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ABSTRACT

We study the dynamics of epidemics in a networked metapopulation model. In each subpopulation, rep-
resenting a locality, the disease propagates according to a modified susceptible-exposed-infected-recov
ered (SEIR) dynamics. In the modified SEIR dynamics, individuals reduce their number of contacts as a
function of the weighted sum of cumulative number of cases within the locality and in neighboring local-
ities. We consider a scenario with two localities where disease originates in one locality and is exported
to the neighboring locality via travel of exposed (latently infected) individuals. We establish a lower
bound on the outbreak size at the origin as a function of the speed of spread. Using the lower bound
on the outbreak size at the origin, we establish an upper bound on the outbreak size at the importing
locality as a function of the speed of spread and the level of preparedness for the low mobility regime.
We evaluate the critical levels of preparedness that stop the disease from spreading at the importing
locality. Finally, we show how the benefit of preparedness diminishes under high mobility rates. Our
results highlight the importance of preparedness at localities where cases are beginning to rise such that
localities can help stop local outbreaks when they respond to the severity of outbreaks in neighboring

localities.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Early detection of disease outbreaks at their location of origin
provide a chance for local containment and time to prepare in
other locations. Such preparation may enable locations connected
to the origin to become more aware of the outbreak and develop
a stronger response to the disease especially when it is not con-
tained. The success of containment strategies is highly dependent
on the ability of promptly detecting most infectious individuals
in a given location. The recent outbreak of the COVID-19 virus
has shown that successful containment efforts are highly challeng-
ing when many latently infected and asymptomatic but infectious
individuals can travel undetected between locations (Li et al,
2020; Kraemer et al., 2020; Zhang et al., 2020; Moghadas et al.,
2020).

In the ongoing COVID-19 outbreak, localities in the US are con-
tinuing to see alarming surges in the number of cases and hospital-
ized individuals at different times, driven in part by differences in
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introduction and lift-off of the epidemic in local communities
(Javan et al., 2020; Pei et al., 2020). Reducing mobility between
localities can delay the overall epidemic progression. However,
prior research suggests that the final outbreak size is not strongly
affected by travel restrictions unless combined with a strong
reduction in transmission within the locality (Kraemer et al.,
2020; Chinazzi et al., 2020; Wells et al., 2020; Du et al., 2020). In
the US, local authorities have implemented non-pharmaceutical
interventions, e.g., declaring emergency or issuing stay at home
orders, at different times. Community response to these interven-
tions differ across localities (Klein et al., 2020; Siegenfeld and
Bar-Yam, 2020; Cowling et al., 2020; Ferguson et al., 2020; Baker
et al., 2020; Karatayev et al., 2020; Bairagi et al., 2020). Hence,
there is growing concern that mismatched timing of response
efforts could lead to a failure of containment (Kortessis et al.,
2020).

Here we develop a simplified model to assess the combined
effects of mobility, local response to disease prevalence, and the
level of alertness prior to disease surge in a locality. To do so, we
consider a networked-metapopulation model (Watts et al., 2005;
Salathé and Jones, 2010; Du et al., 2020; Colizza and Vespignani,
2007; Sun et al., 2011). Prior metapopulation models have focused
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on the heterogeneity of the populations (Colizza and Vespignani,
2007), hierarchical connectivity structures among populations
(Watts et al.,, 2005), and local responses of populations (Sun
et al,, 2011). These models are fitted to various childhood diseases
(Watts et al., 2005), e.g., measles, pertussis, as well as, the common
cold (Sun et al, 2011) and SARS (Colizza et al., 2007). More
recently, the effects of local lockdowns on the COVID-19 outbreak
have been investigated using metapopulation models (Karatayev
et al., 2020; Klein et al., 2020). Here, we assume the disease pro-
gresses according to susceptible-exposed-infected-recovered
(SEIR) dynamics within each population or locality (similar to
Wau et al. (2020)). Within each population susceptible individuals
can become exposed via contact with infected individuals in the
same locality. SEIR models are a standard approach to model epi-
demiological dynamics including pandemic influenza (Lee et al.,
2009) and COVID-19 (Lai et al., 2020; Vespignani et al., 2020).

In the present context, we extend SEIR models to include the
effects of behavior changes on local disease progression. We
assume individuals change their behavior and reduce their con-
tacts proportional to disease prevalence, i.e., the ratio of infected
and recovered (Paarporn et al., 2017; Eksin et al., 2019). In addi-
tion, behavior in a locality can be influenced by the disease preva-
lence in neighboring localities. That is, we introduce awareness-
driven social distancing models that account for interaction
between localities not just in terms of the flow of individuals,
but also in terms of the flow of information that leads to raised
awareness (social distancing and preparation). While prior works
considered local social distancing efforts determined by local dis-
ease prevalence (Sun et al., 2011; Karatayev et al., 2020; Klein
et al., 2020), we include a mechanistic model of the influence of
the outbreak sizes at neighboring localities. Our aim is to quantify
the combined effects of inter-locality mobility, and behavior
changes in response to local and external disease prevalence. As
we show, behavior changes driven by the awareness of outbreaks
in neighboring localities can reduce the spread of a newly imported
disease in connected populations.

2. Methods

We consider a networked metapopulation model of epidemic
dynamics. At each population, the disease propagates according
to SEIR dynamics given a homogeneous population. In addition,
we assume there is constant travel in and out of each population.
The flow of travelers constitute only healthy (susceptible) individ-
uals, and those that are latently infected (exposed). The dynamics
at locality i are given as follows:
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where f; is the transmission rate at location i, Z; is the flow of indi-
viduals from location i to neighboring location j, u denotes transi-
tion rate from exposed (pre-symptomatic) to infected
(symptomatic), and J is the recovery rate. We denote the neighbor-
ing localities of i with A/;. We assume total flow in and out of a loca-
tion are equal, i.e., 4; = Z;;. The total mobility flow from i to j include
susceptible and exposed individuals proportional to their size in the
population. We assume infected individuals are successfully
detected, and thus cannot travel between localities. The model does
not include mobility of recovered individuals. Mobility of recovered
individuals may reduce the outbreak in localities as they may serve
as barriers and reduce the outbreak (Weitz et al., 2020). Here, we
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neglect possible barrier effects of recovered mobility individuals
in order to focus on the effects of awareness-based social
distancing.

The transmission rate at location i depends on the inherent
infection rate B, and social distancing due to cumulative disease
prevalence,

%

I+ Ry I +R
Bi=Po| 1 - wi——— > ] . (5)
N &N

In the social distancing model, individuals reduce their interaction
with others proportional to the ratio of cumulative cases, defined
as the ratio of infectious and recovered in the population, at locality
i and neighboring localities of i (Paarporn et al., 2017; Eksin et al.,
2019; Funk et al., 2009). Here, we consider social distancing in a
broader sense as the impact of all individual and public health mea-
sures that reduce social contact between individuals (e.g. in the case
of COVID-19 this may include six feet physical distancing, restric-
tion on social and economic activities, and partial lock downs).
The term inside the parentheses is the awareness at locality i caused
by disease prevalence. The weight constant w; € [0, 1] determines
the importance of disease prevalence at locality i versus the impor-
tance of disease prevalence at neighboring A/; localities, w;; € [0, 1].
We assume the weights sum to one, i.e., Djen, i€ = 1. The expo-

nent constant ¢; represents the strength of response to the disease
awareness. It determines the overall distancing at locality i based on
the awareness. If «; =0, there is no distancing response to the
awareness at locality i. Note that the awareness term inside the
parentheses is always less than or equal to 1. Thus, the larger o;
is, the larger is the distancing response at locality i to disease preva-
lence. We refer to the case with o; =1 as the linear distancing
model.

In the following, we consider two localities with equal popula-
tion sizes N; = N,, unless otherwise stated. The disease starts at
locality 1 with 0.1% of the population in exposed state, and spreads
over to locality 2 via undetected exposed individuals traveling
from 1 to 2. The travel between localities does not change the pop-

. . . , , 5 1
ulation sizes, i.e., we assume ij; = /1. We set f, = g H=3 and

1 :‘11 based on the rates estimated at Li et al. (2020) for the
COVID-19 outbreak in China. The reproduction number at locality

iis R = %0 =2.5fori e {1,2}. Note that the standard SEIR model

is recovered when «; = 0 and 2; = O for all localities.

3. Results
3.1. Mobility and social distancing

As a baseline we consider no distancing response, i.e., o; = O for
alli = {1,2} (Fig. 1). We find that Locality 2 follows an almost iden-
tical disease trajectory as Locality 1 approximately 38 days after
Locality 1 when 2; = 0.01%. The difference in peak times of the
two localities increases from 10 days to 51 days as 4; decreases
from 1% to 0.001% (Fig. 1). Moreover, as the mobility rate
increases, the outbreak at Locality 1 becomes larger than the out-
break at Locality 2 while Locality 1 experiences a lower peak than
Locality 2—see Fig. 1Left). The intuition is that the duration of the
epidemic in Locality 1 is longer due to the large number infected
individuals traveling from Locality 2 after the peak time of Locality
1. This difference in outbreak sizes is negligible compared to the
effects of social distancing.

Next, we consider the effect of social distancing. For this, we
assume localities only put weight on disease prevalence at their
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Fig. 1. Networked SEIR model with no-distancing. Two localities are connected with travel rates 4; € {1%,0.01%, 0.001%}. The disease propagates in both localities according
to SEIR dynamics with no response to disease prevalence, i.e., &; = 0. Blue and red lines show the ratio of susceptible and infected individuals in a locality, respectively. The
differences in time of peaks are 10, 38, 51 days respectively for Z; € {1%,0.01%,0.001%}. Final outbreak sizes of localities 1 and 2 are almost identical for low mobility

regimes.
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Fig. 2. Percentage reduction in outbreak size and ratio of infected at peak with
respect to increasing social distancing exponent (o;). We measure the reduction
with respect to the no-distancing case (o; = 0). In both cases, the mobility per day is
J12 = 721 = 0.001% of the population.

own locality, i.e., w; = 1 for i € {1,2}. Fig. 2 shows the percentage
reduction in final outbreak size and peak ratio of infected at Local-
ity 2 as localities become more responsive, i.e., as o; increases.
When the distancing is linear «; = 1, the reductions in peak and
outbreak size are near 25%. Reduction in both metrics reaches
70% when o; = 5. This range of values of the impact of social dis-
tancing on disease transmission is consistent with empirical esti-
mates for COVID-19 in Europe and the US (Flaxman et al., 2020;
Chiu et al., 2020). While outbreak size continues to decrease with
o; increasing, there does not exist a critical threshold of o; that
stops the disease spread in a locality. The failure to stop an out-
break with awareness is due to the proportionality of the social
distancing to the cumulative number of cases (Paarporn et al.,
2017).

3.2. A lower bound on the outbreak size at the origin

Final size relationships for SEIR dynamics without mobility con-
nect the strength of an epidemic (reproduction number) to the
number of individuals not infected at the end of the epidemic
S(o0). In the present case, such relationships constitute an analo-
gous lower bound for the outbreak size at the origin in a scenario
without mobility (4; = 0) and w1, =0,

S(o0) = (T +a1R1(1 — S(oo)))”]_l =0, (6)

where R; = "“’7‘) is the reproduction number at the origin. Above, we
assume compartments (S, E,I,R) in the model dynamics represent

the fraction of population in the corresponding stage of the disease.
In obtaining the relation in (6), we consider a modified social dis-
tancing model in which we also include the fraction of exposed E
in the distancing term—see Appendix A. When individuals reduce
their interactions proportional to the cumulative number of
exposed cases, the social distancing is stronger than (5). Thus, the
solution to (6) for S(co) is an upper bound for the fraction of final
susceptible individuals, which means it is a lower bound for the frac-
tion of final recovered individuals (R(cc)). For the linear distancing
case oy = 1, we obtain the closed form solution to (6),

S(co) = Ry, R(oo) = 1 — Ry (7)

Fig. 3 compares the actual outbreak sizes with the upper bound
for S(co) obtained by solving (6) for different values of o. We
observe that the upper bound solution, denoted with (5(c0)), is
loose by an amount that is approximately equal to 0.04 in both
k=1 and k = 3. We also note that this upper bound provides a
good approximation of the outbreak size at Locality 2 when mobil-
ity is low and w,; = 0.
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Fig. 3. Upper bound values of S(co) obtained by solving (6) for k = 1 and k = 3. We
let Ay = 2.5. Lines correspond to the left hand side of (6). Circle dots show the
solution to (6). Diamond dots are S(cc) values obtained by simulating the SEIR
model in (1)-(4) with ; given in (5). For k = 0, we use standard speed-size relations
for the SEIR model without social distancing (Ma and Earn, 2006). Note that the
relation for the standard SEIR model is exact. Thus, diamond and circle dots overlap
for k=0. The difference between the upper bound for S(co) (§(oc)) and the
simulated S(c0) is relatively constant for different values of o.
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3.3. Adopted awareness

We analyze the effect of awareness at Locality 2 caused by the
outbreak in Locality 1. We label the weight w,; associated with
this awareness as the adopted awareness weight. We assume
Locality 1's awareness is not shaped by the outbreak at Locality
2, i.e.,, w11 = 1. In this scenario, the adopted awareness should be
interpreted as individuals in Locality 2 reducing contacts, e.g., prac-
tice social distancing, based on the awareness created by the out-
break at Locality 1. When the disease starts in one location
(Locality 1) and moves to a neighboring locality (Locality 2) via tra-
vel of exposed, the adopted awareness distancing term at Locality 2
is a measure of its preparedness.

We begin by using the lower bound for the outbreak size at the

origin (R;(c0)) to obtain an upper bound for the outbreak size at
Locality 2 as a function of w,;. There exists a time T > 0 such that

for all t > T, we have R; (c0) < I1(t) + Ry (t) where R; (cc) is obtained
by solving (6) for §;(cc) and setting R;(co) = 1 — §;(cc). Consider
the social distancing model g,(t) in (5). For t > T, we have

Bo(0) < Bo(1 = oaRi(00) — m(ly +Ro) ) . ®)

When the mobility is small, i.e., /;2 — 0O, the threshold time T
approaches zero as well. Thus, in the slow mobility regime, the
inequality above holds for almost all times. By ignoring the social
distancing based on local awareness, we obtain the following
upper bound on the infection rate at the importing locality
(Locality 2),

Bo(0) < o1~ wmbi(0) . ©)

Note that the right hand side is a constant that depends on the
lower bound of the outbreak size at the origin and the strength of
response at Locality 2 (o). Given the constant upper bound in (9),
we use the speed-outbreak size relation for the standard SEIR
model, e.g., see (Ma and Earn, 2006; Feng, 2007), to obtain a lower
bound for S,(c0) at neighboring locality,

1 - Sy(c0) + Ry log <§2(oo)> —0. (10)
where we define

~ B N o

Ry = %" (1 - a)21R1(oo)) . (11)

The solution to (10) given by S,(cc) provides a lower bound for
S2(o0) in the SEIR model with social distancing (1)-(5). Note that
we obtain the speed-outbreak size relation for the standard SEIR
model when o, = 0. In Appendix B, we demonstrate how the solu-
tion to (10) changes as a function of the strength of responses at
localities—see Figs. ST and S2.

We compare the outbreak size at Locality 2 from simulating
(1)-(5) with the upper bound obtained by solving (10) for a range
of adopted awareness values w»; € [0, 1] (Fig. 4). We observe that
the upper bound is loose when the adopted awareness is close to
zero. This is reasonable since in deriving the bound we removed
the social distancing with respect to local disease prevalence. The
accuracy of the upper bound improves as the adopted awareness
constant increases. Indeed, as per our assumptions, as i;; — O,
the upper bound would tend to the actual outbreak size when
Wy = 1.

Both the outbreak size at Locality 2 and the associated upper
bound monotonically decrease as adopted awareness (wa)
increases for the given strengths of response at the origin
o1 € {1,3}. This means Locality 2 is better off reacting to the
outbreak at Locality 1, as this will lead to an early strong
response to the disease. Indeed, the decrease of the outbreak size
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Fig. 4. Outbreak size at Locality 2 with respect to adopted awareness ;. (Top)
Weak (o, = 1) and (Bottom) Strong (o, = 3) responses at Locality 2. Mobility is set
to 4 = 0.001%. Weak and strong responses at Locality 1 correspond to oy = 1 (black)
and o = 3 (blue), respectively. The outbreak size at Locality 2 decreases with
increasing adopted awareness values. The decrease is sharper when response at the
origin is weak. Corresponding theoretical upper bound values (shown by dashed
lines) are tighter at larger adopted awareness values. In the Bottom figure, the
critical threshold values w3, above which disease does not propagate approxi-
mately equal to 0.5 and 0.8 respectively for weak (black) and strong (blue)
responses at the origin. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

at Locality 2 with respect to the adopted awareness constant is
faster when the response at Locality 1 is weak—compare blue
and black lines within Top and Bottom panels in Fig. 4. The rea-
son for this is that a weaker response at Locality 1 results in a
higher ratio of cumulative cases, which means higher awareness
at Locality 2. Going in the other direction, if the strength of
response at Locality 1 further increases (o > 3), it is possible
that increasing adopted awareness increases the outbreak size
at Locality 2. This means the monotonic decrease in the outbreak
size at Locality 2 with respect to increasing adopted awareness is
contingent on the strength of response at Locality 1 and the
mobility constants.

The preparedness at Locality 2 can result in stopping the out-
break from spreading at Locality 2. Indeed, we observe in Fig. 4
(Bottom) that there exists a critical threshold for the adopted
awareness constant w,; > 0.4 above which outbreak size is near
zero for Locality 2.
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Next, we use the upper bound for the outbreak size at Locality 2
to compute an upper bound for the critical threshold value of the
adopted awareness constant given o; and o, values. In order to
obtain this threshold, we rely on the result that when R, <1,
the disease will die out in a standard SEIR model. Note that

Ry < 7N22 with 7N22 is as defined in (11). Thus, the disease will not

spread at Locality 2 if 7%2 < 1. Solving this condition for w,;, we
get the following threshold

_ —1/0y
Wy > ‘IAL (12)
1(o0)

Po

where R, = 5 is the reproduction number and R; (co) is the lower

bound on the outbreak size at the origin obtained by solving (6).
From (12), we see that the critical threshold value for adopted
awareness (w3,) increases with increasing oy and decreases with
increasing o,. In Fig. 4 (Bottom), we see that the theoretical critical
threshold values are close to the actual (simulated) w;; values
above which the disease does not propagate in Locality 2.

For o; = 1, we obtain a close form solution for R;(co) in (7),
which yields

(13)

The threshold value above is an increasing function of o,. That
is, Locality 2 can avoid an outbreak with a smaller adopted aware-
ness constant (w;;) as o, increases. For o, = 1, we have the right
hand side equal to 1. This means there does not exist a level of pre-
paredness, i.e., a value of m; € [0, 1], such that the disease is elim-
inated at Locality 2. This confirms the results shown in Fig. 4
(Top)—see solid and dashed black lines decreasing toward 0 as
o goes to 1. At w,; = 1, the adopted awareness is equal to the
right hand side of (13) where the prediction is that the disease
can still spread in Locality 2.

3.4. Effect of adopted awareness on total outbreak size

While the above analyses show that Locality 2 can benefit from
a heightened awareness due to a weak response at Locality 1, this
awareness is a direct result of the lack of control at Locality 1.
Indeed, a larger outbreak at Locality 1 yields a lower outbreak size
at Locality 2. Here, we address conditions in which the reduction in
the outbreak size at Locality 2 due to the increase in the outbreak
size at Locality 1 is larger than the increase in the outbreak size at
Locality 1.

We begin by focusing on the total outbreak size defined as the
sum of outbreak sizes in both localities, i.e., Ri(cc) + Ry(c0), as a
global measure of the effects of adopted awareness. We find that
when the response at Locality 2 is weak (o, = 1), there exists a
level of preparedness (w,; ~ 0.7) above which the total outbreak
size is smaller when the response at Locality 1 is weak—see blue
line dip below the black line around w,; ~ 0.7 in Fig. 5 (Top). In
contrast, when the response at Locality 2 is strong, there does
not exist an adopted awareness constant value where a weak
response at Locality 1 is better than a strong response at Locality
1 in terms of total outbreak size—see Fig. 5 (Bottom). Lastly, the
total outbreak size is always lower when the response at Locality
2 is strong—compare Figs. 5 (Top) and (Bottom). These observa-
tions indicate that we obtain the best outcome in terms of total
outbreak size when both localities respond strongly, and Locality
2 has an adopted awareness constant value above the critical
threshold value.

In Fig. 5, we also provide a theoretical approximation of the
total outbreak size computed by adding the upper bound for the
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Fig. 5. Total of outbreak sizes at localities 1 and 2 with respect to adopted
awareness ;. (Top) Weak (o, = 1) and (Bottom) strong (o, = 3) responses at
Locality 2. Mobility is set to 2 = 0.001%. Weak and strong response at Locality 1
correspond to (o; = 1) and (o = 3), respectively. There exists a critical adopted
awareness constant value in Top where the total outbreak size is lower in the
scenario where both localities respond weakly compared to the scenario where
Locality 1 has a strong response. The critical value for the adopted awareness
constant value can be found by looking at the intersection of the solid black line
with the solid blue line for the corresponding mobility value. When both localities
respond strongly to the disease in Bottom figure, such a critical adopted awareness
constant value does not exist.

outbreak size in the origin (R, (c0)) to the lower bound for the out-

break size at Locality 2 (IN?z(oo)). This total (R (c0) + kz(oo)) is nei-
ther an upper bound nor a lower bound. We see that the
approximation error is mostly dominated by the error in the upper

bound R;(cc) for small values of the adopted awareness constant.
The approximation is a lower bound of the total outbreak size for
all adopted awareness values above the critical adopted awareness
constant computed using (12)--see dashed lines in Fig. 5(Bottom)
lying below the corresponding solid lines.

3.5. Effects of mobility rates

Thus far, we have focused our analysis on the effects of adopted
awareness given a slow mobility regime (1;, = 0.001%). As per the
discussion in Section 3.1, the outbreak times between localities get
closer as mobility increases. Given higher mobility rates, the
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cumulative number of cases at Locality 1 will be lower by the time
disease begins to spread at Locality 2. Thus, we expect the benefit
of adopted awareness at Locality 2 to be lower with increasing
mobility.

We measure the benefit of adopted awareness (1) by compar-
ing the outbreak size at Locality 2 given a positive adopted aware-
ness value w,; >0 with the outbreak size when adopted
awareness constant is zero, i.e., w,; = 0. Following the discussion
above, given a positive adopted awareness constant value
wy; > 0, the potential benefit of adopted awareness reduces as
mobility increases (Fig. 6). We see that the decrease in the benefit
of preparedness is slow up until a mobility rate value. After a cer-
tain mobility value i, ~ 0.05%, the decrease in the benefit of
adopted awareness is sharper. Regardless, we observe that when
the response at the origin is weak, it is better to have a higher level
of adopted awareness—see Fig. 6 (Top). The magnitude of benefits
of adopted awareness is reduced when the response at the origin is

Weak response at origin (a; = 1)

Benefit of adopted awareness

0 1 1 I
10 10 107 10°
Mobility per day (% of population)
Strong response at origin (a1 = 3)
® 0.02
7]
2
o 0.01
()
2 0
e,
[0}
‘a.-0.01
o
S
...(E '002 [ =Wy — 0.25
2 —wy =05
© -0.03 w1 = 0.75
c
3 —_—W = 1
-0.04 : : :
10 102 10™ 10°

Mobility per day (% of population)

Fig. 6. Benefit of adopted awareness with respect to mobility rates. (Top) Weak and
(Bottom) strong responses at the origin. The strength of response at Locality 2 is
weak o, = 1. The benefit is measured as the reduction in final size with respect to
the zero-adopted awareness constant scenario w;; = 0. Let F5(w>1, Z12) denote the
final outbreak size at Locality 2 with respect to w»; and /;>. The benefit of alertness
is defined as F,(0, 412) — F2(m21, 412). Weak response at the origin, higher adopted
awareness leads a smaller outbreak size at Locality 2 (Top). Given a strong response
at the origin, higher adopted awareness can lead to higher outbreak sizes (Bottom).
Strong response at the origin reduces the magnitude of the benefit of adopted
awareness.
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strong—see Fig. 6 (Bottom). Indeed, lower adopted awareness val-
ues can yield smaller outbreak sizes at Locality 2 for high mobil-
ity—observe that the benefit value dips below zero at higher
mobility rates in Fig. 6 (Bottom). The reason for the negative ben-
efit is that the disease severity at Locality 2 quickly exceeds the
outbreak size at Locality 1 when the response at the origin is strong
at high mobility rates, which means that Locality 2 is better off
social distancing based on the local outbreak size rather than the
outbreak size at Locality 1.

Thus far, we assumed the total flow of individuals from one
locality to another is fixed and does not depend on the severity
of the outbreak. An alternative is to let mobility rates be dependent
on awareness. Flow to a locality that is experiencing a severe out-
break can reduce, and similarly flow from localities with wide-
spread outbreaks toward regions with less severe outbreaks can
increase—see Appendix C for one such awareness driven mobility
dynamics. Another alternative is to reduce the overall flow to
and from locality based on the current size of the outbreak. In a
two locality setting where one locality is the origin, such
awareness-driven mobility dynamics delay the time disease
takes-off in the neighboring locality, increasing the time for neigh-
boring locality to be better prepared. In turn, the benefit of aware-
ness increases similar to the effect of reduction in mobility rates
discussed above.

3.6. Effects of population sizes

We consider scenarios where the two localities have differing
population sizes Ny # N,. In the model dynamics given in (1)-(5),
we assume the populations mix at a fixed rate ;. Thus, the popu-
lation size differences would not affect the flow implying that for-
mer results would continue to hold even when N; # N,. We
consider an alternative mobility model where the mobility con-
stants 4; represent the flow rates in order to analyze the effects
of population size differences—see Appendix C. In this alternative
model, the amount of flow from one locality to another depends
on the size of the originating compartment (S;,E;,S,, or E;) This
model provides identical results when N; = N,. When the initial
population sizes are different (N7 # N, ), the mobility dynamics will
generate flows such that the population sizes will change over
time. In turn, this will affect the ratio of the cumulative infected
Ry(00) /N2 (<) where we note that N,(cco) represents the size of
the population in Locality 2 at time t = co.

The effect of population differences is negligible when mobility
is low (Fig. S4). The small differences in outbreak sizes are caused
by the change in population sizes. For instance, when the popula-
tion size at Locality 1 is larger than Locality 2 (N; > N,), individuals
flow from Locality 1 to Locality 2 increasing the population size of
Locality 2. In turn, the fraction of recovered individuals in Locality
2 gets lower because its final population size is larger N, (co) > N,.
A secondary effect of different population sizes manifests when the
origin goes through a worse outbreak and the importing locality is
prepared. In this case, there is a larger migration of susceptible
individuals from Locality 2 to Locality 1. This magnifies the ratio
of the cumulative infected in Locality 2. All of the aforementioned
effects are more pronounced when mobility rate is higher.

4. Conclusions

We developed a mathematical model to analyze the impact of
social distancing efforts on disease dynamics among intercon-
nected populations. We assumed that social distancing efforts at
a given location is a function of both disease prevalence within
the population and outbreak dynamics at neighboring localities.
The inclusion of influence of outbreak size at neighboring localities
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distinguishes the model considered here from existing metapopu-
lation models that only consider social distancing based on local
disease prevalence (Sun et al., 2011; Karatayev et al., 2020). Our
analysis showed that it is beneficial to reduce travel between local-
ities given the inability to detect latently infected individuals (con-
sistent with earlier findings Li et al., 2020). However, this benefit is
contingent on how prepared neighboring localities are for the
importation of cases. We used the term adopted awareness to
determine the importance given to preparedness at neighboring
localities. We assumed the preparedness at importing localities is
an increasing function of the outbreak size at the origin. The
increasing function assumption implied that neighboring localities
increase their levels of preparedness as the severity of the disease
at the origin increased. That is, the severity of the outbreak at the
origin triggers social distancing efforts at neighboring localities by
local authorities making non-pharmaceutical interventions, e.g.,
declaring state of emergency or issuing stay at home orders. We
derived an upper bound on the outbreak size at importing localities
as a function of the outbreak size at the origin and strength of
response at the importing locality. Using this upper bound, we
identified a critical threshold for the adopted awareness weight
that would eliminate the disease at importing localities.

It is not surprising that increased levels of preparedness reduces
the outbreak size at localities neighboring the origin. However, the
level of preparedness is dependent on the outbreak size at the ori-
gin. Thus, levels of preparedness increase at a locality when a
neighboring locality has a larger outbreak size. Our results show
that increased levels of preparedness at neighboring localities
can yield lower total outbreak sizes even when the response at
the origin is weak (Fig. 5Top)). The theoretical and numerical
results mentioned above hold under a low mobility regime in
which there is a lead time for increased alertness levels at import-
ing localities based on the outbreak size at the origin. We identified
that when the response at the origin is strong, adopted awareness
may hurt, rather than benefit, the neighboring localities under
higher mobility rates (Fig. 6 (Bottom)). The neighboring localities
may have, in effect, a false sense of security. In contrast, weak
responses at the origin can paradoxically benefit neighboring local-
ities that adjust their distancing based on adopted awareness. We
also find that the benefit of adopted awareness is robust to small
variations in mobility, awareness-driven mobility dynamics
Appendix (C), heterogeneous population sizes (Section 3.6) and
to variation in the inherent infection rate of the disease
Appendix (D).

Overall, our findings imply that if there are multiple localities
with outbreaks, the jurisdictions with less severe outbreaks should
be looking at their worse-off neighbor rather than their best-off
neighbor, and implementing social distancing measures accord-
ingly. This finding provides further support for related work show-
ing that coordination of responses can stop outbreaks when
discordant responses do not (Kortessis et al., 2020). The effects of
awareness-driven social distancing and disease preparedness of
connected communities during an epidemic outbreak should be
further assessed using epidemiological models that account for
important biological features of the disease. For instance, experi-
ments on temporal viral shedding of COVID-19 estimate nearly half
of the secondary cases happen by being in contact with individuals
in pre-symptomatic stage (He et al., 2020)—see (Moghadas et al.,
2020; Park et al., 2020) for other analysis of the impact of asymp-
tomatic spreading. Here, we do not make a distinction between
symptomatic and asymptomatic infected individuals; further
extensions could incorporate such differences, e.g., (Li et al,
2020; Park et al., 2020). In addition, the current model does not
account for the mobility of recovered individuals and their impact
on reducing transmission, given disease-specific modification of
behavior (Weitz et al., 2020). Such holistic approaches to modeling
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that include mechanistic social distancing terms in complex epi-
demiological models can provide an essential perspective on effec-
tive control of the pandemic (Flaxman et al., 2020). This paper
takes a step in this direction by providing analytical and numerical
results on the importance of awareness-driven behavior and pre-
paredness, and mobility.

Materials

The code is available at https://github.com/ceyhuneksin/react-
ing_outbreaks_neighboring_localities.
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Appendix A. A lower bound on the outbreak size at the origin

We derive a closed form solution for the outbreak size at the
origin for the SEIR model in (1)-(4) when mobility is not included
(45 = 0). We modify the social distancing model at the origin
(Locality 1) by

B = Bo(1 = (Ex + 11 + R0))™ = foS}!

where we assumed N; = 1 to simplify notation. The social distanc-
ing model above assumes that individuals distance with respect to
the cumulative number of cases including the exposed individuals
which were not included in (5). We note that this assumption is
for analysis purposes only and allows us to compute a lower bound
on the outbreak size for the original model in (5).

We define the following quantity to be the weighted sum of
exposed and infected individuals

(A1)

Y(t) := E(¢) + 1(¢). (A.2)
The force of infection is given by

M) = fol. (A3)
Given the force of infection and the reproduction number

Ry = %0 we can show that

Y =0 (5“1“ - R%) (A4)

Then we have the constant of motion of the SEIR model ((1)-
(4)) with the distancing model (A.1) as

Lm:y(0)+5(o)+im

Y(t) + S(t) +'R1 o R o

(A5)
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for any t. In identifying the above constant of motion, we divide
dY/dt by dS/dt in (1), simplify terms, and integrate the resultant
relation from time O to t. These steps are similar to the steps used
to establish speed-outbreak size relations for standard SEIR models
without social distancing, e.g., see (Ma and Earn, 2006; Feng, 2007).
Now  letting t— oo and using the fact that
S(0) =1,Y(0) = 0,Y(c0) = 0, we obtain the speed of spread versus
final size relation in (6) for o; > 0.

The social distancing function in (A.1) includes exposed individ-
uals. That is, we have 3, (t) < g, (t) for all t where g, (t) is as defined
in (5). Thus the final size R(co) in (7) is a lower bound on the out-
break size at the origin.

Appendix B. An upper bound for the outbreak size at the
importing locality

Figs. ST and S2 show the lower bound on S(cc) obtained by solv-
ing (10). Top and bottom figures illustrate the change in the lower
bound as a function of the strength of response at the origin. In
accordance with the SEIR model (1)-(5), a strong response at the
origin leads to a larger outbreak at Locality 2—compare diamond
points in top and bottom panels in Figs. S1 and S2. Similarly, the

lower bound values S, (cc) are lower in the bottom figures. Indeed,

Weak response at the origin («a; = 1)
0.27

0.1

-0.5 : : :

027

Fig. S1. Lower bound values for S(cc). We assume low adopted awareness
Wy =1/2. We let Ry =2.5 and 2 = 0.0001%. (Top) Weak and (Bottom) strong
response at the origin. Lines correspond to the left hand side of (10). Circle dots
show the solution to (10), i.e., intersection of lines with zero. Diamond dots are S(cc)
values obtained by simulating the SEIR model in (1)-(4) with ; in (5).
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L] o o o
nmnn

0.8 ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1
5(0)

Strong response at the origin (a; = 3)

027

-0.4 : : :
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Fig. S2. Lower bound values for S(cc). We assume high adopted awareness
w3y =3/4. We let R; =2.5 and 4= 0.0001%. (Top) Weak and (Bottom) strong
response at the origin. Lines correspond to the left hand side of (10). Circle dots
show the solution to (10), i.e., intersection of lines with zero. Diamond dots are S(cc)
values obtained by simulating the SEIR model in (1)-(4) with g; in (5).

in both figures a weak response at the origin compounded by a
strong response at Locality 2 guarantee that the disease does not
spread in the Locality 2—see blue circles and diamonds in top
figures.

The adopted awareness constant (w»;) is smaller in Fig. S1 than
in Fig. S2. We observe that the lower bound for S(co) is tighter
when ,; is smaller. This is expected since as w,, decreases the
importance given to prevalence at Locality 2 (I; + Ry) in (8). Thus
the difference between the right hand sides of social distancing
approximations in (8) and (9) decreases.

Appendix C. Alternative mobility dynamics

Awareness-driven mobility dynamics: We consider a model
where the flows between areas increase or decrease proportional
to the ratio of current number of infected between localities, i.e.,

X K
2(t) = 25 (144)", (C1)

where J; and k are positive constants. x determines the strength of
mobility change as a function of the disease severity ratio. In the
above model, the mobility flow from i to j increases as the ratio
between the current outbreak size at locality i and locality j
increases.




C. Eksin, M. Ndeffo-Mbah and ].S. Weitz

1.0005 11
— Locality 1
— Locality 2
= — Awareness-driven mobility
B 11.05 §
L o
B 2
=
A U T 18
0.9995 . w ‘ l0.95
0 100 200 300 400
Time

Journal of Theoretical Biology 520 (2021) 110632

-

R
Il

Il
wc o

© o o
ES o ©
1
1

Outbreak Size at Locality 2
o
[N}

0 0.2 0.4 0.6 0.8 1
Adopted awareness at Locality 2 (wa;)

Fig. S3. (Left) Population size and mobility flow changes over time. Left y-axis shows the population sizes of localities. Right y-axis shows relative mobility flow from locality
1 to locality 2 over time. (Right) Outbreak size at Locality 2. The flow i1»(t) is as given in (C.1) with k¥ =5. The rest of the parameters of the model (1)-(4) are

Bo=5/8,u=1/3,6=1/4,and A, = 0.001%,N; =N, = 1,01 = o, = 1 and w,; = 0.5.

Fig. S3 shows how the ratio in (C.1) changes over time, indicat-
ing an increased flow at first from Locality 1 to Locality 2, and then
an increased flow from Locality 2 to Locality 1 later. The difference
in peak times of localities reduces as x increases. For instance, if
K = 5, the reduction in the difference between peak times of local-
ities ranges from 2% to 8% as adopted awareness constant wjy;
increases from 0 to 1. This reduction in the difference between
peak times do not lead to a meaningful change in the final outbreak
sizes—see Fig. S3Right).

Population size dependent mobility dynamics: The modified
model is as follows,

¢ . N Si

Si=—Pii+ X aSisiE—s5ig X A (c2)
) JeN - JeN;

Ei= Bi3i— HE+ 2 iﬁEjg,jT’Ej*ﬁ > J4Ei (€.3)
. JeN; jeN;

I = uE; — ol; (C.4)
R = ol;. (C.5)

We note that the population sizes are changing over time when
N; # N, even if 4; = 4;. We refer to the population size at locality i
at time t using N;(t).

Given this modified model, we consider different population
sizes for the origin (N;) with the ratio of the initial population sizes
(N1/N3) ranging from 0.1 to 100 in Fig. S4. When the ratio (N;/N3)
is smaller than 1, the model above yields a positive net flow from
locality 2 to locality 1. When the ratio is larger than 1, the model
above yields a positive net flow from locality 1 to locality 2.
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Fig. S4. Outbreak size at locality 2 as a function of the population size ratio.
Population size ratio is given by the ratio of initial population sizes between
localities, i.e., Ny /N>. The epidemic and mobility dynamics are given by (1)-(4) and
Eq. (5) in the revised manuscript. Parameters: B, =5/8,u=1/3,0=1/4,)1, =
J21=10"7,and oy = 0, = 1.
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Fig. S5. Benefit of adopted awareness versus the change in peak times as the
infection rate changes. We let g, € [0.5,0.75]. The peak time difference is the
difference between the time Locality 2 peaks and the time Locality 1 peaks. Let
F(m71,AB) denote the final outbreak size at Locality 2 with respect to wy;
and Ap. The benefit of awareness is defined as F,(0,Ap) — F2(wz1,AB) where
AB € [-0.125,0.125]. Parameters of the dynamics (1)-(5): u=1/3,6 =1/4,N; =
Ny =1,00 =0 =1, and Jy3 = Ay; = 107,

Appendix D. Sensitivity of benefit of awareness to variation in
the infection rate

We consider the sensitivity of benefit of awareness with respect
to variability in the inherent infection rate of the disease (,). The
infection rate affects the peak time and outbreak size at both local-
ities which makes the direction of its effect on the benefit of
awareness non-trivial. In particular, if infection rate B, increases,
the difference in peak times of two localities decreases, e.g., com-
pare peak time difference values at g, = 0.5 and f, = 0.75 on the
purple line in Fig. S5. This creates less time for Locality 2 to pre-
pare. At the same time, when the infection rate g is high, the out-
break size at the origin increases which leads to an increase in
awareness at the Locality 2. We find that the latter effect slightly
dominates the former effect yielding a minor increase in the bene-
fit of awareness as the infection parameter f, increases—see
Fig. S5. Moreover, the benefit of awareness is larger at larger values
of the adopted awareness constant regardless of the mobility and
infection rate values—compare the y-axis values of different col-
ored lines in Fig. S5.
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