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ABSTRACT
Climate change is one of the major challenges to human beings in
our time. It brings many unexpected disasters which cause drastic
losses including lives and properties. To better understand climate
change, scientists developed various Global Climate Models (GCMs)
to simulate the global climate and make projections for future cli-
mate values. These global climate models have coarse grids (i.e.,
low resolutions both in space and time) due to limitations of com-
puting power and simulation time. Although they are helpful in
predicting large scale long term trend in climate, they are too coarse
for impact analysis in smaller scales such as in regional or local
scale. However, climate conditions in regional or local scale are very
important in making decisions related to climate conditions such
as infrastructure, transportation and evacuation, as they highly
depend on small scale climate conditions. In this paper, we pro-
posed YNet, a novel deep convolutional neural network (CNN) with
skip connections and fusion capabilities to perform downscaling
for climate variables, on multiple GCMs directly rather than on
reanalysis data. We analyzed and compared our proposed method
with four other methods on datasets of three climate variables:
mean precipitation, and extreme values (maximum temperature
and minimum temperature). The results show the effectiveness of
the proposed method.
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1 INTRODUCTION
Climate change has growing impact on human society as global
warming brings more unexpected extreme disasters such as widely-
spread wild fires, severe droughts, frequent floods and extreme
heat waves, and cause huge loss of lives and properties. To better
understand the future climate and be better prepared, scientists
developed various Global Climate Models (GCMs) to simulate the
global climate andmake projections for future climate values. GCMs
use mathematical equations based on physical processes to describe
the interactions of energy and materials among ocean, atmosphere
and land. They are sophisticated systems with different boundary
conditions and initial conditions and are very computationally
expensive to run. GCMs usually have a coarse spatial resolution
(≥ 1◦ or 100𝑘𝑚) due to limited computational costs.

While GCMs are able to capture the long term climate trends in
large scales such as global scale or continental scale, they are not
accurate enough in smaller scales such as regional scale or local
scale [10]. However, it is crucial to access the climate impacts in
a finer scale as many human activities and climate impacts are in
smaller scales [27, 30]. To this end, people come up with approaches
called “downscaling” to derive finer scale climate information from
larger scale climate information such as GCMs. There are mainly
two types of downscaling methods: dynamical downscaling and
statistical downscaling. Dynamical downscaling utilize regional
climate models (RCMs) which are similar to GCMs but have higher
resolution and smaller covered area than that of GCMs. Dynamical
downscaling methods are useful in simulating extreme values but
also require extensive computation and need expertise to explain.
Statistical downscaling methods try to find out the empirical re-
lationships between the lower resolution GCM output with the
higher resolution local climate variables (usually produced from
historical observations) and applied them to GCMs to get higher
resolution predictions. Statistical downscaling methods have the
advantage of requiring less computing resources.

Statistical downscaling is very similar to image super-resolution
(SR) in the computer vision field, which enjoys a rapid progress and
great success as the fast development of machine learning especially
convolutional neural network based deep learning methods. They
both aim at getting higher resolution images from lower resolution
images if we regard climate variable data as images. However, com-
pared with the rapid advancing image super-resolution approaches
using machine learning / deep learning methods, there are rela-
tively fewer climate downscaling approaches utilizing these new
techniques. For these reasons, we want to leverage the advanced
super-resolution techniques in climate downscaling to bridge the
gap and inspire new insights for climate science.
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However, we should also highlight some differences between
climate downscaling and image super-resolution. Firstly, an image
usually has one or three channels and the pixel values are bounded
(e.g., 0− 255) with the same range, but climate variables are not real
images, and there may be multiple channels consisting of different
climate variables with different value ranges and more skewed
distributions. The values for climate variables are unbounded real
values which may have no theoretical maximum / minimum values,
which may affect the estimation of extreme values.

Secondly, in image super-resolution, the low-resolution input im-
ages and high-resolution target images come from the same sources
(usually the high-resolution target images are downsampled / in-
terpolated to low-resolution images as the inputs), while in climate
downscaling, the inputs and outputs come from different sources.
For example, in statistical downscaling, the inputs are the simu-
lated data from GCMs (and may contain other auxiliary variables,
as explained later) and the target outputs are the historical obser-
vational data. This makes it harder for downscaling as it requires
an additional “regression” from input variables to output variables
in addition to the regular function of increasing resolution.

Thirdly, climate downscaling can use additional auxiliary vari-
ables to help improve the performance. Different climate variables
may be related to each other subject to constraints such as physical
processes. One example is that elevation would affect temperature:
higher elevation, lower temperature. Topography will affect pre-
cipitation [23] (e.g., mountains may facilitate or prevent rainfall
depending on the locations and heights) and therefore topographi-
cal information can be helpful in climate downscaling.

In addition, climate variables often exhibit periodic property
in temporal aspect and thus the climatological information (i.e.,
long term average) can also help to predict climate variables. Since
climatological information and topographical information can be
acquired in high resolution and remain roughly unchanged in a
relatively long time (e.g., years), they are very reliable and useful
information. Therefore we would like to take advantage of both the
image super-resolution techniques and these useful characteristics
for climate downscaling.

In this paper, we adopt an image super-resolution method to
climate downscaling. The main contributions are as follows:

• We propose a neural network architecture that utilizes ef-
fective image super-resolution techniques and at the same
time incorporates advantageous climate characteristics for
climate downscaling. The proposed architecture, we call
YNet, consists of an encoder-decoder-like architecture with
residual learning through skip connections and fusion layers
to enable the incorporation of topological and climatolog-
ical data as auxiliary data. This architecture is effective in
producing high-resolution outputs.

• To our knowledge, this work is the first time a systematic
deep learning approach is being tried to actually use the full
blown GCM simulations. The previous climate downscaling
methods using machine learning do not use GCMs simulated
data as predictors, instead they first upscaled observational
/ reanalysis data and then use them as predictors, which
makes it a less challenging and less interesting problem.

• We examine the performance of the proposed method on
downscaling three climate variables at three different down-
scaling factors (the downscaling factor means how many
times the resolution increases) and compare the results with
four state-of-the-art methods in climate downscaling and
image super-resolution. Our proposed method significantly
outperforms these methods.

2 RELATED WORK
2.1 Image Super-Resolution
Convolutional neural networks have shown great success in deal-
ing with images, including image restoration, image classification,
image segmentation, image style transformation, image super-
resolution and so on. Deep learning methods based on neural net-
works quickly dominate the image super-resolution field since the
seminal work by Dong et al. [5]. Different deep learning methods
have been proposed for image super-resolution [1, 7, 8, 11, 11–
15, 21, 24, 31, 32, 36]. Many of these methods take advantage of
one or more techniques proven to be effective in improving the
performance of image super-resolution. The first technique is that
almost all methods are based on convolutional neural networks,
and most of them use small size (3 or 5) kernels for the networks.
The effective receptive field of multiple small kernels is equivalent
to that of a larger kernel but the former architecture requires less
parameters and is more flexible. The second technique is the skip
connections between earlier and later network layers. Most of the
skip connections are additive to corresponding channels but a few
are attached as extra channels. Skip connections help prevent gra-
dients from vanishing in backpropagation during training and in
addition transform the problem from directly mapping input to
output to residual mapping, which is more effective. Some meth-
ods also utilize encoder-decoder network or generative adversarial
network (GAN) architecture.

2.2 Downscaling
Downscalingmethods have long been applied in climate science [27,
33] and researchers in climate science proposed different dynami-
cal or statistical downscaling methods. Wood et al. [33] proposed
a statistical downscaling method called bias-corrected spatial dis-
aggregation (BCSD) to downscale precipitation and temperature
from climate model outputs. Zobel et al. [37] used ensemble of
dynamical downscaled model simulated data to study the extreme
temperatures over CONUS in the mid-late 21st century. Tanaka
et al. [25] proposed a method to downscale spatial data using auxil-
iary data. Xu et al. [35] compared various dynamical downscaling
methods and found out that in general bias correction technique
help improve results. Recently Xu et al. [34] proposed dictionary
learning-based method to downscale short-duration precipitation.

Although there are many downscaling methods proposed in
climate science [2, 10], there are very few downscaling methods
utilizing advanced computer vision / machine learning methods
especially deep learning methods [17, 28, 29]. One of the first works
was by Vandal et al. [29], who proposed a neural network based
method called DeepSD which stacked multiple SRCNN [5] together
to do the downscaling. But as the first attempt to match climate
downscaling to image super-resolution, they oversimplified the
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Figure 1: Proposed model architecture, YNet. Every convolutional layer (except the last one) and deconvolutional layer is
followed by a ReLU activation which is not shown in the diagram. See context for more details.

problem by taking the upscaled observation rather than GCMs
data as the input. In addition, their model lacked flexibility in ad-
justing downscaling factor due to the stacking architecture and
failed to utilize more effective architecture such as skip connections
and encoder-decoder scheme. Our proposed method improves over
DeepSD in those aspects and outperforms it significantly. In another
paper [28] they also compared several methods including ordinary
least square, elastic net, support vector machine (SVM), BCSD and
autoencoder neural networks for downscaling daily extreme pre-
cipitation in the Northeastern United States and found BCSD still
have merits compared to other methods. Recently Miao et al. [16]
proposed a CNN combined LSTM neural network architecture to
downscale monsoon precipitation, but they also used reanalysis
data and not GCM data as the predictors. Tran Anh et al. [26]
claimed to use LSTM and feedforward network to downscale GCMs
to observation, but they focused on only two specific locations
instead of general grid downscaling. Rodrigues et al. [19] proposed
a neural network architecture to downscale weather forecasts.

3 METHOD
In this section we will first introduce two image super-resolution
methods closely related to our proposed YNet method and then
describe the YNet.

3.1 Related Methods
Our proposed model is inspired mainly by two methods for im-
age super-resolution: Residual encoder-decoder network (REDNet)
[15] and efficient sub-pixel convolutional neural network (ESPCN)
[21]. REDNet consists mainly of 15 symmetric convolutional lay-
ers and 15 deconvolutional layers with skip connections between
corresponding convolutional and deconvolutional layers. The con-
volutional layers serve as encoders while the deconvolutional layers
serve as decoders. The encoder-decoder scheme has been used to
extract essential information, eliminate noise and corruption and
reconstruct the original image. The scheme has been proven ef-
fective [20]. The skip connections have several benefits. They can
convey detailed feature information in the convolutional layers to
the corresponding deconvolutional layers in order to better recover

features. With skip connections, the encoder-decoder learns to fit
the residual of decoder output and encoder input instead of di-
rectly learning the mapping from encoder input to decoder output,
which is more difficult [6]. During training, skip connections help
backpropagate gradients to the previous layers and make training
the network easier and more effective. Due to the symmetric ar-
chitecture, REDNet requires input and output images to have the
same size and the same number of channels. In order to perform
image super-resolution, the input low-resolution image must be
upsampled to the same size with the desired high-resolution output
before being fed into the network.

Instead of using deconvolutional layers to increase the image
resolution, the authors of ESPCN [21] use a so called sub-pixel
convolutional layer to increase resolution and they show that sub-
pixel convolution is essentially equivalent to deconvolution [22].
The original ESPCN model consists of 3 convolutional layers and a
final sub-pixel convolutional layer. The convolutional layers operate
on the lower resolution images and serve as a feature extractor. If the
output image has𝐶 channels and the upsampling factor of themodel
is 𝑟 , then the input feature map for the sub-pixel convolutional
layer will have 𝑟2𝐶 channels. The sub-pixel convolutional layer
increases the resolution by interlacing the 𝑟2𝐶-channel feature map
into a 𝐶-channel high-resolution output image. One advantage
of this model is that it is computational and memory complexity
efficient as most of its layers operate in the low-resolution space.
In addition, the input image can be arbitrary in size and it is very
flexible to adjust to different scaling factors. However, as Odena
et al. [18] pointed out, the deconvolution (as well as sub-pixel
convolution) operation may introduce an undesired pattern called
“checkerboard artifacts” whichwill degrade the quality of the output
image or even ruin it with serious artifact corruption. In fact, we
did find severe checkerboard artifacts when applying the sub-pixel
convolution to the climate datasets we used (this will be explained
in the experiment section).

3.2 Proposed Method, YNet
We name our model "YNet" since the architecture looks like a lying
down "Y" shape. Our model consists of several two-dimensional
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convolutional/deconvolutional layers, an upsampling layer and a
concatenation layer. The model architecture is shown in Figure 1.
The low-resolution input image 𝑋𝐺𝐶𝑀 can be arbitrary size while
high-resolution 𝑿𝐴𝑈𝑋 and 𝒀 have the same size. Each convolu-
tional/deconvolutional layer has a kernel of size 3 × 3 with stride 1,
padding 1 and ReLU activation except the last convolutional layer
whose kernel size is 1 × 1 without padding nor ReLU. The model
can be divided into three parts: the first part is a quasisymmetric
structure of encoder-decoder with skip connections that operates
on low-resolution space. It consists of 2𝑀1 convolutional layers
and 𝑀1 deconvolutional layers, each with 𝐷1 feature depth. The
skip connections connect every 𝐿 convolutional layers to the corre-
sponding deconvolutional layers. In the experiment we set𝑀1 = 15,
𝐷1 = 64 and 𝐿 = 2 following [15]. This is similar to REDNet taking
the advantage of an encoder-decoder network and the skip con-
nections. It can be regarded as a feature extractor taking as input
“noisy” low-resolution images and get “cleaner” low-resolution fea-
tures. To alleviate the possible checkerboard artifacts introduced by
deconvolution, we add a convolutional layer after every deconvolu-
tional layer. The second part is an upsampling part consists of two
convolutional layers with feature depth 𝐷2 the same as the input
image channel and an upsampling layer with upsampling scale 𝑆 . In
our experiment 𝐷2 = 35, 33 and 𝑆 = 2, 4, 8, respectively. To address
the checkerboard problem, we use a bilinear interpolation upsam-
pling followed by a convolutional layer to replace the sub-pixel
convolutional layer, as suggested in Odena et al. [18]. The following
convolutional layer is used to compensate the upsampling which
is a fixed operation that does not have learnable parameters. This
works well and eliminates the checkerboard artifacts. The third
part is a fusion part which consists of a concatenation and two con-
volutional layers with feature depth 𝐷3 = 𝐷1 and 1, respectively.
The input 𝑿𝐺𝐶𝑀 is also unsampled using bilinear interpolation
and concatenated to the upsampling part output. The fusion part
combines the upsampled feature maps with the auxiliary inputs to
reconstruct the final high-resolution outputs. We use squared loss
as the loss function and minimize this objective:

𝐿(𝜃 ) = 1
𝑁

𝑁∑
𝑛=1

| |𝑓 (𝑿𝑛, 𝜃 ) − 𝒀𝑛 | |2 (1)

where 𝜃 is the parameters of the neural network to be optimized,
𝑁 is number of training data, 𝑓 (·, ·) is the learnt function of the
network, 𝑿𝑛 = {𝑿𝐺𝐶𝑀 ,𝑿𝐴𝑈𝑋 }𝑛 is the input, and 𝒀𝑛 is the high-
resolution target.

Inspired by Vandal et al. [29] and BCSD, we also use auxiliary
inputs to help improve the results. We term them “auxiliary” inputs
instead of normal inputs because of two reasons. The first is that
they remain the same for different months through out the training
and testing period. The other is that they are high-resolution (the
same as the target resolution) rather than low-resolution and they
are fed into the neural network at the last layers rather than at the
first layer along with GCMs. The auxiliary inputs are concatenated
to the output of the upsampling layer as extra channels.

4 EXPERIMENT
We applied our model to three climate data sets: monthly mean
precipitation (ppt) in mm/day, monthly maximum temperature

(tmax) and monthly minimum temperature (tmin) in degree Celsius
(◦𝐶), and compared with four other methods: two climate down-
scaling methods BCSD [3, 33] and DeepSD [29], and two image
super-resolution methods ESPCN [21] and REDNet [15].

4.1 Datasets
We use the Global Climate Models (GCMs) simulated data provided
by NASA 1 as our low-resolution input 𝑿𝐺𝐶𝑀 . We downloaded 35
and 33 different GCMs simulated data from different institutions
around the world 2 and thus 𝑿𝐺𝐶𝑀 has 35 and 33 channels for
precipitation and temperature data, respectively. The original GCMs
data cover the whole earth, with latitude grid from 89.5S to 89.5N
by 1◦ and longitude grid from 0.5E to 359.5E by 1◦, and with every
month from January 1950 to December 2005, a total of 672 months.
We focus on the Continental United States (CONUS) and extract the
data with latitude from 24.5N to 49.5N and longitude from 235.5E
to 293.5E. There are 26 points for latitude and 59 for longitude and
therefore the input 𝑿𝐺𝐶𝑀 has a size of 26 × 59 with 35 and 33
channels for precipitation and temperature, respectively.

We use reanalysis data as our high-resolution target 𝒀 . The re-
analysis data are combinations of sparse on-site observation with
other sources such as remote sensing and satellite images to pro-
duce high-resolution data. It is common to use reanalysis data as
the proxy of true observational data because the site-based ob-
servational data are very sparse. The reanalysis data we use is
the PRISM [4] data which were downloaded from Oregon State
University 3. In addition, we use high-resolution elevation and
climatological data calculated from PRISM data as the auxiliary
input 𝑿𝐴𝑈𝑋 . For the elevation data, we use the same data from
Global 30 Arc-Second Elevation Data Set (GTOPO30) as with [29].
The original PRISM and GTOPO30 data cover the CONUS with
the same spatial resolution of 1/24 degree (∼ 4𝑘𝑚), with latitude
grid from 24.104N to 49.9375N by 1/24 degree, and longitude grid
from 234.979E to 293.479E by 1/24 degree. The original latitude
and longitude grids are not aligned with GCMs’ therefore we have
to aligned them by averaging 4 nearest neighbouring locations to
produce the central location value. We test our method using three
downscaling factors: 2, 4 and 8 in our experiments, but other factors
can also be used. After alignment, we reduce the spatial resolution
to our desired resolutions (0.5◦ by 0.5◦, 0.25◦ by 0.25◦ and 0.125◦
by 0.125◦) accordingly by downsampling interpolation. Although
GCMs have values for both land and oceans, the PRISM data only
have values for CONUS, therefore we zero out those values outside
CONUS. Figure 3 shows an example month (January 2003) of the
mean precipitation of 35 GCMs and the corresponding PRISM pre-
cipitation at different resolutions. Figure 3a is the average of the
35 different GCMs. The GCM data are very different with PRISM
data in addition to the resolution gap. We use the first 600 months
(Jan. 1950 to Dec. 1990) data as the training data, the following 36
months (Jan. 2000 to Dec. 2002) data as validation data and the last
36 months (Jan. 2003 to Dec. 2005) data as the test data.

The values for the precipitation are all non-negative and have a
long tail distribution with many small values and a few large values.

1https://registry.opendata.aws/nasanex/, last access: Feb. 2020.
2Two GCMs for temperature have missing months so we discard them.
3http://www.prism.oregonstate.edu,last access: Feb. 2020.
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(a) BCSD (b) DeepSD (c) ESPCN

(d) REDNet (e) YNet (f) Ground truth

Figure 2: Mean precipitation: MAE of different methods with downscaling factor 2 in a single month. The green boxes are
zoomed in areas.

(a) GCMmean ppt 1◦ × 1◦ (b) PRISM ppt 0.5◦ × 0.5◦

(c) PRISM ppt 0.25◦ × 0.25◦ (d) PRISM ppt 0.125◦ × 0.125◦

Figure 3: GCM and PRISM ppt at different resolutions.

The range of precipitation for GCMs is 0 to 33.0 mm/day while the
range of that for PRISM is 0 to 67.9 mm/day and the range of eleva-
tion is -74.1 to 3677.8 meters. In order to relieve the long-tail effect
and align the value ranges, we apply log1p transformation (first
add 1.0 and then take logarithm) to the precipitation and elevation
and then normalize the values by dividing the maximum value (5
for precipitation and 10 for elevation in the experiments). We set
negative values to be zero for elevation before applying the trans-
formation, which should not affect too much for the experiment
results since the negative values only appear in a very small part
of the image. After that, the range of the inputs are between 0.0
and 1.0, which is common for normalized image pixel value range.
We did not perform the log1p transformation for temperature data
since they contain both positive and negative values. We just nor-
malize the values to between -1.0 and 1.0 by dividing the maximum
absolute value (50 in the experiments). After that, we shift and scale
the input such that the range of the inputs are between 0 and 1.0.

We use two auxiliary variables: high-resolution elevation and
climatological variables (precipitation / temperature). The elevation

is a topographical variable and is supposed to remain the same for
a long time. This variable may have a great effect on precipitation
and temperature. For example, high mountains may obstruct the
cloud and thus create rainfall on one side while preventing rainfall
on the other side of the mountain; higher elevation, lower tem-
perature, etc. We average over the training data for each natural
month (January to December) for precipitation, maximum and min-
imum temperature separately to get the climatological data. These
same climatological data are used during both training and test as
auxiliary variables. The climatological data go through the same
transformation and normalization procedure as the GCM variables.

4.2 Experiment Setup
In computer vision the Peak-Signal-to-Noise Ratio (PSNR) is of-
ten used as a metric to compare the qualities of high-resolution
images produced by different methods. It is defined as 𝑃𝑆𝑁𝑅 =

10𝑙𝑜𝑔10 (𝑀𝐴𝑋
2

𝑀𝑆𝐸
) where 𝑀𝐴𝑋 is the maximum possible value (e.g.,

255 for 8-bit image) and 𝑀𝑆𝐸 is the mean square error. However,
in our case there is no bound for the pixel value and PSNR can
not be computed. Therefore we use MSE as the metric. The MSE is
calculated as𝑀𝑆𝐸 = 1

𝑇𝐾

∑𝑇
𝑡=1 | |𝒀̂𝑡 − 𝒀𝑡 | |2 where𝑇 is the number of

months (i.e., images) in test data, 𝐾 is the number of locations 4 for
each month, and 𝒀̂𝑡 and 𝒀𝑡 is the prediction and the ground truth
values for month 𝑡 , respectively.

The implementations of both REDNet and ESPCN are from
Github 56. We implemented BCSD, DeepSD and our proposed YNet
using python and pytorch. We use Adam [9] optimizer with Re-
duceLROnPlateau scheduler. The initial learning rate is 1.0 × 10−4
and the batch size is 32. The input 𝑿𝐺𝐶𝑀 has a size of 26 × 59 with
35 or 33 channels and the output has one channel with different
sizes corresponding to different downscaling factors. We choose

4We use the number of pixels in each image as the number of locations for simplicity.
This simplification should not affect the comparison results since the number of invalid
locations (pixels outside CONUS) are roughly the same for different methods.
5https://github.com/yjn870/REDNet-pytorch; last access: Feb. 2020.
6https://github.com/leftthomas/ESPCN; last access: Feb. 2020.
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(a) BCSD (b) DeepSD (c) ESPCN

(d) REDNet (e) YNet

Figure 4: Maximum temperature: MAE of different methods with downscaling factor 4.

(a) BCSD (b) DeepSD (c) ESPCN

(d) REDNet (e) YNet (f) Elevation map∗

Figure 5: Minimum temperature: MAE of different methods with downscaling factor 8. ∗We put Elevation map here to show
the overlap between the erroneous prediction areas and the mountainous / plateau areas. See context for details.

the best number of training epochs using the validation data for all
neural network methods and report the results using the test data.

We briefly describe BCSD here. BCSD consists of two steps: a
bias correction step and a spatial disaggregation step. Bias cor-
rection is applied to match simulated data with observations so
that they have the same cumulative distribution function (CDF).
Specifically, quantile mapping is used to map every simulated value
to a corresponding observation value of the same quantile. The
bias-corrected value 𝑣𝑏𝑐 of a climate variable is 𝑣𝑏𝑐 = 𝐹−1𝑜𝑏𝑠 [𝐹𝑠 (𝑣𝑠 )]
where 𝑣𝑠 is the simulated value, 𝐹−1

𝑜𝑏𝑠
(·) is the inverse CDF of ob-

servation data, and 𝐹𝑠 (·) is the CDF of simulated data. The second
step is the spatial disaggregation, which is slightly different for
precipitation and temperature since precipitation is non-negative
but temperature can be negative. The step for precipitation is

𝑣𝑏𝑐𝑠𝑑 = 𝑣𝑐ℎ + ℎ𝑖𝑛𝑡 (𝑣𝑏𝑐 − 𝑣𝑐𝑙 )
( 𝑣𝑐ℎ

1 + 𝑣𝑐𝑙
)

(2)

where 𝑣𝑐ℎ and 𝑣𝑐𝑙 is the climatological data (i.e., long term aver-
age) in low/high-resolution, respectively. ℎ𝑖𝑛𝑡 (·) is an interpolation
operation (e.g., bilinear interpolation). For temperature, this step is

𝑣𝑏𝑐𝑠𝑑 = 𝑣𝑐ℎ + ℎ𝑖𝑛𝑡 (𝑣𝑏𝑐 − 𝑣𝑐𝑙 ) (3)

4.3 Results
We compare the MSE of different methods for the three climate
variables: monthly mean precipitation (ppt), monthly maximum
temperature (tmax) and monthly minimum temperature (tmin) us-
ing three downscaling factors: 2, 4 and 8. The results are shown
in Table 1, 2 and 3. The bold font represents the best performance.
Our proposed method YNet has the best performance with regards
to MSE for all but one case. In Table 1, all methods except ESPCN
perform reasonably when the downscaling factor is small and de-
grade as the factor goes larger. In Table 2 and 3 we can see that the
methods REDNet and YNet still have a very good performance but

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

3150



(a) BCSD (b) DeepSD (c) ESPCN

(d) REDNet (e) YNet (f) GT mean∗

Figure 6: MAE of predicted mean precipitation of different methods with downscaling factor 8. ∗We put GT mean here to
show the overlap between the erroneous prediction areas and the high precipitation areas. See context for details.

ESPCN deteriorates and cannot get a reasonable result. One possi-
ble reason why ESPCN perform worse may be that it has a severe
checkerboard artifact, which is inherent in its architecture, and it
does not handle the out of boundary pixels very well. In Figure 7
we show the prediction results of ESPCN and our proposed YNet
for one month. We can clearly see that the result of ESPCN has
serious checkerboard artifacts while YNet does not.

(a) ESPCN predicted ppt (b) YNet predicted ppt

Figure 7: ESPCN vs YNet predicted results for ppt in one
month. The green boxes are the zoomed in areas. ESPCN
predictions exhibit severe checkerboard artifacts, while

YNet does not have this problem.

To examine the performances of methods for different seasons,
in Table 4 we show the predictive MSE of these methods on mean
precipitation for four seasons when the downscaling factor is 8.
The proposed YNet performs best for all four seasons. In addition,
comparing to the last column of Table 1, we observe that the pre-
dictive ability varies through different seasons. Winter ("DJF") and
Spring ("MAM") have smaller MSEs while Summer ("JJA") and Au-
tumn ("SON") have larger MSEs for most of the methods (except for
BCSD). This suggests that precipitation in Summer and Autumn
are more difficult to predict than that in Winter and Spring.

Table 1: MSE of mean precipitation.

method
scale factor 2 4 8

BCSD 1.554 1.688 1.763
DeepSD 1.523 1.682 1.701
ESPCN 1.986 2.217 2.498
REDNet 1.345 1.467 1.543
YNet 1.291 1.396 1.454

Table 2: MSE of maximum temperature.

method
scale factor 2 4 8

BCSD 7.339 7.256 7.289
DeepSD 6.118 6.891 6.482
ESPCN 21.353 24.280 29.212
REDNet 3.124 3.649 3.747
YNet 2.365 2.611 2.853

Table 3: MSE of minimum temperature.

method
scale factor 2 4 8

BCSD 7.188 6.908 6.690
DeepSD 3.555 3.460 3.800
ESPCN 11.344 13.027 13.989
REDNet 1.806 2.500 2.694
YNet 2.070 2.090 2.087
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Table 4: Seasonal MSE of mean precipitation for
downscaling factor 8.

method
season DJF MAM JJA SON

BCSD 1.620 1.783 1.747 1.901
DeepSD 1.509 1.451 1.873 1.971
ESPCN 2.394 2.109 2.756 2.735
REDNet 1.311 1.365 1.676 1.821
YNet 1.220 1.285 1.54 1.772

DJF:Dec.-Feb.; MAM:Mar.-May; JJA:June-Aug.; SON:Sep.-Nov.

In Table 5 we also show the bias and Pearson correlation coeffi-
cients for different methods on three data sets when using downscal-
ing factor 8. The bold font is the best. We can see that our proposed
method YNet gets the best values for most of the data. From the
bias term we observe that BCSD and YNet tend to underestimate
both precipitation and temperature, and the other three methods
underestimate precipitation while overestimate temperature. One
possible reason for BCSD to get low bias for precipitation but high
bias for temperature is that the shift between the past and future
CDFs for temperature is larger than that for mean precipitation.

Table 5: Bias and correlation of different methods with
downscaling factor 8.

method
data ppt tmax tmin

Bias Corr. Bias Corr. Bias Corr.

BCSD -0.021 0.757 -1.135 0.977 -1.332 0.958
DeepSD -0.220 0.765 0.338 0.978 0.024 0.970
ESPCN -0.295 0.649 0.399 0.891 0.160 0.873
REDNet -0.199 0.788 0.415 0.988 0.023 0.977
YNet -0.197 0.802 -0.074 0.991 -0.335 0.983

To visually examine and compare the results of different methods,
we take the prediction results of precipitation for one month as
an example. The results are shown in Figure 2. Figure 2f is the
corresponding ground truth (GT) precipitation with resolution 0.5◦
by 0.5◦. Figures 2a - 2e are the absolute error maps for different
methods. An absolute error map is defined as the absolute value of
the difference between a prediction image and the corresponding
ground truth image. The deeper the red color, the larger the absolute
error for the prediction. We can see from Figure 2 that in this case,
most of the precipitations are in the Northwestern coastal area of
CONUS, and most errors are concentrated in this area. We zoom
in the area in the green boxes and compare them. The proposed
YNet has the smallest error area, followed by the REDNet. The
other three methods have relatively larger error areas. The neural
network based methods have larger errors mainly in areas of the
Northwestern corner (Washington State especially around Seattle)
where the precipitation is high and few errors in other areas where
the precipitation is low. For non neural network based method
BCSD, the errors mainly appear in the California state, just around
the Central Valley.

For the two data setsmonthlymaximum temperature andmonthly
minimum temperature, we show the mean absolute error (MAE)
map over all testmonths. TheMAE is defined as𝑀𝐴𝐸 = 1

𝑇

∑𝑇
𝑡=1 |𝒀̂𝑡−

𝒀𝑡 | where | · | is element-wise absolution. Figure 4 shows the MAE
maps of predicted maximum temperature of different methods with
downscaling factor 4. The deeper the red color, the larger MAE. For
better visualization and fair comparison, we clip the color bar to the
same range (i.e., 0 - 3.5) for all methods. From the figures we can see
that ESPCN is the worst with severe mismatch near the boundaries.
DeepSD also suffers around the boundaries. The other three has no
or very mild boundary issues. For the BCSD method, the high error
areas are more evenly distributed and cover a large part of CONUS.
The reason may be that BCSD heavily relies on climatological data
(i.e., long term average in the past years) and tend to underestimate
the temperature due to the global warming effect. REDNet has high
error in the mid-north area. YNet also has red color (errors) in the
mid-north area but they are much less severe.

In addition, we notice that all the methods tend to have more
mismatched areas in the mid-west part of CONUS. This phenome-
non is also found in the MAE maps of predicted monthly minimum
temperature of different methods, as shown in Figure 5. Interest-
ingly, these areas are mostly mountainous areas and plateaus with
high elevation, which include the Rocky Mountains, Sierra Nevada,
Cascade Range, Columbia Plateau and Colorado Plateau, as shown
in red color in Figure 5f. The complex terrain and rapid change
of elevations have high impact on temperature and make it more
difficult to predict. One hypothesis is that GCMs fail to model the
complicated effects of the mountains and plateaus on temperature
and the simulated values are more far away from observations than
that in other areas. This may need more attention from climate
scientists when they want to use or improve GCMs.

In Figure 6 we show the MAE maps of predicted monthly mean
precipitation of different methods and the mean precipitation over
3 years in Figure 6f. Unlike temperature, the errors mainly concen-
trate on the west coastal area and the southern area. These areas
are known for having higher mean precipitation than the rest of
CONUS. Again, YNet has the smallest area of high error among
these methods.

5 CONCLUSION
In this paper we proposed a deep neural network architecture,
YNet, to downscale climate variables from low-resolution GCMs
simulated data. The proposed method utilizes skip connections in
low-resolution image space and incorporates high-resolution topo-
logical and climatological variables as auxiliary data. The proposed
method can have arbitrary size of input and is very flexible at dif-
ferent downscaling factors. We compare its performance with four
other methods on three climate data sets representing different cli-
mate variables. We analyze the results using metrics including MSE
and MAE maps. The results show that our method significantly
outperforms the competing methods.

Although machine learning / deep learning methods have shown
strength over traditional climate downscaling methods, there is still
a long way to go for the climate science community to fully em-
brace these methods. One barrier is that deep learning methods
are thought to be black boxes without physical explanations. One
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future work direction would be extending this work to interpret the
physical information from the results, such as explanation of the
MAE pattern found in the results and strategies to improve accord-
ingly. It maybe also interesting to develop / investigate uncertainty
quantification techniques for deep learning methods applied in
climate science since they are important for climate science com-
munity. Another direction is to design physics-guided machine
learning methods to better incorporate scientific expertise and lead
to easier understanding of why they work.
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