𝑡′′ to be a fractional number. This 1 
allows us to track passenger queues over the continuous time. Note that to generalize this function, the 2 
range of Time 𝑡′′ is [⌊𝑣𝑖(𝑡−1)⌋, 𝑡] that indicates the time index can be real number. The detailed calculation 3 
process of state 𝑣𝑡 can refer to Equations (18). 4 

5) Customized DP algorithm 5 

With these definitions, the customized DP algorithm is performed as the following steps, and the 6 
pseudo-code is shown in Algorithm. 7 

Step 1: Start from Stage 𝑡 = 0 with state space 𝑆0 ≔ {𝑔0, 𝑜0, 𝑣0} and cost 𝑀0 ≔ 0. Set 𝑡 = 1.  8 

Step 2: Set state space 𝑆𝑡 = ∅.  9 

Step 2.1: For each state 𝑠𝑡−1 ≔ (𝑔𝑡−1, 𝑜𝑡−1, 𝑣𝑡−1) ∈ 𝑆𝑡−1 , state 𝑠𝑡  is obtained by the transition 10 
function (i.e. 𝑠𝑡 = 𝑇(𝑠𝑡−1, 𝑌𝑡−1)). If any of the following conditions (i.e., upper and lower bounds and 11 
clearance constraint (12)) is met for this state, go to next state in 𝑆𝑡−1 and repeat Step 2.1; otherwise, go to 12 
next step. 13 

 

𝑌𝑡 ≠ 0, 𝑐𝑖𝑡 ≥ 𝐶, ∀𝑖 ∈ ℐ; 

or 𝑌𝑡 ≠ 0, 𝑐𝑖𝑡 = 0,∀𝑖 ∈ ℐ\{1} and 𝑐̂𝑖𝑡 = 0, ∀𝑖 ∈ ℐ\{1}; 

or 𝑣𝑖𝑇 ≠ 𝑇, ∀𝑖 ∈ ℐ. 

where the definition of 𝑐̂𝑖𝑡 is consistent with Section 3.1.2. 

(22) 

Step 2.2: Calculate the cost of 𝑀𝑡
′(𝑠𝑡 ≔ 𝑇(𝑠𝑡−1, 𝑌𝑡−1)):= 𝑀𝑡−1

∗ (𝑠𝑡−1) + 𝑒(𝑌𝑡−1) +14 

∑ 𝑤(∑ min{(𝑡′ − 𝑣𝑖𝑡), 1} 𝑝𝑖𝑗𝑡′
𝑡
𝑡′=⌊𝑣𝑖𝑡⌋+1

)𝑖∈ℐ,𝑗∈ℐ𝑖
+ , where 𝑒(𝑌𝑡−1) is the cost for dispatching 𝑌𝑡−1 MUs. If 15 

𝑠𝑡 ∉ 𝑆𝑡 , add 𝑠𝑡  to 𝑆𝑡 , and set mappings 𝑀𝑡∗(𝑠𝑡) = 𝑀𝑡
′(𝑠𝑡) , 𝑌𝑡−1∗ (𝑠𝑡) = 𝑌𝑡−1 , and 𝑆𝑡−1∗ (𝑠𝑡) = 𝑠𝑡−1 ; 16 

otherwise, if 𝑀𝑡′(𝑠𝑡) < 𝑀𝑡∗(𝑠𝑡) , update mappings 𝑀𝑡∗(𝑠𝑡) = 𝑀𝑡′(𝑠𝑡) , 𝑌𝑡−1∗ (𝑠𝑡) = 𝑌𝑡−1 , and 𝑆𝑡−1∗ (𝑠𝑡) =17 
𝑠𝑡−1.  18 

Step 2.3: If 𝑡 < 𝑇, 𝑡 = 𝑡 + 1, go to Step 2; otherwise, go to Step 3. 19 

Step 3: Get mappings at Stage 𝑇 with the minimum cost in the state space (i.e., min{𝑀𝑇
∗(𝑠𝑇)} , ∀𝑠𝑇 ∈20 

𝑆𝑇), and set it as the optimal cost. Denote the state for this optimal cost by 𝑠𝑇∗ . Then the optimal dispatch 21 
solution {𝑌𝑡∗} is obtained by tracking back from Stage 𝑇  to Stage 1  according to 𝑌𝑡−1∗ = 𝑌𝑡−1

∗ (𝑠𝑡
∗) and 22 

𝑠𝑡−1
∗ = 𝑆𝑡−1

∗ (𝑠𝑡
∗). 23 

Algorithm. Dynamic Programming Algorithm 24 
Input ℐ; 𝒯; ℒ; 𝛿; 𝐶; 𝑉; 𝑃;𝐻; 𝑒𝑙 , ∀𝑙 ∈ ℒ; 𝑝𝑖𝑗𝑡′ , ∀𝑖 ∈ ℐ, 𝑗 ∈ ℐ𝑖+, 𝑡′ ∈ 𝒯 
𝑡 ← 0, 𝑆0 ← {𝑔0, 𝑜0, 𝑣0},𝑀0 ← 0 
For 𝑡 = 1 to 𝒯 do 
    𝑆𝑡 ← ∅  
    For each state 𝑠𝑡−1 ≔ (𝑔𝑡−1, 𝑜𝑡−1, 𝑣𝑡−1) ∈ 𝑆𝑡−1 do 
        𝑠𝑡 = 𝑇(𝑠𝑡−1, 𝑌𝑡−1) 
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        If 𝑠𝑡 does not meet any of the conditions in Equation (22)  
            Calculate the cost of 𝑀𝑡

′(𝑠𝑡 ≔ 𝑇(𝑠𝑡−1, 𝑌𝑡−1)) 
            If 𝑠𝑡 ∉ 𝑆𝑡 
                add 𝑠𝑡 to 𝑆𝑡, set mappings 𝑀𝑡

∗(𝑠𝑡) = 𝑀𝑡
′(𝑠𝑡), 𝑌𝑡−1∗ (𝑠𝑡) = 𝑌𝑡−1, and 𝑆𝑡−1∗ (𝑠𝑡) = 𝑠𝑡−1 

            Else if 𝑀𝑡
′(𝑠𝑡) < 𝑀𝑡

∗(𝑠𝑡), 
                update mappings 𝑀𝑡

∗(𝑠𝑡) = 𝑀𝑡
′(𝑠𝑡), 𝑌𝑡−1∗ (𝑠𝑡) = 𝑌𝑡−1, and 𝑆𝑡−1∗ (𝑠𝑡) = 𝑠𝑡−1 

            End if 
        End if 
    End for 
End for 
Get min{𝑀𝑇

∗(𝑠𝑇)} , ∀𝑠𝑇 ∈ 𝑆𝑇. Denote the state for this optimal cost by 𝑠𝑇∗  
For 𝑡 = 𝑇 to 1 do 
    𝑌𝑡−1∗ = 𝑌𝑡−1

∗ (𝑠𝑡
∗), 𝑠𝑡−1∗ = 𝑆𝑡−1

∗ (𝑠𝑡
∗) 

End for 
Output The optimal dispatch solution {𝑌𝑡∗}, the optimal objective min{𝑀𝑇

∗(𝑠𝑇)} , ∀𝑠𝑇 ∈ 𝑆𝑇 

Note that due to the proposed upper and lower bounds in Step 2.1, the number of states in each stage 1 
can be largely reduced. If we drop the upper and lower bounds in Step 2.1 from the proposed customized 2 
DP algorithm, the algorithm will become the original DP algorithm, and a greater number of states will 3 
remain in each stage, which significantly increase the computational time. The detailed comparisons 4 
between the customized and original DP algorithms can be found in the numerical experiments. 5 

4. Numerical experiments 6 

In this section, several numerical experiments are conducted to test the performance of the proposed 7 
model and algorithm, including a case study based on a hypothetical example and a real-world case study 8 
based on the passenger data obtained from Beijing Subway Line 6. The proposed customized DP algorithm 9 
is coded in Visual studio C++ 2017 at a Window 7 PC with i7-4790 GPU and 16.0 GB RAM. The 10 
benchmark instances for comparison are solved by a commercial solver, Gurobi 650, at the same platform. 11 

4.1 Case study on a hypothetical example 12 

In the hypothetical example, at default, we consider a single direction corridor with 4 stations. MVs 13 
start at Station 1 and destine for Station 4 (i.e., 𝐼=4). The number of MUs in stock is 50 (i.e., 𝑉=50) and 14 
each MU can accommodate 20 persons (i.e., 𝐶=20). The maximum number of MUs for one MV is limited 15 
as 6 (i.e., 𝐿=6). In addition, the maximum study time horizon is 60 time intervals (i.e., 𝑇=60), and the 16 
passenger demand in the skewed time coordinates is shown in Tab. 3. Coefficient 𝑤 is set as 0.11$/minute, 17 
and level-𝑙 MV operating cost 𝑒𝑙 is 2.049$ + 0.37$ ∗ (𝑙 ∗ 𝐶)0.5 in consistence with Chen et al., (2019a). 18 
Without losing generality, three different demand scenarios are taken into consideration, including the off-19 
peak hour scenario (1-10 time intervals, 41-55 time intervals), the peak hour scenario (11-20 time intervals, 20 
31-40 time intervals) and the transition hour scenario (21-30 time intervals). 21 

Tab. 3 The arriving passenger demand for study time horizon. 22 
Time interval Arriving passenger demand 

1-10 10 passengers/ time interval 

11-20 40 passengers/ time interval 
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21-30 30 passengers/ time interval 

31-40 40 passengers/ time interval 

41-55 10 passengers/ time interval 

56-60 0 passengers/ time interval 

With the default settings above, we derive a set of instances based on the different combinations of the 1 
time horizon, headway and operational cycle. The instance index includes the time horizon (𝑇), headway 2 
(𝐻) and operational cycle (𝑃) for this specific instance, i.e., IN-T-H-P. For example, index IN-20-1-5 3 
indicates that the study time horizon of this instance is 20 time intervals, and the headway and operational 4 
cycle are 1 time interval and 5 time intervals, respectively.  5 

We compare the solutions from Gurobi and the customized DP on objective value, computation time, 6 
gap, number of dispatched MVs and number of dispatched MUs. The maximum CPU time is limited to 7 
300s. Tab. 4 shows the comparison results for a total of 12 instances. It is found that as the scale of the 8 
instance increases, the Gurobi solver fails to obtain the optimal solution. However, the customized DP 9 
algorithm successfully solve all the instances within the time limit. The customized DP algorithm has a 10 
solution time much less than that from Gurobi in each instance, which indicates the superior solution 11 
efficiency of the proposed customized DP algorithm. Especially, in some instances such as IN20-2-5 and 12 
IN-40-2-5, the proposed customized DP algorithm is 200-500 times faster than Gurobi. Note that due to the 13 
considerations of returns of MV/MUs, the numbers of the dispatched MUs may be greater than the total 14 
number of MUs in stock (i.e., 50) if some MUs are returned and dispatched multiple times. However, the 15 
total number of dispatched MUs in each operational cycle (i.e., 𝑃) is always restricted by Constraints (1). 16 

Tab. 4 The comparison for different instances with Gurobi, the original DP and customized DP. 17 
Instance parameter Method Objective ($) Computation time Gap # of MVs # of MUs 

IN-20-1-5 
Gurobi 

151.4 
23.05s 

0% 10 25 
Customized DP 0.06s 

IN-20-1-10 
Gurobi 

151.4 
22.00s 

0% 10 25 
Customized DP 5.86s 

IN-20-2-5 
Gurobi 

172.8 
13.37s 

0% 7 26 
Customized DP 0.02s 

IN-20-2-10 
Gurobi 

172.8 
12.90s 

0% 7 26 
Customized DP 0.55s 

IN-40-1-5 
Gurobi 

344.3 
107.20s 

0% 20 60 
Customized DP 0.78s 

IN-40-1-10 
Gurobi 

344.3 
106.62s 

0% 20 60 
Customized DP 80.51s 

IN-40-2-5 
Gurobi 

415.2 
58.98s 

0% 13 61 
Customized DP 0.22s 

IN-40-2-10 
Gurobi 

415.2 
59.21s 

0% 13 61 
Customized DP 5.28s 

IN-60-1-5 Gurobi 482 300.00s 6.29% 26 85 
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Customized DP 478.3 3.69s 0% 27 84 

IN-60-1-10 
Gurobi 482 300.00s 6.29% 26 85 

Customized DP 478.3 290.10s 0% 27 84 

IN-60-2-5 
Gurobi 580.6 300.00s 4.93% 18 88 

Customized DP 561.3 0.70s 0% 19 96 

IN-60-2-10 
Gurobi 580.6 300.00s 4.93% 18 88 

Customized DP 561.3 19.31s 0% 19 96 

 1 

Based on the obtained results, it is known that the proposed customized DP algorithm performs much 2 
better than the Gurobi solver on the solution time. It benefits from the proposed upper and lower bounds. 3 
Fig. 6 compares the state space between the original DP algorithm and the customized DP algorithm based 4 
on IN-40-1-5. Note that the state space of the original DP algorithm rapidly increases due to the unbounded 5 
passenger queue at each stage. However, for the customized DP algorithm, the state space curve has a much 6 
lower increase rate because the tight bounds and are applied at each stage, which dramatically reduces the 7 
state space and thus the solution time.  8 

 9 

Fig. 6 Comparison of the state space between the original and customized DP algorithms. 10 

4.2 Case Study on Beijing UTS Line 6 11 

4.2.1 Experiment description and parameter settings 12 

Beijing UTS Line 6 is a corridor line in Beijing, China. It is the first rail transit line in Beijing UTS 13 
with 8 B-type units, which accommodates as many as 1840 people. The total length of Line 6 is about 53 14 
km consisting 3 phases, where Phase 1 is 30km, Phase 2 or eastern extension is 12km and Phase 3 or 15 
western extension is 11km. Since Phase 1 is the longest and carries the most traffic, the case study is 16 
conducted on Phase 1 as shown in Fig. 7. 17 
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 1 

Fig. 7 Beijing UTS Line 6, Phase 1 (source: Google Maps). 2 

In the daily operations of the investigated UTS, the planned operational cycle (P) and minimal 3 
headway (H) are 16 min and 4 min, respectively (https://www.wikipedia.org/). Phase 1 contains 20 stations 4 
starting from the Haidian Wuluju station and ending at the Caofang station. The passenger demand data 5 
(with a resolution of one minute) at 19 out of the 20 stations (except the Chegongzhuang station where the 6 
data is missing) on Nov 11, 2017 are used in the case study. The total passenger arrival rate across the 19 7 
stations is shown in Fig. 8. Three time periods are selected as shown on the white areas in Fig. 8, including 8 
7:40 am-8:40 am for the off-peak hour scenario, 11:00 am-12:00 pm for the transition hour scenario, and 9 
19:00 pm-20:00 pm for the peak hour scenario.  10 

 11 
Fig. 8 Line 6 total arrival rate. 12 

The default parameter values are listed in Tab. 5. 13 

Tab. 5 Default parameter values for the case study. 14 
Parameters Symbol Value 

Number of stations 𝐼 19 

Number of time intervals 𝑇 60 

Length of one time interval 𝛿 1 minutes 
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Capacity of one MU 𝐶 230 (B type unit) 

MUs in stock 𝑉 50 

Minimum headway 𝐻 4 minutes 

Operational cycle 𝑃 16 minutes 

Energy and associated cost in dispatching 𝑙 MUs 𝑒𝑙 𝑒𝑙 = 2.049$ + 0.37$ ∗ (𝑙 ∗ 𝐶)
0.5 

Value of waiting time for each passenger 𝑤 0.11$/minute 

4.2.2 Computational results 1 

Due to the increased instance size, both the original DP algorithm and the Gurobi solver cannot solve 2 
a feasible solution after several hours. Hence, this section only shows the results of the customized DP 3 
algorithm. 4 

Tab. 6 Results of the customized DP algorithm. 5 
Period type Objective ($) Computation time (s) # of MVs # of MUs 

Off-peak hour 

7:40 am-8:40 am 
2585.3 79.6 12 34 

Transition hour 

11:00 am-12:00 pm 
4217.1 235.3 12 44 

Peak hour 

19:00 pm-20:00 pm 
7174.2 572.5 12 81 

As shown in Tab. 6, all the instances are solved in acceptable computation times suitable for 6 
implementation. To compare the proposed operation with the existing operation, we construct a benchmark 7 
instance with fixed-capacity vehicles and fixed dispatch headways. Per the existing schedule 8 
(https://www.bjsubway.com/), in the benchmark instance, we set the dispatch headways for peak hours and 9 
off-peak hours as 5 minutes and 7 minutes, respectively, and we fix the vehicle level at 8. Fig. 9 shows the 10 
comparison results. In Fig. 9 (a)-(c), the blue curve with the star marks plots the levels and the times of the 11 
dispatched MVs in the corresponding scenario in the benchmark operation, and the red curve with the cross 12 
marks plots those in the proposed operation. We see that the proposed operation prefers to dispatch shorter 13 
MVs more frequently compared with the benchmark, particularly in the off-peak hour scenario. To measure 14 
the improvement of the proposed operation, Tab. 7 compares the overall system cost (OSC), vehicle 15 
operating cost (VOC), and average waiting time (AWT) between the benchmark and the proposed 16 
operations. Note that the proposed operation performs better than the benchmark operation for the different 17 
scenarios. Particularly, for the off-peak hour scenario, the proposed operation reduces the overall system 18 
cost and the average waiting time by 45.3% and 40.8%, respectively.  19 

https://www.bjsubway.com/
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 1 

(a) Peak hour scenario                                              (b) Transition hour scenario 2 

 3 

(c) Off-peak hour scenario 4 
Fig. 9 Schedule comparison between the benchmark and the proposed operation. 5 

 6 

Tab. 7 Objective comparison between the benchmark and the proposed operation. 7 

Period type 
Proposed operation Benchmark operation 

OSC ($) VOC ($) AWT (min) OSC ($) VOC ($) AWT (min) 

Off-peak hour 2585.3 137.4 2.00 4722.4 125.4 3.38 

Transition hour 4217.1 153.2 2.00 7018.7 125.4 3.39 

Peak hour 7174.2 199.3 2.23 9145.5 179.2 2.57 

To show the effectiveness of the proposed MSFIFO rule, Fig. 10 plots the passenger queueing and 8 
boarding behaviors of the first five time intervals at the 8th station (i.e., Beihai North Station). Three types 9 
of passenger groups are described in the figure, including waiting passenger groups (solid square), boarded 10 
passenger groups (colored square), and oncoming passenger groups (dash square; the time index marks the 11 
time interval at which they will arrive). 12 
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In Fig. 10 (a), the following process is described: At time interval 1, passenger groups arrive at the 1 
station; one MV arrives; Only a portion (78%) of the passenger groups board the MV, and the remaining 2 
passengers need to wait for the next MV. In Fig. 10 (b)-(e), passenger groups keep arriving at the station 3 
yet cannot board a MV until time interval 5 when the next MV arrives. However, as shown in Fig. 10 (e), 4 
due to the limited MV capacity, not all passengers can board. Based on the proposed MSFIFO rule, the 5 
passenger groups arriving earlier have a higher priority to board the MV. Thus, only the passenger groups 6 
arriving at time interval 1 through 4 fully board the MV. However, only a portion (93%) of the passenger 7 
groups arriving at time interval 5 board the MV, and the remaining passengers need to wait for the next 8 
MV. Note that there are no queue jumpers in all these queues, and passengers arriving at the same time 9 
have the same boarding priority, which is consistent with the proposed MSFIFO rule. 10 
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           (a)                           (b)                           (c)                          (d)                            (e) 12 
Fig. 10 Illustration of the MSFIFO rule. 13 

4.2.3 Sensitivity analysis 14 

This subsection analyzes the effectiveness of the proposed operation with different input parameters. 15 
In each experiment, we vary one input parameter and keep the other parameters the same, as shown in the 16 
default setting of Tab. 5. We use the overall system cost, vehicle operating cost, and passenger average 17 
waiting time to evaluate the system performance. The results of (1) the proposed operation without 18 
considering the MV level limit (i.e., when each dispatched MV always has a sufficient capacity to take all 19 
passengers along its route), (2) the oversaturated benchmark operation (i.e., when all dispatched MVs have 20 
identical capacities that may not be sufficient to take all waiting passengers), and (3) the unsaturated 21 
benchmark operation (i.e., when all dispatched MVs have identical capacities always sufficient to take all 22 
waiting passengers) are also shown to compare with the results of the proposed operation. The results of 23 
these instances are plotted in Fig. 11. 24 

 25 
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   1 

(a) Performance with varying minimum headway 2 

   3 

(b) Performance with varying the maximum number of the MUs allowed in an MV 4 

   5 

(c) Performance with varying the value of waiting time 6 

Fig. 11 Sensitivity analysis with different input parameters. 7 

Fig. 11 (a) shows that as the minimum headway (i.e. 𝐻) increases, the effectiveness of the proposed 8 
operation weakens. This is because the waiting passengers at each station also increase as the minimum 9 
headway increases. To minimize the overall system cost, more MUs are dispatched for each MV, which 10 
reduces the gap between the vehicle operating costs of the benchmark operations and of the proposed 11 
operation. Note that in the overall system cost and vehicle operating cost plots, the curve of the proposed 12 
operation, considering the MV level limit, is slightly lower than that of the proposed operation without 13 
considering the MV level limit. To satisfy that all waiting passengers can board at each dispatch, one more 14 
MU needs to be dispatched, even if only one passenger is left. Since the capacity is sufficient for the 15 
passenger demand at each station even when the minimum headway equals 10 minutes (i.e. the maximum 16 
number of waiting passengers at each station), there is no difference between the oversaturated and 17 
unsaturated benchmark operations, and the corresponding curves overlap with each other as shown in Fig. 18 
11 (a). 19 
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Fig. 11 (b) implies that as the MV level (i.e. 𝐿) increases, the vehicle operating cost of the proposed 1 
operation increases initially and then remains constant, while the vehicle operating cost of the benchmark 2 
operation keeps increasing. When the MV level reaches the maximum level in the optimal solution, further 3 
increase of the MV level cannot improve the solution any more. Note that in the average waiting time plot, 4 
the unsaturated benchmark operation has the highest value initially. The proposed operation and 5 
oversaturated benchmark operation overlap with each other and have the 2nd highest value. The proposed 6 
operation without the MV limit has the lowest value. The unsaturated benchmark operation increases the 7 
dispatch headway since each dispatch now takes more passengers. When 𝐿=2, the optimal solutions of these 8 
two operations are the same, since the value of 𝐿 is too small to take advantage of the variable MV levels. 9 

Fig. 11 (c) shows that as the value of waiting time (i.e. 𝑤) increases, allowing for oversaturated queues 10 
results in less benefits. Note that in the vehicle operating cost plot, the curve of the proposed operation 11 
without the MV limit is higher than that of the proposed operation initially, until the two curves gradually 12 
begin to overlap each other. This is because of the increasing weight of the waiting time cost in the overall 13 
system cost due to the increasing value of waiting time. As a result, to minimize the overall system cost, 14 
more MVs are dispatched to decrease the waiting time cost, which will consequently decrease or even 15 
eliminate oversaturated queues throughout the operation period. This makes the operations, whether or not 16 
allowing for oversaturated queues, eventually identical. 17 

5. Conclusion 18 

This paper investigates the MODOC problem and formulates it into a MILP model with the proposed 19 
MSFIFO rule. To solve the proposed model, theoretical properties of the invesitgated model are analyzed. 20 
These theoretical properties lead to identificaiton of upper and lower bounds to a feasible solution. Based 21 
on these two bounds, the demand clearance constraint and the MSFIFO rule, a customized DP algorithm 22 
with much reduced state pace and dimensions is developed to obtain the exact optimal solution in an 23 
acceptable computational time. Two sets of numerical experiments are implemented to verify the 24 
effectiveness of the proposed model and algorithm. From the numerical results, we see that the proposed 25 
customized DP algorithm much outperforms a state-of-the-art commercial solver (Gurobi) in both solution 26 
quality and time. Thus, it can be applied to real-world operations of UTS systems (e.g., urban rail transit, 27 
bus transit and bus rapid transit) that demand a relatively efficient solution time. Further, compared with 28 
the benchmark operation, both the average waiting time and the overall system cost are largely reduced by 29 
the proposed operation. This indicates the proposed operation, if implemented, will help reduce UTS 30 
expenses while improving the service quality.  31 

Future research can be conducted in a few directions. In this paper, a MV is assumed to be formed 32 
only at the origin while its level remains the same across all the downstream stations. In the future, station-33 
based MV reformation may be considered to allow a MV change its level at each intermediate station. 34 
Further, we may consider en-route docking operations that allow a MV to vary its level on a segment while 35 
it is running. This study only considers a corridor, and it is interesting to extend it to a general network 36 
system. On the theoretical side, it is worth investigating more theoretical properties such as tighter bounds, 37 
which can further expedite the customized DP algorithm.  38 
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