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Irwin—Hall distribution
Cumulants

1. Introduction

The study of permutation and partition statistics is a classic topic in enumerative com-
binatorics. The major index statistic on permutations was introduced a century ago by
Percy MacMahon in his seminal works [27,28]. This statistic, denoted maj(w), is defined
to be the sum of the positions of the descents of the permutation w = [wy, wa, ..., wy,]
in one-line notation. A descent is any position i such that w; > w;1. At first glance,
this function on permutations may be unintuitive, but it has inspired hundreds of pa-
pers and many generalizations; for example on Macdonald polynomials [21], posets [12],
quasisymmetric functions [38], cyclic sieving [34,2], and bijective combinatorics [15,7].

The following central limit theorem for maj on the symmetric group S, is well known
and is an archetype for our results. Given a real-valued random variable X', we let

denote the corresponding normalized random variable with mean 0 and variance 1.
Briefly, we say maj on S, is asymptotically normal as n — oo based on the following
classical result. See Table 1 for further examples.

Theorem 1.1. [1/] Let X, [maj] denote the major index random variable on S,, under the
uniform distribution. Then, for allt € R,

lim P[X,[maj]* <t] =PN <t

n—oo

where N is the standard normal random variable.

In this paper, we study the distribution of the major index statistic generalized to
standard Young tableaux of straight and skew shapes. The properties we discuss here
naturally generalize known properties of the major index distribution on permutations.
They also have representation theoretic consequences in terms of coinvariant algebras of
complex reflection groups. We will briefly introduce the main results. See Section 2 for
more details on the background.

Let SYT()) denote the set of all standard Young tableaux of partition shape \. We
say ¢ is a descent in a standard tableau T if 1 4+ 1 comes before ¢ in the row reading word
of T', read from bottom to top along rows in English notation. Equivalently, 7 is a descent
in T if i + 1 appears in a lower row in T. Let maj(7") denote the major index statistic
on SYT(A), which is again defined to be the sum of the descents of T. Fig. 1 shows
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Table 1
Summary of some asymptotic normality results for combinatorial statistics. See [5, Ch. 3].
Statistic Set | Generating function | References
# elements subsets (14 q)" classical
# parts strict partitions I _ (1 +axy™) [13]
length/inversion Sh [n]q! [14], [19]
number/major index
# cycles; # Sn o (a+19) [14], [19]
left-to-right minima
# descents Sn Eulerian polynomial [10, pp. 150-154]
An(q)
# descents conjugacy classes in [17, Thm. 1] [17,26]
Sn
# blocks set partitions S, S(n, k)g® [22]
2n
# valleys Dyck paths ﬁ(n )q [8, Cor. 3.3]; [18,
p. 255]
length /inversion Sn/Ss, words type (Z)q see Theorem 3.17
number/major index e
major index SYT(X) q*™ T [n][‘;j ] Theorem 1.3
(=D clg
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(a) A = (50,2), aft(\) = 2 (b) A= (50,3,1), aft(\) = 4 (c) A= (8,8,7,6,5,5,5,2,2), aft(\) = 39

Fig. 1. Plots of #{T € SYT(X) : maj(T) = k} as a function of k for three partitions A, overlaid with scaled
Gaussian approximations using the same mean and variance.

some sample distributions for the major index on standard tableaux for three particular
partition shapes. Note that Gaussian approximations fit the data well.

In Theorem 1.1, we simply let n — oo. For partitions, the shape A may “go to infinity”
in many different ways. The following statistic on partitions overcomes this difficulty.

Definition 1.2. Suppose A is a partition. Let the aft of A be
aft(\) == |\ — max{\, \]}.

Intuitively, if the first row of X is at least as long as the first column, then aft(\)
is the number of cells not in the first row. This definition is strongly reminiscent of a
representation stability result of Church and Farb [9, Thm. 7.1], which is proved with an
analysis of the major index on standard tableaux.
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Our first main result gives the analogue of Theorem 1.1 for maj on SYT()). In particu-
lar, it completely classifies which sequences of partition shapes give rise to asymptotically
normal sequences of maj statistics on standard tableaux.

Theorem 1.3. Suppose XV X2 . is a sequence of partitions, and let Xy = X\ () [maj]
be the corresponding random wvariables for the maj statistic on SYT()\(N)). Then, the
sequence X1, X, . .. is asymptotically normal if and only if aft(A(N)) = 00 as N — oo.

Remark 1.4. In Section 5, we more generally consider maj on SYT()) where A is a block
diagonal skew partition. See [3, §2] for further representation-theoretic motivation and
[3, Thm. 6.3] for the classification of the support of maj on SYT()).

The generalization of Theorem 1.3 to SYT(A) is Theorem 5.8. Special cases of Theo-
rem 5.8 include Canfield-Janson—Zeilberger’s main result in [35] classifying asymptotic
normality for inv or maj on words (though see [6] for earlier, essentially equivalent results
due to Diaconis [11]). The case of words generalizes Theorem 1.1. The AY) = (N, N) case
of Theorem 1.3 also recovers the main result of Chen-Wang—Wang [8], giving asymptotic
normality for ¢g-Catalan coefficients.

Our proof of Theorem 1.3 relies on the method of moments, which requires useful
descriptions of the moments of X\[maj]. Adin-Roichman [1] gave exact formulas for the
mean and variance of X\ [maj| in terms of the hook lengths of \. Their argument leverages
the following g-analogue of the celebrated Frame—Robinson—Thrall Hook Length Formula
[16, Thm. 1] (obtained by setting ¢ = 1):

: . nl,!
SYTO)™g) = 30 i = e 0
TESYT(N) ceal’elq

where h. denotes the hook length of a cell ¢in A and b(X\) == ".-, (i —1)A;. Equation (1)
is due to Stanley [40, Cor. 7.21.5] and is strongly related to the stable principal special-
ization of Schur functions by the identity sx(1,¢, 2 ...) = SYT(A)™(q)/ [T, (1 — ¢)
[40, Prop. 7.19.11].

In fact, formulas for the dth moment ,uf1‘7 dth central moment aé‘, and dth cumulant
k) of maj on SYT(A) may be derived from (1). The most elegant of these formulas is for
the cumulants, from which the moments and central moments are all easy to compute.

Theorem 1.5. Let AFn and d € Z~1. We have
A B - d
fa = (20— Dk (2)
j=1 CEX

where By, By, Ba, ... =1, %, %70, —%,O, 4i,0, ... are the Bernoulli numbers.

N
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See Theorem 2.9 for a generalization of (2) along with exact formulas for the moments
and central moments. See Theorem 2.10 for the some of the history of this formula.

Remark 1.6. For “most” partition shapes, one expects the term Z?Zl j% in (2) to dom-
inate ) .\ h¢, in which case asymptotic normality is quite straightforward. However,
for some shapes there is a very large amount of cancellation in (2) and determining the
limit law can be quite subtle.

While X)[maj] can be written as the sum of scaled indicator random variables
D1,2D5,3Ds, ..., (n — 1)D,,_1 where D; determines if there is a descent at position
1, the D; are not at all independent, so one may not simply apply standard central limit
theorems. Interestingly, the D; are identically distributed [40, Prop. 7.19.9]. The lack of
independence of the D;’s likewise complicates related work by Fulman [17] and Kim-Lee
[26] considering the limiting distribution of descents in certain classes of permutations.

The non-normal continuous limit laws for maj on SYT(A) turn out to be the Irwin—
Hall distributions THy == Zkle U[0, 1], which are the sum of M i.i.d. continuous [0, 1]
random variables. The following result completely classifies all possible limit laws for maj
on SYT()) for any sequence of partition shapes. See Theorem 6.3 for the generalization
to block diagonal skew shapes.

Theorem 1.7. Let XV X2 . be a sequence of partitions. Then (X [maj]*) converges
in distribution if and only if

(i) aft(AN)) = oo; or

(ii) |AN)| = oo and aft(AN)) — M < oo; or

1it) the distribution of XY ) |maj| is eventually constant.
A

The limit law is N in case (i), THy, in case (ii), and discrete in case (iii).

Case (iii) naturally leads to the question, when does A}[maj] = &};[maj]? Such a
description in terms of hook lengths is given in Theorem 7.1. Theorem 1.7 naturally
raises several open questions and conjectures concerning unimodality, log-concavity, and
local limit theorems, which are described in Section 8.

Example 1.8. We illustrate each possible limit in Theorem 1.7. For (i), let A=
(N, [In N|), so that aft(A(N)) = [InN| — oo and the distributions are asymptotically
normal. For (ii), fix M € Z>q and let \(N) := (N + M, M), so that aft(\(N)) = M is con-
stant and the distributions converge to ¥%,. For (iii), let AN := (12,12,3,3,3,2,2,1,1)
and AGN+D — (15,6,6,6,4,2), which have the same multisets of hook lengths despite
not being transposes of each other, and consequently the same normalized maj distribu-
tions.
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The rest of the paper is organized as follows. In Section 2, we give background focused
on cumulants aimed at the combinatorial audience. In Section 3, we collect combinatorial
background on permutations, tableaux, etc, aimed more at the probabilistic audience. In
Section 4, we analyze baj — inv on S,, as an introductory example. In Section 5, we classify
when maj on SYT()) is asymptotically normal. In Section 6, we determine the remaining
continuous limit laws for maj on SYT()A). In Section 7, we characterize the possible
discrete distributions for maj on SYT()\) in terms of hook lengths. Finally, Section 8
lists conjectures concerning unimodality, log-concavity, and local limit theorems.

2. Background on cumulants

In this section, we review some standard terminology and results on generating func-
tions, random variables, and asymptotic normality, with a focus on cumulants. An
excellent source for many further details in this area can be found in Canfield’s Chapter 3
of [5].

2.1. Exponential generating functions

We now introduce our notation for exponential generating functions and the Bernoulli
numbers, which will be used with cumulants shortly.

Definition 2.1. Given a rational sequence (gq4)%>, = (9o, 91, - - .), the corresponding ordi-
nary generating function is

Oy(t) = ngtd

d>0
and the corresponding exponential generating function is
4d
E,(t) = nga.
d>0
Conversely, any rational power series
d t
_ — 1£,2
F(t)=)_ fat'=) dfis
d>0 d>0

is the ordinary generating function of the sequence (fq)52, = (fo, f1,...) and the ex-
ponential generating function of the sequence (d!f;)52,. The exponential generating
functions we will encounter will all have a positive radius of convergence.

It is easy to describe products, quotients and compositions of generating functions.
We recall in particular a formula for compositions of exponential generating functions
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for later use. Given two rational sequences f = (f4)32q, 9 = (9a)32 such that fo =0
and go = 1, the composition of their exponential generating functions F, o E¢ is again
an exponential generating function for a rational sequence h, say Ej(t) = Eq(Ef(t)). For
example, if E¢(t) = Y f4t?/d! and E,(t) = e?, so g; = 1 for all 4, then by [40, Cor. 5.1.6],
the corresponding sequence (hq)32, is given by hg = 1 and, for d > 1,

ha = Z Hf|b\7 (3)

welly beEn

where I, is the collection of all set partitions m = {b1,bo,...,b;} of {1,2,...,d}. Col-
lecting together Sg-orbits of I1; in (3) quickly gives

d!
hd_;zAH(A _1)' (4)

where if A has m; parts of length i, then z) = 1™12™2 ... mylmy!---. A more computa-
tionally efficient, recursive approach to (3) is the formula [40, Prop. 5.1.7]

ha = fa+ di ( )fmhd m- (5)

Example 2.2. The Bernoulli numbers (Bgq)32, are rational numbers determined by the
exponential generating function Fg(t) :=t/(1—e™*). The first few terms in the sequence

are
1 1 1 1
B0—17Bl—§;B2 5’ B3 =0, B4——% B5—O,Bg—ﬁ,
1 5 691
7 07 8 307 9 07 10 667 11 07 12 2730

The divided Bernoulli numbers are given by < for d > 1. Their exponential generating
function Ep(t) satisfies 1 +tLEp(t) = Ep(t )7 from which it follows that

By t? el —1
Ep(t) = %Ezlog( " )

d>1

We caution that a common alternate convention for Bernoulli numbers uses B; = —%

with all other entries the same, corresponding with the exponential generating function

t/(et —1).

The Bernoulli numbers have many interesting properties; see [30,46] and [20, Sec-
tion 6.5]. For example, they appear in the polynomial expansion of the sums of dth
powers,
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n d
1 d+1 _
N QYL ®

k=1 k=0

Compare the formula for sums of dth powers to the Riemann zeta function ((s) =

oo # which can be evaluated at complex values s # 1 by analytic continuation. The
Ba _

divided Bernoulli numbers which appear in our formula (2) satisfy ¢ = —((1 — d).
2.2. Probabilistic generating functions

We next review basic vocabulary and notation for moments and cumulants of random
variables. All random variables we encounter will have moments of all orders. See [4] for
more details.

Definition 2.3. Let X be a real-valued random variable where either X is continuous with
probability density function f: R — R>¢ or X is discrete with probability mass function
f:Z — Rsq. The cumulative distribution function (CDF) of X is given by

t

P(t) = / f@de o Pt)= f(k)

k<t

depending on whether X is continuous or discrete. For any continuous real-valued func-
tion g, there is an associated random variable g(&X'). The expectation of g(X) is given
by

By = [o@i@de o Eg@)= > o0
R k=—o00
The mean and variance of X are, respectively,
= E[X] and o? =E[(X — p)?].
For d € Z>¢, the dth moment and dth central moment of X are, respectively,

g = E[X%] and ag =E[(X — ).

The moment-generating function of X is
tX —
Mx(t) == E[e""] = Z’udﬁ’
d=0

which for us will always have a positive radius of convergence. The characteristic function
of X is
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dx (t) = E[eitx]v

which exists for all ¢ € R and which is the Fourier transform of f, the density or mass
function associated to X.

Example 2.4. Let W be a finite set with an integer statistic stat: W — Z>y. We will use
the notation

Wstat(q) — Z qstat(w)
weWw

for the corresponding polynomial generating function. If W%t(q) = 3" ciq", define a
random variable X" associated with stat: W — Z>, sampled uniformly on W by P(X =
k) = cx/#W. The probability generating function for X is

1 sta 1 stat(w
Elg") = oW (@) = o D ¢
weW

Letting ¢ = e?, an easy computation shows that the moment-generating function and
characteristic function of X are
MX (t) — LWstat(et) and ¢X(t> — sttat (eit)
#W #W

These expressions reveal an intimate connection between the study of generating func-
tions of combinatorial statistics evaluated on the unit circle and the underlying proba-
bility distribution via the Laplace and Fourier transforms. In particular, the distribution
determines the characteristic function and the moment-generating function, and con-
versely each of these determines the distribution.

Definition 2.5. The cumulants ki, k2,... of X are defined to be the coefficients of the
exponential generating function

Ky(t) = Z’ida = log My (t) = log E[e!].
d=1 '

While cumulants of random variables may initially be less intuitive than moments,
they lead to nicer formulas in many cases, including Theorem 1.5, and they often have
more useful properties. See [32] for some history and applications. We will use the fol-
lowing properties of cumulants. The proofs are straightforward from the definitions.

1. (Familiar Values) The first three cumulants are 1 = p, ke = 02, and k3 = a3. The
higher cumulants typically differ from the moments and central moments.

2. (Shift Invariance) The second and higher cumulants of X’ agree with those for X — ¢
for c € R.
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3. (Homogeneity) The dth cumulant of cX is c?ky for ¢ € R.

4. (Additivity) The cumulants of the sum of independent random variables are the sums
of the cumulants.

5. (Polynomial Equivalence) The cumulants, moments, and central moments are deter-
mined by polynomials in any one of these three sequences.

The polynomial equivalence property can be made explicit by the results in Section 2.1.
Equation (5) allows us to express the dth moment of X’ as a polynomial function of the
first d cumulants of X and vice versa via the recurrence

-1 0
pa= kit Y (m 3 1) Fom Hd—m- (7)

Using the shift invariance property of cumulants, the corresponding formula for the
central moments in terms of the cumulants can be obtained from (7) by setting k3 = 0
and leaving the other cumulants alone. This gives, for d > 1,

U

—2
d—1
g = Kq + ( >I<Jm04d_m. (8)

: m— 1

3
Il

For instance, at d = 3 we have
3 = K3 + 3Kaki + K5
Setting k1 = 0 yields as = k3 as mentioned above.
2.3. Cumulant formulas
Next we describe the cumulants of some well-known distributions and use one of
them to deduce a result of Hwang—Zacharovas, which immediately yields Theorem 1.5

as a corollary.

Example 2.6. Let X = N (p,02) be the normal random variable with mean p and vari-

ance o2. The density function of X is f(x;u,0?) = ﬁ exp (—(x;;;)z). Taking the

Fourier transform gives the characteristic function E[e?*] = exp (i,ut — %02152), so the

moment-generating function is E[e!*] = exp (ut + %UQtQ) and the cumulants are

1
Kqa =102 d=2, 9)
3
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Using (4) to compute the central moments of X from (9), we effectively set k1 = 0
and note that only A = (2,2,...,2) = (2%2) contributes, in which case ag =
k3241 /(24/2(d/2)1). Tt follows that

0 if d is odd,
(8% =
! ol(d—1)

if d is even.

Example 2.7. Let U = U[0, 1] be the continuous uniform random variable whose density
takes the value 1 on the interval [0,1] and 0 otherwise. Then the moment generating
function is My (t) = fol e*dr = (e —1)/t, so the cumulant generating function log My (¢)
coincides with the exponential generating function for the divided Bernoulli numbers
from Section 2.1. That is, K4 = By/d for d > 1.

Recall from Section 1, ZH,, is the Irwin-Hall distribution obtained by adding m
independent, identically distributed #[0,1] random variables. By Additivity, the dth
cumulant of ZH,,, is mBg/d. More generally, let S := > ;" | U[ay, Bx] be the sum of m
independent uniform continuous random variables. Then the dth cumulant of S for d > 2
is

d:%Z/Bk_ak (10)

k=1

by the Homogeneity and Additivity Properties of cumulants.

Example 2.8. Let U, be the discrete uniform random variable supported on {0,1,...,n—
1}. The probability generating function for U, is [n]|,/n = (¢" — 1)/(n(q — 1)), so the
cumulant generating function is

ent —1 ent —1 et —1
logMun(t)zlog<m)zlog( — )—log( " )

It follows that for d > 1, the divided Bernoulli numbers arise again in this context,

kY = &(nd —1). (11)

Product formulas for polynomials such as Stanley’s formula (1) give rise to explicit
formulas for cumulants and moments according to the following theorem. The proof is
immediate from Theorem 2.8 and the exponential generating function identity (4).

Theorem 2.9. Suppose {a1,...,an} and {b,..., by} are multisets of positive integers
such that

P(q) = %:1 chq € Z>olql,
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so in particular each ¢ € Z>q. Let X be a discrete random variable with P[X = k| =
ck/P(1). Then the dth cumulant of X is

By >
K :72 —bd (12)

ol
—_

where By is the dth Bernoulli number (with By = %) Moreover, the dth central moment

of X is

d! By, | &
we X TR [ wen)| 13
) Aim1 2 k=1
has all parts even
and the dth moment of X is
£(XN) m
d! B,
AFd Aim1 7 k=1

has all parts eitlher
Remark 2.10. Equation (12) appeared explicitly in the work of Hwang—Zacharovas [24,
§4.1] building on the work of Chen—Wang—Wang [8, Thm. 3.1], who in turn used an
argument going back at least to Sachkov [36, §1.3.1]. It was rediscovered experimentally
through (14) by the present authors and also rediscovered by Thiel-Williams [45].

One frequently encounters polynomials of the form ¢°P(q) for some 8 € Z>g, as in
(1). The formulas in Theorem 2.9 remain valid in this case except that one must add
to the expression for k1 and add /3 to each factor in the product in (14) for which A\; = 1.

Remark 2.11. The generating function machinery used to construct the cumulants in
(12) works whether or not the function P(q) is polynomial. The corresponding r4’s are
called formal cumulants in the literature.

2.4. Asymptotic normality

Asymptotic normality is a very old topic lying at the intersection of probability and
combinatorics. For an introduction, we recommend Canfield’s Chapter 3 in [5].

Definition 2.12. Let X}, X, ... and X be real-valued random variables with cumulative
distribution functions Fi, F5,... and F, respectively. We say X1, Xs,... converges in
distribution to X, written X,, = X, if for all ¢ € R at which F' is continuous we have

lim F,(t) = F(t).

n— 00
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Recall from the introduction that for a real-valued random variable X with mean p
and variance o2 > 0, the corresponding normalized random variable is
X —p

X* = .
o

Observe that X* has mean p* = 0 and variance 0** = 1. The moments and central
moments of X'* agree for d > 2 and are given by

py = g = ag/o’.
Similarly, the cumulants of X* are given by 7 = 0, k3 = 1, and )} = kq/0? for d > 2.

Definition 2.13. Let X7, X5, ... be a sequence of real-valued random variables. We say
the sequence is asymptotically normal if X = N(0,1).

The “original” asymptotic normality result is as follows. Let 2[" be the set of all
subsets of [n] = {1,2,...,n}. Let Xym[size] denote the random variable given by the
cardinality, where 2["! is given the uniform distribution. This has the same distribution
as the number of heads after n fair coin flips, so the probability generating function up
to normalization is (1 + ¢)™. The following result is credited to de Moivre and Laplace;
see [5, Theorem 3.2.1] for further discussion.

Theorem 2.14 (de Moivre—Laplace). The sequence Xy [size] is asymptotically normal.

Asymptotic normality results for combinatorial statistics are plentiful. See Table 1 for
more examples and further references.

2.5. The method of moments

We next describe two standard criteria for establishing asymptotic normality or more
generally convergence in distribution of a sequence of random variables.

Theorem 2.15 (Lévy’s Continuity Theorem, [/, Theorem 26.3]). A sequence X1, Xs, ... of
real-valued random variables converges in distribution to a real-valued random variable
X if and only if, for allt € R,

lim E[e*] = E[eY].

n— oo
Theorem 2.16 (Frechét-Shohat Theorem, [/, Theorem 30.2]). Let Xy, X, ... be a se-
quence of real-valued random wvariables, and let X be a real-valued random variable.
Suppose the moments of X,, and X all exist and the moment generating functions all
have a positive radius of convergence. If
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lim pi" = g Vd € Zsy, (15)
n—oo -
then Xy, Xo, ... converges in distribution to X .

By Theorem 2.15, we may test for asymptotic normality by checking if the normalized
characteristic functions tend point-wise to the characteristic function of the standard
normal. Likewise by Theorem 2.16 we may instead perform the check on the level of
individual normalized moments, which is often referred to as the method of moments.
By (7) we may further replace the moment condition (15) with the cumulant condition

: Xn _ X
nILI%O Kg" =Ky . (16)

For instance, we have the following explicit criterion.

Corollary 2.17. A sequence X1, X, ... of real-valued random wvariables on finite sets is
asymptotically normal if for all d > 3 we have

=0 (17)

In fact, one may show a converse of the Frechét—Shohat theorem holds for quotients
as in Theorem 2.9, though we will not have need of it here.

2.6. Local limit theorems

Asymptotic normality concerns cumulative distribution functions, so it gives estimates
for the number of combinatorial objects with a large range of statistics. However, our
original motivation was to count combinatorial objects with a given statistic. Estimates
of this latter form are frequently referred to as local limit theorems. Here we review two
motivating examples.

The present work was partly inspired by the following local limit theorem due
to the third author with a uniform rather than normal limit law. For A F n, let
maj, : SYT(\) — [n] be maj modulo n.

Theorem 2.18. [}/, Theorem 1.9] For A\ b n, let X)[maj, ] denote the random variable
maj,, on SYT(X). Suppose # SYT(X) > n>. Then, for all k € [n],

. 1 1

Further motivation was provided by the following analogue of Theorem 3.16.
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Theorem 2.19. /35, Theorem 4.5] There exists a positive constant ¢ such that for every
C, the following is true. Uniformly for all compositions « = (a,...,qm) such that
max; a; < Ce®® and all integers k,

1 . 1
PIX. — b — 6—<k—m/<2a)+o( ))
| ] 0\/27r<

where X, denotes inversions on words of type a.

3. Combinatorial background
3.1. Combinatorial background for baj—inv on S,

Here we introduce the two most well-known permutation statistics, inv and maj, as
well as one unusual permutation statistic, baj.

Definition 3.1. Let o € S,, be a permutation of {1,...,n}. Set

Inv(o) :=={(4,j) :i < jand (i) > o(j)} (inversion set)

inv(o) :== | Inv(o)| (inversion number, i.e. length)

Des(o) ={1<i<n—1:0()>c(i+1)} (descent set)

maj(o) = Z i (major index).
i€Des(o)

Following Zabrocki [47] for the nomenclature, we also set

baj(o) = Z i(n —1).

i1€Des(o)

The equidistribution of inv and maj on S,, is due to MacMahon, who also first intro-
duced maj. His proof gave the following generating function expression for both statistics.

Theorem 3.2 ([27, Art. 6]). We have

n—1

Siv(@) = [nlgd = [[+a+ 0+ 4% = 52(0).
k=1

The statistic baj —inv appeared in the context of extended affine Weyl groups and
Hecke algebras in the work of Iwahori and Matsumoto in 1965 [25]. It is the Coxeter
length function restricted to coset representatives of the extended affine Weyl group of
type A,—1 mod translations by coroots. Stembridge and Waugh [43, Remarks 1.5 and
2.3] give a careful overview of this topic and further results. In particular, they prove the
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following factorization formula for the generating function associated to baj —inv on S,.
From this factorization, the corresponding cumulants can be read off from Theorem 2.9.

Theorem 3.3. [25,/3] We have
T litn =)
Sgaj — inv(q) — qbaj(a)—inv(a) —n ' a. (18)
a;ﬂ };[1 [i]q

Corollary 3.4. The dth cumulant k]; for baj—inv on S, is

Remark 3.5. Indeed, (18) holds with S,, replaced by {0 € S,, : 0(n) = k} for any fixed
k=1,...,n if the factor of n is deleted from the right-hand side. See [47] for a bijective
proof of this generalization. In addition, [43, Thm. 1.1] gives another generalization of
the product formula (18) to all crystallographic Coxeter groups.

3.2. Combinatorial background for maj on W, and SYT(A)

Here we review standard combinatorial notions related to words, tableaux, and their
major index generating functions.

Definition 3.6. Given a word w = wjws - - - w,, with letters w; € Z>1, the type of w is
the sequence o = (a1, g, ...) where «; is the number of times ¢ appears in w. Such a
sequence « is a (weak) composition of n, written as o F n. Trailing 0’s are often omitted
when writing weak compositions, so & = (a1, ag, . .., a;,) for some m. Note that a word
of type (1,1,...,1) E n is a permutation in the symmetric group S,, written in one-line
notation. Just as for permutations, the inversion number of w is

inv(w) == #{(7,7) : i < j,w; > w,}.
The descent set of w is
Des(w) :={0<i<n:w; > w1},

and the major index of w is
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| | | s|7]e[3]2]1]
4]3]2
3|21

(a) Young diagram of A\. (b) Hook lengths of A.

Fig. 2. Constructions related to the partition A = (6, 3,3) - 12.

Definition 3.7. Let ao = (a1, ..., a,,) E n. We use the following standard g-analogues:
n)lg = l1+q+---+q¢" = qqn_—_ll, (g-integer)
[nlg! = [nfg[n —1g---[1q, (g-factorial)
n nlq! . .
(k)q = m € Z>o[q), (g-binomial)
(Z)q = m € Z>olq| (g-multinomial).

Example 3.8. The identity statistic on the set W = {0,...,n—1} has generating function
[n]q. The “sum” statistic on W = [[,;_,{0, ...,k — 1} has generating function [n],!.

For a F n, let W, denote the words of type a. MacMahon’s classic result generalizing
Theorem 3.2 in fact shows that maj and inv have the same distribution on W,.

Theorem 3.9 ([27, Art. 6]). For each a E n,

wri = (1) = W) (19)
q
Definition 3.10. A composition A F n such that Ay > Ay > ... is called a partition of
n, written as A F n. The size of X is |\| := n and the length ¢(\) of A is the number of
non-zero entries. The Young diagram of X is the upper-left justified arrangement of unit
squares called cells where the ith row from the top has \; cells following the English
notation; see Fig. 2a. The hook length of a cell ¢ € X is the number h. of cells in A in
the same row as ¢ to the right of ¢ and in the same column as ¢ and below ¢, including
c itself; see Fig. 2b. A corner of X is any cell with hook length 1. A bijective filling of A
is any labeling of the cells of A by the numbers [n] = {1,2,...,n}.

Definition 3.11. A skew partition A/v is a pair of partitions (v, A) such that the Young
diagram of v is contained in the Young diagram of A. The cells of A/v are the cells in the
diagram of A\ which are not in the diagram of v, written ¢ € \/v. We identify straight
partitions A with skew partitions A\/@ where @ = (0,0, ...) is the empty partition. The
size of \/v is |A/v| :== |A| = |v|. The notions of bijective filling, hook lengths, and corners
naturally extend to skew partitions as well.

Definition 3.12. Given a sequence of partitions A = (A, ... A(™)) we identify the
sequence with the block diagonal skew partition obtained by translating the Young di-
agrams of the A so that the rows and columns occupied by these components are
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L]

Fig. 3. Diagram for the skew partition A\/v = 76443/4433, which is also the block diagonal skew shape
A=((3,2),(1,1),(3)).

1]2]4]7]9]12] 26

3]6[10 4]5
5]8]11 1]3]7

Fig. 4. On the left is a standard Young tableau of straight shape A = (6, 3, 3) with descent set {2,4,7,9,10}
and major index 32. On the right is a standard Young tableau of block diagonal skew shape (7,5,3)/(5, 3)
corresponding to the sequence of partitions A = ((2), (2), (3)) with descent set {2,6} and major index 8.

disjoint, form a valid skew shape, and appear in order from top to bottom as depicted
in Fig. 3.

Definition 3.13. A standard Young tableau of shape \/v is a bijective filling of the cells
of A/v such that labels increase to the right in rows and down columns; see Fig. 4. The
set of standard Young tableaux of shape A/v is denoted SYT(A/v). The descent set of
T € SYT(A\/v) is the set Des(T) of all labels ¢ in T" such that ¢ + 1 is in a strictly lower
row than 7. The major index of T is

maj(7T) = Z i

i1€Des(T)

Remark 3.14. The block diagonal skew partitions A allow us to simultaneously con-
sider words and tableaux as follows. Recall that W, is set of all words with type
a=(ag,...,a). Letting A = ((ax),...,(a1)), we have a bijection

¢: SYT(A) = W, (20)

which sends a tableau T to the word whose ith letter is the row number in which ¢ appears
in T, counting from the bottom up rather than top down. For example, using the skew
tableau 7" on the right of Fig. 4, we have ¢(T") = 1312231 € W 3 9 ). It is easy to see that
Des(o(T )) = Des(T), so that maj(¢(T)) = maj(T). Hence SYT((a1), ..., (ag))™(q) =
Wa(9) = (3)

Remark 3.15. We also recover g-integers, g-binomials, and ¢-Catalan numbers up to ¢-
shifts as special cases of the major index generating function for tableaux given in (1):

q[nlq if \=(n,1),
SYT(N)™i(g) = 4 ¢("3)(7),  ifA=(m—k+1,1%),

Pt (), A= ()
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Many combinatorial statistics arise from sets indexed by more complicated objects
than the positive integers, in which case one can “let n — 0o0” in many different ways.
The following result due to Canfield, Janson, and Zeilberger illustrates a more interesting
limit. Their result is characterized by the statistic s(«) := n—m where a = (a1, ...,a4) F
n with max{a;} =m

Theorem 3.16. [35, Theorem 1.2] Let oY), o), ... be a sequence of compositions, possibly
of differing lengths. Let X,, be the inversion (or major index) statistic on words of type
a™ . Then X1, Xy, ... is asymptotically normal if and only if

s(a™) = oo

Remark 3.17. Explorations equivalent to Theorem 3.16 appeared significantly earlier
than [35] in other contexts, for instance [11, p. 127-128] and (in the two-letter case) [29].
See [6] for further discussion and references.

The cumulant formula for X)[maj], Theorem 1.5, follows immediately from Theo-
rem 2.9 and Stanley’s formula (1). Adin and Roichman [1] had previously used (1) to
compute the mean and variance of X)\[mayj| as

31) = BX) + b(A al
p B w0 riy e wnl
and
I)\l 2 2
o2 12 Zk Zh

CEA

The following common generalization of Stanley’s formula (1) and MacMahon’s for-
mula, Theorem 3.9, is well known (e.g. see [42, (5.6)]). See [3, Thm. 2.15] for other
applications.

Theorem 3.18. Let A = (A ... A" where A - oy andn = oy + -+ + ap,. Then
n m . .
SYT())™ I sYT(A®@)mai(q). 21
i =, ") sy (21)
Corollary 3.19. Let KZd be the dth cumulant of maj on SYT(A) for d > 1. Then

Al

Ky = Bd Zk:d Sond|. (22)

CEA
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For general skew shapes, SYT(\/v)™# (q) does not factor as a product of cyclotomic
polynomials times g to a power. A “g-Naruse” formula due to Morales—Pak—Panova, [31,
(3.4)], gives an analogue of (1) involving a sum over “excited diagrams,” though the
resulting sum has a single term precisely for the block diagonal skew partitions A

4. Asymptotic normality for baj — inv on S,,

We begin with a straightforward example which serves as a warmup and establishes
some notation. See Section 3.1 for background. Asymptotic normality of baj —inv on S,
follows from the cumulant formula in Corollary 3.4 by the following routine calculations.
Recall that a, ~ b, means that lim,_, a,/b, = 1.

Lemma 4.1. Fix d > 1. Then, as n — oo,

n—1 1
> fi(n — i)t — i ~ 2t /xd(l —z)%da.
=1 0

Proof. We have

n—1r. . . n—1 . d . d . d
. Zi:ll [i(n — Z)]d — 44 o1 ) 1 7
Jim oz, =Jtm 2> 1) U-n)

Remark 4.2. The value of the integral in Lemma 4.1 is well known:

/ @1 f2d\7!
/xd(l_w)ddz_(2d+1)!_2d+1(d> ' (23)

See [33, A002457] for a surprisingly large number of interpretations of the reciprocals
of these values. Equation (23) is also a very special case of the Selberg integral formula

[37], which has many interesting connections to algebraic combinatorics such as those in
[39].

Corollary 4.3. Fiz d € {1,2,4,6,...}. Let ] be the dth cumulant of baj —inv on Sy, and
let K™ be the dth cumulant of the corresponding normalized random variable with mean
0 and variance 1. Then, uniformly for all n, we have
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|kg"| = O (n' =) (24)
That is, there are constants ¢,C' > 0 depending only on d such that
ent= 2 < |7 < Ontmd/2,

Proof. It follows immediately from Corollary 3.4 and Lemma 4.1 that 7| = ©(n2dt1),
Hence

R3] = D/ () 2] = O H1-50/2) = @ (n1=/2).

Theorem 4.4. Let X,, = Xg, [baj —inv] be the random variable for the baj—inv statistic
taken uniformly at random from S,,. Then, Xy, Xs, ... is asymptotically normal.

Proof. For fixed d > 2 even, we have 1 — d/2 < 0, so by Corollary 4.3, k}* — 0 as
n — 00. The odd cumulants for d > 2 vanish since the odd Bernoulli numbers are 0. The
result now follows from Corollary 2.17.

Remark 4.5. A key step in the above argument was to show that the variance o2 of
baj—inv on S, satisfies 02 = ©O(n°). Indeed, the argument gives 02 ~ n5/360. The
weaker observation that 2?2—11 [i(n—1)]? is the dominant contribution to o2 is essentially
enough to deduce asymptotic normality in this case. Our analysis of maj on standard
tableaux includes non-normal limits, so more precise estimates like the above will become
absolutely necessary. A straightforward modification of the above argument together with

Theorem 3.2 also proves Theorem 1.1.
5. Asymptotic normality for maj on SYT(A)

The main result of this section, Theorem 5.8, classifies the sequences of block diag-
onal skew partitions for which maj is asymptotically normal. We begin with a series of
estimates for the differences Z'k)‘:/i’ g — D ocer/v hd, culminating in Corollary 5.7.
Definition 5.1. A reverse standard Young tableau of shape A\/v is a bijective filling of
A/v which strictly decreases along rows and columns. The set of reverse standard Young
tableaux of shape \/v is denoted RSYT(A\/v).

Lemma 5.2. Let A\/vFn and T € RSYT(\/v). Then for all c € \/v,

T, > he. (25)

Furthermore, for any positive integer d,
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D it= > =Y (T -h)= > (T. - ho)ha1(Te, he), (26)
Jj=1 cENv cEX/V cEN/V

where hy_1 denotes the complete homogeneous symmetric function.

Proof. For (25), the entries in the hook of ¢ form a subset of {1,2,...,n} of size h, with
maximum T, so T, > h.. Equation (26) follows immediately by rearranging the terms
and factoring (T — hd) = (T. — h )Zd LAk pk

Lemma 5.3. Let \/v = n such that max.cy/, he < 0.8n. Let d be any positive integer.
Then

nd—l—l

+1
Y 08n<zj 3 nl< e

cEN/V
Proof. Using Riemmann sums for fon x4dx, we obtain the bounds

nd+1 n J nd+1 d
O W (P 27
d+1 ;J PR (27)

for all positive integers d,n. The upper bound in the lemma now follows immediately.

For the lower bound, label the cells of A\/v by some T' € RSYT(A\/v). By (25), h. < T,
and by assumption we have h. < 0.8n for all ¢ € A\/v. Considering the tighter of these
two bounds on each summand and using (27) again, we have

Zhd<2j+208n

cENV j]< 60[7%]71 ]J> eo%]n
% +10.8n]% + (n — [0.8n] + 1)(0.8n)¢
< % +2(0.8n)% + (0.2)(0.8)4n*1,
Consequently,
; Cg:/y e > Z+11 (Ofi)iﬂ —2(0.8n)% — (0.2)(0.8)%nd+!

- (ﬁu — (0.8)%1) — 0.2(0.8)d> n* —2(0.8)"n?

d+1

It is easy to check that the coefficient on n is bounded below by m for all positive

integers d. The result follows.
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Fig. 5. On the left, the partially constructed T' € RSYT(\/v) after all the cells of R (in red and bold) have
been filled. On the right, the final T € RSYT(A/v). Here aft(\/v) = 10.

Definition 5.4. Given any partition A\/v = n, let the aft of A\/v be the statistic
aft(A\/v) =n — m)a\t/x {arm(c), leg(c)}
CEA/V

where arm(c) is the number of cells in the same row as ¢ to the right of ¢, including ¢
itself, and leg(c) is the number of cells in the same column as ¢ below ¢, including c.
When v = @, we have aft(\) = n — max{\;,\|} as above. When \/v = A, we have
aft(A) = n — max; { A\, XD\ }. Note that h, = arm(c) + leg(c) — 1.

Lemma 5.5. Let \/v = n such that maXccy/y he > 0.8n, and let d be any positive integer.
Furthermore, suppose n > 10. Then,

aft(\/v) Lo’z’”d <35 S B < 2aft(Mw) (4 dnt) (28)
7=1 cEXN/v

Proof. The result holds trivially if aft(\/v) = 0 since in that case A\/v is a single row or
column, so assume aft(\/v) > 0. Let m € A\/v have h,, > 0.8n, where we may assume
m is the first cell in its row and column. For convenience, we may further assume by
symmetry that arm(m) > leg(m). Since h,, > 0.8n, it also follows that aft(\/v) =
n — arm(m).

Now let R be the set of cells in the row of m, not including m itself, which are
the only cells of A/v in their columns. Since A/v is a skew partition, R is connected.
We claim that #R > 0.1n. To prove the claim, we first observe that the hypothesis
hym > 0.8n implies there are at most n — h,, < 0.2n cells of \/v which could possibly
be in the columns of the cells of the row of m not including m. Since arm(m) > leg(m)
and arm(m) + leg(m) — 1 = h,, > 0.8n, we have arm(m) > 0.4n. Hence no more than
0.2n of the 0.4n — 1 cells in the row of m not including m can be excluded from R, so
#R >0.4n—1—-0.2n > 0.1n for n > 10.

Construct T' € RSYT(A\/v) iteratively as follows; see Fig. 5 for an example. At each
step of the iteration, we will first increment all existing labels by 1 and then label a new
outer cell with 1. Begin by adding the cells of the row of m from left to right until the
last cell of R has been added. Now add the remaining cells of \/v row by row starting
at the topmost row and going from left to right. It is easy to see that the result respects
the decreasing row and column conditions, so T" € RSYT(A\/v).
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Fig. 6. On the left, the second partially constructed T' € RSYT(A/v) after the first arm(m) cells have been
filled. On the right, the final T € RSYT(\/v).

By Lemma 5.2, we have inequalities T, > h.. At every step of the iteration, a labeled
cell has T, increase by 1, while h. increases by 1 if and only if the newly labeled cell
is in the hook of c¢. That is, for the final filling 7', T, — h. counts the number of times
after cell ¢ was filled that the new cell was not in the same row or column as c. For each
¢ € R, it follows that T. — h. = n — arm(m) = aft(\/v).

For the lower bound, we now find

n

S kP= " b= (Te — ho)hg_1 (T, he)

k=1 ceENJV cER

= Z aft(A/v)hq_1(hc + aft(A/v), he)
ceER

[0.1n ]

> > aft(\v)hg_1 (k + aft(A/v), k)
k=1

[0.1n |
>aft(A\/v) > k7!
k=1
10.1n |4

> aft(A/v) T

where the first inequality uses the fact that {h. : ¢ € R} has pointwise lower bounds of
{1,2,...,#R} and the last inequality uses (27).

For the upper bound, we construct a new 7' € RSYT(A/v) as follows; see Fig. 6 for an
example. First, for each cell ¢ in the row of m taken from left to right, add the topmost
cell in the column of c. Now add the remaining cells of A/v exactly as before. Again
consider the final differences T, — h.. For cells added in the second stage, T,. — h. could
increase no more than n—arm(m) = aft(\/v) times, so T. — h. < aft(\/v) for such c. For
cells added in the first stage, we claim that T, — h. < 2aft(\/v). For the claim, it suffices
to show that after the first stage, for cells added in the first stage, T, — h. < aft(\/v).
During the first stage, the differences T, — h. are zero while cells of row m are being
added. Afterwards during the first phase, cells not in row m are added, of which there
are no more than n —arm(m) = aft(\/v), so the differences T, — h. can increase no more
than aft(A/v) many times during the first phase, completing the claim.
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Having established that T, — h. < 2aft(\/v), we now find by (26) and (27),

n

S kP = " hi= > (T. - he)hg1(Te, he)

k=1 cEN/V CcENV
< Z 2aft(A\/v)hg_1(T,,T¢)

ceEXV

= 2aft(\/v) z”: djt1

j=1
< 2aft(\/v) (nd + dndil) :

Corollary 5.6. For fized d € Z>1, uniformly for all skew shapes \/v,

[A/v
S k= > h = 0(aft(M/v) - |\v]Y). (29)
k=1 cEN/V

Proof. Let n = |\/v|. When max.cy/, he > 0.8n, the result follows from Lemma 5.5.

On the other hand, when max.cy/, he < 0.8n, then n > aft(A/v) > 0.2n, and the result

follows from Lemma 5.3

Corollary 5.7. Fix d to be an even positive integer. Uniformly for all block diago-
nal skew shapes A\, the absolute value of the normalized cumulant |I€% | of Xy\[maj] is

O(aft(A)1—%/?).
Proof. For d even, by (22) and Corollary 5.6, we have

k3] = O(aft(A)n?),

where n = |A|. Consequently by the homogeneity of cumulants, we have

7 d
A _ | Ra | aft(\)n B o
| ‘(/@A)dﬂ =9 (W = O(aft(N\)1 9.
2 A

We now state and prove the generalization of Theorem 1.3 for the block diagonal skew
shapes A from Section 3.2.

Theorem 5.8. Suppose A(l),A(Q), ... 1s a sequence of block diagonal skew partitions, and
let Xy = Xy [maj] be the corresponding random variables for the maj statistic. Then,
the sequence X1, Xs, ... is asymptotically normal if and only if aft(A(N)) — 00 as N —
00.
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Proof. If aft(A(N )) — 00, the result follows immediately from Corollary 2.17, Corol-
lary 5.7, and the fact that the odd cumulants vanish. On the other hand, if aft(A¥)) 4
00, in the next section we will show that A", X5, ... has a subsequence which converges
to either a discrete or uniform-sum distribution, which in either case is non-normal.

Remark 5.9. Using work of Hwang—Zacharovas [24, Thm. 1.1], considering just the d = 4
case is sufficient to prove both directions of Theorem 5.8. However, the estimates we’ve
given for K% are strong enough to bound all the normalized cumulants simultaneously,
and restricting to d =4 (or even d = 2) does not simplify the argument.

6. Uniform sum limits for maj on SYT ()

The estimates from Section 5 apply when aft — oo. We next give an analogous
estimate handling the case when aft is bounded, resulting in Theorem 6.2. We may then
deduce Theorem 1.7 from the introduction and its generalization to block diagonal skew
shapes, Theorem 6.3. Recall from Section 1 and Theorem 2.7 that ZH ; is the Irwin—Hall
distribution obtained by adding M i.i.d. ¢[0, 1] random variables.

Lemma 6.1. Suppose \(N) /vWN) = ny is a sequence of skew partitions such that
my o0y = 00 and

lim aft(A®™) /Ny = M € Z,. (30)
N—o00 -
Then for each fived d € Z>1, we have

nN 1.d d
lim v
N—oo MnN

=1. (31)

Proof. Take N large enough so that aft(AN) /u(N)) = M and ny > M. Let m €
AN /(N be such that aft(AN) /v(V)) = M = ny — arm(m) so m is the first cell in its
row and column, as in the proof of Lemma 5.5. Consider three regions of A(V) /p(N);

(i) The rightmost arm(m) — M = ny — 2M cells in the row of m.
(ii) The remaining leftmost M cells in the row of m.
(iii) The remaining M cells in A(N) /p(N),

Construct T € RSYT(AW) /(M) iteratively as in the proof of Lemma 5.5 as follows.
First add cells in region (iii) row by row starting at the topmost row proceeding from
left to right, stopping just before inserting the row of m. Next add the cells from region
(ii) from left to right. Now add the remaining cells in region (iii) row by row starting
at the row immediately below the row of m proceeding from left to right. Finally insert
the cells from region (i) from left to right. It is easy to see that the cells in region (i) are
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the lowest cells in their column, from which it follows that T" indeed satisfies the column
and row decreasing conditions.
We now consider the contributions of regions (i)-(iii) to the quotient

nnN d d
Dopey k- zce,\m)/y(w) hé
P .
MnS;

Recall that T, — h. can be interpreted as the number of times a cell inserted after cell ¢
was not inserted in the same hook as c. It follows that T, — h. = 0 for region (i), leaving
only contributions from the 2M cells in regions (ii) and (iii), a bounded sum. For region
(ii), we have T, — h, < M, so that

T — he = (T, — he)hg—1(Te, he) < (2M)dn% "
Dividing by Mn4;, cells in region (ii) contribute 0 to the sum in the limit. Finally, for
region (iii), we find 1 < h. < M+ 1 and ny —2M + 1 < T, < ny, so that for each of
the M cells ¢ in region (iii),

ny —2M + 1) — (M + 1)< 7% — pd < nd — 19,
c c N

Dividing by n4;, both bounds are asymptotic to 1 as ny — co. Adding up all M such
contributions, the result follows.

Theorem 6.2. Let A(l),A(z), ... be a sequence of block diagonal skew partitions where
iy oo AN | = 00 and aft(AN)) = M is constant. Let Xy = X\ (v [maj] be the corre-
sponding random variable for the maj statistic. Then X}, X5, ... converges in distribution
to TH ;-

Proof. Using Equation (22) and Lemma 6.1, we have for d > 2 that

(N) ALY
N K5
lim (nﬁ )* = lim f
N—o00 N—oo (K’E)d/Q

(Bafd) (X3 b = Coepom he)

= N a/2
— 00 n
(Ba/2)%/? (S35, K2 = S e b2)

i (Ba/d)  Mng
= 11m

N—oo (By/2)d/2 (Mn?v)d/Z
_ _(MBy/d)

(M B, /2)%2

From Theorem 2.7 and the homogeneity and additivity properties of cumulants, we have
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/{I’HM
(/{IHM)* _ d
‘ CADTE
__(MBa/d)
(MBy/2)4/2

The result now follows from Theorem 2.16 after converting moments to cumulants.

Theorem 6.3. Let A(l),A(Q), ... be a sequence of block diagonal skew partitions. Then the
sequence (X ) [maj]*) converges in distribution if and only if

(i) aft(A™N)) = oo; or
(i) AN = oo and aft(A™N)) = M < o0; or
(iii) the distribution of Xyv)[maj] is eventually constant.

The limit law is N in case (i), TH}; in case (ii), and discrete in case (iii).

Proof. The backwards direction follows from Theorem 5.8 and Theorem 6.2. In the
forwards direction, let A") be such a sequence where (X, v [maj]*) converges in distri-
bution. If | AW )] is bounded, then there are only finitely many distinct AN forcing case
(iii). If [A®Y)] is unbounded, then we have subsequences satisfying ecither (i) or (i) since
the sequence converges in distribution, which from Theorem 5.8 and Theorem 6.2 gives
convergence in distribution to N or ZH},, which are continuous, distinct distributions.
The result follows.

From the Central Limit Theorem, we know the Irwin—Hall distribution ZH}, for M
large closely resembles a normal distribution, so it will be quite rare for a plot of the
coefficients of SYT(A)™# (q) to look anything but normal. Since Irwin—Hall distributions
are finitely supported, the difference between the two distributions is mainly in the tails.
We note that even for M = 5, there is a close resemblance. See the plot in Fig. 7.

7. Discrete distributions for maj on SYT ()

We conclude by analyzing more carefully the discrete case of the limit law classification
for maj on SYT(A), Theorem 1.7. The result is Theorem 7.1, which lists several families
of pairs of shapes A and v of differing sizes for which we nonetheless have # SYT(\) =
#SYT(v).

A well-known corollary of (1) is that for partitions A and v of n, maj is equidistributed
on SYT(A) and SYT(v) if and only if b(\) = b(v) and the multisets {h. : ¢ € A} and
{hq : d € v} are equal. These hook multisets do not entirely characterize the partition—
see [23]. The following theorem gives a similar result even if we consider the corresponding
standardized random variables X)[maj] and X, [maj].
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Fig. 7. Coefficients of SYT(\)™® (g) for A = (100, 3,2) where aft(\) = 5 plotted in blue along with the
corresponding normal distribution with the same mean and variance plotted in red. The difference is mostly
in the tails.

Theorem 7.1. Let A and v be partitions. Then Xx[maj|* and X,[majl* have the same
distribution if and only if

(i) the multisets of hook lengths {h.:c € A} and {hq : d € v} are equal; or
(ii) the multisets {h.:c € A} and {|\|} U{hq:d € v} are equal; or
(iii) X and v are each either a single row or column; or

(iv) Av e {(2.1),(2,2)}.
Moreover, case (ii) occurs if and only if, up to transposing,

(a) A\=(n) andv = (n—1) forn>2; or

(b)) \=(r+1,12%2) and v = (2", 1") forr > 1; or

(c) A= (s,15%2) and v = (s,s,1) for s > 4; or

(d) X=(3,1%) and v = (3%,1), or A = (4,15) and v = (33,1).

Proof. Let n == |\| and m = |v|. Let fA(q) = %, which is a polynomial by (1)
with constant coefficient 1. Let f* = f*(1) = |SYT()\)|. Let f* and f¥(q) be defined
similarly.

In the backwards direction, if (i) holds, then n = m, both variances agree by The-
orem 1.5, and f(q) = f“(q), so X\[maj]* and X, [maj]* have the same distribution.
Similarly if (ii) holds f*(q) = f¥(q), both variances agree, and X)[maj]* and X, [maj]*
have the same distribution again. Condition (iii) holds if and only if the distributions are
concentrated at a single point. For (iv), we have f(1(¢) = 1+ ¢ and 32 (q) = 1+ ¢,
so the normalized distributions are clearly equal.

In the forwards direction, suppose Xy[maj]* and X, [maj]* have the same distribution.
Since f*(q) has constant coefficient 1, X\[maj] is concentrated at a single point if and
only if f* = 1, which occurs if and only if X is a single row or column which is covered by
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case (iii). It is easy to see that f* = 2 if and only if A € {(2,1),(2,2)} which is covered
by case (iv).

Assume f*, f¥ > 2. By [3, Thm. 1.1}, it follows that f*(q) and f¥(q) each have two
adjacent non-zero coefficients. Since f*(q) and f“(q) each have constant term 1 and
two adjacent non-zero coefficients, then it follows from the assumption X)[maj]* and
X, [maj|* have the same distribution that

Py = e bl (32)
Hcex[hC]q Hdey[hd]q

Without loss of generality, we can assume n > m. If n = m, we have [[.c,[hc]q =

[1c.[halg, from which it follows that the multisets of hook lengths are equal by consid-
ering multiplicities of zeros at all primitive roots of unity as in case (i).

From here on, assume n > m. The multiplicity of a zero of a primitive nth root of
unity in (32) is 0 on the right, so from the left A must have a hook of length n so it itself is
a hook shape partition. Since \ is not a single row or column by the assumption f* > 2,
we know A does not have a cell with hook length n — 1. Consequently, the multiplicity
of a zero at a primitive (n — 1)th root of unity in (32) is 1 on the left, forcing m =n —1
on the right. Thus (32) becomes

[m +1]4 H[hd]q = H[hc}cp (33)

dev cEX

and as before the multiset condition (ii) must hold. This completes the proof of the first
statement in the theorem.

For the second statement, suppose (ii) holds, so the multisets {h. : ¢ € A} and
{IA[} U{hqg : d € v} are equal. Then, m = n — 1 and A has a cell with hook length ||,
so \ is a hook shape partition (n — &, 1*) for some 0 < k < n, and

(ha:devy=[m—kU[Kk. (34)

By transposing if necessary, we may assume k > m — k is the maximum hook length in
v. If X has one cell with hook length 1, then (a) holds. Otherwise, both A and v have
precisely two cells with hook length 1, so v is the union of two rectangles and not itself
a rectangle. If v were a hook, then it would have a hook length equal to m which would
imply A has a cell of hook length m = n — 1 contradicting the fact that \ has two outer
corners. Thus v is not itself a hook.

Transposing v if necessary, we can assume its first two rows are equal, say v1 = vp = s.
If v{ = v}, one may check that the cell furthest from the origin in the intersection of the
two rectangles forming v would be the only cell of its hook length, and that moreover
its two neighbors in the intersection would each have one larger hook length, contrary
to (34). It follows that v = (s*,1") where r > 1, s > 2, and ¢t > 2. We now have several
cases.
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o If s =2, the hook lengths of v are {1,...,r,r+2,...,r+t+1,1,...,t}. The “gap”
between r and r + 2 together with (34) forces t = r + 1, so that v = (2771, 1") with
r > 1. Here k = r +t+ 1 = 2r + 2, resulting in case (b).

o If s > 3, the last two columns of v already contain two cells with hook length 2. If
r > 1, the first column would also have a cell with hook length 2, contradicting (34),
sor =1.

— If s = 3, the hook lengths of v are {1,...,¢,2,...,t+1,1,4,5,...,t+ 3}. Because
of the “gap” between t + 1 and ¢ + 3, this is of the form in (34) if and only if ¢t = 2
or t = 3, resulting in case (d).

— Suppose s > 3. If ¢ > 3, then the final three columns of v contain three cells
with hook length 3, contradicting (34), so t = 2. The hook lengths of v are then
{1,1,2,...,5s—1,5+1,2,3,...,s,s+2}, which is already of the form (34), resulting
in case (c).

The reverse implications from (a)-(d) to (ii) were verified in the course of the above
argument.

Remark 7.2. The proof of Theorem 7.1 applies more generally to arbitrary scaling factors
and translations of the distributions of X [maj] and X, [maj], and not just those coming
from means and variances.

8. Future work

We conjecture that almost all of the polynomials of the form SYT(\)™2i(q) are
unimodal and log-concave. In this section, we discuss the deviations of each of these
properties. In the rare cases where unimodality or log-concavity fails, it only seems to
happen at the very beginning and end of the sequence of coefficients or near the middle
coeflicient.

Recall that a polynomial P(q) = Y1 ¢;q" is unimodal if

co<cr << 21> 20
for some j, and P(q) is log-concave if ¢? > c¢;_1c;yq for all integers 0 < i < n. A
polynomial with nonnegative coefficients which is log-concave and has no internal zero
coefficients is necessarily unimodal [41]. By [3], we know exactly where internal zeros
occur so log-concavity would imply unimodality in these cases.
We say P(q) is nearly unimodal if instead

co<c1 <S¢, =6 —1<c¢pa<-- <epn

for some j and P(q) has symmetric coefficients. Also, a symmetric polynomial P(q) is
nearly log-concave if c? > ci—1ci41 forall 1 <@ < L%j
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Conjecture 8.1. The polynomial SYT(X\)™2(q) is unimodal if X has at least 4 corners. If
A has 3 corners or fewer, then SYT(\)™%(q) is unimodal except when \ or N is among
the following partitions:

Any partition of rectangle shape that has more than one row and column.
Any partition of the form (k,2) with k > 4 and k even.

Any partition of the form (k,4) with k > 6 and k even.

Any partition of the form (k,2,1,1) with k > 2 and k even.

Any partition of the form (k,2,2) with k > 6.

Any partition on the list of 40 special exceptions:

S T oo~

(3,3,2),(4,2,2), (4,4,2), (4,4,1,1), (5,3,3), (7,5), (6,2,1,1,1,1),
(5,5,2),(5,5,1,1),(5,3,2,2), (4,4,3,1), (4,4,2,2),(7,3,3), (8,6), (6,6,2),
(6,6,1,1),(5,5,2,2), (5,3,3,3), (4,4,4,2), (11,5), (10,6), (9,7), (7, 7, 2),
(7,7,1,1),(6,6,4),(6,6,1,1,1,1),(6,5,5), (5,5,3,3), (12,6), (11, 7), (10, 8),
(15,5), (14,6), (11,9), (16,6), (12, 10), (18, 6), (14, 10), (20, 6), (22, 6).

Conjecture 8.1 was checked for all partitions up to size n = 50. Each of the families
(k,2), (k,4), or (k,2,1,1) have a relatively simple set of hook lengths so explicit formulas
can be derived for the coefficients of SYT(A\)™2(q). We have found explicit proofs of near
unimodality for each of these cases. They are related to known integer sequences [33,
A266755] and [33, A008642] with nice generating functions. Furthermore, these families
are all nearly unimodal as well as 20 of the special exceptions. All rectangles with at
least 2 rows and columns are nearly unimodal for 30 < n < 100. The only deviation
occurs at ¢ = 1 up to symmetry. We conjecture this trend also continues, hence the claim
that all coefficients in SYT(A\)™%(g) are close to unimodal. The family (k,2,2) is a bit
further from being unimodal. The proof of the following result is omitted, but follows
directly from a careful analysis of the hook lengths.

Proposition 8.2. If A\ = (k,2,2) for any positive integer k > 3, then the mazximal coeffi-
cient of f*(q), say c;, satisfies the equation c; = cj1 + floor(k/6) + I(4 = (k mod 6))
and co < c; < --- < ¢j and j+1 is the median nonzero coefficient. Here I is an indicator
function which is 1 if true and 0 if false.

Conjecture 8.3. The polynomials SYT(N)™(q) are “nearly unimodal but not unimodal”
for partitions X\ or X' in the following cases:

1. Any partition of rectangle shape that has more than one row and column with more
than 30 cells.

2. Any partition of the form (k,2) with k > 4 and k even.

3. Any partition of the form (k,4) with k > 6 and k even.



S.C. Billey et al. / Advances in Applied Mathematics 113 (2020) 101972 33

4. Any partition of the form (k,2,1,1) with k > 2 and k even.

Conjecture 8.3 was checked for all partitions of size up to n = 100. It also holds for
the following 14 special exceptions:

(3,3,2),(4,2,2),(5,3,3),(7,5),(6,2,1,1,1,1),(5,3,2,2),(4,4,3,1),(7,3,3), (5, 3,3, 3),
(11,5),(6,6,1,1,1,1),(6,5,5), (15,5), (22, 6).

Log-concavity for the polynomials SYTr)\naj(q) appears to be harder to characterize.
There are examples of partitions with even 5 corners which are not log-concave. For
example f*(q) for A = (9,9,7,7,5,5,3,3,2) is nearly log-concave but ¢? = 42 = 16 <
17 = cgce. The only deviation occurs at ¢ = 1 up to symmetry. Thus, we summarize
what we have observed in the following conjecture.

Conjecture 8.4. The polynomials SYT(X)™®(q) are almost always log-concave for parti-
tions A = n for large n (Fig. 8).

This conjecture is based on the fact that the normal distribution is log-concave and
the following evidence. The approximate probability that a uniformly chosen partition of
n has the log-concave property P(LC) and the corresponding probability for the nearly
log-concave property P(NLC) is given in Fig. 8:

n 30 40 50

P(LC) 0.6734475 | 0.7876426 | 0.8753587
P(NLC) | 0.8003212 | 0.9204832 | 0.9688140

Fig. 8. Data supporting Conjecture 8.4.

By Theorem 1.3 and the conjectured claim that the coefficients of SYT(X)™(q) are
unimodal or almost unimodal for large A, one might hope that we could approximate
the number of T' € SYT()) with maj(T) = k by the density function f(k; k7, k3) for the
normal distribution with mean s and variance k3. We have the following conjectured
bounds on such an approximation.

Conjecture 8.5. Let A = n be any partition. Uniformly for all n, for all integers k, we
have

1
P[X[maj] = k] — f(k; k7, 63)| = O | —— | -
PR = K = Skt )| =0 ()
The conjecture has been verified for 25 < n < 50 and aft(\) > 1 with a constant
of 1/9, which is tight up to reasonable limits on computation in the sense that if it is
changed to 1/10 with the other constraints the same, it fails at n = 50.
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Conjecture 8.6. Asymptotic normality for general skew shapes and not just block diagonal
skew shapes holds if and only if aft(A\/v™)) = 00 as N — 0o, generalizing the result in
Theorem 5.8.

The argument in Section 5 proves that the “formal cumulants” associated with

]!
Hc@\/u[hc]q

exhibit asymptotic normality when aft(A/u) — oo. However, this is only the first term
in the general g-Naruse formula for SYT(\/u)™8(q). One approach to Conjecture 8.6
would be to show the remaining terms are “appropriately negligible.”
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