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1. Introduction
Suppose votes have been cast in an election between two
candidates, and then an adversary can select a fixed num-
ber of votes to change. Which voting method best pre-
serves the outcome of the election? A majority vote does,
among all voting methods where both candidates have an
equal chance of winning the election.

Now, suppose votes have been cast in an election be-
tween two candidates, and then each vote is randomly
changed with a small probability, independently of the
other votes. It is desirable to keep the outcome of the elec-
tion the same, regardless of the changes to the votes. It is
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well known that the US Electoral College system is more
than four times more likely to have a changed outcome
due to vote corruption, when compared to a majority vote.
In fact, Mossel, O’Donnell, and Oleszkiewicz proved in
2005 that themajority votingmethod ismost stable to this
random vote corruption, among voting methods where
each person has a small influence on the election. Below,
we survey the design of elections that are resilient to at-
tempted interference by third parties. We discuss some re-
cent progress on the analogous result for elections between
more than two candidates. In this case, plurality should
be most stable to corruption in votes. We briefly discuss
ranked choice voting methods (where a vote is a ranked
list of candidates).
1.1. Condorcet’s paradox. Applications of mathematics
to the analysis of elections perhaps began with Marquis
de Condorcet in the 1700s. Condorcet’s famous paradox
demonstrates that an election method that uses ranked
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preferences of voters might not have a sensible winner.
Consider the ranking of three candidates 𝑎, 𝑏, and 𝑐 be-
tween three voters 1, 2, and 3 as shown in Table 1.

Voter Rank 1 Rank 2 Rank 3

1 𝑎 𝑏 𝑐
2 𝑏 𝑐 𝑎
3 𝑐 𝑎 𝑏

Table 1. Three voters (one for each row of the table) provide
rankings of three candidates 𝑎, 𝑏, and 𝑐. For example, voter 1
most prefers candidate 𝑎.

If we ignore candidate 𝑏, then voters 2 and 3 prefer 𝑐 over
𝑎, while voter 1 prefers 𝑎 over 𝑐 (see Table 2). So, using a
majority rule for these preferences, the voters prefer 𝑐 over
𝑎.

Voter Rank 1 Rank 2

1 𝑎 𝑐
2 𝑐 𝑎
3 𝑐 𝑎

Table 2. If candidate 𝑏 is ignored in Table 1, the remaining
rankings of candidates 𝑎 and 𝑐 indicate that 𝑐 is preferred by
the majority of voters.

If we ignore candidate 𝑐 in Table 1, then voters 1 and 3
prefer 𝑎 over 𝑏, while voter 2 prefers 𝑏 over 𝑎. So, using a
majority rule again, the voters prefer 𝑎 over 𝑏.

Finally, if we ignore candidate 𝑎 in Table 1, then voters
1 and 2 prefer 𝑏 over 𝑐, while voter 3 prefers 𝑐 over 𝑏. So,
using a majority rule, the voters prefer 𝑏 over 𝑐.

𝑎

𝑐 𝑏

𝑎 is preferred
over 𝑏

𝑏 is preferred
over 𝑐

𝑐 is pre-
ferred
over 𝑎

In conclusion, the voters prefer 𝑎 over 𝑏, they prefer 𝑏
over 𝑐, and they prefer 𝑐 over 𝑎. So, no one has won the elec-
tion! This observation is known as Condorcet’s paradox.
The simplest way to use rankings of candidates might lead
to no one winning the election.

In fact, if we compare pairs of candidates using some-
thing other than a majority rule, then some analogue of

Condorcet’s paradox must still occur, unless we ignore all
voters except for one (a dictatorship). This statement can
be formalized as Arrow’s Impossibility Theorem.
1.2. Voting power. Game theorists such as Shapley, Shu-
bik, and Banzhaf in the 1950s and 1960s further devel-
oped the mathematical and economical analysis of voting
methods. As an illustrative example, we consider the 1965
restructuring of the UN Security Council.

Voting method 1 (Pre-1965 UN Security Council). In pre-
1965 rules, the UN Security Council had five permanent
members and six nonpermanent members. A resolution
passes in the Security Council only if:

• all five permanent members want xit to pass, and
• at least two nonpermanent members want it to

pass.

In particular, a single permanent member can effec-
tively veto a resolution by voting “no” on that resolution.
This voting method was called unfair for the nonperma-
nent members, so it was restructured in 1965. After the
restructuring, the council had the following form (still in
use today).

Voting method 2 (Post-1965 UN Security Council). The
UN Security Council has five permanent members and
now ten nonpermanent members. A resolution passes in
the council only if:

• all five permanent members want it to pass, and
• at least four nonpermanent members want it to

pass.

A rather vague question is then the following.

Question 1.1. Are the post-1965 rules more equitable for
nonpermanent members of the UN Security Council than
pre-1965 rules?

There are various ways to answer this question. One
answer, provided by Banzhaf, is to consider the power
of a voter in each voting method, i.e., the relative ability
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of a voter to cause a resolution to pass by changing their
vote. Suppose we label the post-1965 UN Security Coun-
cil members by the integers 1 through 15, where the num-
bers 1, 2, 3, 4, 5 represent the five permanent members of
the council, and the numbers 6, 7, … , 15 represent nonper-
manent members. Then, for any integer 𝑖 between 1 and
15, let 𝑏𝑖 be the number of combinations of votes of mem-
bers of the council (other than voter 𝑖), such that when
voter 𝑖 changes their vote from “no” to “yes,” the resolu-
tion changes from not passing to passing. The Banzhaf
power index of a voter 𝑖 is defined to be the following ra-
tio:

𝑏𝑖
𝑏1 + 𝑏2 +⋯+ 𝑏15

.

For example, in the post-1965 rules, what would it take
for a nonpermanent member to cause the resolution to
pass? First, all permanent members would have to vote
“yes.” Then, exactly three other nonpermanent members
out of nine would vote yes. So, the number of combina-
tions of votes other members would make is: the number
of ways to select three members from a set of nine, i.e.,
(9
3
) = 9⋅8⋅7

3⋅2
= 84. So, 𝑏6 = 𝑏7 = ⋯ = 𝑏15 = 84.

In the post-1965 rules, what would it take for a perma-
nent member to cause the resolution to pass? First, all
other permanentmembers would have to vote “yes.” Then,
at least four nonpermanent members out of 10 would
vote yes. So, the number of combinations of votes other
members would make is: the number of ways to select
at least four members from a set of 10. This number is
(10
4
) + (10

5
) +⋯+ (10

10
) = 848. So, 𝑏1 = 𝑏2 = ⋯ = 𝑏5 = 848.

Similar considerations apply for pre-1965 rules. We
summarize the Banzhaf power indices in Table 3.

In summary, the post-1965 rules give more power to
nonpermanent members, and less power to permanent
members of the UN Security Council. So, according to
Banzhaf’s definition of voting power, the answer to Ques-
tion 1.1 is: yes.

Voting Method Banzhaf Power Index for
Non-Permanent Member

Banzhaf Power In-
dex for Permanent
Member

Pre-1965 Rules
5

6⋅5+5⋅57
≈ .0159 57

6⋅5+5⋅57
≈ .181

Post-1965 Rules
84

10⋅84+5⋅848
≈ .0165 848

10⋅84+5⋅848
≈ .167

Table 3. Banzhaf power indices for UN Security Council voting
methods.

1.3. Voting methods as functions. Suppose we run an
election between two candidates with 𝑛 voters, where 𝑛 is
a large integer. For convenience, we denote the two candi-
dates as +1 and −1 rather than 𝑎 and 𝑏. If person 𝑖 votes
for candidate 1, we define 𝑥𝑖 = 1, and if person 𝑖 votes for
candidate −1, we define 𝑥𝑖 = −1. We can then make a list
of votes as

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛).

A voting method is a function 𝑓 whose input is the votes 𝑥
and whose output is the winner of election. That is, 𝑓(𝑥) =
1 denotes candidate 1winning the election when the votes
are 𝑥, and 𝑓(𝑥) = −1 denotes candidate −1 winning the
election when the votes are 𝑥.

Some examples of voting methods appear below.

Example 1.2. The majority function is the function

𝑓(𝑥) = sign(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛).
If there are more +1 votes than −1 votes, then 𝑓(𝑥) = 1.
And if there are more −1 votes than +1 votes, then 𝑓(𝑥) =
−1. That is, 𝑓 agrees with our usual notion ofmajority: the
candidate receiving the most votes wins the election. (To
guarantee that someone wins the election, we could just
assume that 𝑛 is odd, so that 𝑓 never takes the value 0.)
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Figure 1. An iterated majority function with 𝑚 = 3 “states.”

Example 1.3. A dictator function is a function of the form

𝑓(𝑥) = 𝑥1.
That is, the vote of the first person is the winner of the elec-
tion. In this way, 𝑓 agrees with our usual notion of dicta-
tor: all votes are ignored, except for one. More generally,
if 1 ≤ 𝑖 ≤ 𝑛, a dictator is a function of the form

𝑓(𝑥) = 𝑥𝑖.

Example 1.4. If 𝑤1, … , 𝑤𝑛 are fixed real numbers, a
weighted majority function on 𝑛 voters is a function of
the form

𝑓(𝑥) = sign(𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛).
If 𝑤𝑖 is large for some 1 ≤ 𝑖 ≤ 𝑛, this corresponds to as-
signing more “weight” (i.e., more voting power, or more
“say”) to the 𝑖th voter. And if 𝑤𝑖 is small, this corresponds
to assigning less “weight” (i.e., less voting power, or less
“say”) to the 𝑖th voter.

Example 1.5. A two-layer iterated majority function is a
function of the form

𝑓(𝑥) = 𝑔(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)),
where 𝑓1, 𝑓2, … , 𝑓𝑚 are each weightedmajority functions on
𝑛 voters, and 𝑔 is a weighted majority function on𝑚 voters.

A two-layer iterated majority function is similar to an
Electoral College system with 𝑚 states. The US Electoral
College system then corresponds to 𝑚 = 51.

Remark 1.6. In learning theory, the iterated majority func-
tion is sometimes called a two-layer neural network with
boolean activation function. The lines and nodes in Figure
1 are then interpreted as axons and neurons, respectively.

In the ensuing discussion, it is more convenient to re-
place the Banzhaf power index of a voter with the (almost
identical) notion of influence of a voter.

Definition 1.7 (Influences). Let 𝑓∶ {−1, 1}𝑛 → {−1, 1} be
a voting method. Let 1 ≤ 𝑖 ≤ 𝑛 be an integer. Define the
influence of the 𝑖th voter on 𝑓, denoted Inf𝑖(𝑓), as

Inf𝑖(𝑓)

= # of combinations of votes where the 𝑖th voter can change the election’s outcome
# of combinations of votes of all voters

= #{(𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛 ∶ 𝑓(𝑥1, … , 𝑥𝑛) ≠ 𝑓(𝑥1, … , 𝑥𝑖−1,−𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛)}
#{(𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛} .

That is, Inf𝑖(𝑓) is the probability that the 𝑖th voter can
change the outcome of the election, when other voters are
equally likely to vote for either candidate.

Example 1.8. The numbers 𝑏1, … , 𝑏𝑛 used to define the
Banzhaf power indices are just the influences, multiplied
by 2𝑛. For example, in the post-1965 UN Security Council
voting method 𝑓∶ {−1, 1}15 → {−1, 1} with 𝑛 = 15 voters,

Inf1(𝑓) = ⋯ = Inf5(𝑓) =
848
215 ≈ .0259,

Inf6(𝑓) = ⋯ = Inf15(𝑓) =
84
215 ≈ .00256.

Put another way, the Banzhaf power indices are the influ-
ences, multiplied by a number causing them to sum to 1.

Voting Method Influence for Non-
Permanent Member

Influence for Perma-
nent Member

Pre-1965 Rules
5
211

≈ .00244 57
211

≈ .0278

Post-1965 Rules
84
215

≈ .00256 848
215

≈ .0259

Table 4. Influences for UN Security Council voting methods.
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As above, we observe that a nonpermanent member has
a higher probability of affecting the outcome of a resolu-
tion in post-1965 rules.

Example 1.9. When 𝑓 is a dictator function of the form
𝑓(𝑥) = 𝑥1, then the first voter can always change the out-
come of the election, and the other voters cannot, so

𝐼1(𝑓) = 1, 𝐼2(𝑓) = ⋯ = 𝐼𝑛(𝑓) = 0.
When 𝑓 is a majority function 𝑓(𝑥) = sign(𝑥1 +⋯ + 𝑥𝑛),
then an application of Stirling’s formula implies that for

all 1 ≤ 𝑖 ≤ 𝑛, lim𝑛→∞√𝑛𝐼𝑖(𝑓) = √
2
𝜋
, i.e.,

𝐼1(𝑓) = 𝐼2(𝑓) = ⋯ = 𝐼𝑛(𝑓) = (1 + 𝑜(1))√
2
𝜋

1
√𝑛

.

To see this, note that if 𝑛 is even, recall that Stirling’s for-
mula implies that

( 𝑛
𝑛/2) =

𝑛!
[(𝑛/2)]!

= (1 + 𝑜(1)) 1
√2𝜋

√𝑛
𝑛/22

𝑛 = (1 + 𝑜(1))2𝑛 1
√𝑛√

2
𝜋.

Therefore, lim𝑛→∞√𝑛𝐼𝑖(𝑓) = lim𝑛→∞(1 + 𝑜(1)) 1
√2𝜋

2𝑛

2𝑛
=

1
√2𝜋

for all 1 ≤ 𝑖 ≤ 𝑛.

Perhaps it is a compelling reason to vote in a majority
election with one hundred million voters when your prob-
ability of changing the election’s outcome is around 1 in
ten thousand.

2. Adversarial Corruption in Voting
2.1. Two candidates. Suppose 𝑛 people cast their votes
in an election between two candidates. Then, suppose
an adversary found a way to change several of the votes.
By changing some votes, the adversary attempts to change
the outcome of the election. Suppose also that the voting
method 𝑓∶ {−1, 1}𝑛 → {−1, 1} is balanced in the following
sense.

Definition 2.1 (Balanced voting method). Let
𝑓∶ {−1, 1}𝑛 → {−1, 1} be a voting method. We say 𝑓 is bal-
anced if each of the two candidates has an equal chance of

winning the election. That is, the number of combinations
of votes where candidate 1 wins is equal to the number of
combinations of votes where candidate −1 wins.

For example, dictator functions and the majority func-
tion are balanced.

Question 2.2. What balanced voting method is most re-
silient to adversarial changes to votes?

That is, if 𝑘 ≥ 1 votes can be changed by the adversary,
what is the least number of combinations of votes (of all
voters) such that the adversary can change the election’s
outcome?

In a dictatorship, e.g., 𝑓(𝑥1, … , 𝑥𝑛) = 𝑥1, changing the
first vote changes the outcome of the election, so this vot-
ing method is not at all resilient to adversarial changes.
Similarly, a voting method that is only a function of a
small set of voters (sometimes called a junta) will prob-
ably not be resilient to adversarial changes to votes. It
turns out that the majority function is the balanced vot-
ingmethodmost resilient to adversarial changes; we thank
Daniel Kane for telling us the following argument.

Proposition 2.3 (Adversarial optimality of majority). Let
𝑛 be an odd positive integer, and let 𝑘 be an integer satisfying
1 ≤ 𝑘 ≤ 𝑛. After the votes have been cast, suppose an adversary
can change 𝑘 votes in an election between two candidates with 𝑛
voters. Then among all balanced voting methods, the majority
function has the least number of combinations of votes where
the election’s outcome can be altered by the adversary.

Before beginning the proof, we introduce some nota-
tion. For any 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛, denote the ℓ0 “norm”
of 𝑥 by ‖𝑥‖0 = #{1 ≤ 𝑖 ≤ 𝑛∶ 𝑥𝑖 ≠ 0}. (This quantity is not
a norm since ‖𝑡𝑥‖0 = ‖𝑥‖0 for any 𝑡 ≠ 0.) Let 𝑆 ⊂ {−1, 1}𝑛.
For any integer 𝑘 ≥ 1, we denote the distance 𝑘 neighbor-
hood of 𝑆 by

Γ𝑘(𝑆) = {𝑥 ∈ {−1, 1}𝑛 ∶ ∃ 𝑦 ∈ 𝑆 such that ‖𝑥 − 𝑦‖0 ≤ 𝑘}.
(1)

Then Γ𝑘(𝑆) is the set of possible votes that can be obtained
by changing at most 𝑘 votes from a given 𝑦 ∈ 𝑆. For any
𝑘 ≥ 0, let 𝐵𝑘 ⊂ {−1, 1}𝑛 be a distance 𝑘 neighborhood of
one “half” of the hypercube:

𝐵𝑘 = Γ𝑘({(𝑦1, … , 𝑦𝑛) ∈ {−1, 1}𝑛 ∶ 𝑦1 +⋯+ 𝑦𝑛 ≥ 0}). (2)

The key geometric fact used to prove Proposition 2.3 is
the following theorem.

Theorem 2.4 (Harper’s inequality/hypercube vertex
isoperimetric inequality). Let 𝑆 ⊂ {−1, 1}𝑛. Let 𝑘 ≥ 0. As-
sume that

|𝑆| ≥ |𝐵𝑘| .
Then

|Γ1(𝑆)| ≥ |Γ1(𝐵𝑘)| .
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Proof of Proposition 2.3. We induct on 𝑘. Let 𝑓∶ {−1, 1}𝑛 →
{−1, 1} be the majority function, and let 𝑔∶ {−1, 1}𝑛 →
{−1, 1} be another balanced voting method. Let 𝑆 = {𝑥 ∈
{−1, 1}𝑛 ∶ 𝑔(𝑥) = 1} be the set of votes where candidate 1
wins the election, when 𝑔 is the voting method used to
run the election. Note that 𝐵0 = {𝑥 ∈ {−1, 1}𝑛 ∶ 𝑓(𝑥) = 1}.
Since 𝑓 and 𝑔 are balanced, |𝑆| = |𝐵0| = 2𝑛−1. So, Harper’s
inequality, Theorem 2.4, implies that

|Γ1(𝑆)| ≥ |Γ1(𝐵0)| , (3)

|Γ1(𝑆)| − |𝑆| ≥ |Γ1(𝐵0)| − |𝐵0| . (4)

The same inequality holds also when 𝑆 = {𝑥 ∈
{−1, 1}𝑛 ∶ 𝑔(𝑥) = −1}. Taken together, we conclude that
the number of combinations of votes for which the out-
come of the election can be altered with one adversarial
vote change is smallest for the majority vote 𝑓 (since 𝑓 cor-
responds to the right side of (4)). The case 𝑘 = 1 therefore
follows by (4).

We now proceed with the inductive step. By the induc-
tive hypothesis, if 𝑆 = {𝑥 ∈ {−1, 1}𝑛 ∶ 𝑔(𝑥) = 1} or if
𝑆 = {𝑥 ∈ {−1, 1}𝑛 ∶ 𝑔(𝑥) = −1}, we have

|Γ𝑘(𝑆)| − |𝑆| ≥ |Γ𝑘(𝐵0)| − |𝐵0| .

That is, |Γ𝑘(𝑆)| ≥ |Γ𝑘(𝐵0)| = |𝐵𝑘|. We need to prove the case
𝑘 + 1. This again follows by Harper’s inequality, Theorem
2.4, since

|Γ𝑘+1(𝑆)|
(1)= |Γ1(Γ𝑘(𝑆))| ≥ |Γ1(𝐵𝑘)|

(2)= |𝐵𝑘+1| .

Therefore, when 𝑆 = {𝑥 ∈ {−1, 1}𝑛 ∶ 𝑔(𝑥) = 1} or 𝑆 = {𝑥 ∈
{−1, 1}𝑛 ∶ 𝑔(𝑥) = −1},

|Γ𝑘+1(𝑆)| − |𝑆| ≥ |𝐵𝑘+1| − |𝐵0| . (5)

That is, the number of votes for which the outcome of the
election can be altered with 𝑘 + 1 adversarial vote changes
is smallest for the votingmethod 𝑓 (since themajority vote
𝑓 corresponds to the right side of (5)). The inductive step
and the proof are complete. □

For some related observations for ranked choice voting,
see, e.g., [MPR13, Lemma 3.3].

Proposition 2.3 can easily be extended to unbalanced
voting methods. To state such a result, let 𝑡 be a real num-
ber and define a majority function with threshold 𝑡 to be
a function of the form

Maj𝑛,𝑡(𝑥) = sign(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 − 𝑡)
∀ 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛.

Also, we say that two voting methods 𝑓, 𝑔∶ {−1, 1}𝑛 →
{−1, 1} have the same balance if the number of combina-
tions of votes resulting in candidate 1winning are the same
for each voting method, i.e.,

#{(𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛∶ 𝑓(𝑥) = 1}
= #{(𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛∶ 𝑔(𝑥) = 1}.

For example, the majority function with threshold 𝑡 = 0
and the majority function with threshold 𝑡 = 1 do not
have the same balance.

Proposition 2.5 (Adversarial optimality of majority, un-
balanced case). Let 𝑛 be an odd positive integer, and let 𝑘 be
an integer satisfying 1 ≤ 𝑘 ≤ 𝑛. After the votes have been cast,
suppose an adversary can change 𝑘 votes in an election between
two candidates with 𝑛 voters. Let 𝑓 be a majority function with
threshold 𝑡, where 𝑡 is an even integer. Let 𝑔 be another voting
method such that 𝑓 and 𝑔 have the same balance. Then the
number of combinations of votes where the election’s outcome
can be altered by the adversary is lesser for 𝑓 than for 𝑔.
2.2. More than two candidates. It would be desirable to
have an analogue of Proposition 2.3 for voting methods
with more than two candidates. Such a result might re-
quire a version of Harper’s inequality, Theorem 2.4, for
multiple sets. It is unclear if such an inequality can be
proven.
2.3. Additional comments. Proposition 2.3 can be
strengthened slightly, so that a voting method that is
“close” to being as resilient as majority must itself be
“close” to majority. Instead of applying Theorem 2.4, one
instead uses a stronger version, such as [KL20].

The majority function is known to be optimal in vari-
ous senses. For example, the majority function maximizes
the number of votes that agree with the outcome of the
election [O’D14, Theorem 2.33]. Apparently Rousseau ar-
gued this was an ideal choice for a voting method in 1762
in “Du contrat social.” Theorem 3.6 below, the Majority is
Stablest Theorem, also characterizes the majority function
as being the most stable to random corruption in votes,
among a reasonable class of voting methods.

For more background on social choice theory, see, e.g.,
[O’D14, Chapter 2], [O’D], [Kal18, Section 3].

3. Independent Random Corruption of Votes
In Proposition 2.3, we showed that the majority function
is the most stable voting method to adversarial corruption.
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The majority function is also most stable when votes are
corrupted randomly, as shown below.

Theorem 3.1 (Majority is stablest, informal version,
[MOO10, Theorem 4.4]). Suppose we run an election with
a large number 𝑛 of voters and two candidates. In this election,
voters are modelled to have the following random behavior:

(i) Voters cast their votes randomly, independently, with
equal probability of voting for either candidate.

(ii) Each voter has a small influence on the outcome of the
election. (That is, all influences from Definition 1.7
are small.)

Then the majority function is the balanced voting method that
best preserves the outcome of the election, when votes have been
corrupted independently.

The definition of “best” here is intentionally vague. We
will define “best” to mean: maximizing noise stability, as
defined below in Definition 3.4. Also, the probability of
each vote being changed (corrupted) should be less than
1/2 in Theorem 3.1. Otherwise the majority preferences of
the electorate are reversed upon corruption.

Some remarks concerning the sensibility of the assump-
tions of Theorem 3.1 now follow:

• Suppose we completely ignore the votes, and just
declare that the first candidate wins. This voting
method is as stable to vote corruption as one can
imagine, since any amount of corruption in votes
cannot change the outcome of the election. Since
this voting method is certainly undemocratic and
uninteresting, some assumption in Theorem 3.1
must eliminate it. And indeed, this votingmethod
is not balanced, so Theorem 3.1 ignores it. This
votingmethod corresponds to a constant function
𝑓.

• As we saw in Example 1.9, a dictator function has
one large influence, and the remaining voters have
no influence on the election’s outcome. Conse-
quently, the dictator voting method is quite sta-
ble to independently random changes to votes,
since changing the votes of the nondictators has
no effect on the election’s outcome. So, as in the

previous example, the dictator function is rather
stable to vote corruption for a rather uninteresting
reason. We therefore eliminate dictator functions
from consideration by imposing the democratic
assumption (ii) that each voter has a small influ-
ence on the outcome of the election.

3.1. Two candidates. In this section, we will formalize
the assumptions in Theorem 3.1, resulting in the formal
version of the Majority is Stablest Theorem 3.6.

Assumption 1 (Voter assumptions).

• There are 𝑛 voters denoted {1, … , 𝑛}. There are two
candidates denoted −1 and 1.

• For any 1 ≤ 𝑖 ≤ 𝑛, the 𝑖th voter casts a single ran-
dom vote𝑋𝑖 taking the value−1 or 1. (In particular,
we are not dealing with ranked voting methods.)

• The votes (𝑋1, … , 𝑋𝑛) are independent, identically
distributed (i.i.d.) random variables. That is, vot-
ers are modelled as independent decision makers
with the same probabilities of voting for either
candidate.

The voting method 𝑓 is a function 𝑓∶ {−1, 1}𝑛 → {−1, 1}.
If the votes are (𝑋1, … , 𝑋𝑛), then the winner of the election
is 𝑓(𝑋1, … , 𝑋𝑛).
Remark 3.2. One could argue that the voter assumptions
are not realistic, since, e.g., a small group of friends will
most likely share similar views, read similar news items,
etc., so that their decisions are not truly independent. On
the other hand, modeling a large number of voters to be
independent individuals is somewhat plausible, from an
aggregate perspective.

Assumption 2 (Voter corruption assumptions). Let 0 ≤
𝜌 ≤ 1. Suppose we are given the votes 𝑋1, … , 𝑋𝑛 of 𝑛 vot-
ers choosing between two candidates. The corrupted votes
𝑌1, … , 𝑌𝑛 are defined as follows:

• The corrupted votes 𝑌1, … , 𝑌𝑛 are independent,
identically distributed (i.i.d.) random variables.

• For each 1 ≤ 𝑖 ≤ 𝑛, if 𝑋𝑖 = 𝑥𝑖 ∈ {−1, 1}, then
with probability 1 − 𝜌, 𝑌𝑖 is a uniformly random
element of {−1, 1}, and with probability 𝜌, 𝑌𝑖 = 𝑥𝑖.

Remark 3.3. When 𝜌 = 1, 𝑌𝑖 = 𝑋𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, i.e., no
vote corruption has occurred. When 𝜌 is close to 1, 𝑌1 is al-
most the same as 𝑋1, i.e., 𝑋1 and 𝑌1 are strongly correlated,
and a small amount of vote corruption has occurred.

When 𝜌 = 0, the votes (𝑋1, … , 𝑋𝑛) and (𝑌1, … , 𝑌𝑛)
are independent of each other, i.e., the corrupted votes
(𝑌1, … , 𝑌𝑛)have been so scrambled that they have no depen-
dence (or correlation) with the original votes (𝑋1, … , 𝑋𝑛).
Notation. We denote the original (random) votes cast in
the election as 𝑋 = (𝑋1, … , 𝑋𝑛), and we denote the cor-
rupted votes as 𝑌 = (𝑌1, … , 𝑌𝑛).
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Recall that the voting method 𝑓 takes the value 1 or −1,
according to which candidate (1 or −1) won the election.
So, if the winner of the election 𝑓(𝑋) is the same as the
winner of the election with corrupted votes 𝑓(𝑌), then

𝑓(𝑋)𝑓(𝑌) = 1.
On the other hand, if the winner of the election 𝑓(𝑋) is
different than the winner of the election with corrupted
votes 𝑓(𝑌), then

𝑓(𝑋)𝑓(𝑌) = −1.
So, the voting method that has the largest average value of

𝑓(𝑋)𝑓(𝑌)
will be the most stable on average to random vote corrup-
tion. This observation motivates the following definition.

Definition 3.4 (Noise stability). Let 𝑓∶ {−1, 1}𝑛 → {−1, 1}
be a voting method. The noise stability of 𝑓 with correla-
tion parameter 0 ≤ 𝜌 ≤ 1 is

𝑆𝜌(𝑓) = 𝔼𝑓(𝑋)𝑓(𝑌).
Here 𝔼 denotes expected value, or average value, with
respect to the random variables 𝑋 = (𝑋1, … , 𝑋𝑛), 𝑌 =
(𝑌1, … , 𝑌𝑛) defined in Assumptions 1 and 2.

Remark 3.5. The probability that the election’s outcome
stays the same after vote corruption has occurred is
1
2
(1 + 𝑆𝜌(𝑓)).

3.1.1 Unbiased case. Theorem 3.1 can be restated as: the
majority function maximizes noise stability, among a rea-
sonable class of voting methods.

In the theorem below, we denote the majority function
as Maj𝑛 ∶ {−1, 1}𝑛 → {−1, 1}, so that

Maj𝑛(𝑥1, … , 𝑥𝑛) = sign(𝑥1 +⋯+ 𝑥𝑛)
for all (𝑥1, … , 𝑥𝑛) ∈ {−1, 1}𝑛.

For simplicity, we first state the balanced case of the the-
orem. That is, we make the assumption that the random
votes 𝑋1, … , 𝑋𝑛 are each uniformly distributed in {−1, 1}.
So, e.g., 𝑋1 = 1 with 1/2 probability, and 𝑋1 = −1 with
1/2 probability.

Theorem 3.6 (Majority is stablest, formal version,
[MOO10, Conjecture 1.1]). Let 0 ≤ 𝜌 ≤ 1, and let 𝜖 > 0.
Then there exists 𝜏 > 0 such that, if 𝑓∶ {−1, 1}𝑛 → {−1, 1}
satisfies 𝔼𝑓(𝑋) = 0 and Inf𝑖(𝑓) ≤ 𝜏 for all 1 ≤ 𝑖 ≤ 𝑛, then

𝑆𝜌(𝑓) ≤ lim
𝑛→∞

𝑆𝜌(Maj𝑛) + 𝜖 = 2
𝜋 sin−1(𝜌) + 𝜖.

The assumption 𝔼𝑓(𝑋) says that 𝑓 is balanced according
toDefinition 2.1, and the assumptionmax1≤𝑖≤𝑛 Inf𝑖(𝑓) ≤ 𝜏
corresponds to part (ii) of Theorem 3.1.
3.1.2. Biased case. The assumption in Theorem 3.6 that the
votes are uniformly distributed in {−1, 1} can be relaxed,

Figure 2. The proof of Theorem 3.6 is related to the fact that
soap bubbles take a spherical shape. A soap bubble1

encloses a fixed volume of air, and it minimizes its surface
area. The majority function has an analogous optimality
property. We will discuss this connection more in Section 5.

as we now describe. Let 0 < 𝑝 < 1. Let 𝑋1, … , 𝑋𝑛 be in-
dependent identically distributed random variables where
ℙ(𝑋𝑖 = 1) = 1 − ℙ(𝑋𝑖 = −1) = 𝑝 for all 1 ≤ 𝑖 ≤ 𝑛.

Theorem 3.7 (Majority is stablest, formal, biased case,
[MOO10, Theorem 4.4]). Let 0 ≤ 𝜌 ≤ 1. Let −1 ≤
𝜇 ≤ 1. Let 𝑡 = 𝑡𝑛 ∈ ℝ such that ||𝔼Maj𝑛,𝑡(𝑋) − 𝜇|| =
min𝑡′∈ℝ ||𝔼Maj𝑛,𝑡′ − 𝜇||. Let 𝜏 > 0, and let 𝑓∶ {−1, 1}𝑛 →
{−1, 1} satisfy 𝔼𝑓(𝑋) = 𝜇 and Inf𝑖(𝑓) ≤ 𝜏 for all 1 ≤ 𝑖 ≤ 𝑛.
Then

𝑆𝜌(𝑓) ≤ lim
𝑛→∞

𝑆𝜌(Maj𝑛,𝑡𝑛) + 𝑂𝑝,1−𝜌(
log log(1/𝜏)
log(1/𝜏) ).

For an even more general version of Theorem 3.7, see
[MOO10, Theorem 4.4].
3.2. More than two candidates. In this section, we con-
sider elections between 𝑘 ≥ 3 candidates, where each of 𝑛
voters casts a single vote for a single candidate.

Theorem 3.7 (and its generalizations such as
[MOO10, Theorem 4.4]) essentially completely character-
ize majority functions as the most stable to independently
random corruption of votes, when the election has only two
candidates. Unfortunately, analogous statements for three
or more candidates seem harder to prove. With more than
two candidates, a suitable replacement for the majority is

1Picture taken from https://commons.wikimedia.org/wiki
/File:Reflection_in_a_soap_bubble_edit.jpg
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Figure 3. Generalizing Theorem 3.7 to elections with three
candidates is related to: proving that two joint soap bubbles
take the pictured “double-bubble” shape. Two soap bubbles
enclose two separate and fixed volumes of air, and they
minimize their total surface area [HMRR02]. The plurality
function should have an analogous optimality property. We
will discuss this connection more in Section 5.

the plurality function. In a plurality election, the candi-
date with the most votes wins the election.

It was conjectured [KKMO07, IM12] that the plurality
function is the balanced voting method that is most stable
to independent, random vote corruption.

Conjecture 3.8 (Plurality is stablest, informal version,
[KKMO07], [IM12, Conjecture 1.9]). Suppose we run an
election with a large number 𝑛 of voters and 𝑘 ≥ 3 candidates.
In this election, voters are modelled to have the following ran-
dom behavior:

• Voters cast their votes randomly, independently, with
equal probability of voting for each candidate.

• Each voter has a small influence on the outcome of the
election.

Then the plurality function is the balanced voting method that
best preserves the outcome of the election, when votes have been
corrupted independently.

In the case that the probability of vote corruption is
small (𝜌 is close to 1), we proved the first known case of
Conjecture 3.8 in [Hei19], culminating a series of previ-
ous works. Conjecture 3.8 for all parameters 0 < 𝜌 < 1
is still open. Unlike the case of the Majority is Stablest
Theorem (Theorem 3.7), Conjecture 3.8 cannot hold when
the candidates have unequal chances of winning the elec-
tion [HMN16]. This realization is an obstruction to prov-
ing Conjecture 3.8. It suggested that proof methods for
Theorem 3.7 cannot apply to Conjecture 3.8. Indeed, cal-
culus of variations methods have emerged as a promising
avenue for proving Conjecture 3.8, when the candidates
have equal chances of winning the election.
3.3. Additional comments. Discrete Fourier analysis of-
ten plays a prominent role in noise stability and voting.
The surveys [O’D,Kho10] and book [O’D14] describe the
interconnectedness of these topics.

We have not focussed much on ranked choice voting
methods. For more on this topic, see, e.g., [MPR13] or the
comprehensive works [ASS02,BCE+16].

Figure 4. Three soap bubbles that have collided take the
shape shown here.

Figure 5. Three soap bubbles that have collided take the
shape shown here.2

Question 3.9. Is it possible to state a sensible version of
the Plurality is Stablest Conjecture 3.8 for ranked choice
voting methods?

In ranked choice voting, each voter provides a ranked
list of the candidates. Suppose a voting method is then a
function only of the pairwise comparisons of each candi-
date, as in Table 2. Suppose then that each of these pair-
wise comparisons is independently corrupted. Then one
possible answer to Question 3.9 says that the plurality of
the pairwise comparisons ismost stable to this kind of vote
corruption. Taking the plurality of pairwise comparisons
is known as the Second Order Copeland voting method.
So, one could argue that this method is most stable to vote
corruption. However, under other models of vote corrup-
tion, it is not clear what the “best” ranked choice voting
method should be.

4. Brief Discussion of the US Electoral College
The US Electoral College system is similar but not identi-
cal to the two-tier majority function described in Example
1.5 with 𝑚 = 51 equal-sized “states.” Suppose we run an
election between two candidates, where 𝑔 is a two-tier ma-
jority function with 𝑚 = 51, and 𝑓 is the usual majority
function with 𝑛 a large odd number of voters. We already

2Picture taken from https://www.flickr.com/photos/sm/2603411754
/sizes/o/.
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know from Theorem 3.7 that themajority function ismore
stable to vote corruption than the Electoral College system.
But how much more stable is it?

Figure 6. The partition of Euclidean space with three regions
of fixed Gaussian volume and minimal total Gaussian surface
area takes this shape [MN18,Hei19].

We consider the noise stability 𝑆𝜌 of each of these vot-
ing methods where 𝜌 = 1 − 2𝜖 and 𝜖 > 0 is small with
51 < 1/𝜖 < 𝑛. That is, the probability of each vote being
corrupted is small. Then [O’D08, p. 9]

𝑆1−2𝜖(𝑓) ≈ 1 − 4
𝜋√𝜖, 𝑆1−2𝜖(𝑔) ≈ 1 − 2( 2𝜋)

3/2√51√𝜖.

So, by Remark 3.5, the probability that vote corruption
changes the election’s outcome is about 5.7 times greater
for the Electoral College than for majority. Here we used

2(2/𝜋)3/2√51
4/𝜋 ≈ 5.698035… .

Computer simulation similarly shows that, when the
size of each “state” defining the two-tier majority function
agrees with their size from the 2010 census, then the proba-
bility that vote corruption changes the election’s outcome
is more than four times greater for the Electoral College
than for majority.

Strictly speaking, the US Electoral College system is not
a two-tier majority function. Each state (except for Maine
and Nebraska) runs its own plurality vote, so that the can-
didate winning the most votes in that state wins that par-
ticular state. Then each state’s winner is entered into a na-
tionwide weighted majority vote. If no candidate wins this
weighted majority vote, then the House of Representatives
chooses the president, with one vote for each of the 50
states. In an election between two candidates, a perfect
tie in the Electoral College is unlikely, i.e., it is unlikely
for the House of Representatives to choose the president.
Moreover, since Maine and Nebraska are small states, their
chance of changing the outcome in the Electoral College is
small. So, the probability that vote corruption changes the
US presidential election’s outcome is still more than four
times greater for the Electoral College than for majority.

The integer weight of each state in the nationwide ma-
jority vote is equal to the number of national congres-
sional representatives in each state (with a weight of three
given to Washington, DC). Consequently, each state has
a minimum weight of 3 in the nationwide majority vote
(i.e., the Electoral College vote). The apportionment of
members to the House of Representatives is a nontrivial
task, since the ratios of state populations should somehow
closely match the ratios of their numbers of electoral votes.
Apportionment methods were hotly debated over the na-
tion’s history; for more on this history see, e.g., [BY75].

As noted by Banzhaf in 1968, the probability of one
single voter changing the election’s outcome, if all other
voters cast their votes randomly, tends to be higher for vot-
ers in larger states. However, the assumption that all other
voters cast their votes uniformly at random is unrealistic.
Despite our similarly unrealistic assumptions of voter be-
havior, i.e., Assumption 1, actual data for presidential elec-
tions in the US (in Table 5) demonstrates that it is much
more likely for a small number of vote changes to change
the Electoral College’s outcome than a plurality vote.

5. Other Applications
As mentioned above, majority is stablest and plurality is
stablest are closely related to geometric optimization prob-
lems involving soap bubbles. For a general introduction
to minimal surfaces, see the surveys [CM19,CM11] or the
book by the same authors. For more discussion on the
connections between voting and geometry, see the surveys
[O’D,Kho10].

In 2002, it was proven that the two regions of fixed vol-
ume that minimize their total surface area are those pic-
tured in Figure 3 [HMRR02]. The analogous result for
three regions, as in Figure 4, is still open. This problem
is only solved in the plane by Wichiramala. Surprisingly,
the Gaussian versions of these problems were recently re-
solved in [MN18], and then strengthened in [Hei19].

The initial motivation for the Majority is Stablest The-
orem 3.7 and the Plurality is Stablest Conjecture 3.8
came from theoretical computer science. These inequal-
ities imply sharp computational hardness for MAX-CUT
and its generalizations. That is, we can efficiently, ap-
proximately solve this computational problem, and im-
proving on this approximation is impossible to do effi-
ciently, assuming the Unique Games Conjecture, a stan-
dard complexity-theoretic assumption. Formore on the re-
lation between voting and computer science applications,
see [Kho10,KKMO07, IM12].

The noise stability of functions, as used in the Majority
is Stablest Theorem 3.7, has developed into a subject of
its own. Various references exist on the subject, such as
[DHK+10].
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US Presidential Election Vote Margins
Elec- Popular Vote Vote Changes Percent Electoral State where votes would
tion Margin, Sufficient to of Popular Vote be changed (corresponding
Year Rounded Sway Election Vote Margin electoral votes)
1844 40,000 2,554 .09% 65 New York (36)
1848 140,000 6,669 .23% 36 Pennsylvania (26)
1856 500,000 11,155 .28% 60 Illinois, Tennessee, Kentucky (35)
1876 -250,000 445 .005% 1 South Carolina (7)
1880 2,000∗ 8,416 .09% 59 OR, CT, CO, NH, IN (32)
1884 60,000 575 .006% 37 New York (36)
1888 -90,000 7,187 .06% 65 NY (36)
1892 400,000 25,362 .21% 132 CA, IN, ND, KA, WI, WV, IL (68)
1896 600,000 18,602 .13% 95 KY, CA, OR, IN, WV, DE (50)
1916 600,000 1,887 .01% 23 California (13)
1948 2,200,000 29,294 .06% 114 OH, CA, IL (78)
1960 110,000 14,265 .02% 84 HI, IL, MO, SC (59)
1968 500,000 41,971 .06% 110 Missouri, New Jersey, Alaska (32)∗∗

1976 1,700,000 12,791 .02% 57 Ohio and Mississippi (32)
2000 -500,000 269 .0003% 5 Florida (25)
2004 3,000,000 59,301 .05% 35 Ohio (20)
2008 10,000,000 495,310 .38% 192 NC, IN, FL, OH, VA, IA, NH (97)
2012 5,000,000 214,764 .17% 126 FL, OH, VA, NH (64)
2016 -3,000,000 38,875 .03% 77 MI, PA, WI (46)

Table 5. In 17 of the country’s 58 elections between 1788 and 2016, the popular vote was so narrow that changing a relatively
small number of votes in just a few states would have shifted the result of the national election. In some years, the person
elected president lost the popular vote. In one year, 1880, the Electoral College vote was just about as close as the popular vote.
∗Historians disagree about the popular vote margin in the 1880 election. ∗∗In 1968, the House of Representatives was controlled
by a different party than won the presidential election, so changing the election’s outcome would have only required the winner
to fail to receive a majority in the Electoral College.

Besides the applications of voting mentioned above,
voting is also used as a subroutine in various machine
learning algorithms, such as “boosting” algorithms of
Freund and Schapire. In a “boosting” algorithm, one has
access to several “weak” learning algorithms (or “weak” ex-
perts) who can each correctly classify, e.g., an email as
spam or not spam, with 51% probability. (The experts
are called “weak” since it is easy to correctly classify an
email as spam or not spam with 50% probability, just by
randomly choosing either spam or not spam, with equal
probability.) Using an appropriately chosen weighted ma-
jority vote among all of the classifications of these experts,
their aggregate classification of the email can be correct
with close to 100% probability. So-called “boosting” al-
gorithms combine “weak” expert opinions to “boost” the
probability of correct classification in this way.
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