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ABSTRACT

Data center networks (DCNs) have widely deployed RDMA to sup-
port data-intensive applications such as machine learning. While
DCNss are designed with rich multi-path topology, current RDMA
(hardware) technology does not support multi-path transport. In this
paper we advance Maestro — a purely software-based multi-path
RDMA solution — to effectively utilize the rich multi-path topology
for load balancing and reliability. As a “middleware” operating at
the user-space, Maestro is modular and software-defined: Maestro
decouples path selection and load balancing mechanisms from hard-
ware features, and allows DCN operators and applications to make
flexible decisions by employing the best mechanisms as needed. As
such, Maestro can be readily deployed using existing RDMA hard-
ware (NICs) to support distributed deep learning (DDL) applications.
Our experiments show that Maestro is capable of fully utilizing mul-
tiple paths with negligible CPU overheads, thereby enhancing the
performance of DDL applications.
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1 INTRODUCTION

Remote Direct Memory Access (RDMA) over Converged Ether-
net [23] (RoCE) has been widely deployed in data center networks
(DCNs) to support data-intensive applications such as distributed
machine learning and deep learning applications [14]. RDMA/RoCE
employs kernel bypassing and zero-copy to allow applications to di-
rectly read or write large chunks of data from the (user space) main
memory of one server to that of another server. This is achieved
by “offloading transport” to the dedicated RDMA network interface
card (RNIC for short) which directly transfers data between the NIC
hardware buffer and the (designated) application user space mem-
ory regions, thereby significantly reducing the kernel processing
overhead and (remote) memory access latency. RoCE utilizes the
standard stack (TCP/IP protocol) to establish the control path, in-
cluding establishing the so-called Queue Pairs (QPs) on both ends of
two communicating applications and registering the memory regions
(see §2 for more details). For data path operations, applications use
RDMA Verbs (e.g., SEND/RECV, READ/WRITE) for data transfer:
the corresponding RNIC would automatically fetch data chunks to
be transferred from the user space memory region, segment and
encapsulate them into UDP/IP packets, and deliver them over the
network. By design, RDMA is a point-to-point transport, where each
RDMA connection (Queue Pair) is mapped onto a single network
path (as specified by the IP address pair of the RNICs or traced by
the hardware generated UDP flows).

Data-intensive RDMA workloads are often characterized by peri-
odic transfers of large data chunks. For example, distributed deep
learning applications, e.g., implemented using PyTorch [25] or Ten-
sorFlow [2] which has built-in RDMA support, require periodic
parameter synchronizations among multiple instances running in
a DCN, which often involve transfer 10 times or 100 times MBs
or several GBs of data at a time. During such periods of time, the
network link utilization increases significantly: the “elephant flows”
associated with such data transfers not only compete for network
bandwidth among themselves, creating congestion, but also severely
affect the (tail) latency of “mice flows” associated with, e.g., the
RDMA control messages, or other applications. On the other hand,
modern DCNs are designed with a “spine-leaf” topology with rich
multi-path diversity. The current point-to-point RDMA transport,
unfortunately, cannot take advantage of such rich multi-path topol-
ogy for intelligent load balancing to mitigate congestion (especially
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along the core paths which are oversubscribed) and reduce the over-
all flow completion time.

In this paper, we advance a purely software-based multi-path
RDMA transport framework, dubbed Maestro. Our solution em-
ploys three key innovations by addressing the above challenges.
First, we propose a novel virtual RNIC based user space path control
mechanism. We create multiple virtual interfaces — each with a dif-
ferent (virtual) IP address of our choice — and bind them to the same
physical RNIC (effectively creating multiple virtual RNICs). Sec-
ond, we develop a user-space middle-ware layer that intercepts and
split (large) messages of RDMA operations into multiple (smaller)
messages, and dynamically maps them onto different paths at the
sender side, and judiciously merge them together at the receiver
side by passing them to the applications without introducing extra
memory copy. Performing these operations correctly and incurring
as little overheads as possible (especially, maintaining zero-copy)
is nontrivial; they involve careful designs and some clever tricks
(see § 3). Third, we decouple the path mapping (and selection), path
monitoring, and load balancing mechanisms to allow flexibility and
achieve application-aware load balancing.

Our framework is software-defined and modular: In contrast to
the earlier hardware-based RDMA multi-path solution [20] and
connection-based multi-path solution [40], both of which rely upon
router ECMP support for multi-path load balancing by manipulat-
ing UDP source ports only when encapsulating RDMA data into
UDP packets, our solution can not only take advantage of router
ECMP for multi-path load balancing — but with far more flexibility
through the assignment of virtual IP addresses to virtual RNICs,
but also work with an SDN controller in a (software-defined) DCN
to explicitly select and map (virtual) RDMA connections (virtual
QP pairs) to specific paths. Furthermore, unlike a fixed congestion
control algorithm that is built in the hardware NIC as in [20], our
framework allows a DCN operator to implement different path moni-
toring and load balancing mechanisms with varying complexity. For
example, we have implemented a user space path monitor and a load
balancer running on end hosts that leverages the existing RDMA
congestion control (DCQCN [44]) algorithm. However, instead of
relying on the end-to-end congestion control and load balancing, our
framework enables a DCN operator to utilize an SDN controller to
perform intelligent load balancing by setting up appropriate flow
rules and dynamically adapting them based on the (global) network
conditions. Maestro can also control the number of virtual Queue
Pairs that are set up for multi-path load balancing as well as se-
lect the granularity of load balancing by adjusting data chunk sizes.
In other words, Maestro enables application-aware load balancing
by allowing DCN operators to select appropriate paths and deploy
the right algorithms in accordance with application requirements
and metrics (e.g., bandwidth or latency) depending on the context.
These capabilities are all made possible due to the modular design
of Maestro.

Last but not the least, our purely software-based RDMA multi-
path transport framework does not require any modifications to the
existing RDMA NICs and thus can be readily deployed in today’s
DCNs. To evaluate the effectiveness of our framework in accel-
erating the performance of DDL applications in DCNs, we have
incorporated Maestro in PyTorch [25] as a portable collective com-
munication library. Our experiments demonstrate that Maestro can

Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, and Zhi-Li Zhang

decrease up to 66.7% transport time in DDL by leveraging the rich
multi-path DCN topology, when compared with the conventional
(single-path) point-to-point RDMA, while incurring negligible CPU
overheads.

2 MOTIVATION
2.1 RDMA and RoCE

RDMA allows applications to directly access remote memory with
zero-copy and kernel bypassing. It offloads the transport logic in
hardware RNICs. RDMA over Converged Ethernet v2 (RoCE v2) has
been widely deployed in data center networks to support compute-
& data-intensive applications, e.g., distributed deep learning, where
RDMA packets are encapsulated with packets with UDP/IP head-
ers. As shown in Fig. 1, RDMA is an end-to-end transport mecha-
nism where control path and data path are decoupled. On control
path, applications connect with each other using send and receive
Queue Pairs (QPs). On data path, an application initiates RDMA
operations (or verbs) by posting Work Requests (WRs) (or Work
Queue Element (WQE)), e.g., SEND/RECV, WRITE or READ) to
the QP using APIs from RDMA libraries (e.g., ibv_post_send
or ibv_post_recv), which commands the RNIC to transfer data
to the memory of a remote host. For each application, there is also
one (or more) completion queue (CQ); upon completing a WR, a
completion queue element (CQE) is delivered to CQ for notification
purposes. RDMA is a message based transport, where RDMA mes-
sages are divided into segments and encapsulated in UDP packets
(in RoCE v2) that are transported along a single path, and assigned
with IP addresses and randomly selected UDP source port numbers
by RNIC (using cached context on hardware)
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Figure 1: RDMA Transmission Mechanism

2.2 DCNs and Multi-Path RDMA

The “leaf-spine” topology in modern data center networks (DCNs)
offers rich path diversity. Switches and routers often support “na-
tive” multi-path load balancing via built-in Equal-Cost Multi-path
(ECMP) routing based on hashes of 5-tuples ({(src IP, dst IP, src
port, dst port, protocol number)) in packet/flow headers. The current
point-to-point RDMA however cannot take advantage of ECMP.
This is because once a QP connection is established, the five tuples
used by UDP flows for the RDMA data path are fixed. Hence a
large data transfer (encapsulated in a single UDP flow) can only be
delivered via a single path. In addition, if the path fails, the current
RDMA transport cannot automatically steer traffic to another path
for continued transmission.
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MP-RDMA [20] is the first to consider multi-path RDMA trans-
port. It proposes a hardware-based solution with a “built-in” con-
gestion control mechanism. The proposed solution is implemented
and evaluated using FPGA-based emulation. The key challenge it
focuses on is the limited memory in RNICs. By using the source port
to encode “virtual path” id (VP id) and influence the path traversed
by the RDMA UDP packets, it leverages but heavily relies on the
underlying routers’” ECMP mechanisms for load balancing among
multiple paths. As MP-RDMA requires replacing existing RNICs
with new MP-RDMA capable NICs, it cannot be readily deployed
in DCNs. Moreover, the hardware-based solution also lacks flexi-
bility at the application level e.g., an application has heterogeneous
requirements on paths. Thus, a software-based multi-path solution is
needed.

2.3 Multi-Path RDMA Benefits DDL

Distributed deep learning applications running in DCNs are often im-
plemented using platforms such as PyTorch [25] and TensorFlow [2].
They use collective communication (e.g., allreduce & allgather)
libraries, e.g., Horovod [32] and Gloo [8], for model (parameter)
synchronization. These libraries have incorporated (point-to-point)
RDMA transport for more efficient large data transfer. In the fol-
lowing, we will use an experiment we have conducted to illustrate
that DDL applications based point-to-point RDMA transport do not
fully utilize the network resource. In this experiment, we train the
VGG19 [33] model (includes 143M floats, total 572Mbyte) using CI-
FAR10 [17] dataset (including 50K training images) by distributed
PyTorch (Gloo is used for communication). Our testbed consists of
4 servers connected by 8 network paths using 40Gbps links with
ECMP enabled. We measure the traffic load on each path using
sFlow [24].
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Figure 2: Traffic Load on Paths in DDL Training

As shown in Fig. 2, it has an obvious On-Off traffic pattern (e.g.,
the red shadows represent On transmission period where servers
are exchanging data), which is caused by alternate computation &
communication. Most importantly, the On period is wider than the
Off period since the network transport dominates the time cost. We
observe that the network bandwidth is not fully utilized. In particular,
the loads along the paths are not well-balanced. For instance, only 3
of 8 paths are used for traffic delivery, where Path-1 has about twice
the traffic load than the other 2 paths. We further observe that DDL
applications introduce period large data transfers (“elephant” DDL
flows). For example, each epoch of this VGG19 training involves
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782 iterations of data exchange with 858Mbyte per iteration when
batch size is set as 64 and ring_allreduce algorithm is used.
Intuitively, we can accelerate distributed learning by using more
light-loaded paths to transmit data faster which means compressing
the On period. Moreover, there are amounts of DDL applications
running in a single data center. Their flows can also compete with
each other for the network resources (especially the bandwidth) if
they are at the On periods at the same time. If all these applications
can compress their On period, the possibility of transmission conflict
(which may cause congestion in the network) can also be decreased.

3 MAESTRO DESIGN

In this section, we first lay out the design goals of Maestro and
discuss the key challenges in designing a multi-path RDMA solution.
‘We then provide an overview of Maestro and the key ideas behind
its design.

3.1 Design Goals & Challenges

We seek a purely software-based multi-path RDMA solution op-
erating in the user space for multiple reasons. First of all, without
requiring modifications to existing RNICs that have been widely
installed on servers in modern data centers, such a solution can
be readily adopted and deployed to enhance the performance of
data-intensive applications such as distributed deep learning (DDL).
Second, we recognize that applications running in modern DCNs
and their mixtures are often rapidly evolving, and service objectives
and performance requirements can be highly diverse and dynamic.
Hence instead of fixing a specific load balancing mechanism for
all DCNs and all applications, we want a software-defined solution
that provides DCN operators and applications with the flexibility
in the multi-path routing and load balancing decisions, including
deciding and specifying i) whether to utilize the multi-path RDMA
transport; ii) if the multi-path RDMA transport is activated, what
and how many paths should be used for load-balancing; and iii) what
load balancing algorithms (including the information and metrics
used for decision making) should be employed. For example, it has
been shown that global congestion avoidance and traffic schedul-
ing [11, 21, 27] are essential in DCNSs, and applications are best
aware of traffic load distribution for adaptive load balancing [16]. In
particular, our solution should be able to take advantage of software-
defined networking (SDN) capabilities for path selection, network
monitoring, and load balancing. Third, the software-based solution
cannot incur too many overheads so as not to reduce application per-
formance and defeat the benefits of multi-path transport. Fourth, the
solution should not require modifications to existing applications (or
software platforms) that employ the current point-to-point RDMA
transport.

Achieving all these goals simultaneously poses many challenges.
For instance, RDMA “offloads” the transport layer functions to
hardware RNIC, which restricts the packet-level operations we can
perform. In particular, the UDP source port number in RDMA pack-
ets is assigned by RNIC randomly (between 49152 to 65535), while
the destination port number is fixed as 4791. As a result, applications
cannot control the UDP port number in RDMA packets. This forces
the earlier solutions to either modify the RNIC hardware [20] or
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make an unrealistic assumption that applications can directly as-
sign the UDP port number [40]. Both solutions also reply on router
ECMP for multi-path load balancing. A key enabling idea of our
proposed solution is to create multiple virfual NICs (vNICs) and
binding them to the same hardware RNIC, thereby allowing multi-
ple IP addresses (of our choice) to be assigned to the same RNIC.
This not only enables us to circumvent the above challenge but also
affords us the capability to explicitly specify or select paths for load-
balancing. For example, by setting up an SDN flow rule in a core
DCN switch with the appropriate (virtual) source IP address and
(virtual) destination IP address corresponding to a pair of (virtual)
RNICs (or virtual QP pair, see §3.2)) and the destination UDP port
number = 4791, the corresponding RDMA packets (of the UDP
flow) will then be forwarded along a selected path. Furthermore, we
adopt a modular design by decoupling path selection and mapping,
network monitoring, and load balancing mechanisms. As RDMA is
message-based (where for DDL applications, each message can be
as large as several GBs), we decompose the messages into smaller
data chunks for load-balancing across multiple paths. To minimize
the CPU overheads, we avoid any data copying; instead, we intro-
duce several clever techniques and tricks to create multiple (virtual)
QP pairs, segment and register appropriate memory regions for each
QP pair, and so forth while at the same time maintaining the same
RDMA verb semantics. Both the number of virtual QP pairs (thus
the number of paths) and the chunk sizes for load-balancing can be
specified by a DCN operation or an application, and dynamically
modified if needed. We have implemented our solution as a “middle-
ware” sitting on top of the existing RDMA library while providing
the same standard APIs such as RDMA verbs to applications. As
such, Maestro is completely transparent to applications.

3.2 System Overview

Employing a purely software-based solution, Maestro is designed as
an open, software-defined, and modular framework to support multi-
path RDMA transport at the user space. The overall architecture of
Maestro is illustrated in Fig. 3.
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Figure 3: System Architecture of Maestro
As alluded to earlier, a key enabling innovation of Maestro is
to create multiple virtual NICs (vNICs) using i fconfig, each
assigned with a distinct IP address (of our choice), and bind them
to the same hardware RNIC. RDMA uses a Global ID (GID) to
identify each host, and RoCEv2 binds GIDs to IP addresses of the
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interfaces using the IP table. Using the vNICs, Maestro is able
to create multiple Queue Pairs (QPs) using the standard RDMA
library rdma_ cm. Maestro maps each QP to a different (virtual)
path (VP), using the IP address associated with each vNIC as a VP id.
By using (virtual) IP addresses to identify (virtual) paths, Maestro
is endowed with more flexibility in selecting and mapping paths
for load balancing. It can not only more effectively utilize router
ECMP for load balancing as the earlier solution; but perhaps more
importantly, take advantage of SDN capabilities of modern DCNs
to explicitly control path selection via policy routing. The modular
design of Maestro enables us to employ different load balancing
algorithms that better meet application performance requirements.

Maestro is built on top of the standard RDMA libraries, oper-
ating as a middleware running in the user space. In particular, it
provides (and “replaces”) the same RDMA APIs (and RDMA verbs)
that applications use to invoke RDMA functions, thus is completely
transparent to applications. For example, an application invokes
connect () to establish an RDMA connection, which Maestro
transparently sets up multiple virtual connections and QPs. The
application uses READ/SEND and WRITE/RECV to post work re-
quests, WRs. On the sender side, Maestro will automatically decom-
pose a large RDMA message (thereafter simply a “flow”) contained
in a WR into smaller data chunks (“sub-flows”), and distribute them
across different (virtual paths) QP’s by generating the corresponding
constituent WR’s for the sub-flows using the standard RDMA verbs.
The sub-flows are “merged” at the receiver side. These are illustrated
in Fig. 3. Maestro consists four major components, QP Manager,
Decomposer (on the sender side), Reassembler (on the receiver side),
and Path Monitor & Load Balancer (PM&LB), which are described
in more details in §4.

Maestro assumes that there is at least (but not limited to) one
single port of RDMA NIC (RNIC) connected to the access (ToR)
switch as well as multiple paths in the core-layer of data center
networks. The load balancing configuration on switches can be either
ECMP (with known hash function), static routing, or policy routing
using SDN. For (fine-grained) congestion control and flow control,
Maestro can leverage DCQCN which is already implemented on
modern RNICs.

4 MAESTRO COMPONENTS

In this section, we will present the core functionality of each compo-
nent and describe the key mechanisms employed to enable Maestro
to achieve our design goals.

4.1 User Space Path Control

As a purely software-based solution, path control is the most essen-
tial but challenging goal in RDMA. The key idea of Maestro is to
create multiple Queue Pairs (QPs) to map multiple paths as virtual
paths (QP-Path Mapping), then select the identical paths (Disjoint
Path Selection). Maestro proposes a virtual NIC (vNIC)-based mech-
anism to assign distinct [P addresses to sub-flows so that they can be
loaded on disjoint network paths to achieve parallel transmission If
ECMP enables 5-tuple hashing, Maestro introduces a probing-based
solution to help select as disjoint paths as possible a posteriori.
QP-Path Mapping. First, we discuss how Maestro realizes QP-
based virtual path mapping. We recall that RDMA uses a global
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identifier (GID) to identify each host. RoCE binds GIDs to the IP
addresses assigned to the RNIC interfaces and caches the context on
RNIC hardware. During the data transmission (the data path), the
packets are appended with the IP address by RNIC directly using the
cached context without the kernel & CPU involvement. Meanwhile,
the port numbers are randomly selected by RNIC and assigned to
packets’ header without the application’s awareness. Therefore, it
is hard to manipulate the values in 5-tuples (e.g., IP addresses or
UDP port numbers) of RDMA flows in user-space and also maintain
copy-avoidance and kernel bypass on the data path for path control
purposes.

Innovatively, we propose a Virtual NIC (VNIC)-based QP-Path
mapping method to control the IP address in sub-flows from user
space. As illustrated in Fig. 4, it sets up multiple vNICs on each phys-
ical RNIC using the NIC virtualization technique, e.g., IP alias,
each assigned with a distinct IP address. Then, Maestro creates QPs
upon the vNICs, which are used as the virtual paths (VPs) in the
future. These are all accomplished on the control path. On the data
path, when applications transmit messages by posting WRs to QPs,
the RNIC directly DMAs data from user space and assigns cached
IP addresses to packets without any CPU/Kernel involvement. When
the packets arrive at the switches, the IP addresses are used as the
VP id of flows to perform multi-path transport. For instance, in SDN
enabled network, forwarding rules can be added by the operator
using IP addresses as identifiers of flows; in ECMP enabled legacy
network, IP addresses can be used as a controllable parameter in
S-tuples to identify flows thereby they can be hashed to separate
output paths. To this end, application in user space is capable of
mapping the flows to physical paths as needed.

The advantage of this design is that Maestro not only relies on
port numbers as the identical value for hashing in ECMP but can also
implicitly identify paths by IP addresses [42]. For example, if one of
the paths is broken or congested, Maestro can switch to another path
by simply using another vNIC with a different IP address to initiate
switches to steer the traffic to an alternative path, no matter which
multi-path routing is configured. In addition, Maestro requires no
modification on both hardware RNIC and software RDMA libraries,
and can also work with multiple ports RNICs.
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Figure 4: vNIC based QP-Path Mapping

Disjoint Path Selection. However, distinct QPs may be mapped
to the identical physical path. For better network utilization, Maestro
is supposed to select paths as disjoint as possible. A DCN operator
can accomplish this by simply establishing a set of static routes to
assist Maestro in mapping RDMA (UDP) flows to a set of (target)
core paths for load balancing. If deployed in a “software-defined
DCN”, Maestro can instruct the SDN controller to install a set of
load-balancing flow rules [39]. In the legacy network, where ECMP
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is enabled for load balancing, Maestro employs a hybrid path selec-
tion method by combining the probing and hash function calculation
to filter out (virtual) paths with shared links. The idea is to utilize
the (known) router ECMP hash algorithms (e.g., XOR algorithms on
our testbed) to compute a set of hash results a priori (where the IP
addresses are controllable) and filter out those that are mapped to the
same (core) network paths. More specifically, the procedure works
as follows: 1) If UDP port number is disabled in hash calculating,
Maestro can simply use the IP addresses to calculate hash results
and map the path (because IP addresses are the only variables in
S-tuples of RDMA traffic in this scenario). 2) Otherwise, if the UDP
port number is enabled, we start by establishing several (virtual) QP
connections, e.g., twice as large as the number of (target) paths in
the core. 3) To check whether these QP connections are mapped to
all paths in the core, we send a small probe message (e.g., 2Byte)
along with each QP. Using a traffic sniffer tool, e.g., tcpdump [34]",
we can obtain the packet headers of each RDMA sub-flow identified
by the source IP address. 4) After computing the hash results using
S-tuples in the headers, if the QP connections are mapped to all core
paths, we filter those that are mapped to the same QP connection,
leaving only one. Otherwise, we increase the number of QP connec-
tions (each with a different hash value calculated using the (known)
router ECMP hash function) and repeat the process. The goal is to
select numerous disjoint (virtual) paths that equal the number of
(target) core paths. Note that this procedure is only required at the
connection establishment phase. After that, the selected QPs are
reused during DDL training.

QP Manager. Maestro implements the QP Manager component
to handle the multiple QP connections, disconnections, and path
selection. Besides, the QP Manager also creates a shared Comple-
tion Queue (CQ) to receive Completion Queue Element (CQE) for
notification purposes. Moreover, this CQ is shared by QPs within
the same Protection Domain (PD) where the registered memory
region can be accessed by any member (especially QPs) to avoid
hidden overhead caused by duplicated buffer registrations [10]. In
this way, Maestro introduces the primary overhead on the control
path rather than the computation-intensive data path that involves
frequent completion queue queries and QP operations.

4.2 Multi-path Transport

Maestro decomposes a single message from the application into
multiple “chunks” and performs parallel transmission using multiple
paths on the sender side. Maestro proposes a “per-chunk” instead of
conventional “per-packet” or “per-message” level transport and load
balance design by considering both transmission efficiency (copy
avoidance in RDMA) and flexibility (rapid response to network
events).

Chunk-based Decomposition. RDMA uses verbs (SEND /RECV,
WRITE or READ) to perform various transmission operations. In
practice, application posts Work Requests (WRs) (to QPs) to com-
mand the RNIC for transmitting a specific message by providing
the metadata (e.g., address and data size of corresponding memory
buffer) of the message. The memory buffer has to be registered as
a memory region to a PD in advance so that RNIC can directly

1libpcap library v1.9 or above is installed on and above support RDMA packet sniffer
by default tcpdump from 4.9.2-4 and above
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write and read data using Direct Memory Access (DMA) using pre-
fetched authentication keys (rkey for remote access & lkey for
local accesses).
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Figure 5: Chunk-based Multi-path Transport

As illustrated in Fig. 5, Maestro uses the WRs to decompose a
message into chunks and perform the load balancing on chunk level.
The Decomposer component is responsible for this task. The key
idea is to partition the message into multiple blocks and each is
represented by a WR with smaller and disjoint memory region. The
message originally transmitted by a single WR is now using multiple
WRs. These WRs are posted to multiple QPs in parallel. After RNIC
processing WRs and transmitting the packets, a single message can be
delivered via multiple paths simultaneously. From the application’s
point of view, though sole RNIC exists, multiple paths can be utilized
for transmission. Maestro also performs load balancing on chunk
level. For example, if one path is congested or broken during the
transmission, applications can steer the traffic to alternative paths
by posting involved WRs to other QPs. In addition, applications
can tune the configurable chunk size to make a trade-off between
the flexibility and efficiency to achieve the optimal performance
regarding the customized setup. For an arbitrary message, 1) the
smaller chunk size means more WRs. It requires Maestro to call
ibv_post_send() (on multiple QPs) more frequently, which increases
the CPU usage (as overhead). Besides, a large number of WRs also
exacerbates the Out-Of-Order (OOO) issue (discussed in § 4.3)
since the CQEs of the WRs may not be read together by a single
ibv_poll_cq() call. Meanwhile, more alive WRs also consume extra
RNIC resources (e.g., limited onboard memory) to get processed.
2) On the other hand, if the chunk size is too large, each WR has to
deliver a large amount of data. Consequently, Maestro cannot be
aware of or react to any networking event (congestion or failure)
until the fairly large chunk accomplished transmission or the WR is
timeout, which lacks flexibility and impacts the performance.

WR State Tracking. When multiple WRs are multiplexed in par-
allel, tracking the status of alive WRs can be CPU consuming in
RDMA. To achieve efficient status tracking and less CPU involve-
ment, Maestro introduces a novel structure, namely WR Descriptor.
For each WR, a corresponding WR Descriptor is used to record multi-
path transport required metadata as shown in table 1. The metadata
is used to tracking the state of chunks and notify the corresponding
application on completion.

Maestro leverages the wr_id field to link the WR Descriptor
to its WR. The wr_1id is a 64-bits integer resident in WR structure
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that also residences in Completion Queue Element (CQE) when the
transmission is accomplished. Maestro replaces the wr_id with
the memory address (64-bits on most of the servers) of the WR
Descriptor, which can fit into the wr_1id field. And the original
wr_id is stored in the WR Descriptor structure. Thus, both WR
Descriptor and WR can be retrieved in O(1) time.

Now we explain how exactly this mechanism works. For example,
when the corresponding data transmission of a WR is accomplished, a
CQE is generated by RNIC to notify applications where the wr_id
is used for identification. Since we have already replaced the wr_id
with the memory address of WR Descriptor, Maestro can directly
retrieve this WR Descriptor without delay (compared with using
storage structure such as a hash map). Then the metadata inside it
can be used to check the status of the original message (i.e., whether
all related WRs are completed or not). The benefit of this design is
that first, we can bind multiple WRs to a single message without
introducing much memory overhead; second, WR Descriptor is
extendable as needed by applications.

Table 1: WR Descriptor Meta Data

Item Description
WR ID ID of the original WR
VP ID ID of the virtual path posted to

Message ID | ID of the original message
Chunk ID ID of the chunk

Multi-QP WR Posting. To deliver traffic via multiple paths in
parallel, Maestro uses multiple worker threads to post WR to QPs
simultaneously, one worker per QP. Maestro adopts the lock-less
ring buffer design of kfifo in Linux kernel as the Work Queue
between Decomposer and worker threads. Decomposer decomposes
each message, generates multiple WRs, and then distributes them to
distinct workers by inserting the corresponding WR Descriptor to
the Work Queue. Then worker threads post the standard RDMA WR
to its QP using standard RDMA APL i.e., ibv_post_send. Then
RNIC takes over to perform kernel bypassed transmission.

We also remark that while Maestro performs the additional tasks
of dividing a large message (“flow”) contained in a WRITE or SEND
WR into smaller messages (“sub-flows”) by generating a sequence
of WRs, these WRs are distributed across multiple QPs, and are per-
formed using the standard RDMA verbs (READ, WRITE or SEND).
In other words, the RNIC will directly read/write the corresponding
data from or into the remote memory area of applications. As a
result, Maestro incurs no additional memory copying on the data
path, and is compatible with the existing RDMA system.

4.3 Multi-flow Reassembling

On the receiver side, traffic from distinct sub-flows is re-assembled
to reconstruct the original message in the memory buffer, and also,
applications are notified by the completion of transmission of the
entire message. Particularly, the OOO issue in multi-path transport
has to be carefully dealt with. Maestro introduces the Reassembler
component to address above requirement.

Out-Of-Order: Due to various speeds of paths, sub-flows may
arrive in arbitrary orders. Received data is supposed to be cached
on the receiver side to avoid re-transmission. This is the so-called
000 issue. Maestro resolves the OOO issue by caching the received
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chunks directly into the receiver’s buffer in user space instead of the
limited RNIC on-board memory. Maestro proposes a sender-oriented
solution to proactively decide the destination memory address of
each chunk by leveraging WRITE paradigm in RDMA. The key idea
is to let the sender uses WRs to command the RNICs to directly
put the data of each chunk into the right memory address in the
receiver’s buffer. Thus, on the receiver side, extra memory copies
can be prevented when all chunks are received, and eventually, the
correct mapping of the original message can be reconstructed.

Send Buf Recv Buf

0x10 | Chunk 0 WRITE0 (src addr: Ox10, dst addr: Ox11)

Chunk 0| 0x11

0x20 | Chunk 1 Chunk 1 0x22

DINY
DINY

WRITE ) (src addr: 0x20, dst addr: 0x33)

0x30 RDMA

Chunk 2 |0x33

Figure 6: Reassembler: Sender-oriented Reassembling.

To discuss the feasibility, we consider (one-sided) WRITE or
READ and (two-sided) SEND/RECV verbs respectively: (1) In one-sided
WRITE or READ verb case, RNIC uses pre-obtained rkey to ac-
cess registered memory region on remote host. Besides, RDMA
also exchanges the memory address of each other’s receive buffer
which can be used as its own virtual memory space. Thus, Maestro
can directly apply a one-to-one mapping between local and remote
memory buffer by including source and destination memory address
in WRITE WR as illustrated in Fig. 6. Then RNIC performs standard
RDMA WRITE on each chunk despite OOO issue.

(2) SEND/RECV is a two-sided verb that is usually for control mes-
sage exchange where SEND and RECV work together. It typically
transmits small messages which can be delivered by a single path.
However, in rare situations, SEND/RECV may be used for relatively
large messages. In this case, Decomposer translates the SEND WRs
into WRITE; then uses WRITE verbs as described above to perform
data transmission. Additionally, to consume the posted RECV on
receiver side, an empty SEND or WRITE WR with imm_data (both
require a SEND in receive queue) can be leveraged.

Nevertheless, it is also possible that the SEND verbs are supposed
to be decomposed into SEND WRs as required by applications. This
is also practicable as long as sufficient RECV WRs are posted to the
receive queue before sending (which may also introduce more alive
WRs). Other than that, imm_data is also needed for synchronizing
purposes. However, the detailed design is out-of-scope of this work
and will be addressed in the future.

4.4 Path Monitor & Load Balancer

To avoid congestion and achieve optimal parallel transmission, traf-
fic loads on each path are supposed to be allocated according to its
network condition, which is so-called congestion control & load
balancing. Maestro, as an open platform, allows DCN operators to
design and select various path monitoring and load balancing mecha-
nisms as needed. Additionally, we provide the example Path Monitor
and Load Balancer components for monitoring path congestion &
failures and performing resilient routing & dynamic load balancing.

Congestion Control & Resilience: Maestro relies on the DC-
QCN [43] implemented on RNIC to achieve packet-level congestion
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control at user space. The DCQCN algorithm is the state-of-art mech-
anism of RDMA in the data center network which combines Data
Center TCP (DCTCP) [3] and Quantized Congestion Notification
(QCN) [1] algorithms and relies on Explicit Congestion Notification
(ECN) marking on the switch. More specifically, 1) When congestion
happens, switch (as Congestion Point, CP) marks the packet using
ECN bits, which is propagated to the receiver RNIC. 2) Receiver
RNIC (as Notification Point, NP) creates Congestion Notification
Packet (CNP) and sends it to the sender. 3) When CNP is received
in the sender RNIC (as Reaction Point, RP), the transmission rate of
the QP is going to be throttled based on the DCQCN algorithm con-
sidering a pre-configured « value. Meanwhile, system-level counters
are also updated by RNIC (e.g., number of received CNP packets
(CNP_Packet_Handled)).

By leveraging the DCQCN counters, Path Monitor is aware of
any congestion in previously used virtual paths. If any (indicated by
increased CNP_Packet_Handled counter), Path Monitor marks
the used paths as congested and notifies the Load Balancer to steer
the traffic to other paths in the next transmission.

Path Monitor can also detect the path failure by monitoring CQE
or probing (as defined) for failure recovery. A failed path can be
congested or broken, which can be indicated by RDMA counters
or errors in CQE. When path failure is detected, Path Monitor no-
tifies Load Balancer to steer the traffic to other paths by selecting
alternative QP to post WRs.

Dynamic Load Balancing: The chunks decomposed from a sin-
gle message are transmitted via multiple QPs by considering the
network status of paths to realize dynamic load balancing in user
space. To monitor network path status (e.g., bandwidth and latency),
Path Monitor adopts a modular design so that various run-time sub-
systems can be employed. For instance, end-to-end probing-based
mechanisms like qperf [18] can be directly used. Moreover, central-
ized SDN-based zero-queue network mechanisms such as [27] can
also be integrated.

The Load Balancer that residents in user space (as in Fig. 5)
can leverage comprehensive information to apply dynamic load
balancing. For example, an application can directly use end-to-end
path statistics (e.g., end-to-end bandwidth) to distribute different
numbers of chunks from a single message. Moreover, in zero-queue
network design, the Load Balancer can work as the local agent to
acquire the controller scheduling command for any transmission
task.

Furthermore, applications can command the Load Balancer to
transmit various types of messages based on their requirements. For
example, for big “elephant” flows that transmit large messages, more
paths can be used to aggregate more bandwidth; for small “mice”
flows such as control messages, the path with minimum latency
is usually selected. In the first case, Maestro can adopt the “flow-
let” mechanism to apply load balancing between heterogeneously
loaded virtual paths. The reason why we can use this design is
as follow: 1) In RDMA, transport is offloaded to hardware RNIC.
Packet-level load balancing cannot be achieved in user space since
it tremendously delays the data path. 2) RDMA is a message-based
transport mechanism where packets are transmitted in burst where
“flow-let” is feasible [37].
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5 IMPLEMENTATION & SETUP

In this section, we present integrating the Maestro with DDL plat-
forms to support RDMA-enabled DDL applications in user space
and describe the experimental setup of our testbed.

5.1 Integrating Maestro with DDL Platforms

We have implemented a prototype of Maestro as a user-space “mid-
dleware” library on top of the standard RDMA libraries, 1 ibrdmacm
and libibverbs, and have been working on integrating it with
PyTorch [25] to support distributed learning applications. Maestro is
implemented in C language, and can be ported by Python-based DDL
platforms as a stand-alone library (e.g., via ct ypes library [5]). Dis-
tributed deep learning consists of process group initialization, model
computation, and model synchronization phases. The communica-
tions are involved in both initialization and model synchronization
stages. In the rest of this section, we introduce the implementation
details of Maestro from these two aspects respectively.

Connection Establishment in Initialization: First, we intro-
duce how Maestro establishes multiple QPs among multiple pro-
cesses. Initially, in collective communication-based distributed deep
learning, multiple processes connect to form a communication group
where Rand ID is used as the identification of each process. For in-
stance, in PyTorch, processes call the the init_process_group
API to initiate the communication group as a full-mesh topology
where Rand ID and World Size are passed as parameters. We
implement Maestro version of init_process_group APl in
Maestro library so that applications can simply call it using the same
parameters. Within the Maestro’s init_process_group API,
the process with (Rand ID=0) is selected as the server process to
listen to the connection requests from other processes as in original
init_process_group function to form the full-mesh topology.
After that, the QP manager exchanges the IP address information
using the default connection between each pair of processes to es-
tablish extra QP connections.

Collective Communication in Model Synchronization: The
second phase in data-parallel distributed deep learning is model gra-
dient computation and model synchronization, where each node uses
part of the dataset to compute local model copy and exchange the
model parameters for synchronization. During the synchronization
stage, DDL platforms adopt the collective communication algorithm
(e.g., state-of-art ring_allreduce) to exchange the model group-wide.
For instance, in PyTorch, processes first compute the model locally
using allocated data batch. After each iteration of computation on
batched data, the all_reduce API is called to synchronize pa-
rameter values of each layer of the neural network model (stored as
Tensors) among nodes within the connected communication group.
In PyTorch or TensorFlow, Tensors are used to store the models
in user space memory. The memory space of the tensors can be
accessed by querying the corresponding storage object. Then,
these memory buffers can be used in Maestro as messages.

Maestro replaced the all_reduce API by implementing a
“build-in” ring_allreduce algorithm (which can be easily extended
to other collective algorithms, e.g., allgather or broadcast) to per-
form collective communication. Applications call Maestro’s API to
perform model synchronization using the multi-path transmission in
each iteration as the original API. However, since memory buffers
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are required to be registered before use, Maestro introduces an extra
phase in the first iteration to query the memory address of each tensor
and register them with the protection domain. However, this can be
optimized for transparency. In future iterations, when all_reduce
API is called (tensor is passed as the parameter), Maestro directly
uses the registered memory region handler to access the buffer and
performs the multi-path transmission. Additionally, Maestro uses
the gperf [18] as the run-time Path Monitor.

Maestro also introduces the following optimizations in imple-
mentation. (1) Since the tensor buffer of the model is reused in
PyTorch, Decomposer also reuses the WRs for each chunk to avoid
dynamic memory allocation. (2) Maestro is implemented using an
event-based mechanism to handle multiple QPs management and
transport to avoid introducing extra CPU overhead. (3) Moreover,
Maestro uses the model buffer as the sender buffer to apply in-place
collective computation to avoid memory copy.
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Figure 7: Test Bed Setup

Table 2: Testbed Hardware Specifications

Component  Specification

CPU 24x Xeon(R) E5-2620v3 @ 2.40GHz
DRAM 10x 16GB DDR4 @ 2133 MHz
RNIC 4x Mellanox ConnectX-5, 50Gbps
RNIC 4x Mellanox ConnectX-3 Pro, 10Gbps
Switches Dell Z9100-ON (Dell OS 10)

5.2 Experimental Testbed Setup

As shown in Fig. 7, we use 8 servers connected by 6 switches to form
a 2-tier spine-leaf topology where 4 servers serve as a communica-
tion group and the other 4 servers are background traffic generators.
All the links are set as 40Gbps as default, except synthetic congestion
configurations in specific experiments. As shown in Table 2, RNICs
are Mellanox ConnectX-5 on computation nodes and Mellanox
ConnectX-3 Pro on traffic generators. The software drivers used
are MLNX_OFED_LINUX-5.3-1.0.0.1 (MLNX_OFED_LINUX-4.9-
3.1.5.0 for ConnextX-3 Pro). The operating system on severs are all
Ubuntu 18.04 with 4.15.0-142-generic kernel. On both ToR switches,
ECMP with XOR algorithms is enabled to perform multi-path rout-
ing using seed value ({(srcIP, dstIP, srcPort, dstPort, Protocol))
configuration. The MTU in the entire network is 4096Bytes. RoCE
traffic requires a lossless network, so we enabled WRED with
(Min, Max, Drop Rate, ECN) = (50KB,100KB, 1.0, enabled) and
PFC, to configure it as lossless converged Ethernet. « value in the
DCQCN is set as the default value, 1023. RoCE traffic goes through
a high-priority queue while TCP traffic goes via the default-priority
queue.
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6 EVALUATION

We conduct a comprehensive evaluation of Maestro in performance
of communications in DDL from multiple perspectives as presented
below.

6.1 Multi-path Utilization in DDL

In this section, we evaluate the performance of Maestro in utiliz-
ing multiple paths in collective communications of DDL. We start
by evaluating the end-to-end throughput performance of Maestro
using RDMA Perftest [26]. We also investigated how the chunk
size impacts transmission efficiency and flexibility. Furthermore, we
demonstrated that Maestro improves the performance of collective
communications.

End-to-end Throughput. Since end-to-end communication is
the most primitive communication in DDL data transmission, we
first evaluated the throughput of Maestro to show that Maestro can
effectively utilize multiple paths between spine and leaf (i.e., core-
level) by bandwidth aggregation.
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Figure 8: End-to-End Bandwidth Performance

To compare with multi-thread single-path RDMA with ECMP,
We run the benchmark tools of the Perftest [26] toolkit with Maestro
(ib_send_bw and ib_write_bw) to measure end-to-end throughput for
SEND/WRITE verbs. For each experiment, we ran 112089 iterations
with a message size of 65536 Byte. To generate synthetic congestion,
we set the link speed in core as 10Gbps while access links (the
links between RNIC and ToR switches) remain 40Gbps. Thus, the
core-level network can be the bottleneck.

As demonstrated in Fig. 8, Maestro outperforms ECMP multi-
path routing in both SEND/WRITE verbs cases. As shown in Fig.
8(a), the total throughput increase linearly as the number of used
paths increasing until the core-level aggregated bandwidth reaches
the maximum bandwidth of the access link (40Gbps). When through-
put reaches the maximum throughput of RNIC, Maestro stabilizes
the performance while ECMP does not. This fact guarantees that
Maestro achieves an effective utilization of core-level bandwidth
while there are more available paths. On the contrary, the ECMP
solution suffers from hashing conflicts. This result holds the same in
SEND verb scenario as shown in 8(b).

Chunk Size. Maestro decomposes a large message into multiple
chunks which are posted to multiple QPs simultaneously. As a result,
the chunk size is the key factor that determines the trade-off between
granularity of load balancing and transport efficiency. For instance,
given a message, a smaller chunk size increase the number of WRs
used which increases the overhead (on both CPU & RNIC as dis-
cussed in §4.2) but achieve a finer grain of dynamic load balancing.
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In this experiment, we select the proper chunk size on our testbed
and evaluate its impact on transport efficiency.

For the setup, we synchronized the VGG19 model with 1600Kbyte
message size (the maximum size of a single message), by running
ring_allreduce algorithm among 4 servers. The chunk sizes are set
as 12.5, 25, 50, 100, 200, & 400K bytes in experiments. We used the
standard libibverbs APls, i.e., ibv_query_rt_values_ex(), to query
raw (Host Channel Adapter) HCA clock cycles for communication
time acquisition.
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We calculated the completion time of each block to evaluate
the impact of the chunk size on transport efficiency. Fig. 9 shows
the statistical distribution of the completion time. With chunk size
increasing, the median completion time decreases. As the network
is configured in lossless mode, even if there is congestion, traffic
can always be delivered without packet loss but with a larger flow
completion time, which is represented as outliers. Thus, when a
larger chunk size is used, Maestro is weakened in flexibility that
manifests as outliers increase. The reason is that larger chunk size
delays the response of Maestro towards congestion, consequently,
more congestion happened. Thus, the number of outliers increased
with the chunk size increasing. In conclusion, to balance the transport
efficiency and granularity of dynamic load balancing, SOKB is the
optimal chunk size in our setup, which also meets the results as in
[10, 19]. Thus, we selected SOK bytes as the default value of chunk
size in the following experiments.

Collective Communication Performance. Collective communi-
cation is critical for cluster-based distributed applications since com-
munication is the bottleneck. In this experiment, we evaluate how
Maestro performs in real DDL communication scenarios. We run the
state-of-art collective communication algorithm, ring_allreduce [12],
to show that Maestro can improve the collective communication per-
formance by utilizing multiple paths in model synchronization.

To simulate the synthetic congestion in DCN, we set the speed of
core-level links as 25Gbps while the links between RNIC and ToR
switches remain 40Gbps. We test multiple models (DAGNN [35],
Wide_Resnet101_2 [41], VGG19 [33] and Bert_large [6]) to com-
prehensively evaluate the performance of Maestro. The message size
selected to apply ring_allreduce is set as 1600Kbyte. The chunk size
used in this experiment is 50Kbyte. For communication time cost,
we querying the HCA raw clock on RNIC on each CQE for accurate
hardware time acquisition. Meanwhile, the standard system API,
i.e., clock(), is used for the application running time acquisition. To
measure the network congestion, we leverage the statistic counters,
particularly ECN marks, on switches. Note that we do not consider
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the computation cost on CPU for the following two reasons. 1) CPU
computation is constant and not the bottleneck in collective commu-
nication. 2) For large message cases, the GPU is usually used for
computation.

a) Message Transmission: We evaluate Maestro’s performance
in the transmission of messages. As shown in Fig. 10, we use the
VGG19 model as an example to illustrate that Maestro can decrease
the transmission time in the transmission of messages (data blocks).
The red dot line is the result when the application uses a single
path RDMA and encountered hash conflicts, where all flows are
hashed on the same path. On the contrary, the green line is the
ideal case of ECMP where all four flows are hashed on disjoint
paths. An essential observation is that although load-balanced ECMP
slightly outperformed conflicted ECMP, they have similar overall
performance. The main reason is that RNIC still cannot reach its
full performance due to the limited bandwidth on congested core-
level paths. Thus, when the core-level path is the bottleneck, ECMP
cannot resolve the congestion issue effectively.

On the other hand, Maestro can resolve this issue by aggregat-
ing available bandwidth on multi-paths. As illustrated in the figure,
Maestro outperformed ECMP by decreasing up to 60% of the com-
pletion time in transmission. Maestro has the minimum completion
time (approximately 5000 to 10000 HCA clocks) when ECMP has a
maximum of 25000 HCA clocks. A corner case is a 3-paths situa-
tion, where only 3 paths with accumulated 150Gbps are used. In a
lossless network, 4 nodes cluster requires a totally 160Gbps to avoid
congestion. Consequently, Maestro encountered congestion but still
outperforms ECMP.
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Figure 11: Collective Communication in DDL

b) Collective Communication: Then we run the same experiment
to evaluate the overall performance of Maestro in DDL collective
communication. i) DDL Communication: As shown in Fig. 11, Mae-
stro outperforms ECMP at least 2 times. Meanwhile, Maestro per-
forms better in larger model cases since communication dominates
the costs. ii) Congestion Avoidance: As shown in Fig. 11(b), Maestro
also achieves congestion avoidance when the core-level path is the
bottleneck. Compared with the ECMP, Maestro could balance traffic
better among all paths. Since Maestro can effectively aggregate avail-
able bandwidth of every single path, fewer congestion events (ECN
marked packets) and DCQCN rate decrease are triggered. In con-
clusion, when the core-level network is the bottleneck, Maestro can
fully utilize multiple paths to decrease transport time (up to 66.7%)
in DDL, and also effectively avoid congestion in the network.

6.2 Dynamic Load Balancing

In this subsection, we evaluated the performance of Maestro in terms
of “user-space” dynamic load balance and resiliency. We run the
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ring_allreduce algorithm within 4-node communication groups. We
use the VGG19 model as an example to illustrate the results. For
traffic load measurement upon paths, we use the sFlow [24] tool
with 1 out of the 4096 sample rate on switches.
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Figure 12: Dynamic Application-aware Load Balancing

Load Balance. First, we disabled Maestro and rely on ECMP for
load balancing. Then, we run Maestro to run the same application
without any background traffic. Last, we load background traffics
on 3 of 4 paths, which are 10Gbps, 20Gbps, and 30Gbps, using
other 4-pair of servers respectively. We measure the sub-flow traffic
on each path from the application to show that Maestro can detect
the network bandwidth and load the traffic accordingly. Fig. 12(a)
and Fig. 12(b) show that Maestro can initiate 8 flows which can
be loaded on 4 paths in two directions. ECMP only initiated 4
flows and loaded on 2 paths, so the other 2 paths are left unused.
Moreover, Maestro performed better because less congestion was
observed, and thus DCQCN initiated less transmit rate decrease. Fig.
12(c) shows that Maestro can allocate traffic among paths based on
the network conditions. The distribution of sub-flows adapts to the
available bandwidth measured by the Path Monitor, which means
Maestro loads traffic on paths according to the network condition.
For example, the traffic load on the path with 20Gbps available
bandwidth has 2 times the traffic load of a path with 10Gbps available
bandwidth.

Path Detection. In this experiment, we show that Maestro can
detect and utilize new paths. Initially, we enable only two physical
paths. Gradually, we enable a new path per 30 seconds, to show
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whether Maestro can detect and utilize it. As illustrated in Fig. 12(d),
new flows are joining periodically, which means Maestro detects
the new paths and steers traffic to them. In particular, in every 30
seconds, a new flow is initiated (e.g., at the 30s, 60s, and 90s), which
means Maestro detects and utilizes the new path rapidly.

Resiliency. In this experiment, we show that Maestro can failover
traffic to healthy paths (resiliency). Initially, we enable all 4 physi-
cal paths (8 logical paths) and Maestro synchronizes data between
nodes. Then, we gradually disable paths to simulate path failure,
as the results illustrated in Fig. 12(e). Another important feature is
that Maestro dynamically modifies the load of paths by allocating
chunks (WRs) to QPs proportionally. Thus, after detecting the failure,
Maestro immediately load traffic among paths in balance. Moreover,
this whole procedure is done during off traffic intervals (computation
period), so that RDMA transmission is not degraded.

Adaptive Path Selection. DDL, as a typical distributed sys-
tem, synchronizations among nodes play an important role. For
instance, some Message Passing Interface (MPI)-based mechanisms
use MPI_barrier operation to synchronize nodes inside the com-
munication group. It exchanges small messages (e.g., 2Byte) and
is latency-sensitive. In this experiment, we show that Maestro can
adaptively select a low-latency path for synchronization operations.

We run a token-based MPI_barrier algorithm among 4 nodes
where a 2Byte size token message is passed along the ring topology
to synchronize processes. To simulate the latency on paths, we set
the latency on 4 paths with 10, 20, 30 & 40ms values (3ms jitters
with normal distribution) in each direction using fc command. Then
we measure the completion time of the synchronization operation on
the first node (the rank with id 0 who initiates the token passing). We
compare Maestro with ECMP based path selection. Fig. 12(f) shows
that Maestro can always detect the path with the lowest latency to
send out the message on each node. Compared with ECMP, Maestro
achieves a maximum 2 times lower synchronization time, so that
DDL applications can avoid blocking caused by high-latency paths.

6.3 Overhead & Scalability

In this section, we evaluate the overhead of Maestro on both host
(CPU overhead) and RNIC hardware along data path and control
path respectively, to show that Maestro introduces most overhead on
the control path but negligible overheads on the data path, thus it is
feasible for large-scale deployment in DCN.

Data Path Overhead: First, we evaluate the CPU usage intro-
duced by Maestro during data transmitting which is the data path of
Maestro. We ran ring_allreduce algorithm on the 4-server clusters
to synchronize the VGG19 model that is the size of 245Mbyte. For
CPU usage acquisition, we use CPU cycles via system API, clock().
As shown in Fig. 13, with more paths are using, the CPU usage is
slightly increasing. The main reason is that we initiated a worker
thread for each QP which is the primary CPU hot-spot in Maestro.
For each QP worker thread, it introduces about 6% CPU overhead
compared with single path RDMA. However, this overhead is ac-
ceptable in DDL scenarios because of the following three reasons:
1) Compared with the benefits gain introduced by Maestro (up to 2
times by using one extra path), the CPU overhead can be negligible.
2) It is noteworthy that in GPU training, the CPU is idle. Thus it
is worth making this trade-off for communication benefit. 3) Most
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importantly, though the core-level path is the bottleneck, it only
requires a limited number of paths (4 at maximum on our testbed)
to fully utilize the RNIC. Therefore, the CPU overhead will not
increase infinitely. Nevertheless, this is also a potential direction for
optimization in future implementation. For instance, we could adopt
batch-based posting mechanisms or event-based polling mechanisms
to avoid CPU usage.

In terms of RNIC hardware, the lower boundary of the number of
alive WRs is decided by the number of used paths, while the higher
boundary can be configured by the application. In the end-to-end
communication, at least 4 alive WRs exist on our testbed since 4
paths are used. Meanwhile, we also decrease the RNIC overhead
by limiting the maximum alive number of WRs to 8 which is suf-
ficient for pipeline optimization. Besides, 4 paths are sufficient to
fully utilize the RNIC in our experiments. Thus, in the end-to-end
communication, 4 alive QPs is sufficient to utilize these paths. Fur-
thermore, in widely used ring-based collective communication, 8
QPs at maximum on each rank are sufficient where each rank only
has to communicate with its left and right neighbors, which intro-
duces negligible overhead on the RNIC (since an RNIC can support
about hundreds of QPs before performance drop on throughput [15]).
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Figure 13: CPU Overhead Figure 14: Aggressiveness

Control Path Overhead. The primary overhead introduced by
Maestro is during the connection establishment phase (control path)
where Maestro connects each pair of nodes using multiple QPs. To
break down the overhead, we collect the number of the API calls of
Maestro during this phase.

During connection establishment, for each pair of nodes, one
works as a client while the other works as the server. On server-
side, Maestro is listening to multiple connecting requests; on client-
side, Maestro generates multiple QP connecting requests. As shown
in Table 3 (N is the number of QPs used), on the client-side, the
number of API calls increases linearly with the number of used
paths increasing. On server side, Maestro calls rdma_listen() APIs
once to accept multiple connection requests, and rdma_accept()
is called multiple times to process the connection request. These
operations introduce primary CPU usage and latency on the control
path, however, are not to DDL communication. Because QPs are
connected in process group initialization stages and reused during
training.

Impact on Mice Flows. In this experiment, we validated whether
Maestro is non-aggressive to other traffic when initiates traffic on
more paths. In a PFC-enabled lossless network, latency-sensitive
(especially tail-latency) mice flow (e.g., SDN control messages)
usually are set to high priorities. Thereby, RDMA traffic (normally
uses priority 3) may not influence such traffics. However, flows
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Table 3: Control Path Overhead Breakdown

Item API # of calls

ibv_create_cq 1
common

rdma_create_gp N
rdma_resolve_addr N
Client rdma_resolve_route N
rdma_connect N
Server rdma_listen 1
rdma_accept N

that share the same priority queue with RDMA traffic on the same
path can be affected by extra sub-flows from Maestro. To explore
such influences on mice traffic flows, we ran ring_allreduce with
Maestro to synchronizing the VGG19 model between four servers.
Then, we used ib_send_lat to send 2Byte messages between the
other two servers to simulate a mice RDMA control traffic that also
uses priority 3.Then we measure the maximum flow completion time
of mice flows as the tail-latency. As shown in Fig. 14, the latency
introduced by sub-flows form Maestro is negligible which means
that Maestro is not aggressive to these mice flows. We can state that
Maestro utilizes available bandwidth on extra paths but does not
affect the mice-flows on these paths.

7 RELATED WORK

RDMA plays an important role in data center [22] to boost DDL.
Existing multi-path RDMA transportation heavily relies on ECMP
hashing, but it could hardly make DDL applications saturate link
bandwidth [4]. MP-RDMA [20] is the first to address the challenge
that RDMA cannot effectively take advantage of rich multiple paths
in DCNs [14, 28, 31]. It proposes a hardware-based solution with
“built-in” path selection and congestion avoidance mechanisms. The
key challenge it focuses on is the limited on-board memory (see
also FaRM [7], LITE [36] and INFINISWAP [13] that tackle similar
constraints). Unfortunately, hardware-based solution cannot support
requirements-oriented path selection [38]. In contrast, kernel-space
solutions [9, 30] can hardly interact with RDMA where kernel is
bypassed on data path. Similar to our work, Wang et al propose
a software-based load balancing solution [40] using data partition.
However, their solution assumes that user space applications can
readily choose the port number of UDP packets, which is infeasible
using current ROCEv2 design. Avatar [29] is another middleware
solution in RDMA that allows multiple applications to share a single
RDMA transport by multiplexing WR messages from multiple appli-
cations via consistent QPs. Avatar can eliminate lock contention and
provide fair data scheduling. However, it does not tackle the same
problem as our work, namely, RDMA application load balancing
over multiple core DCN paths (with possibly a single host RNIC).

8 CONCLUSION & FUTURE WORK

This paper presents Maestro, a purely software-based modular multi-
path RDMA solution that brings efficiency and flexibility. A novel
vNICs based user space path control mechanism and a middle-ware
transport layer is proposed to achieve effective multi-path transmis-
sion in RDMA without introducing extra memory copy. The user
space path monitor and load balance are also realized to provide
application-aware path selection and resilience for the heterogeneous

Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, and Zhi-Li Zhang

requirement of DDL applications. Our experiments show that Mae-
stro can effectively utilize multiple paths by aggregating bandwidth
and detecting path failure in collective communication. Meanwhile,
Maestro introduces negligible CPU overhead in data paths which is
feasible for large-scale DDL platforms.

Maestro is presented to bring inspiration for the community to
leverage the flexibility of software-defined techniques. We plan to
i) extend the idea to state-of-art platforms (Pytorch [25]) to sup-
port real-world application by integrating Maestro to large-scale
platforms such as Gloo [8] to support both CPU & GPU training.
ii) release Maestro as an open-source project to contribute to more
RDMA enabled DCNS.
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