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Irwin–Hall distribution
Cumulants

1. Introduction

The study of permutation and partition statistics is a classic topic in enumerative com-
binatorics. The major index statistic on permutations was introduced a century ago by 
Percy MacMahon in his seminal works [27,28]. This statistic, denoted maj(w), is defined 
to be the sum of the positions of the descents of the permutation w = [w1, w2, . . . , wn]
in one-line notation. A descent is any position i such that wi > wi+1. At first glance, 
this function on permutations may be unintuitive, but it has inspired hundreds of pa-
pers and many generalizations; for example on Macdonald polynomials [21], posets [12], 
quasisymmetric functions [38], cyclic sieving [34,2], and bijective combinatorics [15,7].

The following central limit theorem for maj on the symmetric group Sn is well known 
and is an archetype for our results. Given a real-valued random variable X , we let

X ∗ := X − µ

σ

denote the corresponding normalized random variable with mean 0 and variance 1. 
Briefly, we say maj on Sn is asymptotically normal as n → ∞ based on the following 
classical result. See Table 1 for further examples.

Theorem 1.1. [14] Let Xn[maj] denote the major index random variable on Sn under the 
uniform distribution. Then, for all t ∈ R,

lim
n→∞

P [Xn[maj]∗ ≤ t] = P [N ≤ t]

where N is the standard normal random variable.

In this paper, we study the distribution of the major index statistic generalized to 
standard Young tableaux of straight and skew shapes. The properties we discuss here 
naturally generalize known properties of the major index distribution on permutations. 
They also have representation theoretic consequences in terms of coinvariant algebras of 
complex reflection groups. We will briefly introduce the main results. See Section 2 for 
more details on the background.

Let SYT(λ) denote the set of all standard Young tableaux of partition shape λ. We 
say i is a descent in a standard tableau T if i +1 comes before i in the row reading word 
of T , read from bottom to top along rows in English notation. Equivalently, i is a descent 
in T if i + 1 appears in a lower row in T . Let maj(T ) denote the major index statistic
on SYT(λ), which is again defined to be the sum of the descents of T . Fig. 1 shows 
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Table 1
Summary of some asymptotic normality results for combinatorial statistics. See [5, Ch. 3].

Statistic Set Generating function References

# elements subsets (1 + q)n classical
# parts strict partitions

∏∞
m=1(1 + xym) [13]

length/inversion 
number/major index

Sn [n]q! [14], [19]

# cycles; #
left-to-right minima

Sn
∏n−1

i=0 (q + i) [14], [19]

# descents Sn Eulerian polynomial 
An(q)

[10, pp. 150–154]

# descents conjugacy classes in 
Sn

[17, Thm. 1] [17,26]

# blocks set partitions
∑

k S(n, k)qk [22]
# valleys Dyck paths 1

[n+1]q
(2n
n

)
q

[8, Cor. 3.3]; [18, 
p. 255]

length/inversion 
number/major index

Sn/SJ , words type 
α

(n
α

)
q

see Theorem 3.17

major index SYT(λ) qb(λ) [n]q !∏
c∈λ[hc]q Theorem 1.3

Fig. 1. Plots of #{T ∈ SYT(λ) : maj(T ) = k} as a function of k for three partitions λ, overlaid with scaled 
Gaussian approximations using the same mean and variance.

some sample distributions for the major index on standard tableaux for three particular 
partition shapes. Note that Gaussian approximations fit the data well.

In Theorem 1.1, we simply let n → ∞. For partitions, the shape λ may “go to infinity” 
in many different ways. The following statistic on partitions overcomes this difficulty.

Definition 1.2. Suppose λ is a partition. Let the aft of λ be

aft(λ) := |λ|− max{λ1,λ
′
1}.

Intuitively, if the first row of λ is at least as long as the first column, then aft(λ)
is the number of cells not in the first row. This definition is strongly reminiscent of a 
representation stability result of Church and Farb [9, Thm. 7.1], which is proved with an 
analysis of the major index on standard tableaux.
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Our first main result gives the analogue of Theorem 1.1 for maj on SYT(λ). In particu-
lar, it completely classifies which sequences of partition shapes give rise to asymptotically 
normal sequences of maj statistics on standard tableaux.

Theorem 1.3. Suppose λ(1), λ(2), . . . is a sequence of partitions, and let XN = Xλ(N) [maj]
be the corresponding random variables for the maj statistic on SYT(λ(N)). Then, the 
sequence X1, X2, . . . is asymptotically normal if and only if aft(λ(N)) → ∞ as N → ∞.

Remark 1.4. In Section 5, we more generally consider maj on SYT(λ) where λ is a block 
diagonal skew partition. See [3, §2] for further representation-theoretic motivation and 
[3, Thm. 6.3] for the classification of the support of maj on SYT(λ).

The generalization of Theorem 1.3 to SYT(λ) is Theorem 5.8. Special cases of Theo-
rem 5.8 include Canfield–Janson–Zeilberger’s main result in [35] classifying asymptotic 
normality for inv or maj on words (though see [6] for earlier, essentially equivalent results 
due to Diaconis [11]). The case of words generalizes Theorem 1.1. The λ(N) = (N, N) case 
of Theorem 1.3 also recovers the main result of Chen–Wang–Wang [8], giving asymptotic 
normality for q-Catalan coefficients.

Our proof of Theorem 1.3 relies on the method of moments, which requires useful 
descriptions of the moments of Xλ[maj]. Adin–Roichman [1] gave exact formulas for the 
mean and variance of Xλ[maj] in terms of the hook lengths of λ. Their argument leverages 
the following q-analogue of the celebrated Frame–Robinson–Thrall Hook Length Formula 
[16, Thm. 1] (obtained by setting q = 1):

SYT(λ)maj(q) :=
∑

T∈SYT(λ)
qmaj(T ) = qb(λ) [n]q!∏

c∈λ[hc]q
, (1)

where hc denotes the hook length of a cell c in λ and b(λ) :=
∑

i≥1(i −1)λi. Equation (1)
is due to Stanley [40, Cor. 7.21.5] and is strongly related to the stable principal special-
ization of Schur functions by the identity sλ(1, q, q2, . . .) = SYT(λ)maj(q)/ 

∏|λ|
i=1(1 − qi)

[40, Prop. 7.19.11].
In fact, formulas for the dth moment µλ

d , dth central moment αλ
d , and dth cumulant

κλ
d of maj on SYT(λ) may be derived from (1). The most elegant of these formulas is for 

the cumulants, from which the moments and central moments are all easy to compute.

Theorem 1.5. Let λ & n and d ∈ Z>1. We have

κλ
d = Bd

d




n∑

j=1
jd −

∑

c∈λ

hd
c



 (2)

where B0, B1, B2, . . . = 1, 12 , 
1
6 , 0, −

1
30 , 0, 

1
42 , 0, . . . are the Bernoulli numbers.
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See Theorem 2.9 for a generalization of (2) along with exact formulas for the moments 
and central moments. See Theorem 2.10 for the some of the history of this formula.

Remark 1.6. For “most” partition shapes, one expects the term 
∑n

j=1 j
d in (2) to dom-

inate 
∑

c∈λ h
d
c , in which case asymptotic normality is quite straightforward. However, 

for some shapes there is a very large amount of cancellation in (2) and determining the 
limit law can be quite subtle.

While Xλ[maj] can be written as the sum of scaled indicator random variables 
D1, 2D2, 3D3, . . ., (n − 1)Dn−1 where Di determines if there is a descent at position 
i, the Di are not at all independent, so one may not simply apply standard central limit 
theorems. Interestingly, the Di are identically distributed [40, Prop. 7.19.9]. The lack of 
independence of the Di’s likewise complicates related work by Fulman [17] and Kim–Lee 
[26] considering the limiting distribution of descents in certain classes of permutations.

The non-normal continuous limit laws for maj on SYT(λ) turn out to be the Irwin–
Hall distributions IHM :=

∑M
k=1 U [0, 1], which are the sum of M i.i.d. continuous [0, 1]

random variables. The following result completely classifies all possible limit laws for maj
on SYT(λ) for any sequence of partition shapes. See Theorem 6.3 for the generalization 
to block diagonal skew shapes.

Theorem 1.7. Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N) [maj]∗) converges 
in distribution if and only if

(i) aft(λ(N)) → ∞; or
(ii) |λ(N)| → ∞ and aft(λ(N)) → M < ∞; or
(iii) the distribution of X ∗

λ(N) [maj] is eventually constant.

The limit law is N in case (i), IH∗
M in case (ii), and discrete in case (iii).

Case (iii) naturally leads to the question, when does X ∗
λ [maj] = X ∗

µ [maj]? Such a 
description in terms of hook lengths is given in Theorem 7.1. Theorem 1.7 naturally 
raises several open questions and conjectures concerning unimodality, log-concavity, and 
local limit theorems, which are described in Section 8.

Example 1.8. We illustrate each possible limit in Theorem 1.7. For (i), let λ(N) :=
(N, 'lnN(), so that aft(λ(N)) = 'lnN( → ∞ and the distributions are asymptotically 
normal. For (ii), fix M ∈ Z≥0 and let λ(N) := (N +M, M), so that aft(λ(N)) = M is con-
stant and the distributions converge to Σ∗

M . For (iii), let λ(2N) := (12, 12, 3, 3, 3, 2, 2, 1, 1)
and λ(2N+1) := (15, 6, 6, 6, 4, 2), which have the same multisets of hook lengths despite 
not being transposes of each other, and consequently the same normalized maj distribu-
tions.
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The rest of the paper is organized as follows. In Section 2, we give background focused 
on cumulants aimed at the combinatorial audience. In Section 3, we collect combinatorial 
background on permutations, tableaux, etc, aimed more at the probabilistic audience. In 
Section 4, we analyze baj− inv on Sn as an introductory example. In Section 5, we classify 
when maj on SYT(λ) is asymptotically normal. In Section 6, we determine the remaining 
continuous limit laws for maj on SYT(λ). In Section 7, we characterize the possible 
discrete distributions for maj on SYT(λ) in terms of hook lengths. Finally, Section 8
lists conjectures concerning unimodality, log-concavity, and local limit theorems.

2. Background on cumulants

In this section, we review some standard terminology and results on generating func-
tions, random variables, and asymptotic normality, with a focus on cumulants. An 
excellent source for many further details in this area can be found in Canfield’s Chapter 3 
of [5].

2.1. Exponential generating functions

We now introduce our notation for exponential generating functions and the Bernoulli 
numbers, which will be used with cumulants shortly.

Definition 2.1. Given a rational sequence (gd)∞d=0 = (g0, g1, . . .), the corresponding ordi-
nary generating function is

Og(t) :=
∑

d≥0
gdt

d

and the corresponding exponential generating function is

Eg(t) :=
∑

d≥0
gd

td

d! .

Conversely, any rational power series

F (t) =
∑

d≥0
fdt

d =
∑

d≥0
d!fd

td

d!

is the ordinary generating function of the sequence (fd)∞d=0 = (f0, f1, . . .) and the ex-
ponential generating function of the sequence (d!fd)∞d=0. The exponential generating 
functions we will encounter will all have a positive radius of convergence.

It is easy to describe products, quotients and compositions of generating functions. 
We recall in particular a formula for compositions of exponential generating functions 
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for later use. Given two rational sequences f = (fd)∞d=0, g = (gd)∞d=0 such that f0 = 0
and g0 = 1, the composition of their exponential generating functions Eg ◦ Ef is again 
an exponential generating function for a rational sequence h, say Eh(t) = Eg(Ef (t)). For 
example, if Ef (t) =

∑
fdtd/d! and Eg(t) = et, so gi = 1 for all i, then by [40, Cor. 5.1.6], 

the corresponding sequence (hd)∞d=0 is given by h0 = 1 and, for d ≥ 1,

hd =
∑

π∈Πd

∏

b∈π

f|b|, (3)

where Πd is the collection of all set partitions π = {b1, b2, . . . , bk} of {1, 2, . . . , d}. Col-
lecting together Sd-orbits of Πd in (3) quickly gives

hd =
∑

λ(d

d!
zλ

∏

i

fλi

(λi − 1)! (4)

where if λ has mi parts of length i, then zλ := 1m12m2 · · ·m1!m2! · · · . A more computa-
tionally efficient, recursive approach to (3) is the formula [40, Prop. 5.1.7]

hd = fd +
d−1∑

m=1

(
d− 1
m− 1

)
fmhd−m. (5)

Example 2.2. The Bernoulli numbers (Bd)∞d=0 are rational numbers determined by the 
exponential generating function EB(t) := t/(1 −e−t). The first few terms in the sequence 
are

B0 = 1, B1 = 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 ,

B7 = 0, B8 = − 1
30 , B9 = 0, B10 = 5

66 , B11 = 0, B12 = − 691
2730 .

The divided Bernoulli numbers are given by Bd
d for d ≥ 1. Their exponential generating 

function ED(t) satisfies 1 + t d
dtED(t) = EB(t), from which it follows that

ED(t) :=
∑

d≥1

Bd

d

td

d! = log
(
et − 1

t

)
.

We caution that a common alternate convention for Bernoulli numbers uses B1 = −1
2

with all other entries the same, corresponding with the exponential generating function 
t/(et − 1).

The Bernoulli numbers have many interesting properties; see [30,46] and [20, Sec-
tion 6.5]. For example, they appear in the polynomial expansion of the sums of dth 
powers,
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n∑

k=1
kd = 1

d + 1

d∑

k=0

(
d + 1
k

)
Bk nd+1−k. (6)

Compare the formula for sums of dth powers to the Riemann zeta function ζ(s) =∑∞
n=1

1
ns which can be evaluated at complex values s += 1 by analytic continuation. The 

divided Bernoulli numbers which appear in our formula (2) satisfy Bd
d = −ζ(1 − d).

2.2. Probabilistic generating functions

We next review basic vocabulary and notation for moments and cumulants of random 
variables. All random variables we encounter will have moments of all orders. See [4] for 
more details.

Definition 2.3. Let X be a real-valued random variable where either X is continuous with 
probability density function f : R → R≥0 or X is discrete with probability mass function 
f : Z → R≥0. The cumulative distribution function (CDF) of X is given by

F (t) :=
t∫

−∞

f(x) dx or F (t) :=
∑

k≤t

f(k)

depending on whether X is continuous or discrete. For any continuous real-valued func-
tion g, there is an associated random variable g(X ). The expectation of g(X ) is given 
by

E[g(X )] :=
∫

R

g(x)f(x) dx or E[g(X )] :=
∞∑

k=−∞
g(k)f(k).

The mean and variance of X are, respectively,

µ := E[X ] and σ2 := E[(X − µ)2].

For d ∈ Z≥0, the dth moment and dth central moment of X are, respectively,

µd := E[X d] and αd := E[(X − µ)d].

The moment-generating function of X is

MX (t) := E[etX ] =
∞∑

d=0
µd

td

d! ,

which for us will always have a positive radius of convergence. The characteristic function
of X is
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φX (t) := E[eitX ],

which exists for all t ∈ R and which is the Fourier transform of f , the density or mass 
function associated to X .

Example 2.4. Let W be a finite set with an integer statistic stat : W → Z≥0. We will use 
the notation

W stat(q) :=
∑

w∈W

qstat(w)

for the corresponding polynomial generating function. If W stat(q) =
∑

ckqk, define a 
random variable X associated with stat : W → Z≥0 sampled uniformly on W by P (X =
k) = ck/#W . The probability generating function for X is

E[qX ] = 1
#W

W stat(q) := 1
#W

∑

w∈W

qstat(w).

Letting q = et, an easy computation shows that the moment-generating function and 
characteristic function of X are

MX (t) = 1
#W

W stat(et) and φX (t) = 1
#W

W stat(eit).

These expressions reveal an intimate connection between the study of generating func-
tions of combinatorial statistics evaluated on the unit circle and the underlying proba-
bility distribution via the Laplace and Fourier transforms. In particular, the distribution 
determines the characteristic function and the moment-generating function, and con-
versely each of these determines the distribution.

Definition 2.5. The cumulants κ1, κ2, . . . of X are defined to be the coefficients of the 
exponential generating function

KX (t) :=
∞∑

d=1
κd

td

d! := logMX (t) = logE[etX ].

While cumulants of random variables may initially be less intuitive than moments, 
they lead to nicer formulas in many cases, including Theorem 1.5, and they often have 
more useful properties. See [32] for some history and applications. We will use the fol-
lowing properties of cumulants. The proofs are straightforward from the definitions.

1. (Familiar Values) The first three cumulants are κ1 = µ, κ2 = σ2, and κ3 = α3. The 
higher cumulants typically differ from the moments and central moments.

2. (Shift Invariance) The second and higher cumulants of X agree with those for X − c

for c ∈ R.
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3. (Homogeneity) The dth cumulant of cX is cdκd for c ∈ R.
4. (Additivity) The cumulants of the sum of independent random variables are the sums 

of the cumulants.
5. (Polynomial Equivalence) The cumulants, moments, and central moments are deter-

mined by polynomials in any one of these three sequences.

The polynomial equivalence property can be made explicit by the results in Section 2.1. 
Equation (5) allows us to express the dth moment of X as a polynomial function of the 
first d cumulants of X and vice versa via the recurrence

µd = κd +
d−1∑

m=1

(
d− 1
m− 1

)
κmµd−m. (7)

Using the shift invariance property of cumulants, the corresponding formula for the 
central moments in terms of the cumulants can be obtained from (7) by setting κ1 = 0
and leaving the other cumulants alone. This gives, for d > 1,

αd = κd +
d−2∑

m=2

(
d− 1
m− 1

)
κmαd−m. (8)

For instance, at d = 3 we have

µ3 = κ3 + 3κ2κ1 + κ3
1.

Setting κ1 = 0 yields α3 = κ3 as mentioned above.

2.3. Cumulant formulas

Next we describe the cumulants of some well-known distributions and use one of 
them to deduce a result of Hwang–Zacharovas, which immediately yields Theorem 1.5
as a corollary.

Example 2.6. Let X = N (µ, σ2) be the normal random variable with mean µ and vari-
ance σ2. The density function of X is f(x; µ, σ2) = 1

σ
√

2π exp
(
− (x−µ)2

2σ2

)
. Taking the 

Fourier transform gives the characteristic function E[eitX ] = exp
(
iµt− 1

2σ
2t2

)
, so the 

moment-generating function is E[etX ] = exp
(
µt + 1

2σ
2t2

)
and the cumulants are

κd =






µ d = 1,
σ2 d = 2,
0 d ≥ 3.

(9)
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Using (4) to compute the central moments of X from (9), we effectively set κ1 = 0
and note that only λ = (2, 2, . . . , 2) = (2d/2) contributes, in which case αd =
κd/2

2 d!/(2d/2(d/2)!). It follows that

αd =
{

0 if d is odd,
σd(d− 1)!! if d is even.

Example 2.7. Let U = U [0, 1] be the continuous uniform random variable whose density 
takes the value 1 on the interval [0, 1] and 0 otherwise. Then the moment generating 
function is MU(t) =

∫ 1
0 etxdx = (et−1)/t, so the cumulant generating function logMU (t)

coincides with the exponential generating function for the divided Bernoulli numbers 
from Section 2.1. That is, κU

d = Bd/d for d ≥ 1.
Recall from Section 1, IHm is the Irwin–Hall distribution obtained by adding m

independent, identically distributed U [0, 1] random variables. By Additivity, the dth 
cumulant of IHm is mBd/d. More generally, let S :=

∑m
k=1 U [αk, βk] be the sum of m

independent uniform continuous random variables. Then the dth cumulant of S for d ≥ 2
is

κS
d = Bd

d

m∑

k=1
(βk − αk)d (10)

by the Homogeneity and Additivity Properties of cumulants.

Example 2.8. Let Un be the discrete uniform random variable supported on {0, 1, . . . , n −
1}. The probability generating function for Un is [n]q/n := (qn − 1)/(n(q − 1)), so the 
cumulant generating function is

logMUn(t) = log
(

ent − 1
n(et − 1)

)
= log

(
ent − 1

nt

)
− log

(
et − 1

t

)
.

It follows that for d ≥ 1, the divided Bernoulli numbers arise again in this context,

κUn
d = Bd

d
(nd − 1). (11)

Product formulas for polynomials such as Stanley’s formula (1) give rise to explicit 
formulas for cumulants and moments according to the following theorem. The proof is 
immediate from Theorem 2.8 and the exponential generating function identity (4).

Theorem 2.9. Suppose {a1, . . . , am} and {b1, . . . , bm} are multisets of positive integers 
such that

P (q) =
∏m

k=1[ak]q∏m
k=1[bk]q

=
∑

ckq
k ∈ Z≥0[q],
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so in particular each ck ∈ Z≥0. Let X be a discrete random variable with P [X = k] =
ck/P (1). Then the dth cumulant of X is

κX
d = Bd

d

m∑

k=1
(adk − bdk) (12)

where Bd is the dth Bernoulli number (with B1 = 1
2). Moreover, the dth central moment 

of X is

αd =
∑

λ(d
has all parts even

d!
zλ

%(λ)∏

i=1

Bλi

λi!

[
m∑

k=1

(
adk − bdk

)
]
, (13)

and the dth moment of X is

µd =
∑

λ(d
has all parts either

even or size 1

d!
zλ

%(λ)∏

i=1

Bλi

λi!

[
m∑

k=1

(
adk − bdk

)
]
. (14)

Remark 2.10. Equation (12) appeared explicitly in the work of Hwang–Zacharovas [24, 
§4.1] building on the work of Chen–Wang–Wang [8, Thm. 3.1], who in turn used an 
argument going back at least to Sachkov [36, §1.3.1]. It was rediscovered experimentally 
through (14) by the present authors and also rediscovered by Thiel–Williams [45].

One frequently encounters polynomials of the form qβP (q) for some β ∈ Z≥0, as in 
(1). The formulas in Theorem 2.9 remain valid in this case except that one must add β
to the expression for κ1 and add β to each factor in the product in (14) for which λi = 1.

Remark 2.11. The generating function machinery used to construct the cumulants in 
(12) works whether or not the function P (q) is polynomial. The corresponding κd’s are 
called formal cumulants in the literature.

2.4. Asymptotic normality

Asymptotic normality is a very old topic lying at the intersection of probability and 
combinatorics. For an introduction, we recommend Canfield’s Chapter 3 in [5].

Definition 2.12. Let X1, X2, . . . and X be real-valued random variables with cumulative 
distribution functions F1, F2, . . . and F , respectively. We say X1, X2, . . . converges in 
distribution to X , written Xn ⇒ X , if for all t ∈ R at which F is continuous we have

lim
n→∞

Fn(t) = F (t).
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Recall from the introduction that for a real-valued random variable X with mean µ
and variance σ2 > 0, the corresponding normalized random variable is

X ∗ := X − µ

σ
.

Observe that X ∗ has mean µ∗ = 0 and variance σ∗2 = 1. The moments and central 
moments of X ∗ agree for d ≥ 2 and are given by

µ∗
d = α∗

d = αd/σ
d.

Similarly, the cumulants of X ∗ are given by κ∗
1 = 0, κ∗

2 = 1, and κ∗
d = κd/σd for d ≥ 2.

Definition 2.13. Let X1, X2, . . . be a sequence of real-valued random variables. We say 
the sequence is asymptotically normal if X ∗

n ⇒ N (0, 1).

The “original” asymptotic normality result is as follows. Let 2[n] be the set of all 
subsets of [n] := {1, 2, . . . , n}. Let X2[n] [size] denote the random variable given by the 
cardinality, where 2[n] is given the uniform distribution. This has the same distribution 
as the number of heads after n fair coin flips, so the probability generating function up 
to normalization is (1 + q)n. The following result is credited to de Moivre and Laplace; 
see [5, Theorem 3.2.1] for further discussion.

Theorem 2.14 (de Moivre–Laplace). The sequence X2[n] [size] is asymptotically normal.

Asymptotic normality results for combinatorial statistics are plentiful. See Table 1 for 
more examples and further references.

2.5. The method of moments

We next describe two standard criteria for establishing asymptotic normality or more 
generally convergence in distribution of a sequence of random variables.

Theorem 2.15 (Lévy’s Continuity Theorem, [4, Theorem 26.3]). A sequence X1, X2, . . . of 
real-valued random variables converges in distribution to a real-valued random variable 
X if and only if, for all t ∈ R,

lim
n→∞

E[eitXn ] = E[eitX ].

Theorem 2.16 (Frechét–Shohat Theorem, [4, Theorem 30.2]). Let X1, X2, . . . be a se-
quence of real-valued random variables, and let X be a real-valued random variable. 
Suppose the moments of Xn and X all exist and the moment generating functions all 
have a positive radius of convergence. If
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lim
n→∞

µXn
d = µX

d ∀d ∈ Z≥1, (15)

then X1, X2, . . . converges in distribution to X .

By Theorem 2.15, we may test for asymptotic normality by checking if the normalized 
characteristic functions tend point-wise to the characteristic function of the standard 
normal. Likewise by Theorem 2.16 we may instead perform the check on the level of 
individual normalized moments, which is often referred to as the method of moments. 
By (7) we may further replace the moment condition (15) with the cumulant condition

lim
n→∞

κXn
d = κX

d . (16)

For instance, we have the following explicit criterion.

Corollary 2.17. A sequence X1, X2, . . . of real-valued random variables on finite sets is 
asymptotically normal if for all d ≥ 3 we have

lim
n→∞

κXn
d

(σXn)d = 0 (17)

In fact, one may show a converse of the Frechét–Shohat theorem holds for quotients 
as in Theorem 2.9, though we will not have need of it here.

2.6. Local limit theorems

Asymptotic normality concerns cumulative distribution functions, so it gives estimates 
for the number of combinatorial objects with a large range of statistics. However, our 
original motivation was to count combinatorial objects with a given statistic. Estimates 
of this latter form are frequently referred to as local limit theorems. Here we review two 
motivating examples.

The present work was partly inspired by the following local limit theorem due 
to the third author with a uniform rather than normal limit law. For λ & n, let 
majn : SYT(λ) → [n] be maj modulo n.

Theorem 2.18. [44, Theorem 1.9] For λ & n, let Xλ[majn] denote the random variable 
majn on SYT(λ). Suppose # SYT(λ) ≥ n5. Then, for all k ∈ [n],

∣∣∣∣P [Xλ[majn] = k] − 1
n

∣∣∣∣ <
1
n2 .

Further motivation was provided by the following analogue of Theorem 3.16.
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Theorem 2.19. [35, Theorem 4.5] There exists a positive constant c such that for every 
C, the following is true. Uniformly for all compositions α = (α1, . . . , αm) such that 
maxi αi ≤ Cecs(α) and all integers k,

P [Xα = k] = 1
σ
√

2π

(
e−(k−µ)2/(2σ2) + O

( 1
s(α)

))
,

where Xα denotes inversions on words of type α.

3. Combinatorial background

3.1. Combinatorial background for baj− inv on Sn

Here we introduce the two most well-known permutation statistics, inv and maj, as 
well as one unusual permutation statistic, baj.

Definition 3.1. Let σ ∈ Sn be a permutation of {1, . . . , n}. Set

Inv(σ) := {(i, j) : i < j and σ(i) > σ(j)} (inversion set)
inv(σ) := | Inv(σ)| (inversion number, i.e. length)
Des(σ) := {1 ≤ i ≤ n− 1 : σ(i) > σ(i + 1)} (descent set)

maj(σ) :=
∑

i∈Des(σ)
i (major index).

Following Zabrocki [47] for the nomenclature, we also set

baj(σ) :=
∑

i∈Des(σ)
i(n− i).

The equidistribution of inv and maj on Sn is due to MacMahon, who also first intro-
duced maj. His proof gave the following generating function expression for both statistics.

Theorem 3.2 ([27, Art. 6]). We have

Sinv
n (q) = [n]q! :=

n−1∏

k=1
(1 + q + q2 + · · · + qk) = Smaj

n (q).

The statistic baj− inv appeared in the context of extended affine Weyl groups and 
Hecke algebras in the work of Iwahori and Matsumoto in 1965 [25]. It is the Coxeter 
length function restricted to coset representatives of the extended affine Weyl group of 
type An−1 mod translations by coroots. Stembridge and Waugh [43, Remarks 1.5 and 
2.3] give a careful overview of this topic and further results. In particular, they prove the 
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following factorization formula for the generating function associated to baj− inv on Sn. 
From this factorization, the corresponding cumulants can be read off from Theorem 2.9.

Theorem 3.3. [25,43] We have

Sbaj− inv
n (q) :=

∑

σ∈Sn

qbaj(σ)−inv(σ) = n
n−1∏

i=1

[i(n− i)]q
[i]q

. (18)

Corollary 3.4. The dth cumulant κn
d for baj− inv on Sn is

κn
d = Bd

d

(
n−1∑

i=1
[i(n− i)]d − id

)
.

Remark 3.5. Indeed, (18) holds with Sn replaced by {σ ∈ Sn : σ(n) = k} for any fixed 
k = 1, . . . , n if the factor of n is deleted from the right-hand side. See [47] for a bijective 
proof of this generalization. In addition, [43, Thm. 1.1] gives another generalization of 
the product formula (18) to all crystallographic Coxeter groups.

3.2. Combinatorial background for maj on Wα and SYT(λ)

Here we review standard combinatorial notions related to words, tableaux, and their 
major index generating functions.

Definition 3.6. Given a word w = w1w2 · · ·wn with letters wi ∈ Z≥1, the type of w is 
the sequence α = (α1, α2, . . .) where αi is the number of times i appears in w. Such a 
sequence α is a (weak) composition of n, written as α ! n. Trailing 0’s are often omitted 
when writing weak compositions, so α = (α1, α2, . . . , αm) for some m. Note that a word 
of type (1, 1, . . . , 1) ! n is a permutation in the symmetric group Sn written in one-line 
notation. Just as for permutations, the inversion number of w is

inv(w) := #{(i, j) : i < j, wi > wj}.

The descent set of w is

Des(w) := {0 < i < n : wi > wi+1},

and the major index of w is

maj(w) :=
∑

i∈Des(w)
i.
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8 7 6 3 2 1
4 3 2
3 2 1

(a) Young diagram of λ. (b) Hook lengths of λ.

Fig. 2. Constructions related to the partition λ = (6, 3, 3) ( 12.

Definition 3.7. Let α = (α1, . . . , αm) ! n. We use the following standard q-analogues:

[n]q := 1 + q + · · · + qn−1 = qn−1
q−1 , (q-integer)

[n]q! := [n]q[n− 1]q · · · [1]q, (q-factorial)(n
k

)
q

:= [n]q!
[k]q ![n−k]q! ∈ Z≥0[q], (q-binomial)

(n
α

)
q

:= [n]q!
[α1]q !···[αm]q! ∈ Z≥0[q] (q-multinomial).

Example 3.8. The identity statistic on the set W = {0, . . . , n −1} has generating function 
[n]q. The “sum” statistic on W =

∏n
k=1{0, . . . , k − 1} has generating function [n]q!.

For α ! n, let Wα denote the words of type α. MacMahon’s classic result generalizing 
Theorem 3.2 in fact shows that maj and inv have the same distribution on Wα.

Theorem 3.9 ([27, Art. 6]). For each α ! n,

Wmaj
α (q) =

(
n

α

)

q

= Winv
α (q). (19)

Definition 3.10. A composition λ ! n such that λ1 ≥ λ2 ≥ . . . is called a partition of 
n, written as λ & n. The size of λ is |λ| := n and the length )(λ) of λ is the number of 
non-zero entries. The Young diagram of λ is the upper-left justified arrangement of unit 
squares called cells where the ith row from the top has λi cells following the English 
notation; see Fig. 2a. The hook length of a cell c ∈ λ is the number hc of cells in λ in 
the same row as c to the right of c and in the same column as c and below c, including 
c itself; see Fig. 2b. A corner of λ is any cell with hook length 1. A bijective filling of λ
is any labeling of the cells of λ by the numbers [n] = {1, 2, . . . , n}.

Definition 3.11. A skew partition λ/ν is a pair of partitions (ν, λ) such that the Young 
diagram of ν is contained in the Young diagram of λ. The cells of λ/ν are the cells in the 
diagram of λ which are not in the diagram of ν, written c ∈ λ/ν. We identify straight 
partitions λ with skew partitions λ/∅ where ∅ = (0, 0, . . .) is the empty partition. The 
size of λ/ν is |λ/ν| := |λ| − |ν|. The notions of bijective filling, hook lengths, and corners 
naturally extend to skew partitions as well.

Definition 3.12. Given a sequence of partitions λ = (λ(1), . . . , λ(m)), we identify the 
sequence with the block diagonal skew partition obtained by translating the Young di-
agrams of the λ(i) so that the rows and columns occupied by these components are 
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Fig. 3. Diagram for the skew partition λ/ν = 76443/4433, which is also the block diagonal skew shape 
λ = ((3, 2), (1, 1), (3)).

1 2 4 7 9 12
3 6 10
5 8 11

2 6
4 5

1 3 7

Fig. 4. On the left is a standard Young tableau of straight shape λ = (6, 3, 3) with descent set {2, 4, 7, 9, 10}
and major index 32. On the right is a standard Young tableau of block diagonal skew shape (7, 5, 3)/(5, 3)
corresponding to the sequence of partitions λ = ((2), (2), (3)) with descent set {2, 6} and major index 8.

disjoint, form a valid skew shape, and appear in order from top to bottom as depicted 
in Fig. 3.

Definition 3.13. A standard Young tableau of shape λ/ν is a bijective filling of the cells 
of λ/ν such that labels increase to the right in rows and down columns; see Fig. 4. The 
set of standard Young tableaux of shape λ/ν is denoted SYT(λ/ν). The descent set of 
T ∈ SYT(λ/ν) is the set Des(T ) of all labels i in T such that i + 1 is in a strictly lower 
row than i. The major index of T is

maj(T ) :=
∑

i∈Des(T )
i.

Remark 3.14. The block diagonal skew partitions λ allow us to simultaneously con-
sider words and tableaux as follows. Recall that Wα is set of all words with type 
α = (α1, . . . , αk). Letting λ = ((αk), . . . , (α1)), we have a bijection

φ : SYT(λ) ∼→ Wα (20)

which sends a tableau T to the word whose ith letter is the row number in which i appears 
in T , counting from the bottom up rather than top down. For example, using the skew 
tableau T on the right of Fig. 4, we have φ(T ) = 1312231 ∈ W(3,2,2). It is easy to see that 
Des(φ(T )) = Des(T ), so that maj(φ(T )) = maj(T ). Hence SYT((α1), . . . , (αk))maj(q) =
Wmaj

α (q) =
(n
α

)
q
.

Remark 3.15. We also recover q-integers, q-binomials, and q-Catalan numbers up to q-
shifts as special cases of the major index generating function for tableaux given in (1):

SYT(λ)maj(q) =






q[n]q if λ = (n, 1),
q(k+1

2 )(n
k

)
q

if λ = (n− k + 1, 1k),
qn 1

[n+1]q
(2n
n

)
q

if λ = (n, n).
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Many combinatorial statistics arise from sets indexed by more complicated objects 
than the positive integers, in which case one can “let n → ∞” in many different ways. 
The following result due to Canfield, Janson, and Zeilberger illustrates a more interesting 
limit. Their result is characterized by the statistic s(α) := n −m where α = (α1, . . . , α%) !
n with max{αi} = m.

Theorem 3.16. [35, Theorem 1.2] Let α(1), α(2), . . . be a sequence of compositions, possibly 
of differing lengths. Let Xn be the inversion (or major index) statistic on words of type 
α(n). Then X1, X2, . . . is asymptotically normal if and only if

s(α(n)) → ∞.

Remark 3.17. Explorations equivalent to Theorem 3.16 appeared significantly earlier 
than [35] in other contexts, for instance [11, p. 127-128] and (in the two-letter case) [29]. 
See [6] for further discussion and references.

The cumulant formula for Xλ[maj], Theorem 1.5, follows immediately from Theo-
rem 2.9 and Stanley’s formula (1). Adin and Roichman [1] had previously used (1) to 
compute the mean and variance of Xλ[maj] as

µ =
(|λ|

2
)
− b(λ′) + b(λ)

2 = b(λ) + 1
2




|λ|∑

k=1
k −

∑

c∈λ

hc



 ,

and

σ2 = 1
12




|λ|∑

k=1
k2 −

∑

c∈λ

h2
c



 .

The following common generalization of Stanley’s formula (1) and MacMahon’s for-
mula, Theorem 3.9, is well known (e.g. see [42, (5.6)]). See [3, Thm. 2.15] for other 
applications.

Theorem 3.18. Let λ = (λ(1), . . . , λ(m)) where λ(i) & αi and n = α1 + · · · + αm. Then

SYT(λ)maj(q) =
(

n

α1, . . . ,αm

)

q

·
m∏

i=1
SYT(λ(i))maj(q). (21)

Corollary 3.19. Let κλ
d be the dth cumulant of maj on SYT(λ) for d > 1. Then

κλ
d = Bd

d




|λ|∑

k=1
kd −

∑

c∈λ

hd
c



 . (22)
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For general skew shapes, SYT(λ/ν)maj(q) does not factor as a product of cyclotomic 
polynomials times q to a power. A “q-Naruse” formula due to Morales–Pak–Panova, [31, 
(3.4)], gives an analogue of (1) involving a sum over “excited diagrams,” though the 
resulting sum has a single term precisely for the block diagonal skew partitions λ.

4. Asymptotic normality for baj− inv on Sn

We begin with a straightforward example which serves as a warmup and establishes 
some notation. See Section 3.1 for background. Asymptotic normality of baj− inv on Sn

follows from the cumulant formula in Corollary 3.4 by the following routine calculations. 
Recall that an ∼ bn means that limn→∞ an/bn = 1.

Lemma 4.1. Fix d ≥ 1. Then, as n → ∞,

n−1∑

i=1
[i(n− i)]d − id ∼ n2d+1 ·

1∫

0

xd(1 − x)d dx.

Proof. We have

lim
n→∞

∑n−1
i=1 [i(n− i)]d − id

n2d+1 = lim
n→∞

1
n

n−1∑

i=1

[(
i

n

)d (
1 − i

n

)d

−
(

i

n2

)d
]

= lim
n→∞

1
n

n−1∑

i=1

(
i

n

)d (
1 − i

n

)d

=
1∫

0

xd(1 − x)d dx.

Remark 4.2. The value of the integral in Lemma 4.1 is well known:

1∫

0

xd(1 − x)d dx = (d!)2
(2d + 1)! = 1

2d + 1

(2d
d

)−1
. (23)

See [33, A002457] for a surprisingly large number of interpretations of the reciprocals 
of these values. Equation (23) is also a very special case of the Selberg integral formula 
[37], which has many interesting connections to algebraic combinatorics such as those in 
[39].

Corollary 4.3. Fix d ∈ {1, 2, 4, 6, . . .}. Let κn
d be the dth cumulant of baj− inv on Sn, and 

let κn
d
∗ be the dth cumulant of the corresponding normalized random variable with mean 

0 and variance 1. Then, uniformly for all n, we have
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|κn
d
∗| = Θ(n1−d/2). (24)

That is, there are constants c, C > 0 depending only on d such that

cn1−d/2 ≤ |κn
d
∗| ≤ Cn1−d/2.

Proof. It follows immediately from Corollary 3.4 and Lemma 4.1 that |κn
d | = Θ(n2d+1). 

Hence

|κn∗
d | = |κn

d/(κn
2 )d/2| = Θ(n2d+1−5d/2) = Θ(n1−d/2).

Theorem 4.4. Let Xn = XSn [baj− inv] be the random variable for the baj− inv statistic 
taken uniformly at random from Sn. Then, X1, X2, . . . is asymptotically normal.

Proof. For fixed d > 2 even, we have 1 − d/2 < 0, so by Corollary 4.3, κn
d
∗ → 0 as 

n → ∞. The odd cumulants for d > 2 vanish since the odd Bernoulli numbers are 0. The 
result now follows from Corollary 2.17.

Remark 4.5. A key step in the above argument was to show that the variance σ2
n of 

baj− inv on Sn satisfies σ2
n = Θ(n5). Indeed, the argument gives σ2

n ∼ n5/360. The 
weaker observation that 

∑n−1
i=1 [i(n − i)]2 is the dominant contribution to σ2

n is essentially 
enough to deduce asymptotic normality in this case. Our analysis of maj on standard 
tableaux includes non-normal limits, so more precise estimates like the above will become 
absolutely necessary. A straightforward modification of the above argument together with 
Theorem 3.2 also proves Theorem 1.1.

5. Asymptotic normality for maj on SYT(λ)

The main result of this section, Theorem 5.8, classifies the sequences of block diag-
onal skew partitions for which maj is asymptotically normal. We begin with a series of 
estimates for the differences 

∑|λ/ν|
k=1 kd −

∑
c∈λ/ν h

d
c , culminating in Corollary 5.7.

Definition 5.1. A reverse standard Young tableau of shape λ/ν is a bijective filling of 
λ/ν which strictly decreases along rows and columns. The set of reverse standard Young 
tableaux of shape λ/ν is denoted RSYT(λ/ν).

Lemma 5.2. Let λ/ν & n and T ∈ RSYT(λ/ν). Then for all c ∈ λ/ν,

Tc ≥ hc. (25)

Furthermore, for any positive integer d,
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n∑

j=1
jd −

∑

c∈λ/ν

hd
c =

∑

c∈λ/ν

(T d
c − hd

c) =
∑

c∈λ/ν

(Tc − hc)hd−1(Tc, hc), (26)

where hd−1 denotes the complete homogeneous symmetric function.

Proof. For (25), the entries in the hook of c form a subset of {1, 2, . . . , n} of size hc with 
maximum Tc, so Tc ≥ hc. Equation (26) follows immediately by rearranging the terms 
and factoring (T d

c − hd
c) = (Tc − hc) 

∑d−1
k=0 T

d−1−k
c hk

c .

Lemma 5.3. Let λ/ν & n such that maxc∈λ/ν hc < 0.8n. Let d be any positive integer. 
Then

nd+1

26(d + 1) − 2(0.8)dnd <
n∑

j=1
jd −

∑

c∈λ/ν

hd
c <

nd+1

d + 1 + nd.

Proof. Using Riemmann sums for 
∫ n
0 xddx, we obtain the bounds

nd+1

d + 1 <
n∑

j=1
jd <

nd+1

d + 1 + nd (27)

for all positive integers d, n. The upper bound in the lemma now follows immediately.
For the lower bound, label the cells of λ/ν by some T ∈ RSYT(λ/ν). By (25), hc ≤ Tc, 

and by assumption we have hc < 0.8n for all c ∈ λ/ν. Considering the tighter of these 
two bounds on each summand and using (27) again, we have

∑

c∈λ/ν

hd
c <

∑

j∈[n]
j<0.8n

jd +
∑

j∈[n]
j≥0.8n

(0.8n)d

<
'0.8n(d+1

d + 1 + '0.8n(d + (n− 00.8n1 + 1)(0.8n)d

≤ (0.8n)d+1

d + 1 + 2(0.8n)d + (0.2)(0.8)dnd+1.

Consequently,

n∑

j=1
jd −

∑

c∈λ/ν

hd
c >

nd+1

d + 1 − (0.8n)d+1

d + 1 − 2(0.8n)d − (0.2)(0.8)dnd+1

=
( 1
d + 1(1 − (0.8)d+1) − 0.2(0.8)d

)
nd+1 − 2(0.8)dnd.

It is easy to check that the coefficient on nd+1 is bounded below by 1
26(d+1) for all positive 

integers d. The result follows.
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Fig. 5. On the left, the partially constructed T ∈ RSYT(λ/ν) after all the cells of R (in red and bold) have 
been filled. On the right, the final T ∈ RSYT(λ/ν). Here aft(λ/ν) = 10.

Definition 5.4. Given any partition λ/ν & n, let the aft of λ/ν be the statistic

aft(λ/ν) := n− max
c∈λ/ν

{arm(c), leg(c)}

where arm(c) is the number of cells in the same row as c to the right of c, including c
itself, and leg(c) is the number of cells in the same column as c below c, including c. 
When ν = ∅, we have aft(λ) = n − max{λ1, λ′

1} as above. When λ/ν = λ, we have 
aft(λ) = n − maxi{λ(i)

1 , λ(i)′
1}. Note that hc = arm(c) + leg(c) − 1.

Lemma 5.5. Let λ/ν & n such that maxc∈λ/ν hc ≥ 0.8n, and let d be any positive integer. 
Furthermore, suppose n ≥ 10. Then,

aft(λ/ν)'0.1n(
d

d
≤

n∑

j=1
jd −

∑

c∈λ/ν

hd
c ≤ 2 aft(λ/ν)

(
nd + dnd−1) . (28)

Proof. The result holds trivially if aft(λ/ν) = 0 since in that case λ/ν is a single row or 
column, so assume aft(λ/ν) > 0. Let m ∈ λ/ν have hm ≥ 0.8n, where we may assume 
m is the first cell in its row and column. For convenience, we may further assume by 
symmetry that arm(m) ≥ leg(m). Since hm ≥ 0.8n, it also follows that aft(λ/ν) =
n − arm(m).

Now let R be the set of cells in the row of m, not including m itself, which are 
the only cells of λ/ν in their columns. Since λ/ν is a skew partition, R is connected. 
We claim that #R ≥ 0.1n. To prove the claim, we first observe that the hypothesis 
hm ≥ 0.8n implies there are at most n − hm ≤ 0.2n cells of λ/ν which could possibly 
be in the columns of the cells of the row of m not including m. Since arm(m) ≥ leg(m)
and arm(m) + leg(m) − 1 = hm ≥ 0.8n, we have arm(m) ≥ 0.4n. Hence no more than 
0.2n of the 0.4n − 1 cells in the row of m not including m can be excluded from R, so 
#R ≥ 0.4n − 1 − 0.2n ≥ 0.1n for n ≥ 10.

Construct T ∈ RSYT(λ/ν) iteratively as follows; see Fig. 5 for an example. At each 
step of the iteration, we will first increment all existing labels by 1 and then label a new 
outer cell with 1. Begin by adding the cells of the row of m from left to right until the 
last cell of R has been added. Now add the remaining cells of λ/ν row by row starting 
at the topmost row and going from left to right. It is easy to see that the result respects 
the decreasing row and column conditions, so T ∈ RSYT(λ/ν).
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Fig. 6. On the left, the second partially constructed T ∈ RSYT(λ/ν) after the first arm(m) cells have been 
filled. On the right, the final T ∈ RSYT(λ/ν).

By Lemma 5.2, we have inequalities Tc ≥ hc. At every step of the iteration, a labeled 
cell has Tc increase by 1, while hc increases by 1 if and only if the newly labeled cell 
is in the hook of c. That is, for the final filling T , Tc − hc counts the number of times 
after cell c was filled that the new cell was not in the same row or column as c. For each 
c ∈ R, it follows that Tc − hc = n − arm(m) = aft(λ/ν).

For the lower bound, we now find

n∑

k=1
kd −

∑

c∈λ/ν

hd
c =

∑

c∈R

(Tc − hc)hd−1(Tc, hc)

=
∑

c∈R

aft(λ/ν)hd−1(hc + aft(λ/ν), hc)

≥
,0.1n-∑

k=1
aft(λ/ν)hd−1(k + aft(λ/ν), k)

≥ aft(λ/ν)
,0.1n-∑

k=1
kd−1

≥ aft(λ/ν)'0.1n(
d

d
,

where the first inequality uses the fact that {hc : c ∈ R} has pointwise lower bounds of 
{1, 2, . . . , #R} and the last inequality uses (27).

For the upper bound, we construct a new T ∈ RSYT(λ/ν) as follows; see Fig. 6 for an 
example. First, for each cell c in the row of m taken from left to right, add the topmost 
cell in the column of c. Now add the remaining cells of λ/ν exactly as before. Again 
consider the final differences Tc − hc. For cells added in the second stage, Tc − hc could 
increase no more than n −arm(m) = aft(λ/ν) times, so Tc−hc ≤ aft(λ/ν) for such c. For 
cells added in the first stage, we claim that Tc−hc ≤ 2 aft(λ/ν). For the claim, it suffices 
to show that after the first stage, for cells added in the first stage, Tc − hc ≤ aft(λ/ν). 
During the first stage, the differences Tc − hc are zero while cells of row m are being 
added. Afterwards during the first phase, cells not in row m are added, of which there 
are no more than n −arm(m) = aft(λ/ν), so the differences Tc−hc can increase no more 
than aft(λ/ν) many times during the first phase, completing the claim.
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Having established that Tc − hc ≤ 2 aft(λ/ν), we now find by (26) and (27),

n∑

k=1
kd −

∑

c∈λ/ν

hd
c =

∑

c∈λ/ν

(Tc − hc)hd−1(Tc, hc)

≤
∑

c∈λ/ν

2 aft(λ/ν)hd−1(Tc, Tc)

= 2 aft(λ/ν)
n∑

j=1
djd−1

< 2 aft(λ/ν)
(
nd + dnd−1) .

Corollary 5.6. For fixed d ∈ Z≥1, uniformly for all skew shapes λ/ν,

|λ/ν|∑

k=1
kd −

∑

c∈λ/ν

hd
c = Θ(aft(λ/ν) · |λ/ν|d). (29)

Proof. Let n = |λ/ν|. When maxc∈λ/ν hc ≥ 0.8n, the result follows from Lemma 5.5. 
On the other hand, when maxc∈λ/ν hc < 0.8n, then n ≥ aft(λ/ν) ≥ 0.2n, and the result 
follows from Lemma 5.3.

Corollary 5.7. Fix d to be an even positive integer. Uniformly for all block diago-
nal skew shapes λ, the absolute value of the normalized cumulant |κλ

d

∗
| of Xλ[maj] is 

Θ(aft(λ)1−d/2).

Proof. For d even, by (22) and Corollary 5.6, we have

|κλ
d | = Θ(aft(λ)nd),

where n = |λ|. Consequently by the homogeneity of cumulants, we have

|κλ
d

∗
| =

∣∣∣∣∣
κλ
d

(κλ
2 )d/2

∣∣∣∣∣ = Θ
( aft(λ)nd

aft(λ)d/2nd

)
= Θ(aft(λ)1−d/2).

We now state and prove the generalization of Theorem 1.3 for the block diagonal skew 
shapes λ from Section 3.2.

Theorem 5.8. Suppose λ(1), λ(2), . . . is a sequence of block diagonal skew partitions, and 
let XN := Xλ(N) [maj] be the corresponding random variables for the maj statistic. Then, 
the sequence X1, X2, . . . is asymptotically normal if and only if aft(λ(N)) → ∞ as N →
∞.
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Proof. If aft(λ(N)) → ∞, the result follows immediately from Corollary 2.17, Corol-
lary 5.7, and the fact that the odd cumulants vanish. On the other hand, if aft(λ(N)) +→
∞, in the next section we will show that X ∗

1 , X ∗
2 , . . . has a subsequence which converges 

to either a discrete or uniform-sum distribution, which in either case is non-normal.

Remark 5.9. Using work of Hwang–Zacharovas [24, Thm. 1.1], considering just the d = 4
case is sufficient to prove both directions of Theorem 5.8. However, the estimates we’ve 
given for κλ

d are strong enough to bound all the normalized cumulants simultaneously, 
and restricting to d = 4 (or even d = 2) does not simplify the argument.

6. Uniform sum limits for maj on SYT(λ)

The estimates from Section 5 apply when aft → ∞. We next give an analogous 
estimate handling the case when aft is bounded, resulting in Theorem 6.2. We may then 
deduce Theorem 1.7 from the introduction and its generalization to block diagonal skew 
shapes, Theorem 6.3. Recall from Section 1 and Theorem 2.7 that IHM is the Irwin–Hall
distribution obtained by adding M i.i.d. U [0, 1] random variables.

Lemma 6.1. Suppose λ(N)/ν(N) & nN is a sequence of skew partitions such that 
limN→∞ nN = ∞ and

lim
N→∞

aft(λ(N)/ν(N)) = M ∈ Z≥0. (30)

Then for each fixed d ∈ Z≥1, we have

lim
N→∞

∑nN

k=1 k
d −

∑
c∈λ(N)/ν(N) hd

c

Mnd
N

= 1. (31)

Proof. Take N large enough so that aft(λ(N)/ν(N)) = M and nN 2 M . Let m ∈
λ(N)/ν(N) be such that aft(λ(N)/ν(N)) = M = nN − arm(m) so m is the first cell in its 
row and column, as in the proof of Lemma 5.5. Consider three regions of λ(N)/ν(N):

(i) The rightmost arm(m) −M = nN − 2M cells in the row of m.
(ii) The remaining leftmost M cells in the row of m.
(iii) The remaining M cells in λ(N)/ν(N).

Construct T ∈ RSYT(λ(N)/ν(N)) iteratively as in the proof of Lemma 5.5 as follows. 
First add cells in region (iii) row by row starting at the topmost row proceeding from 
left to right, stopping just before inserting the row of m. Next add the cells from region 
(ii) from left to right. Now add the remaining cells in region (iii) row by row starting 
at the row immediately below the row of m proceeding from left to right. Finally insert 
the cells from region (i) from left to right. It is easy to see that the cells in region (i) are 
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the lowest cells in their column, from which it follows that T indeed satisfies the column 
and row decreasing conditions.

We now consider the contributions of regions (i)-(iii) to the quotient

∑nN

k=1 k
d −

∑
c∈λ(N)/ν(N) hd

c

Mnd
N

.

Recall that Tc − hc can be interpreted as the number of times a cell inserted after cell c
was not inserted in the same hook as c. It follows that Tc− hc = 0 for region (i), leaving 
only contributions from the 2M cells in regions (ii) and (iii), a bounded sum. For region 
(ii), we have Tc − hc ≤ M , so that

T d
c − hd

c = (Tc − hc)hd−1(Tc, hc) ≤ (2M)dnd−1
N .

Dividing by Mnd
N , cells in region (ii) contribute 0 to the sum in the limit. Finally, for 

region (iii), we find 1 ≤ hc ≤ M + 1 and nN − 2M + 1 ≤ Tc ≤ nN , so that for each of 
the M cells c in region (iii),

(nN − 2M + 1)d − (M + 1)d ≤ T d
c − hd

c ≤ nd
N − 1d.

Dividing by nd
N , both bounds are asymptotic to 1 as nN → ∞. Adding up all M such 

contributions, the result follows.

Theorem 6.2. Let λ(1), λ(2), . . . be a sequence of block diagonal skew partitions where 
limN→∞ |λ(N)| = ∞ and aft(λ(N)) = M is constant. Let XN := Xλ(N) [maj] be the corre-
sponding random variable for the maj statistic. Then X ∗

1 , X ∗
2 , . . . converges in distribution 

to IH∗
M .

Proof. Using Equation (22) and Lemma 6.1, we have for d ≥ 2 that

lim
N→∞

(κλ(N)

d )∗ = lim
N→∞

κλ(N)

d

(κλ
d)d/2

= lim
N→∞

(Bd/d)
(∑nN

k=1 k
d −

∑
c∈λ(N) hd

c

)

(B2/2)d/2
(∑nN

k=1 k
2 −

∑
c∈λ(N) h2

c

)d/2

= lim
N→∞

(Bd/d)
(B2/2)d/2

Mnd
N

(Mn2
N )d/2

= (MBd/d)
(MB2/2)d/2 .

From Theorem 2.7 and the homogeneity and additivity properties of cumulants, we have
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(κIHM
d )∗ = κIHM

d

(κIHM
2 )d/2

= (MBd/d)
(MB2/2)d/2 .

The result now follows from Theorem 2.16 after converting moments to cumulants.

Theorem 6.3. Let λ(1), λ(2), . . . be a sequence of block diagonal skew partitions. Then the 
sequence (Xλ(N) [maj]∗) converges in distribution if and only if

(i) aft(λ(N)) → ∞; or
(ii) |λ(N)| → ∞ and aft(λ(N)) → M < ∞; or
(iii) the distribution of Xλ(N) [maj] is eventually constant.

The limit law is N in case (i), IH∗
M in case (ii), and discrete in case (iii).

Proof. The backwards direction follows from Theorem 5.8 and Theorem 6.2. In the 
forwards direction, let λ(N) be such a sequence where (Xλ(N) [maj]∗) converges in distri-
bution. If |λ(N)| is bounded, then there are only finitely many distinct λ(N), forcing case 
(iii). If |λ(N)| is unbounded, then we have subsequences satisfying either (i) or (ii) since 
the sequence converges in distribution, which from Theorem 5.8 and Theorem 6.2 gives 
convergence in distribution to N or IH∗

M , which are continuous, distinct distributions. 
The result follows.

From the Central Limit Theorem, we know the Irwin–Hall distribution IH∗
M for M

large closely resembles a normal distribution, so it will be quite rare for a plot of the 
coefficients of SYT(λ)maj(q) to look anything but normal. Since Irwin–Hall distributions 
are finitely supported, the difference between the two distributions is mainly in the tails. 
We note that even for M = 5, there is a close resemblance. See the plot in Fig. 7.

7. Discrete distributions for maj on SYT(λ)

We conclude by analyzing more carefully the discrete case of the limit law classification 
for maj on SYT(λ), Theorem 1.7. The result is Theorem 7.1, which lists several families 
of pairs of shapes λ and ν of differing sizes for which we nonetheless have # SYT(λ) =
# SYT(ν).

A well-known corollary of (1) is that for partitions λ and ν of n, maj is equidistributed 
on SYT(λ) and SYT(ν) if and only if b(λ) = b(ν) and the multisets {hc : c ∈ λ} and 
{hd : d ∈ ν} are equal. These hook multisets do not entirely characterize the partition—
see [23]. The following theorem gives a similar result even if we consider the corresponding 
standardized random variables Xλ[maj] and Xν [maj].
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Fig. 7. Coefficients of SYT(λ)maj(q) for λ = (100, 3, 2) where aft(λ) = 5 plotted in blue along with the 
corresponding normal distribution with the same mean and variance plotted in red. The difference is mostly 
in the tails.

Theorem 7.1. Let λ and ν be partitions. Then Xλ[maj]∗ and Xν [maj]∗ have the same 
distribution if and only if

(i) the multisets of hook lengths {hc : c ∈ λ} and {hd : d ∈ ν} are equal; or
(ii) the multisets {hc : c ∈ λ} and {|λ|} 3 {hd : d ∈ ν} are equal; or
(iii) λ and ν are each either a single row or column; or
(iv) λ, ν ∈ {(2, 1), (2, 2)}.

Moreover, case (ii) occurs if and only if, up to transposing,

(a) λ = (n) and ν = (n − 1) for n ≥ 2; or
(b) λ = (r + 1, 12r+2) and ν = (2r+1, 1r) for r ≥ 1; or
(c) λ = (s, 1s+2) and ν = (s, s, 1) for s ≥ 4; or
(d) λ = (3, 15) and ν = (32, 1), or λ = (4, 16) and ν = (33, 1).

Proof. Let n := |λ| and m := |ν|. Let fλ(q) = [n]q!∏
c∈λ[hc] , which is a polynomial by (1)

with constant coefficient 1. Let fλ = fλ(1) = | SYT(λ)|. Let fν and fν(q) be defined 
similarly.

In the backwards direction, if (i) holds, then n = m, both variances agree by The-
orem 1.5, and fλ(q) = fν(q), so Xλ[maj]∗ and Xν [maj]∗ have the same distribution. 
Similarly if (ii) holds fλ(q) = fν(q), both variances agree, and Xλ[maj]∗ and Xν [maj]∗
have the same distribution again. Condition (iii) holds if and only if the distributions are 
concentrated at a single point. For (iv), we have f (2,1)(q) = 1 + q and f (2,2)(q) = 1 + q2, 
so the normalized distributions are clearly equal.

In the forwards direction, suppose Xλ[maj]∗ and Xν [maj]∗ have the same distribution. 
Since fλ(q) has constant coefficient 1, Xλ[maj] is concentrated at a single point if and 
only if fλ = 1, which occurs if and only if λ is a single row or column which is covered by 
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case (iii). It is easy to see that fλ = 2 if and only if λ ∈ {(2, 1), (2, 2)} which is covered 
by case (iv).

Assume fλ, fν > 2. By [3, Thm. 1.1], it follows that fλ(q) and fν(q) each have two 
adjacent non-zero coefficients. Since fλ(q) and fν(q) each have constant term 1 and 
two adjacent non-zero coefficients, then it follows from the assumption Xλ[maj]∗ and 
Xν [maj]∗ have the same distribution that

fλ(q) = [n]q!∏
c∈λ[hc]q

= [m]q!∏
d∈ν [hd]q

= fν(q). (32)

Without loss of generality, we can assume n ≥ m. If n = m, we have 
∏

c∈λ[hc]q =∏
d∈ν [hd]q, from which it follows that the multisets of hook lengths are equal by consid-

ering multiplicities of zeros at all primitive roots of unity as in case (i).
From here on, assume n > m. The multiplicity of a zero of a primitive nth root of 

unity in (32) is 0 on the right, so from the left λ must have a hook of length n so it itself is 
a hook shape partition. Since λ is not a single row or column by the assumption fλ > 2, 
we know λ does not have a cell with hook length n − 1. Consequently, the multiplicity 
of a zero at a primitive (n − 1)th root of unity in (32) is 1 on the left, forcing m = n − 1
on the right. Thus (32) becomes

[m + 1]q
∏

d∈ν

[hd]q =
∏

c∈λ

[hc]q, (33)

and as before the multiset condition (ii) must hold. This completes the proof of the first 
statement in the theorem.

For the second statement, suppose (ii) holds, so the multisets {hc : c ∈ λ} and 
{|λ|} 3 {hd : d ∈ ν} are equal. Then, m = n − 1 and λ has a cell with hook length |λ|, 
so λ is a hook shape partition (n − k, 1k) for some 0 ≤ k ≤ n, and

{hd : d ∈ ν} = [m− k] 3 [k]. (34)

By transposing if necessary, we may assume k ≥ m − k is the maximum hook length in 
ν. If λ has one cell with hook length 1, then (a) holds. Otherwise, both λ and ν have 
precisely two cells with hook length 1, so ν is the union of two rectangles and not itself 
a rectangle. If ν were a hook, then it would have a hook length equal to m which would 
imply λ has a cell of hook length m = n − 1 contradicting the fact that λ has two outer 
corners. Thus ν is not itself a hook.

Transposing ν if necessary, we can assume its first two rows are equal, say ν1 = ν2 = s. 
If ν′1 = ν′2, one may check that the cell furthest from the origin in the intersection of the 
two rectangles forming ν would be the only cell of its hook length, and that moreover 
its two neighbors in the intersection would each have one larger hook length, contrary 
to (34). It follows that ν = (st, 1r) where r ≥ 1, s ≥ 2, and t ≥ 2. We now have several 
cases.
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• If s = 2, the hook lengths of ν are {1, . . . , r, r + 2, . . . , r + t + 1, 1, . . . , t}. The “gap” 
between r and r + 2 together with (34) forces t = r + 1, so that ν = (2r+1, 1r) with 
r ≥ 1. Here k = r + t + 1 = 2r + 2, resulting in case (b).

• If s ≥ 3, the last two columns of ν already contain two cells with hook length 2. If 
r > 1, the first column would also have a cell with hook length 2, contradicting (34), 
so r = 1.
– If s = 3, the hook lengths of ν are {1, . . . , t, 2, . . . , t + 1, 1, 4, 5, . . . , t + 3}. Because 

of the “gap” between t +1 and t +3, this is of the form in (34) if and only if t = 2
or t = 3, resulting in case (d).

– Suppose s > 3. If t ≥ 3, then the final three columns of ν contain three cells 
with hook length 3, contradicting (34), so t = 2. The hook lengths of ν are then 
{1, 1, 2, . . . , s −1, s +1, 2, 3, . . . , s, s +2}, which is already of the form (34), resulting 
in case (c).

The reverse implications from (a)-(d) to (ii) were verified in the course of the above 
argument.

Remark 7.2. The proof of Theorem 7.1 applies more generally to arbitrary scaling factors 
and translations of the distributions of Xλ[maj] and Xν [maj], and not just those coming 
from means and variances.

8. Future work

We conjecture that almost all of the polynomials of the form SYT(λ)maj(q) are 
unimodal and log-concave. In this section, we discuss the deviations of each of these 
properties. In the rare cases where unimodality or log-concavity fails, it only seems to 
happen at the very beginning and end of the sequence of coefficients or near the middle 
coefficient.

Recall that a polynomial P (q) =
∑n

i=0 ciq
i is unimodal if

c0 ≤ c1 ≤ · · · ≤ cj ≥ cj+1 ≥ · · · ≥ cn

for some j, and P (q) is log-concave if c2i ≥ ci−1ci+1 for all integers 0 < i < n. A 
polynomial with nonnegative coefficients which is log-concave and has no internal zero 
coefficients is necessarily unimodal [41]. By [3], we know exactly where internal zeros 
occur so log-concavity would imply unimodality in these cases.

We say P (q) is nearly unimodal if instead

c0 ≤ c1 ≤ · · · ≤ cj , cj+1 = cj − 1 < cj+2 ≤ · · · ≤ c,n
2 -

for some j and P (q) has symmetric coefficients. Also, a symmetric polynomial P (q) is 
nearly log-concave if c2i ≥ ci−1ci+1 for all 1 < i < 'n

2 (.
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Conjecture 8.1. The polynomial SYT(λ)maj(q) is unimodal if λ has at least 4 corners. If 
λ has 3 corners or fewer, then SYT(λ)maj(q) is unimodal except when λ or λ′ is among 
the following partitions:

1. Any partition of rectangle shape that has more than one row and column.
2. Any partition of the form (k, 2) with k ≥ 4 and k even.
3. Any partition of the form (k, 4) with k ≥ 6 and k even.
4. Any partition of the form (k, 2, 1, 1) with k ≥ 2 and k even.
5. Any partition of the form (k, 2, 2) with k ≥ 6.
6. Any partition on the list of 40 special exceptions:

(3, 3, 2), (4, 2, 2), (4, 4, 2), (4, 4, 1, 1), (5, 3, 3), (7, 5), (6, 2, 1, 1, 1, 1),
(5, 5, 2), (5, 5, 1, 1), (5, 3, 2, 2), (4, 4, 3, 1), (4, 4, 2, 2), (7, 3, 3), (8, 6), (6, 6, 2),
(6, 6, 1, 1), (5, 5, 2, 2), (5, 3, 3, 3), (4, 4, 4, 2), (11, 5), (10, 6), (9, 7), (7, 7, 2),

(7, 7, 1, 1), (6, 6, 4), (6, 6, 1, 1, 1, 1), (6, 5, 5), (5, 5, 3, 3), (12, 6), (11, 7), (10, 8),
(15, 5), (14, 6), (11, 9), (16, 6), (12, 10), (18, 6), (14, 10), (20, 6), (22, 6).

Conjecture 8.1 was checked for all partitions up to size n = 50. Each of the families 
(k, 2), (k, 4), or (k, 2, 1, 1) have a relatively simple set of hook lengths so explicit formulas 
can be derived for the coefficients of SYT(λ)maj(q). We have found explicit proofs of near 
unimodality for each of these cases. They are related to known integer sequences [33, 
A266755] and [33, A008642] with nice generating functions. Furthermore, these families 
are all nearly unimodal as well as 20 of the special exceptions. All rectangles with at 
least 2 rows and columns are nearly unimodal for 30 ≤ n ≤ 100. The only deviation 
occurs at i = 1 up to symmetry. We conjecture this trend also continues, hence the claim 
that all coefficients in SYT(λ)maj(q) are close to unimodal. The family (k, 2, 2) is a bit 
further from being unimodal. The proof of the following result is omitted, but follows 
directly from a careful analysis of the hook lengths.

Proposition 8.2. If λ = (k, 2, 2) for any positive integer k ≥ 3, then the maximal coeffi-
cient of fλ(q), say cj, satisfies the equation cj = cj+1 + floor(k/6) + I(4 = (k mod 6))
and c0 ≤ c1 ≤ · · · ≤ cj and j+1 is the median nonzero coefficient. Here I is an indicator 
function which is 1 if true and 0 if false.

Conjecture 8.3. The polynomials SYT(λ)maj(q) are “nearly unimodal but not unimodal” 
for partitions λ or λ′ in the following cases:

1. Any partition of rectangle shape that has more than one row and column with more 
than 30 cells.

2. Any partition of the form (k, 2) with k ≥ 4 and k even.
3. Any partition of the form (k, 4) with k ≥ 6 and k even.
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4. Any partition of the form (k, 2, 1, 1) with k ≥ 2 and k even.

Conjecture 8.3 was checked for all partitions of size up to n = 100. It also holds for 
the following 14 special exceptions:

(3, 3, 2), (4, 2, 2), (5, 3, 3), (7, 5), (6, 2, 1, 1, 1, 1), (5, 3, 2, 2), (4, 4, 3, 1), (7, 3, 3), (5, 3, 3, 3),

(11, 5), (6, 6, 1, 1, 1, 1), (6, 5, 5), (15, 5), (22, 6).

Log-concavity for the polynomials SYTmaj
λ (q) appears to be harder to characterize. 

There are examples of partitions with even 5 corners which are not log-concave. For 
example fλ(q) for λ = (9, 9, 7, 7, 5, 5, 3, 3, 2) is nearly log-concave but c21 = 42 = 16 <
17 = c0c2. The only deviation occurs at i = 1 up to symmetry. Thus, we summarize 
what we have observed in the following conjecture.

Conjecture 8.4. The polynomials SYT(λ)maj(q) are almost always log-concave for parti-
tions λ & n for large n (Fig. 8).

This conjecture is based on the fact that the normal distribution is log-concave and 
the following evidence. The approximate probability that a uniformly chosen partition of 
n has the log-concave property P (LC) and the corresponding probability for the nearly 
log-concave property P (NLC) is given in Fig. 8:

n 30 40 50
P(LC) 0.6734475 0.7876426 0.8753587
P(NLC) 0.8003212 0.9204832 0.9688140

Fig. 8. Data supporting Conjecture 8.4.

By Theorem 1.3 and the conjectured claim that the coefficients of SYT(λ)maj(q) are 
unimodal or almost unimodal for large λ, one might hope that we could approximate 
the number of T ∈ SYT(λ) with maj(T ) = k by the density function f(k; κλ

1 , κλ
2 ) for the 

normal distribution with mean κλ
1 and variance κλ

2 . We have the following conjectured 
bounds on such an approximation.

Conjecture 8.5. Let λ & n be any partition. Uniformly for all n, for all integers k, we 
have

∣∣P [Xλ[maj] = k] − f(k;κλ
1 ,κ

λ
2 )
∣∣ = O

( 1
σλ aft(λ)

)
.

The conjecture has been verified for 25 < n ≤ 50 and aft(λ) > 1 with a constant 
of 1/9, which is tight up to reasonable limits on computation in the sense that if it is 
changed to 1/10 with the other constraints the same, it fails at n = 50.
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Conjecture 8.6. Asymptotic normality for general skew shapes and not just block diagonal 
skew shapes holds if and only if aft(λ/ν(N)) → ∞ as N → ∞, generalizing the result in 
Theorem 5.8.

The argument in Section 5 proves that the “formal cumulants” associated with

[n]q!∏
c∈λ/µ[hc]q

exhibit asymptotic normality when aft(λ/µ) → ∞. However, this is only the first term 
in the general q-Naruse formula for SYT(λ/µ)maj(q). One approach to Conjecture 8.6
would be to show the remaining terms are “appropriately negligible.”
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