
Taproot: Resilient Diversity Routing
with Bounded Latency

Eman Ramadan, Hesham Mekky, Cheng Jin, Braulio Dumba, Zhi-Li Zhang
{eman,hesham,cheng,braulio,zhzhang}@cs.umn.edu

Department of Computer Science & Engineering, University of Minnesota – Twin Cities, USA

ABSTRACT
As we increasingly depend on networked services, ensuring re-
siliency of networks against network failures and providing bounded
latency to applications become imperative. Adding ample redun-
dancy in the network substrate alone is not su�cient; resilient rout-
ing mechanisms that can e�ectively take advantage of such topo-
logical diversity also play a critical role. In this paper, we present
Taproot, a resilient diversity routing algorithm that ensures bounded
latency for packet delivery under failures by leveraging a preorder
routing structure with precomputed routing rules. Leveraging the
centralized control plane and programmable match-action rules in
the data plane, we describe how Taproot can be realized in SDN net-
works. We implement Taproot in OVS and conduct extensive simu-
lations and experiments to demonstrate its superior performance
over existing solutions. Our results show that by tuning the latency
allowance upon failure, Taproot reduces/eliminates the number of
disconnected src-dst pairs even under 10 link failures. Finally, as
a use case, we illustrate the impact of control channel failures on
SDN data plane/application performance, and employ Taproot to
provide a “hardened” SDN control network with bounded latency
against failures. Our results show that Taproot immediately detects
the failure and re-routes the control messages to a di�erent path
avoiding failed links/nodes. Hence, the control channel is main-
tained without interruption, or involvement from the controller,
and the throughput was not a�ected.

CCS CONCEPTS
• Networks ! Routing protocols; Network protocol design;
Data path algorithms; In-network processing.

KEYWORDS
Resilient Routing, Link Failures, Latency-Complete Preorder Graphs
(PrOG), Data Path Algorithm, SDN, OpenFlow

ACM Reference Format:
Eman Ramadan, Hesham Mekky, Cheng Jin, Braulio Dumba, Zhi-Li Zhang.
2021. Taproot: Resilient Diversity Routing with Bounded Latency. In The
ACM SIGCOMM Symposium on SDN Research (SOSR) (SOSR ’21), September
20–21, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3482898.3483364

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, September 20–21, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/09. . . $15.00
https://doi.org/10.1145/3482898.3483364

1 INTRODUCTION
With our growing dependence on various kinds of cloud-based
Internet services on a daily basis, network resiliency has become
increasingly critical. One way to enhance network resiliency is to
introduce redundancy, e.g., by adding more nodes and links for
a more diverse network topology. However, with more network
components being added, the probability of network failures also
grows with the number of nodes and links. It is reported in [14]
that multiple failures occur on a daily basis in many of today’s large
data center networks, whereas it has been long known that link
failures occur frequently in carrier networks [16, 26, 33]. With the
“softwarization” and virtualization of networks and introduction
of software switches and virtualized network functions, the proba-
bility of network element failures would likely rise further, due to
server overloads or software bugs.

Besides network resiliency, latency has become another key
requirement for many (interactive) Internet services such as e-
commerce, video streaming, video conferencing, cloud gaming
which have gained rapid popularity. The importance of latency
will further grow with the rise of Internet-of-Thing (IoT) applica-
tions and cyber-physical systems.

As epitomized by Google’s design philosophy that “failures are
the norm” [10], it is imperative that networks be designed with
built-in resiliency. As alluded to earlier, enhancing redundancy in
the network fabric, e.g., by adding more switches and links, is not
su�cient. Routing is central to any data network as it determines
how packets will be forwarded. Hence better routing schemes that
can e�ectively take advantage of topological diversity to overcome
network failures while also providing latency guarantees (apart
from meeting the network bandwidth requirements) are called for.
We will use the term resilient diversity routing to refer to a routing
scheme that can e�ectively take advantage of the network topolog-
ical diversity to proactively prepare for failures, and dynamically
route around failed links/nodes without relying on converged route
recomputation; and such a resilient diversity routing is said to have
bounded latency if it can further guarantee packet delivery from its
source to its destination within a desired latency bound.

Classical distance vector and link state routing protocols such
as RIP, OSPF and IS-IS are reactive in that upon detecting network
failures, they resort to and rely on route recomputation to identify
a new path to forward packets. The route recomputation can take
100 milliseconds (ms) or longer to converge [8, 12, 16, 26], with
no guarantees on routing latency. MPLS/IP fast rerouting schemes
(e.g., [19, 28, 31, 34]) often proactively provision a �xed number of
static backup routes to prepare for potential link failures. Unfor-
tunately, these schemes often can only protect against one or two
link/node failures and cannot fully exploit the rich path diversity

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

in the underlying network to ensure resiliency. While more sophis-
ticated routing mechanisms that further exploit path diversity, e.g.,
based on acyclic directed graphs (or DAGs), have been proposed in
the literature, none can ensure network (routing) resiliency under
multiple link/node failures while also providing bounded latency
(see §2 for further discussion).

With a logically centralized control and a programmable data
plane, SDN enables more �exible and sophisticated mechanisms
(e.g., �ow-based, non-shortest path routing) for �ne-grained route
control and tra�c engineering. However, SDN also introduces new
challenges in terms of resilient routing. Failures in the SDN data
plane can potentially cause greater damage, due to lack of auton-
omy in SDN switches for adaptive route recomputation on their
own [20, 23]. This problem is further exacerbated when the failures
a�ect the SDN control network, through which the SDN controller
communicates with SDN switches. For example, currently Open-
Flow switches are often connected to an SDN controller via either
an “in-band” channel using the same data plane network fabric,
or an “out-of-band” channel with a dedicated (physical) control
network. In either case, resilient diversity routing (ideally with
bounded latency) is needed to “harden” the control network to
ensure reliable communications between switches and SDN con-
troller(s) for SDN control operations. Slow recoveries from network
failures are particularly problematic for SDNs, where loss of con-
nectivity between the SDN controller and data plane switches (and
among multiple SDN controller instances) can create cascading
failures, bringing down the entire network.

As eloquently argued in [23], moving the responsibility of en-
suring connectivity to the data plane by endowing switches with
local rerouting capabilities is advantageous over (reactive) routing
schemes that rely on the control plane – which operates at a much
slower time scale – for route recomputation. Thus, the DDC scheme
is proposed in [23] which dynamically reconstructs directed acyclic
graphs (DAGs) under failures, using link reversal operations [13].
Unfortunately, DDC may incurs $ (=2) link reversal operations in
the worst case before the forwarding state converges, where = is
the number of nodes in a network. For large =, this convergence
time can be signi�cant.

In this paper, we are therefore interested in tackling the following
fundamental problem: Considering a �xed source and destination
node pair (B,3) and a set of (intermediate) nodes and links which
form a subgraph ⌧B!3 of the underlying network topology ⌧ . For
example, the links and nodes in such a subgraph⌧B!3 are chosen
so that they meet the minimum (link) bandwidth requirement and
that the end-to-end latency along any path (with no more than a
certain hop count) from B to 3 falls within a desired latency bound.
We pose the following question: Does there exist a routing structure,
R, on ⌧B!3 – namely, a set of precon�gured/precomputed routing
rules (e.g., in the forms of SDN match-action rules) – that can fully
take advantage of the path diversity in the given subgraph ⌧B!3 ,
and ensure connectivity between B and 3 under arbitrary failures as
long as the network is not partitioned?

In this paper, we answer this question a�rmatively. Going a
step further, we demonstrate that it is possible to achieve a stronger
objective that we set out to attain: we say that a routing structure
(or a routing algorithm), R, achieves resilient diversity routing with
bounded latency if the following holds: Under any arbitrary failure

� that does not partition a network, if there exists a path from
a source B to a destination 3 in ⌧B!3 that meets a given latency
bound g , then there must exists a (precomputed) route produced by
R (or equivalently, forwarding state in the form of match-action
rules pre-installed by R at the switches) that is not a�ected by the
failure �. In other words, switches can dynamically adapt to failure
and select the appropriately (pre-installed) rules to forward packets
from B to 3 that meet the latency bound after the failure without
resorting to route recomputation (either by the SDN controller or the
switches themselves). This routing structure is based on the notion
of routing via preorder �rst proposed in [32]. Here we are the �rst to
establish why a lesser routing structure, e.g., a collection of (�xed)
paths or a direct acyclic graph (DAG) with$ (=:) size, is in general
not su�cient to attain the desired full resilient diversity routing
property. We also develop a complete theory (with performance
analysis) for resilient diversity routing with bounded latency.

In particular, we present Taproot, a resilient diversity routing al-
gorithmwith bounded latency, based on the novel notion of latency-
complete preorder graphs (PrOGs). Given a network represented as a
graph, we show how latency-complete PrOGs can be constructed in
$ (=3) for all source-destination pairs, and establish the correctness
of the construction algorithms. We demonstrate how Taproot can
be realized in SDN, where pre-computed latency-complete PrOGs
are pre-installed in SDN switches as a set of match-action rules.
We also detail the SDN data operations in terms of the forwarding
state maintained by each switch, the failure (and recovery) han-
dling mechanisms via the activation and deactivation processes,
the (local) information exchange process by neighboring switches
to update the forwarding state in response to changes in the net-
work, and packet forwarding mechanisms where switches select
eligible outgoing links for packet forwarding based on the latency
information carried in packet headers, and update the latency infor-
mation as packets traverse them. We also use a simple example to
illustrate how the “count-to-in�nity” problem su�ered by a purely
distributed routing algorithm such as Bellman-Ford is completely
eliminated in Taproot, which also relies on information exchange
among neighboring nodes for local forwarding state updates. This
showcases the power of joint centralized (static) route computation
and distributed (dynamic) state adaptation and selection enabled
by the SDN paradigm (endowed with local state update capabilities),
which otherwise cannot be achieved via a purely centralized or a
purely distributed routing paradigm. We remark that under Taproot,
packets may dynamically adapt and traverse di�erent paths in re-
sponse to the changing network states; however, as all these paths
are part of a pre-computed/installed latency-complete PrOG, the
SDN control plane still retains the full visibility to the data plane.

We have implemented Taproot using the Open vSwitch (OVS)
platform (with slight modi�cations), and conducted extensive ex-
periments to evaluate its correctness and performance. Through
simulation results, we illustrate that Taproot is capable to optimally
exploit the inherent topological diversity, with superior perfor-
mance over existing fast rerouting schemes based on pre-con�gured
(static) backup paths. We also compare Taproot with DDC [23] via
experiments, and demonstrate that Taproot can adapt to arbitrary
failures rapidly, with minimal performance degradation, whereas
DDC su�ers noticeable delaywith considerable performance impact.

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

v4 v8 v12

v2

s=v1
v5

v6
v3 v7

d=v2L+1

v10

…

v4L-2

v4L
(a)

v4 v8 v12

v2

s=v1
v5

v6
v3 v7

d=v2L+1

v10

…

v4L-2

v4L
(b)

v4 v8 v12

v2

s=v1
v5

v6
v3 v7

d=v2L+1

v10

…

v4L-2

v4L
(c)

Figure 1: Toy Example (a) network topology; (b) a DAG is not optimal resilient, where there exist failure scenarios (e.g., failures of both (E1, E2) and (E4, E3))
which render 3 not reachable from B using the DAG; (c) a preorder graph containing maximal diversity.

Finally, we study the e�ects of the SDN control network failures on
both the data plane and application performance in a testbed setting
an SDN data plane and control network emulation. This use case
illustrates the e�cacy of Taproot in “hardening” the network fabric
to be resilient against failures, while existing mechanisms based on
“native” layer-2 or layer-3 routing mechanisms take longer time to
converge a�ecting throughput.

2 RELATEDWORK
Most existing (resilient) routing schemes such as ECMP or other

forms of multi-path routing [24, 25, 37], IP Fast Rerouting (see,
e.g., [12, 19, 22, 28, 29, 31, 34, 38] and the references therein), or
MPLS-based link or path protection routing (e.g., [6, 31] and the
references therein) are path-based. In the following, we use a simple
example to illustrate that apart from enumerating all possible paths,
path-based routing is not optimally resilient.

Consider the simple topology shown in Fig. 1a which has a total
of = = 3! + 1 nodes. We see that there are in fact $ (2!) paths from
B = E1 to 3 = E2!+1 of length 2! (and paths of length 2! + 1, and so
forth.) It is not too hard to see that using any two pre-speci�ed paths
for routing (say, the upper path %1 := B, E2, E3, E6, . . . ,3 as a primary
path and the lower path %2 := B, E4, E3, E8, . . . ,3 as a backup path) is
not resilient against arbitrary failures which do not partition the
network. In fact, apart from pre-installing all paths (of length 2! and
2! + 1), using any (pre-speci�ed) paths is not optimally resilient
in that it fully takes advantage of the available topological diversity:
it is possible to pick one edge from each path and fail them (while
not partitioning the network) which would render all paths invalid.
This problem comes from the fundamental limitations of paths:
paths are both rigid (as a sequence of links) and fragile (failing any
link on the path renders the whole path invalid). Unfortunately,
enumerating and installing all paths are generally infeasible, as
their number may be in the order of$ (=!) for an =-node (relatively
dense) graph.

Would pre-specifying a (static) DAG su�ce? In Fig. 1b we provide
an example of a DAG (with a directed vertical edge E2 # E4) and a

two-link failure which renders this DAG invalid. A failure of this
type would also render a DAG with any : directed vertical edges
invalid. To be optimally resilient against arbitrary failures by fully
taking advantage of the available topological diversity, we need a
collection of $ (2!) DAGs1. Short of pre-installing all (static) paths
or DAGs, one has to dynamically reconstruct either a new path2 or a
new DAG in order to be resilient against arbitrary failures. For the
simple topology shown in Fig. 1a, it is easy to see how such a new
path or DAG may be constructed quickly. For a general topology,
reconstructing a new feasible path or DAG without knowledge of
the global topology may not be trivial.

In [13, 23], dynamic link reversal is used to reconstruct a new
feasible DAG; unfortunately this may take up to $ (=2) steps. The
routing scheme proposed in [7] dynamically“reconstructs” a path
(or rather a walk) by utilizing “match-action” rules in SDN switches
and a tag (“dynamic packet state”) carried in the packet header
to implement a graph search algorithm. However, packets may
take up to $ (=) steps in the worst case to reach the destination,
as they “walk around” (e.g., via depth �rst search) the network to
search for an available path. The paths traversed by packets are not
guaranteed to be within a given latency bound either.

It is worth noting here that our notion of resilient diversity rout-
ing is closely related to the notion of ideal forwarding connectivity
de�ned in [11] with a slight subtle di�erence (and a stronger condi-
tion): our notion restricts to the precomputed– thus static – routes (or
equivalently, the forwarding states or rules) produced by a routing
algorithm R before failures, where the ideal forwarding connectiv-
ity allows for dynamic forwarding choices made “on-the-�y” after
the failure. Hence those routing schemes [7, 21, 23, 27] which dy-
namically reconstruct forwarding states or routes are considered
to achieve ideal forwarding connectivity, but they do not attain the
resilient diversity routing property.
1Each DAG contains the ! vertical edges (E4!�2, E4!) oriented either upward or
downward, ; = 1, . . . ,!; there are a total of 2! such DAGs. Given an arbitrary failure
�, if there exists a path from B to 3 , then it is contained in one of these DAGs.
2This is the approach taken by [21, 27] where a new path is computed “on the �y” based
on the failed link information carried in the packets. This approach avoids creating
transient forwarding loops, but still incurs signi�cant delay and overhead due to the
dynamic shortest path recomputation.

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

3 BACKGROUND AND NETWORK MODEL
3.1 Topological Diversity, Resilient Routing

and Bounded Latency
To formalize the fundamental questionwe posed in the introduction,
we �rst introduce some basic notations. We represent a network
topology as a graph ⌧ = (+ , ⇢). ⌧ is assumed to be a connected
graph. In addition, for each link ; = (8, 9) 2 ⇢, we use _(;) = _(8, 9)
to denote the latency of link ; . The matrix ⇤ = [_(8, 9)] represents
the latency matrix3, where _(8, 9) = 0 if (8, 9) 8 ⇢. For any source
and destination pair, B and 3 , let %B!3 := E1 (= B), E2, . . . , E! (= 3)
be a path from B to 3 , where (E8 , E8+1) 2 ⇢, 8 = 1, . . . , ! � 1. (We will
drop the subscript B!3 when the context is clear.) The latency of
path % is then de�ned as _(%) = Õ!�1

8=1 _(8, 8 + 1).
Given a source-destination pair (B,3) and a subgraph⌧B!3 con-

taining a set of intermediate nodes and links from B to 3 , a routing
structure or algorithm R outputs a (directed) subgraph RB!3 , con-
taining (directed) paths from B to 3 in⌧B!3 , thus how packets from
B are forwarded to 3 along the links in ⌧B!3 .

Now consider a network failure � which brings down a subset
of links in ⇢, denoted by ⇢�, and knocks o� a subset of nodes in + ,
denoted by +�4. The resulting graph that survives � is ⌧̃ = (+̃ , ⇢̃),
where +̃ := + \+� and ⇢̃ := ⇢ \ ⇢�. We say B and 3 are partitioned
if no paths from B to 3 exist in ⌧̃ (i.e., the failure � partitions ⌧̃ into
two ormore connected components.) However, if B is not partitioned
from 3 , but all paths produced by the routing algorithm R before the
failure � are no longer valid after the failure (i.e., no path in RB!3
is contained in ⌧̃), we say R is not resilient against the failure �.
Hence, in order to restore connectivity between B and 3 , R must
resort to route recomputation after �. Furthermore, given a latency
requirement g , we say a path %B!3 is latency compliant (w.r.t. g) if
_(%)  g . In the following we de�ne resilient diversity routing with
bounded latency:

Resilient Diversity Routing with Bounded Latency. Given
a source-destination pair (B,3) and a subgraph⌧B!3 , we say a rout-
ing structure (algorithm) R achieves resilient diversity routing with
bounded latency (w.r.t.⌧B!3 and a set of latency bounds {gB!3 }), if
under any arbitrary failure �, there exists a latency-compliant path
in ⌧̃B!3 w.r.t. gB!3 (i.e., B can still reach 3 via a path % in ⌧̃B!3
such that _(%)  gB!3), there must also exist a (precomputed)
latency-compliant route from B to 3 (w.r.t. gB!3) in RB!3 that is not
a�ected by the failure �.

Given the above de�nitions, we see that a resilient diversity
routing structure with bounded latency is capable of fully taking
advantage of the topological diversity and redundancy provided by
the network while also ensuring bounded latency. Attaining such
property seems to be a tall order, given that it was not even clear
whether optimal resilient routing (without latency bound) could
even be achieved. Apart from resilient routing schemes designed

3We can easily also accommodate network bandwidth requirements into our formu-
lation. However, for clarity of presentation, we have ignored them – we may simply
assume that only links that meet the minimal link bandwidth are selected for routing,
and thus are eligible for candidate route precomputation.
4+� can be empty. In this case, only link failures occur. We consider link failures
because any node failure is equivalent to the failure of all its adjacent links.

for speci�c topologies (e.g., Fat-Tree or Leaf-Spine data center net-
works [4, 5, 15, 30, 35]) that have been “customer-designed” for
data center networks, so far mostly negative results are known, see,
e.g., [11] where it is shown that resilient routing based on interface-
speci�c-forwarding (ISF) proposed in [22, 28, 29] is not resilient
against arbitrary : link failures when : > 1.

3.2 Preorders & Latency-Complete PrOGs
Routing via preorder proposed in [32] is the �rst resilient routing
scheme that employs a new routing structure other than paths or
DAGs. In the previous section we have demonstrated for the �rst
time that DAGs are not su�cient. In the following we introduce
the novel notion of latency-complete preorder graph (PrOG) which
subsumes the g-complete PrOGs de�ned in [32]. As we will show
in §4, instead of a sequence of g-complete PrOGs, a single latency-
complete PrOG (with appropriately annotated latency information)
su�ces to attain resilient diversity routing with or without bounded
latency.

Any directed graph forces an order among its nodes, we will now
de�ne this order and label the nodes accordingly. Mathematically, a
preorder . on a node set* ⇢ + is a binary relation that is re�ective
and transitive. For any D, E 2 * , if E . D, we say E is a predecessor
of D, and D a successor of E ; also, E is a child of D, and D a parent of E ,
if E . D but D E (we denote this relation by E ✓ D), and ö F 2 *
such that E ✓ F ✓ D. If E . D and if D . E , they are siblings. The
corresponding (directed) graph to the preorder (* , .), where there
is a (uni-)directed edge E ! D if D is a parent of E , and a (bi-)directed
edge E $ D if D and E are siblings, is referred to as a preorder graph
or PrOG. (Note that if . is antisymmetric, it yields a partial order,
denoted by (* , �), and results in a DAG.) Given (✓ * , F 2 * is
called an upper bound of (, if 8 E 2 (, E . F , and it is a least upper
bound of (, if for any upper boundF 0 of (,F . F 0. The (greatest)
lower bounds of (can be similarly de�ned.

Given a network represented as a graph ⌧ = (+ , ⇢), we say a
preorder . de�ned on⌧ is a (routing) preorder from B to 3 – and the
induced preorder graph (an oriented subgraph of⌧) a routing PrOG
– if the following conditions hold: i) the preorder . is compatible
with ⌧ in that D is a parent or sibling of E if and only if (D, E) 2 ⇢;
ii) B is the unique greatest lower bound of * , and 3 is the unique
least upper bound of * ; and iii) for any D 2 * , B . D . 3 . Fig. 2b
shows an example of a routing preorder from B to 3 . Intuitively, the
conditions ii) and iii) above imply that there is a (directed) path
(i.e., a chain of uni-or bi-directed edges) from B to 3 and any node
D in the PrOG induced by . is on a (directed) path from B to 3 .
We will use ⌧B!3 as a (generic) notation to denote the induced
(routing) PrOG de�ned by a routing preorder from B to 3 , and drop
the adjective “routing” for conciseness. As bi-directed edges are
allowed, a PrOG is in general not a DAG. Fig. 1c shows a PrOG from
B = E1 to 3 = E2!+1 for the toy network example in Fig. 1a.

We now introduce the key notion of latency-complete PrOG from
B to 3 . We say a PrOG ⌧B!3 from B to 3 is latency-complete with
respect to any g > 0 if there exists a (simple) path % from B to 3
in ⌧ with latency _(%)  g , % is contained in ⌧B!3 (as a directed
path). For any D 2 ⌧B!3 and an outgoing link D ! E (for a bi-
directed edge D $ E , the outgoing direction D ! E is considered
an outgoing link of D), we augment it with a (minimum) latency

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

B

A E

C
H

I O

D F J

G

35

2
6

4 10 12

4 1

1
2

2

2
1

36

11

5

(a) Weighted Topology

B

A E

C
H

I O

D F J

G

15
20

18
911

16

12
6

8

3

4

4

3

3

5
22

12

1

1

(b) Latency-Complete PrOG

Figure 2: Example of Latency-Complete PrOG, src = �, dst =
$, with min latency of each node to $

state g3 (D ! E), where g3 (D ! E) := min%D!3 2⌧B!3 _(%), and
%D!3 denotes a path (segment) from D to 3 in ⌧B!3 . We see that
g3 (D ! E) represents the minimum latency that can be attained by
any path fromD to3 in⌧ via the outgoing linkD ! E . We refer to the
resulting PrOG augmented with the minimal latency states as the
augmented latency-complete PrOG; thereafter all PrOGs in the pa-
per will be assumed to be augmented latency-complete PrOGs. For
conciseness, we drop the adjective “augmented” (and sometimes,
“latency-complete”) unless emphasis is needed. The PrOG in Fig. 1c
is a latency-complete PrOG from B = E1 to 3 = E2!+1 for the toy net-
work example in Fig. 1a. For the network topology in Fig. 2a (where
numbers above the edges are link latency), an augmented latency-
complete PrOG from B = � to 3 = $ is shown in Fig. 2b, where
the number above an outgoing link is the minimum latency state
g3 (D ! E). The following theorem regarding the resiliency and
diversity of latency-complete PrOGs holds trivially by its de�nition.

Theorem1:ResilientDiversity of Latency-Complete PrOG.
Given any arbitrary failure � that does not partition B and 3 , for
any g > 0, if there exists a path %̃ from B to 3 in the surviving graph
⌧̃ such that _(%̃)  g , then %̃ 2 ⌧B!3 . Hence, if a (precomputed)
latency-complete PrOG⌧B!3 is employed for routing from B to 3 ,
it attains resilient diversity routing with bounded latency.

4 TAPROOT: RESILIENT DIVERSITY
ROUTINGWITH BOUNDED LATENCY

In this section, we present Taproot – a resilient diversity routing
with bounded latency. We �rst provide an overview of Taproot. We
then describe the control plane (i.e., PrOG construction) operations
– in particular, algorithms for constructing (augmented) latency-
complete PrOGs– as well as the data plane operations such as the
state maintained by the switches, deactivation/activation processes,
and eligible outgoing link selection for packet forwarding.

4.1 Overview of Taproot
Based on the notion of latency-complete PrOG, Taproot leverages
the centralized control plane and programmable match-action rules
in the data plane to achieve resilient diversity routing with bounded
latency. Taproot operations are divided into control plane opera-
tions and data plane operations. Given a network topology ⌧ , the
centralized control plane �rst constructs an augmented latency-
complete PrOG,⌧B!3 , for each source and destination (B,3). We

present the construction algorithms in §4.2; the total construc-
tion time for all source-destination pairs is $ (=3). The augmented
latency-complete⌧B!3 is mapped to a set ofmatch-action rules that
are pre-installed in switches. In particular, the minimum latency
state associated with each outgoing link will be installed in the SDN
data plane, as part of the forwarding state that will be maintained
and updated by the switches as the network state changes, e.g., as
some links/nodes fail or recover. Switches also maintain the status
of outgoing links (e.g., up or down) and the rules associated with
them. As an outgoing link goes down or up, this may a�ect the min-
imum latency state. If this state changes, a switch will update it and
inform its upstream neighbors. As a switch becomes a “sink” (see
the de�nition below), it will invoke a deactivation process; likewise,
when a link comes back up, an activation process may be invoked.
Upon receiving a packet, a switch will select an eligible outgoing
link based on the latency information carried in the packet header
and the minimum latency state associated with the outgoing links.
The latency information carried in the packet header will be up-
dated as a packet traverses each switch. The data plane operations
are described in §5.

As an illustration, we will use an example to describe the basic
operations of Taproot. Consider the network shown in Fig. 2a where
the link weight indicates latency. For the source-destination pair,
B = � and 3 = $, the augmented latency-complete PrOG ⌧B!3
is shown in Fig. 2b, which is pre-installed in the data plane for
resilient routing of packets from B to 3 . Now consider a �ow 5 from
B = � to 3 = $ with a latency requirement g5 = 12 under normal
operations and a relaxed latency requirement g̃5 = 14(� g5 = 12)
under failures. These two latency-constraints are equivalent to
selecting a so-called g5 -complete sub-PrOG of ⌧B!3 as a primary
PrOG, and a g̃5 -complete sub-PrOG of ⌧B!3 as a backup PrOG
according to the de�nitions mentioned in [32], as shown in Fig. 3a
and Fig. 3b respectively. A g-complete PrOG is a PrOG that contains
all paths from B to 3 with latency  g . Hence, we can consider that
only the outgoing links in Fig. 3a are used for forwarding packets of
�ow 5 under normal operations (i.e., without failures) to meet the
latency bound g5 , but all links in Fig. 3b can be used for forwarding
packets of �ow 5 under failures. Both are subsets of the augmented
latency-complete PrOG ⌧B!3 shown in Fig. 2b.

Using Fig. 3b, suppose the link � ! $ goes down. This failure
renders � a sink node (i.e., it has no outgoing link). In this case,
node � simply deactivates the incoming links ⇢ ! � and � ! �
by notifying ⇢ and � not to forward packets from B = � to 3 = $
to it. However, this does not a�ect the reachability from � to $;
� simply uses the other outgoing link � ! � to forward packets
from � to$. On the other hand, the deactivation message from � to
⇢ causes node ⇢ to become a sink node also. This would trigger ⇢
to deactivate its incoming link, ⌫ ! ⇢, which in turn triggers ⌫ to
deactivate the link � ! ⌫. Any existing packets destined to 3 = $
that are bu�ered at these immediate nodes {I, E, B} will simply be
rerouted back to � if they have not exceeded their relaxed latency
deadline g̃5 , so that� can re-route them to$ using its current active
outgoing link � ! ⇡ . Otherwise, these existing packets will be
dropped. As a result of this failure and subsequent (local) actions
at the a�ected nodes, the original PrOG dynamically shrinks by
shedding the deactivated links, and the packets from B = � are now

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

routed solely using the remaining una�ected portion of the original
PrOG, namely a sub-PrOG on the node set {�,⇡, � ,⌧, � ,$}. If later
link � ! � also fails, in this case node � will activate the back-up
link (a bi-directed edge) and forward packets of �ow 5 along � ! ⌧ ,
so that the new path becomes � ! ⇡ ! � ! ⌧ ! � ! $ with a
total latency of 13, which still satis�es the relaxed latency deadline
upon failure g̃5 = 14. Link recovery events will be handled via an
activation process which restore the failed outgoing link with the
associated rules.

4.2 Control Plane Operations
A latency-complete PrOG can be constructed in a centralized way
in two phases: i) First, we perform a breadth-�rst search on the
network, starting with the destination 3 . For each node, we record
its and its neighbors’ minimum latency towards the destination; ii)
Second, we start with the source B and prune any branch whose
latency exceeds g . The centralized algorithm, helps prevent loops
and avoid the count-to-in�nity problem during failures, as will
be shown. Now we explain the algorithm in details, along with
complexity analysis and proof of correctness.
Phase I: Latency Calculation In this phase, we compute the min-
imum latency for each node to reach the destination 3 . Each vertex
D 2 + maintains !3D which represents its min latency to 3 . Initially,
!3D = _(D,3) if (D,3) 2 ⇢; otherwise, !3D = 1. Node D also main-
tains the min latency of its neighbors to reach the destination 3
without using node D as their nexthop represented by !3E,D̄ (similar
to split-horizon advertisements.) We use a min-priority queue to
store vertices sorted by their !3D values in an ascending order. When
vertex D is visited, for each neighbor E , D calculates its min latency
to the destination3 without using E as a nexthop and updates !3D,Ē of
this neighbor E . Upon the update of !3D,Ē , the value of !

3
E is updated

if a lower latency is found as following: !3E =<8={!3E , !3D,Ē+_(E,D)}.
If a lower value is found, this means that node E can reach desti-
nation 3 via node D as its nexthop. (That is why node E has to be
excluded while nodeD calculates !3D,Ē .) In this case, node E is pushed
to the queue if it was not queued before5. Using the topology shown
in Fig. 2a, the source node B = �, and the destination node 3 = $.
Let us consider node ⇢, its min latency to the destination !$⇢ = 5
(using � as a nexthop.) Now, when ⇢ calculates its min latency for
node � , !3

⇢,�̄
= 22 (using� as a nexthop) and its min latency through

� has to be excluded. Thus, in case � ! $ fails, � can forward its
tra�c to ⇢ as it has another route to the destination through node
� .
Analysis: For each destination 3 , each node in the network is vis-
ited once; to update the min latency of each neighbor, the algorithm
iterates over the other neighbors. This yields a time complexity of
$ (=2) per destination. The total complexity of this phase is $ (=3)
for all source-destination pairs. This phase is only done once. For
di�erent values of g , we just repeat phase II as below.

5In case of ties while choosing the next vertex (i.e., multiple nodes can have the same
min latency to the destination), the node with the largest number of neighbors is
visited �rst, so that it has a higher probability of having neighbors with min latency
values which it can use to calculate its min latency and report to its other neighbors.
If more than one vertex have the same number of neighbors, the node id is used as a
tiebreaker.

B

A E I O

D F J

911

12
6 3

3

5

1

1

(a) Primary PrOG g5 = 12

B

A E I O

D F J

G

911

12
6

8

3

4

4

3

3

5
1

1

(b) Backup PrOG ˜g5 = 14

Figure 3: Example of Primary and Backup PrOGs for Net-
work in Figure 2

Phase II: Specifying Eligible Nexthops After calculating the
minimum latency of each node and its neighbors, each node needs
to specify a set of eligible nexthops based on the value of g . First, we
calculate the minimum latency from each nodeD to the source node
B denoted by !BD , a neighbor E of D is considered an eligible nexthop
if it satis�es the following condition: !3E,D̄  g � !BD � _(D, E), which
represents the available latency that must be satis�ed at node E to
reach the destination within g . The set of eligible outgoing links
of node D includes its neighbors with the min latency satisfying
this condition. In this phase, we need to visit each vertex only once
to calculate its eligible outgoing links set. For example, if g = 12,
then ⇢ is not an eligible outgoing link for�, as its minimum latency
to reach the destination is 16. We use such algorithm to specify
the eligible nexthops, because we are not merely selecting those
nexthops of D which are on the shortest paths from D to 3 (i.e., have
lower latency than D), but also those neighbors of D which may
have higher latency but still can be used to forward packets within
the latency requirement g , which can be used in case of failures of
the shortest path links. The eligible outgoing links of each node
form the g-complete. That is why in Phase I, at each node D we not
only need to calculate !3D , but also !3D,Ē for each neighbor E . This
allows us to construct a PrOG that contains all possible (simple)
paths meeting the latency requirement g without creating cycles or
loops. In other words, the construction ensures a preorder among
the nodes involved. Correctness proofs can be found in §5.3.
Analysis: For each source B and latency requirement g , the complex-
ity of this phase is $ (=2). It takes $ (=2) to calculate the minimum
latency of each node to the source B using Dijkstra’s algorithm.
Then, each node is visited once to specify its eligible nexthops by
iterating once over its neighbors.

5 DATA PLANE: PACKET FORWARDING AND
FAILURE HANDLING

In the data plane, each switch needs to maintain forwarding states
to determine whether a link and a neighbor switch are eligible to
use or not given a speci�c g . Switches handle failure (and recovery)
via deactivation (and activation) processes, and select eligible outgo-
ing links for packet forwarding based on the latency information
carried in packet headers, and update the latency information as
packets traverse them. The (local) information is exchanged among
neighboring switches to update the forwarding state in response
to changes in the network.

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

5.1 Switch States and Packet Forwarding Under
Normal Operations

For each pair of source B and destination 3 , a switch 8 needs to
maintain the following information for each outgoing port 9 : a
destination-based latency !39 (the minimum latency from 9 to desti-
nation 3), and a state {Active, Inactive}. Each switch also maintains
its minimum latency to reach the destination !38 based on the in-
formation of its neighbors.

Under normal operations, packets are required to be forwarded
to the destination 3 within g5 latency. We use two extra header
�elds in packets to represent its latency requirements, a latency
T �eld (similar to the standard TTL �eld) and a latency_offset
T 0 �eld. At source B , the latency �eld is set to T = g5 and the
latency_offset �eld is set to T 0 = g̃5 �g5 . When a node 8 receives
a packet, an active outgoing port 9 is guaranteed to forward the
packet to the destination within g5 using simple path if it satis�es
the following two conditions: i) T � !39 + _(8, 9): node 9 ’s latency
to reach the destination !39 and the cost _(8, 9) to reach node 9 form
node 8 is less than the value of T , and ii) !39 < !38 : the latency !39
of node 9 to reach the destination 3 is smaller than the latency !38
of node 8 , in order to progress towards the destination at each step.
!39 stored at node 8 is the minimum latency to reach the destination
without using node 8 as 9 ’s nexthop as mentioned in §4.2. Any
time a packet is forwarded along a link 8 ! 9 , the latency �eld is
decremented by T = T � _(8, 9); the packet is dropped when this
value reaches zero. Next, we illustrate how failures are handled by
using the latency_offset �eld.

5.2 Handling Failures and Recoveries:
Deactivation and Activation Processes

Failures can destroy part of the PrOG andmay render some nodes to
become “dead ends” or sinks with no valid outgoing links. Resilient
routing with g̃5 -latency is achieved under arbitrary link/node fail-
ures by dynamically deactivating the directed edges that are a�ected
by failures and activating certain backup directed edges.

Handling link/node failures: When a link failure happens, the
packet is dropped or forwarded back to (any) predecessor (parent)
node, say G , if the current node, say ~, is a sink node. ~ also noti�es
G to no longer forward packets destined to the a�ected destination
to it. If G also has no more successor nodes, it further noti�es its
parent(s) not to use it to forward packets to the destination. This
process is repeated recursively till reaching a non-sink node or the
source node B . To achieve this, a 1-bit deactivation/activation tag
(link_state = {1 Active, 0 Inactive}) is added in the packet header
to exchange the state of the link between neighbors for a list of
a�ected source-destination pairs, which are included in the packet
header. Upon receiving such tag, a node updates the state of its
local port.

Using the PrOG in Fig. 2b as an example, suppose the link⇡ ! ⌧
fails. There still exists a path from ⇡ to $ (i.e., ⇡ ! �). ⇡ simply
routes all tra�c from B = � to 3 = $ to � . Now consider another
scenario when link � ! $ fails, this renders � to become a sink
(i.e., it has no outgoing link). In this case, � invokes the deactivation
process which prepares a deactivation tag for this source-destination

pair to notify its two predecessors ⇢ and � . Any packets destined
to 3 = $ that are bu�ered at � will be rerouted back to ⇢ or � , if
they have not exceeded their latency deadline. When ⇢ receives the
deactivation tag, it invokes the deactivation process which changes
the state of the outgoing port � to Inactive, and continues forwarding
packets using its current active outgoing ports (in this case � .)
Similarly, � will forward its tra�c to $ through � .

Handling link/node recovery: When a failed link/node recovers
from failure, an activation process is initiated. If a node is no longer
a sink after recovery, an activation tag is generated to notify its
predecessor nodes about the a�ected source-destination pairs. This
process is done recursively to re-activate the relevant portion of the
PrOG. We emphasize that a key advantage of Taproot is that we are
guaranteed to route �ows using paths satisfying their given latency.
When failed links/nodes are all recovered, Taproot will activate the
same PrOG that was originally constructed for resilient routing.
For example, when the link � ! $ recovers from failure, � will send
an activation tag to notify its predecessors ⇢ and � . When ⇢ and
� receive this activation tag, they reverse the actions taken during
deactivation.

Packet forwarding under failures and recovery:With link failures,
the latency associated with an outgoing port may change. The node
needs to recalculate its minimum latency to reach the destination
after failures, and inform its neighbors of its new minimum latency.
This process is done recursively to update the minimum latency of
each node to reach the destination after failure. The process stops
when the minimum latency of a node is not a�ected by the propa-
gated information from its neighbor nodes. During this process, the
latency_offset is added to the remaining latency in the packet
which is then re-routed immediately through the path that satis�es
the new latency constraints. If no such path exists, the packets will
be dropped. Once the network is recovered, the minimum latency
gets updated on the a�ected nodes, and the updates are propagated
to neighboring nodes as before. Eventually, each �ow will take the
path(s) satisfying its latency to reach the destination.

Analysis and Comparisons: In the worst case, for each link fail-
ure, the deactivation/activation processes take $ (=) steps, which
is the length of the longest simple path from B to 3 passing by ev-
ery node in the network to propagate the deactivation/activation.
Thus, they are guaranteed to terminate because it is limited by the
length of the longest simple path included in the PrOG. On the
contrary, link reversal techniques [23] can take $ (=2) in the worst
case for DAG recomputation. For techniques using graph search
algorithms [7], they can take more than $ (=) as the packet may be
sent to the same node multiple times after being sent to a certain
child node, to be forwarded to the next child. Both techniques do
not take into account latency constraints while trying to forward
packets to the destination. Furthermore, we only need to reroute
a small portion of packets forwarded to the deactivated portion
of the PrOG, if they have not exceeded their latency deadlines;
otherwise they will be dropped. New packets can be sent using
other paths embedded in the PrOG satisfying the relaxed latency
constraint. However, in [23], until the convergence process ends,
packets bounce around in the network and loops may be formed.
Also, in [7], packets may have multiple returns to sources, while
“walking around” searching for a path to the destination, according

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

B C

A

D B C

A

D

a) Network Topology b) PrOG for src = A, dst = D c) PrOG for src = B, dst = D d) PrOG for src = C, dst = D

B C

A

D C D

Figure 4: Count-To-In�nity

to the order speci�ed by the graph search algorithm. Moreover,
in Taproot multiple link failures can be handled simultaneously
following the same deactivation/activation procedure, as there is
no global exchange of information or routing table recalculation,
only the a�ected portions of the PrOG are deactivated/activated,
and local minimum latency recalculation and exchange may take
place. All the (eligible) routes are already pre-installed, and each
switch dynamically selects eligible routes for packet forwarding
locally and independently.

5.3 Proofs of Correctness
We formally establish the correctness of Taproot through a series
of theorems.
Theorem 2. Given a weighted graph ⌧ = (+ , ⇢), a �ow 5 from a
source node B to a destination node 3 , with a latency requirement g .
The constructed g-complete PrOG in Phase II contains all possible
paths between B and 3 satisfying the required latency.
Proof. For a path % := E1 (= B), E2, . . . , E (= 3) to be included in the
constructed PrOG, the latency of a path % must be no larger than
g (i.e., _(%) = Õ �1

8=1 _(E8 , E8+1)  g). To include this path, node E8
must add node E8+1 to its set of eligible nexthops. Let the minimum
latency to reach the source node B from node E8 be !BE8 , and the
minimum latency to reach the destination node 3 from node E8+1
without using node E8 as its nexthop be !3E8+1,Ē8 . If !

B
E8 + !3E8+1,Ē8 +

_(E8 , E8+1)  g , then !3E8+1,Ē8  g � !BE8 � _(E8 , E8+1), which is the
condition used in Phase II to check whether node E8+1 is an eligible
nexthop to node E8 . If this condition is satis�ed, this path is included
in the constructed PrOG.
Theorem 3. Packet forwarding using the g-complete PrOG guar-
antees packet delivery within g using simple paths.
Proof. Non-simple paths means a node is visited more than once,
which means the latency of the selected nexthop E is larger than
the minimum latency of the current node D which violates the for-
warding procedure explained above, so this nexthop is not eligible
to use.
Theorem 4. Upon a link failure, if there is still a path between the
source node B and the destination node 3 that satis�es the latency
constraint g̃5 (the relaxed latency in case of failures) in the original
graph⌧ , it will still be included after deactivating parts of the PrOG
leading to failures.
Proof. Since the constructed g-complete PrOG contains all possible
paths that satisfy the relaxed latency constraint g̃5 , then if there is
a path between B and 3 in the original graph ⌧ , it is still included
in the constructed g-complete PrOG. Upon link failure, only links
leading to a sink node are deactivated, which means these links

Match Action
src=A, dst=O, in_port = D Group: 1

src=A, dst=O, in_port = G Group: 1

src=A, dst=O, in_port = * - Invoke activation/deactivation
- Group: 1

Grou
p Id

Group
Type

Action Bucket State

1 fast
failover

watch_group: 2, Group: 2
watch_group: 3, Group: 3

output: in_port Invoke deactivation

Active
Active
Active

2 select Output: I
Output: J

Active
Active

3 select Output: G Active

Flow Table

Group Table

Figure 5: Match-Action Rules for Switch �

can’t be used to reach the destination, so they can’t be part of the
path that still connects B and 3 after the failure.

Lastly, we remark that while Taproot also relies on informa-
tion exchange among neighboring nodes for local forwarding state
updates, it does not su�er from the “count-to-in�nity” problem
plaguing a purely distributed routing algorithm such as Bellman-
Ford. We use the classic “textbook” example topology shown in
Fig. 4(a) to illustrate this point: In Bellman-Ford distant vector rout-
ing algorithm with poisonous reverse, if the link ⇠ � ⇡ goes down,
nodes �, ⌫ and ⇠ will get into a “count-to-in�nity” loop before
they realize that they all lose connectivity to ⇡ . Under Taproot,
the PrOGs used for packet forwarding from �, ⌫ and ⇠ to ⇡ are
depicted in Figs. 4(b)-(d) respectively. When the link ⇠ � ⇡ goes
down, ⇠ would immediately realize that it has lost connectivity to
⇡ ; furthermore, as the outgoing links � ! ⇠ and ⌫ ! ⇠ are deac-
tivated, both � and ⌫ also realize that they have lost connectivity
to ⇡ . This simple example illustrate the power of joint centralized
(static) route computation and distributed (dynamic) state adap-
tation and selection enabled by the SDN paradigm (endowed with
local state update capabilities) which otherwise can not be achieved
via a purely centralized or a purely distributed routing paradigm.

6 TAPROOT IMPLEMENTATION
We have implemented Taproot with two components: a controller
and a programmable data plane to support new features introduced
by Taproot. Our Taproot controller �rst computes the Latency-
Complete PrOG for each �ow with the relaxed latency requirement
g̃5 in case of failures, which already includes the paths satisfying g5
used for normal operations. Then, for each switch, it determines the

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

priority of each outgoing link based on itsmin latency to destination,
and translates these into a set of match-action rules to be installed
at the relevant switches. Fig. 5 shows how the routing preorder in
Fig. 3 is coded in match-action data plane rules for switch � .

For data plane operations, we extend Open vSwitch, which sup-
ports group table and group chaining, with some customized oper-
ations. When a packet is received, it is matched in the �ow table
based on its source, destination, and ingress port (in_port).
The corresponding action is to direct the packet to the group table
(Group 1). We use separate groups for the outgoing links satisfying
g5 {� , � } (Group 2), and the outgoing links satisfying g̃5 {⌧ } (Group
3). The group type of Group 1 is “fast failover” to give priority to
links satisfying g5 , as it executes the actions associated with the
�rst live bucket determined by the state of its corresponding port or
group. However, not all outgoing links are eligible for forwarding
a packet due to the latency constraints. Thus, two extra header
�elds are added to each packet (latency, latency_offset), and
we maintain at each switch the (per-destination) latency for its
outgoing ports. Upon link failures a�ecting both outgoing links
� ! � & � ! � , Group 2 becomes InActive, and � forwards its
tra�c to $ through ⌧ . When ⌧ also fails, Group 3 also becomes
InActive, and � becomes a sink node, so it invokes the deactivation
procedure described in the previous section. Each switch generates
an activation or deactivation tags that can be piggybacked in data
packets in response to link/node failure and recovery events, or
sent as separate packets if there are no data packets. If a switch
receives a packet that does not match the listed default incoming
ports, then it is received from an outgoing link and is either an
activation or a deactivation tag (indicated by the additional
header �eld link_state). The switch updates the corresponding
link state and latency accordingly, and still tries to forward the
packet if it has other active outgoing links (indicated by the last
rule in the Flow Table). When a failed link is up or an activation
message is received, its corresponding bucket becomes active again
and can be used.

7 EXPLORING TOPOLOGICAL DIVERSITY
In this section, we compare Taproot with existing path-based protec-
tion routing schemes and study how e�ective they are in leveraging
the topological diversity inherent in the network to maintain con-
nectivity between source (src) and destination (dst) nodes under
various failure scenarios.

7.1 Experimental Setup
For each src-dst pair in a given topology, we consider the following
path protection and link protection techniques: the primary path
(the shortest path (3) between this src-dst pair) is protected via i)
a backup path which is calculated as the next shortest path after
removing the primary path from the topology, or ii) a set of backup
links – constructed as following: for each link, we �nd an alternative
disjoint path to the nexthop after removing this link. In comparison,
we employ several Latency-Complete PrOGs with di�erent g ’s,
starting from g = 3 (the shortest path latency) to g = 3+1,3+2,3+3,
and so forth. We use 4 AS topologies from RocketFuel [36] with
varying sizes: AS1221 (83 nodes, 131 edges), to AS3257 (151 nodes,
288 edges) as examples.

����
�
���
���
���
���
���
��	
��

� � � � � 	
 � � ����
��
��
��
��
	

�
�

�	
��
��
��
�
��
��

����� �� ��������

������

����

�

���

���

���

���

���

� � � � � 	
 � � ����
��
��
��
��
	

�
�

�	
��
��
��
�
��
��

����� �� ��������

����	

������� ����
 �!"�# ����
 �!"�# $�%"�
��&' ()�
��&' ()�
��&' ()�

Figure 6: Percentage of Disconnected Pairs

7.2 Disconnection
We calculate the percentage of disconnected pairs (i.e., no path
between src and dst) among all src-dst pairs in the topology to mea-
sure how each technique utilizes the topological diversity. For each
routing scheme R, a src-dst pair is considered disconnected with
respect to R if the failed link(s) render all pre-computed (primary
or backup) paths/rules invalid, i.e., packets from the src can no
longer be routed to the dst even if a path still exists in the topology.
The src-dst pair is considered disconnected if the failed edges: i)
lie on the shortest path for primary path technique, ii) lie on both
the shortest path and its alternative disjoint backup path, or iii) lie
on any link of the shortest path and its backup disjoint path for
backup links technique. For PrOG, the failed edges are removed,
then we check if the src-dst pair is still connected. If the failed edge
is bidirectional, we remove both directed edges.

From Fig. 6, we see that Latency-Complete PrOGs outperform
existing path and link protection routing schemes under various
failure scenarios; it is capable of e�ectively leveraging the topologi-
cal diversity for resilient routing. We see that PrOGs with g = 3 + 2
are su�cient to reduce the number of disconnected src-dst pairs,
and with g = 3 + 3, they can nearly avoid any disconnection even
under 10 link failures. Moreover, not only Taproot utilizes the di-
versity in the network, but it also satis�es the latency constraints
without the need to enumerate all paths satisfying this latency.
Unlike the backup links technique which minimizes the number of
disconnected pairs, but without any performance guarantee. How-
ever, our proposed solution prioritizes at each node the outgoing
link with the smallest remaining cost to the destination, hence
the latency experienced will increase incrementally based on the
current state of failed link(s) and won’t be arbitrary as the case of
existing solutions.

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

� �
�� �
�� �
�� �
�� �
�� �
�� �
	� �

� �
�� �

�
� �
� �
� �
� �
�

�
��
��
�
��
	

��
�

�

�
�
�

��

����

������

� �

�� �

�� �

�� �

�� �

�� �

�� �

	� �

��
��
��
��
��

�
��
��
�
��
	

��
�

�

�
�
�

��

�
��

�����	

� �

�� �

�� �

�� �

�� �

��� �

��� �

�	� �	� �	
 �	� �	�

�
��
��
�
��
	

��
�

�

�
�
�

��

�
��

������

Figure 7: Flow Table Rules

�

���

���

���

���

���

���

�	� �	� �	� �	� �	�

�
��
��
�
��
	
��
�

�
��

�
�
�

��

��

������

�
��
���
���
���
���
���
���
���
���

��� ��� ��� ��� ���

�
��
��
�
��
	
��
�

�
��

�
�
�

��

	
��

�����

�
��
���
���
���
���
���
���
���
���
���

��� ��� ��� ��� ���

�
��
��
�
��
	
��
�

�
��

�
�
�

��

	
��

�����

Figure 8: Group Table Rules

7.3 Maximum Number of Link Failures
We now consider the maximum number of link failures that Taproot
can withstand before the network is partitioned. Using PrOGs with
di�erent values of g , we calculate this metric by subtracting the
length of the shortest path (i.e., src and dst are still connected) from
total number of edges in each PrOG which gives us the maximum
number of link failures without PrOG partitioning for each src-dst
pair. Bidirectional edges are only counted once. Fig. 9 shows the box
plot of the maximum number of link failures for each src-dst pair
in AS3967 and AS3257. We remark that using PrOG with g = 3 + 2,
Taproot can tolerate the failure of nearly 1/3 of the links in each
topology. Even with g = 3 (i.e., PrOG formed by the shortest paths
only), Taproot can be resilient against multiple link failures as long
as they do not partition the src and dst.

7.4 PrOG Overhead
The resiliency of Taproot becomes more robust with increasing
the value of g . This comes with the overhead of more rules to be
installed in the switches. Fig. 7 and Fig. 8 show the box plots of the
number of �ow table and group table rules for each switch w.r.t.
g values. Using g� = 3 as initial latency and g̃5 = 3 + 1,3 + 2, ..
in case of failures. Since at each switch the same outgoing links
can be shared by multiple src-dst pairs, we aggregated the group
table entries based on the unique sets of outgoing links. From these
plots, we see that as the topology size increases, the number of
rules increases. However, they are still below the limits speci�ed
in [1] (1M entries in wild card match �ow tables and 10K entries
for group table) in terms of TCAM entries. Part of the future work
is to investigate di�erent methods for e�ciently representing and
compacting the match-action �ow table rules and state information
in a way to minimize the space requirements.

�
��
��
��
��
���
���
���
���
���

� ��� ��� ��	 ��� ��

�
��
��
��
��
	�

�
��
�

��
��
��

��
�

��	���

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
��
��
	�

�
��
�

��
��
��

	
��

�����

Figure 9: Max no. of Link Failures

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

Figure 10: Google WAN topology

8 PERFORMANCE EVALUATION
In this section, we compare the performance of TaprootwithDDC [23]6
using Mininet [2]. Although DDC is also robust against : arbitrary
link/node failures as long as the network is not partitioned, it em-
ploys link reversals to reconstruct a newDAGwhen a node becomes
sink (i.e., no outgoing link to destination). Moreover, it provides
no latency guarantee either before or after failures. In contrast,
using Latency-Complete PrOGs, Taproot has no convergence delay.
Lastly, we consider a use case where we employ Taproot for the
SDN control network.

8.1 Experimental Setup
For evaluation, we use Google’sWAN topology [17] shown in Fig. 10
with a link capacity of 1 Gbps. A UDP tra�c generator is used to
send around 50 packets from ⌘1 (attached to B1) to ⌘2 (attached
to B12), we use g5 = 5, and g̃5 = 9. The eligible outgoing links for
each switch are prioritized according to the minimum latency to
destination. We introduce 6 link failure sequentially: we fail one
link �rst, then two, and so forth. After each link failure event, we
measure the packet latency (in terms of no. of hops) for both Taproot
and DDC, and convergence time and no. of link reversals for DDC.

8.2 Convergence Time and Latency
Table 1 shows the convergence time for the link reversal algorithm
(DCC) to converge after link failures, which increases with the
number of failures till reaching around 0.37 sec for 6 link failures
involving around 182 link reversals. On the other side, there is no
convergence in Taproot, since all paths satisfying the latency con-
straints are computed a priori and installed in the relevant switches.
This is also re�ected in the packet latency for each technique. In
link reversal, packets experience longer latency till the convergence
process is done, this is shown in Fig. 11. For example, in case of
four link failures, packet latency reached around 17 hops, which
is twice the length of the shortest path. In Taproot, the latency is
always less than g̃5 = 9, regardless of the number of link failures,
as the “surviving” rules result in packet forwarded along the next
available (shortest) path(s).

8.3 Use Case: SDN Control Network
To show how Taproot quickly reacts to network failures, we simu-
late a data center network which consists of OpenFlow switches
6We obtained the code from the authors.

Table 1: Link Reversal Convergence

Links No. Time (sec) Link Reversals
1 0.03 5
2 0.03 7
3 0.1739 36
4 0.2486 80
5 0.3268 148
6 0.3741 182

�

�

�

��

��

��

��

��

� �� ��� ��� ��� ��� ���

��
��
��
�

	
��
�

��� �� �
����
��
��� �� �
����
��
	��� �� �
����
��
	��� �� �
����
��

Figure 11: Latency

&RQWUROOHU

&RQWURO�1HWZRUN 'DWD�3ODQH

Figure 12: Real testbed setup for Taproot’s use case of SDN
control network.

and is controlled by a remote controller. A separate control net-
work connects the controller and the data center network (i.e., data
plane) to establish the “out-of-band” control channels. We set up
the controller, the control network, and the data plane on three
servers connected by a physical switch, as shown in Fig. 12. We
launch multiple Open vSwitch (OVS) instances to build a leaf-spine
data plane on the right server. Network namespaces are created as
virtual hosts attached to the leaf switches. We use iPerf to generate
�ows between virtual hosts. The data plane is connected to a remote
controller hosted on the left server through the control network
running on the middle server. Three OVS instances are launched
to form the control network, two of them attached to two physical
network interfaces to carry the OpenFlow messages between the
controller and the data plane. We demonstrate how fast Taproot
reacts to failures in the control network in comparison to Spanning
Tree Protocol (i.e., OVS instances are set in “standalone” (layer 2)
mode with STP enabled) or OSPF (i.e., OVS instances run OSPF for
layer-3 connectivity).

Consider one �ow is sent between a pair of hosts in the data
plane. The corresponding forwarding entries are periodically re-
freshed by the controller. After �ve seconds, a link in the control

SOSR ’21, September 20–21, 2021, Virtual Event, USA Eman Ramadan, Hesham Mekky, et al.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

control network link fails

Th
ro
ug

hp
ut
 (G

bp
s)

Time (s)

PrOG
OSPF
STP

Figure 13: A �ow’s throughput in face of one control net-
work link failure. Taproot outperforms STP and OSPF to re-
cover from the control network failure.

network fails. Taproot immediately detects the failure and re-routes
the control messages to a di�erent path. Hence, the control chan-
nel is maintained without interruption, or involvement from the
controller to change the routing rules. The data �ow’s throughput
is not a�ected as shown in Fig. 13. If OSPF or STP is running in
the control network instead, it takes a couple of seconds to tens of
seconds for the control network to recover. During the convergence,
the control channel between the controller and the data plane is
broken, and due to the long convergence of the control network,
the existing forwarding rules in the switches eventually expire and
no forwarding entries can be added/re-installed. As a result, the
throughput of the data �ow drops to zero until the control channels
get re-established and the forwarding rules re-installed.

9 DISCUSSION & FUTUREWORK
In this section, we elaborate on issues related to handling network
topology changes and Taproot deployment.
• Handling Topology Changes. Operators may add new nodes
to the network to increase its capacity. When a node - is added,
it will calculate the minimum latency state of its outgoing links
based on the information of its downstream neighbors and inform
its upstream neighbors, which in turn would need to re-calculate
their minimum latency state information and so on. This process
continues till we reach the source node or a node whose minimum
latency is not a�ected by this change. The other nodes in the net-
work won’t be a�ected. Hence, Taproot would run its control plane
algorithm in the background, �nd the di�erence between the new
Latency-Complete PrOG and the existing PrOG currently installed
in the switches, and then only update the tables of the a�ected
nodes. Similarly, the same procedure is followed if operators decide
to remove a problematic device or a faulty node. The overhead as a
result of this process depends on how far this added/removed node
is from the source node which speci�es how many upstream nodes
are a�ected and require a new state update.
• Installing OpenFlow Rules. The issue of specifying the order
of nodes to install OpenFlow rules is inherent in OpenFlow itself
(see [18] for more details), and is orthogonal to our proposed so-
lution. However, the same methods required to install OpenFlow
tables for nodes along a single path would still apply to our pro-
posed Taproot routing algorithm, but instead of having one node at

each hop count from the source/destination node, we would have
multiple nodes at the same level which can be handled in parallel
at the same time.
• Deployment Using Existing Hardware. As presented above,
Taproot requires some modi�cations to current OpenFlow speci�-
cations. It is however possible to implement Taproot approximately
in existing hardware OpenFlow switches supporting Group Ta-
bles. For example, we can install a local controller at each switch
to perform the local operations such as latency calculation and
exchange, activation and deactivation processes where the acti-
vation/deactivation tags can be implemented using special VLAN
tags/MPLS labels. Rules can be pre-installed in switches such that
the outgoing links are prioritized according to their minimum la-
tency to the destination. Hence, packets are always forwarded
using those available outgoing links with the minimum latency,
and they don’t need to carry latency and latency_offset �elds.
This addresses the problem of the need to change the packet header
and add bits to represent the latency and latency_offset val-
ues. However, this comes with the cost of packets may still be
forwarded to destinations even though they have exceeded their
latency requirements. For existing IP/MPLS networks, Taproot may
also be implemented (approximately) in the data plane using the
new Segment Routing (SR)7 forwarding paradigm [3, 9] to support
resilient routing. Exploring these possibilities will be topics for
future research.

10 CONCLUSION
We have presented Taproot, a resilient diversity routing algorithm
with bounded latency, based on the novel notion of Latency-Complete
PrOGs. Given a network represented as a graph, we showed how
Latency-Complete PrOGs can be constructed in$ (=3) for all source-
destination pairs, and established the correctness of the construc-
tion algorithms. We demonstrated how Taproot can be realized
in SDN, where pre-computed Latency-Complete PrOGs are pre-
installed in SDN switches as a set of match-action rules. We also
detailed the SDN data plane operations in terms of the forwarding
state maintained by each switch, the failure (and recovery) han-
dling mechanisms via the deactivation (and activation) processes,
the (local) information exchange process by neighboring switches
to update the forwarding state in response to changes in the net-
work, and packet forwarding mechanisms where switches select
eligible outgoing links for packet forwarding based on the latency
information carried in packet headers, and update the latency in-
formation as packets traverse them. We have implemented Taproot
in OVS and conducted extensive simulations and experiments to
demonstrate its superior performance over existing solutions. As
a use case, we showed that Taproot can be employed to provide a
“hardened” SDN control network against arbitrary failures.

ACKNOWLEDGMENTS
The research was supported in part by NSF under Grants CNS-
1617729, CNS-1814322, CNS-1831140, CNS-1836772, CNS-1901103,
CNS-2106771 and CCF-2123987.

7We note that just like SDN which is a new networking paradigm, SR introduces a new
source-routing-based forwarding paradigm using MPLS label stacks and node SIDs for
IP/MPLS networks. In itself, SR does not provide any resilient routing solutions.

Taproot: Resilient Diversity Routing with Bounded Latency SOSR ’21, September 20–21, 2021, Virtual Event, USA

REFERENCES
[1] 2021. INOVISWITCH. http://novi�ow.com/products/noviswitch/, Last Accessed:

2021-08-25.
[2] 2021. Mininet. http://mininet.org/. Last Accessed: 2021-08-25.
[3] 2021. Segment Routing Architecture - IETF Draft. https://www.segment-routing.

net/ietf , Last Accessed: 2021-08-25.
[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-

able, commodity data center network architecture. In ACM SIGCOMM Computer
Communication Review, Vol. 38. ACM, 63–74.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, et al. 2014. CONGA:
Distributed congestion-aware load balancing for datacenters. In SIGCOMM.

[6] Daniel O Awduche. 1999. MPLS and tra�c engineering in IP networks. IEEE
Communications Magazine 37, 12 (1999), 42–47.

[7] Michael Borokhovich, Liron Schi�, and Stefan Schmid. 2014. Provable data plane
connectivity with local fast failover: Introducing open�ow graph algorithms. In
HotSDN.

[8] C. Boutremans, G. Iannaccone, and C. Diot. 2002. Impact of link failures on VoIP
performance. In Proceedings of the 12th international workshop on Network and
operating systems support for digital audio and video. ACM New York, NY, USA,
63–71.

[9] Dennis Cai, Anna Wielosz, and Songbin Wei. 2014. Evolve carrier Ethernet
architecture with SDN and segment routing. In A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2014 IEEE 15th International Symposium on.
IEEE, 1–6.

[10] Je� Dean. 2009. Google: Designs, lessons and advice from building large dis-
tributed systems. Keynote Speech at LADIS’09 (2009).

[11] Joan Feigenbaum, Brighten Godfrey, et al. 2012. On the resilience of routing
tables. arXiv preprint (2012).

[12] Pierre François and Olivier Bonaventure. 2005. An evaluation of IP-based Fast
Reroute Techniques. In CoNEXT.

[13] Eli M Gafni and Dimitri P Bertsekas. 1981. Distributed algorithms for gener-
ating loop-free routes in networks with frequently changing topology. IEEE
Transactions on Communications (1981).

[14] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In
ACM SIGCOMM Computer Communication Review, Vol. 41. ACM, 350–361.

[15] Keqiang He, Eric Rozner, Kanak Agarwal, et al. 2015. Presto: Edge-based Load
Balancing for Fast Datacenter Networks. In SIGCOMM.

[16] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. 2002. Analysis
of link failures in an IP backbone. In Proc. of the 2nd ACM SIGCOMMWorkshop
on Internet measurment. ACM, 242.

[17] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software de�ned WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3–14.

[18] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. 2015. What You Need to Know
About SDN Flow Tables. In Passive and Active Measurement, Jelena Mirkovic and
Yong Liu (Eds.). Springer International Publishing, Cham, 347–359.

[19] Amund Kvalbein, Audun Fosselie Hansen, et al. 2006. Fast IP network recovery
using multiple routing con�gurations. In INFOCOM.

[20] Kin-Wah Kwong, Lixin Gao, Roch Guérin, and Zhi-Li Zhang. 2011. On the feasi-
bility and e�cacy of protection routing in IP networks. IEEE/ACM Transactions
on Networking (ToN) 19, 5 (2011), 1543–1556.

[21] Karthik Lakshminarayanan, Matthew Caesar, et al. 2007. Achieving convergence-
free routing using failure-carrying packets. ACM SIGCOMM CCR (2007).

[22] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. 2004. Proactive vs
Reactive Approaches to Failure Resilient Routing. In INFOCOM.

[23] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and
Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms.. In NSDI.
113–126.

[24] Mahesh K Marina and Samir R Das. 2001. On-demand multipath distance vector
routing in ad hoc networks. In Network Protocols,.

[25] Mahesh K Marina and Samir R Das. 2005. Routing in mobile ad hoc networks. In
Ad Hoc Networks.

[26] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee
Chuah, and Christophe Diot. 2004. Characterization of failures in an IP backbone.
In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, Vol. 4. IEEE, 2307–2317.

[27] Srihari Nelakuditi, Sanghwan Lee, et al. 2005. Blacklist-Aided Forwarding in
Static Multihop Wireless Networks. In SECON.

[28] Srihari Nelakuditi, Sanghwan Lee, et al. 2007. Fast local rerouting for handling
transient link failures. Transactions on Networking (2007).

[29] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, and Zhi-Li Zhang. 2003. Failure
Insensitive Routing for Ensuring Service Availability. In IWQoS.

[30] Radhika Niranjan Mysore, Andreas Pamboris, et al. 2009. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM CCR.

[31] Ping Pan, George Swallow, and Alia Atlas. 2005. Fast reroute extensions to
RSVP-TE for LSP tunnels.

[32] Eman Ramadan, Hesham Mekky, Braulio Dumba, and Zhi-Li Zhang. 2016. Adap-
tive resilient routing via preorders in SDN. In Proceedings of the 4th Workshop on
Distributed Cloud Computing. ACM, 5.

[33] Aman Shaikh, Chris Isett, Albert Greenberg, Matthew Roughan, and Joel Gottlieb.
2002. A case study of OSPF behavior in a large enterprise network. In Proceedings
of the 2nd ACM SIGCOMMWorkshop on Internet measurment. ACM, 217–230.

[34] M. Shand and S. Bryant. 2009. IP Fast Reroute Framework. Internet Draft. Internet
Engineering Task Force. (Work in progress).

[35] Ankit Singla, Chi-Yao Hong, et al. 2012. Jelly�sh: Networking Data Centers
Randomly. In NSDI.

[36] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies
with Rocketfuel. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
133–145.

[37] Jack Tsai and Tim Moors. 2006. A review of multipath routing protocols: From
wireless ad hoc to mesh networks. In ACoRN.

[38] Xiaowei Yang, David Clark, and Arthur W Berger. 2007. NIRA: a new inter-
domain routing architecture. ACM Transactions on Networking (2007).

