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Chemistry is considered as one of the more promising applications to science of near-

term quantum computing. Recent work in transitioning classical algorithms to a quantum

computer has led to great strides in improving quantum algorithms and illustrating their

quantum advantage. Because of the limitations of near-term quantum computers, the

most effective strategies split the work over classical and quantum computers. There

is a proven set of methods in computational chemistry and materials physics that has

used this same idea of splitting a complex physical system into parts that are treated at

different levels of theory to obtain solutions for the complete physical system for which

a brute force solution with a single method is not feasible. These methods are variously

known as embedding, multi-scale, and fragment techniques and methods. We review

these methods and then propose the embedding approach as a method for describing

complex biochemical systems, with the parts not only treated with different levels of

theory, but computed with hybrid classical and quantum algorithms. Such strategies

are critical if one wants to expand the focus to biochemical molecules that contain

active regions that cannot be properly explained with traditional algorithms on classical

computers. While we do not solve this problem here, we provide an overview of where

the field is going to enable such problems to be tackled in the future.

Keywords: computational molecular biology, biochemistry, quantum computing, hybrid quantum-classical

algorithms, quantum embedding theory

1. INTRODUCTION

Biochemical systems are essential for carrying out biological functions, and their actions span
extreme time and length scales. These systems consist of proteins, DNAs, RNAs, carbohydrates,
or lipids (either individually or in combination) with small molecule ligands and/or with ions
in aqueous or membrane environments. The functional processes can be either covalent or
non-covalent, such as molecular recognition; or a combination of both, such as an enzymatic
cycle. Important biological functions are, for example, stem cell maintenance, DNA repair,
gene transcription and translation, signal transduction, development, learning and memory,
metabolism, etc. In order to understand these elementary processes, together with experimental
approaches, various computational methods have been developed at the electronic, the atomic, and
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more coarse-grained levels over the decades. However, full
quantum calculations are intractable due to the large molecule
sizes and the high demands for accuracy required for chemical
applications.

The solutionmay lie in quantum computing: as Feynman once
said, “... Nature isn’t classical...if you want tomake a simulation of
Nature, you’d better make it quantum mechanical...” (Feynman,
1982). As a matter of fact, from the remarkable speed of
enzyme-catalyzed reactions to the workings of the human
brain, numerous biological puzzles are now being explored
for evidence of quantum effects. Well-known examples include
photosynthesis, nitrogen fixation, magnetoreception, olfaction,
neuronal signal processing, protein/drug interaction, and so
on. There have even been early attempts to develop quantum
computing algorithms specifically for nitrogen fixation (Reiher
et al., 2017).

Quantum computing is being explored to help solve a variety
of problems in biochemistry and biology (Cao et al., 2019; Emani
et al., 2019). In this paper, we review several approaches to allow
quantum computing to be exploited to simulate biochemical
systems with complicated electron correlation. We formulate a
general approach of embedding to describe part of the system on
classical computers and the most demanding part on a quantum
computer resulting in a complete solution of the complex system
with useful accuracy. This will allow quantum computers to be
used for such demanding problems without the requirement
that a quantum computer be available to hold and process the
entire system of interest. In section 2, as motivating examples,
we present three biochemical systems that are intractable with
classical algorithms on classical computers due to the need to
deal with complicated electron correlation. Effectively addressing
them with quantum computing will lead to important scientific
advances. Then we review the embedding methodologies that
have been used to handle very complex systems using classical
computers in section 3, which consists of dividing the system
into two parts, with one part, the most computationally
demanding, computed with quantum theory and the other part,
considered the environment, treated with classical theory. The
challenge of embedding methods is the exchange of information
between the two parts. Section 4 provides a brief review
of two of the most important existing quantum algorithms
for chemistry, Variational Quantum Eigensolver and Quantum
Phase Estimation. Section 5 presents how the idea of embedding
strategies can be usefully applied to handle complex physical
systems at a high level of accuracy by combining the power of
quantum computers for the strongly correlated part of the system
with the use of classical computers for the other parts.

In the context of computational chemistry, the distinction
of quantum vs. classical has two meanings that are both
relevant: The first, traditional, meaning designates the level of
theory that is used to describe the chemical and biochemical
systems. Because of the complexity and size of biochemical
systems, treating the whole system using quantum theory
is not feasible and often the systems are described using
theories based on classical physics. The second, more recently
introduced, meaning refers to whether the theoretical model and
computational algorithms are run on quantum computers or

classical computers. The promise of quantum computers is that
they will eventually be sufficiently powerful to allow scientists
to model complex biochemical systems accurately and efficiently
with a fully quantum theoretical description. In this paper, we will
make it clear which meaning is used when it is used.

2. MOTIVATING EXAMPLES

We present three important and representative biochemical
systems whose properties make them attractive targets for
quantum computing. The first two are open shell transition-
metal and conjugated pi-electron strongly correlated systems;
the last one displays extreme non-covalent intermolecular
binding involving a large number of atoms. These three
examples symbolize difficult cases for classical quantum chemical
treatments and superior ones for quantum computing.

2.1. A Transition-Metal-Ion-Containing
Enzyme: Histone Demethylase
The transcription of genetic information encoded in DNA
is in part regulated by chemical modifications to histone
proteins. Histone demethylases are enzymes that remove methyl
(-CH3) groups from histones. The demethylase proteins alter
transcriptional regulation of the genome by controlling the
methylation levels that occur on DNA and/or histones and, in
turn, regulate the chromatin states at specific gene loci within
organisms. The big demethylase family has KDM1-6 classes
(Pedersen and Helin, 2010). Defined by their mechanisms, two
main classes of histone demethylases exist: a flavin adenine
dinucleotide (FAD)-dependent amine oxidase, and an Fe(II)
and α-ketoglutarate-dependent hydroxylase. Both operate by
hydroxylation of a methyl group followed by dissociation
of formaldehyde. By studying various demethylation details,
improvements are possible in the understanding of how “histone
code” is employed for gene on/off switching.

Figure 1 is an illustration of the JmJD2A topology, active
site, and proposed catalytic mechanism which involve both
transition metal ions and reaction radicals (Chen et al., 2006;
Ng et al., 2007; Zheng and Huang, 2014). These are cases where
the Born-Oppenheimer approximation breaks down. During the
catalytic cycle, the iron metal ion has three charge states: +2,
+3, and +4, and two spin states: 0 and 1/2. Oxygen has three
spin states: 0, 1/2 and 1. There are at least nine catalytic steps.
Considering only direct contact catalytic amino acid residues,
oxygen, trimethylated quaternary amine from lysine substrate,
and of course catalytic Fe ion, 151 electrons and 121 spatial
orbitals must be involved to achieve accurate electronic structure
and related energy calculations.

2.2. Non-Metal-Ion-Containing Enzyme:
Telomerase
The study of telomerase is of tremendous significance for
understanding stem cell maintenance, aging, and cancer. At each
end of a chromosome, there is a region of repetitive nucleotide
sequences called a telomere which protects the chromosome
from deterioration or fusion with neighboring chromosomes.
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FIGURE 1 | Structure of JmJD2A. Some domains from above are highlighted: JmJ (N-terminus, red; C-terminus, yellow), Zinc finger domain (light purple),

Beta-hairpin (light blue), and mixed domain linker (green). The ball-and-sticks are Fe(II) and alpha-ketoglutarate cofactors. The enzymatic reactions involve both iron

redox and oxygen radical, and are thus infeasible with classical computers.

During chromosome replication, the enzymes that duplicate
DNA cannot continue their duplication all the way to the end
of a chromosome, so after each cell division, the telomere gets
shorter. Telomeres are replenished by an enzyme, as shown in
Figure 2, telomerase reverse transcriptase (TERT), (Cohen et al.,
2007) which is the catalytic subunit of telomerase. Telomerase is
active in normal stem cells and most cancer cells, but is normally
absent from, or at very low levels in, most somatic (body) cells.

For vertebrates, the sequence of nucleotides in telomeres is
AGGGTT (Harvey, 2014). The complementary DNA strand is
TCCCAA, which also has a single-stranded TTAGGG overhang
(Witzany, 2008). This sequence of TTAGGG is repeated
approximately 2,500 times in humans (Sadava et al., 2011).
The active telomerase is a homodimer, each monomer having
telomerase reverse transcriptase (TERT), telomerase RNA, and
dyskerin (Mitchell et al., 2010). Currently, there are several TERT
crystal structures available; computational simulation of TERT
telomere elongation is important. Snapshots of the molecular
processes need be constructed and quantum computing could
be used to simulate the catalytic active centers in order to
better understand how these systems work, especially base fidelity
preservation during the extension process. Due to its nucleobase
pairing and reaction processivity, this is a case where quantum
computing could make a large impact on molecular recognition.

2.3. Molecular Recognition:
Biotin-(Strept)Avidin Binding
Molecular recognition, the specific interaction between multiple
molecules which exhibit molecular complementarity through
non-covalent binding, plays a critical role in biological
interactions. Although the field is well-studied, important
problems remain unsolved. For example, even though it is
a classic molecular recognition issue and many studies have
attempted to resolve it, the origin of strong non-covalent

reversible binding of small molecule biotin to proteins avidin
(Ka ∼ 10E15 M-1) and streptavidin (Ka ∼ 10E13 M-1) remains
a mystery. As seen from Figure 3, the beta-barrel shaped
avidin binds the biotin ligand with van der Waals, electrostatic,
hydrogen bonding and pi-electron polarization forces; this results
in a free energy of binding around −20 Kcal/mol, almost at a
quasichemical bonding level.

Understanding this binding thermodynamics at the molecular
level holds fundamental importance theoretically and offers key
insights for molecular design. There is no doubt that in
desolvation, conformational and vibrational entropy play an
important role. However, the key issue here is to understand
biotin-avidin intermolecular interaction, which rests on
computing accurate non-bonded interaction energies. The
biotin molecule (as the ligand) has 89 valence electrons and
79 frontier orbitals. By only considering direct contacting
atoms from the binding amino acid residues, the active part
of the molecule has a total of 379 electrons and 358 spatial
orbitals. The spin state is S = 0 and charge state is −1. It
should be obvious that such a subsystem is too large to be
tackled with standard chemical methodologies for strongly
correlated molecules, so quantum computing is the only
option for a complete theoretical analysis. Sometimes, ligands
form covalent bonding with proteins, such as anticancer drug
ibrutinib binding to Bruton’s tyrosine kinase (Bender et al.,
2017). Quantum computing mimicking these processes not only
helps fundamental understanding on molecular recognition, but
also facilitates drug or materials design.

3. CLASSICAL COMPUTER EMBEDDING
STRATEGIES

In this section, we review the methodology of embedding as it
has been used for several decades to describe complex chemical
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FIGURE 2 | (Left) TERT with hybrid RNA/DNA bound; (Right) (A) cartoon representation of the active site; (B) detailed active site residues and DNA substrate.

FIGURE 3 | (Left) overall avidin protein structure with biotin binding; (Right) detailed biotin interaction amino acid residues from avidin.
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systems, including large bio-molecules in liquids and solid-
state systems, by dividing them into parts that are treated with
different levels of physical theory. The levels of theory range from
continuummodels, to classical dynamics of atoms andmolecules,
to full quantum-mechanical description of electronic structure
and nuclear motion. These methods are then implemented
in algorithms that run on classical computers. The challenge
common to all these methods lies in the description of the
interactions across the boundaries between the parts. There the
interaction must be described with care because of the different
theories being used to describe the parts on either side of
the boundary.

The same methodology used to divide complex systems
into parts is extended to describe some parts with algorithms
that are executed on classical computers, while other parts
are described by algorithms that are executed on quantum
computers. The challenge of embedding methods on classical
and quantum computers is the same in that the description
of the interaction between the parts running on the classical
and quantum computers must be handled with extreme care.
In addition, because one cannot directly readout the final
wavefunction from the quantum computer, hybrid algorithms
must be properly designed to allow for the information from the
quantum calculation to be transferred to the classical algorithm
and vice versa.

In the method of multiscale simulation, the challenge is to
describe the processes that are visible at the macroscopic level,
but are fully determined by the details at some microscopic level.
A paradigmatic example is the formation and propagation of
cracks in materials (Gao and Klein, 1998; Rudd and Broughton,
2000; Rountree et al., 2002; Liu et al., 2004; Budarapu et al., 2014;
Talebi et al., 2014). The macroscopic description is the goal, but
continuum models that are effective and affordable at that scale
cannot describe the basic-bond breaking process that lie at the
foundation of the crack formation. Nor can molecular dynamics
methods describe this process. Thus the continuum model, the
molecular dynamics model, and the quantum model must all be
coupled together with scale-bridging techniques used to connect
them in a way that accurately preserves the physics (Hoekstra
et al., 2014).

Similarly, a biomolecule can be divided into three regions:
a classical region where interatomic interaction can be treated
with classical force fields using standard methods (Amber http://
ambermd.org/, CHARMM https://www.charmm.org/charmm/,
LAMMPS https://lammps.sandia.gov/, etc); a quantum region
where mean-field approximations are sufficient; and a strongly
correlated region where high-level methods that treat quantum
entanglement are needed, that is, techniques beyond density
functional theory (DFT).

3.1. Hybrid Quantum-Classical Molecular
Dynamics
We illustrate how hierarchical methods have been used in a
few studies. We show a study of water-silica surface interaction,
which shows that very complex amorphous systems can be
handled by the method. In the amorphous water-silica interface

interaction, the system is divided into two regions, the quantum
and the classical. Here, the quantum region is described by
effective mean-field methods, while the classical region is
described by molecular dynamics using effective force laws. The
two regions must be coupled together across their boundary.
Various methods exist for the embedding of the quantum region
(the light blue region in Figure 4) inside the classical region. In
earlier work (Du et al., 2004), a quantum region described by
DFT is embedded in a classical matrix as shown in Figure 5.
This figure depicts a Si-O bond-breaking process on the silica
surface. According to a free cluster model (Walsh et al., 2000),
the calculated barrier energy of this process is Eb = 0.7–1.1 eV.
However, when the cluster is embedded in a surface matrix, the
calculated barrier energy Eb is equal to 0.4 eV. Including quantum
effects results in a substantial decrease.

For a bio-molecule, the embedding is simpler than for
amorphousmaterials as there are not as many bonds that connect
the classical region and the quantum region. Techniques for this
type of embedding are quite sophisticated (Gao and Xia, 1992;
Bakowies and Thiel, 1996; Gao et al., 1998; Cui et al., 2001; Laio
et al., 2002; Vreven et al., 2003; Friesner and Guallar, 2005).

The peptide hydrolysis reaction mechanism for HIV-1
protease has been studied by a hybrid Car-Parinello/classical
molecular dynamics simulation (Piana et al., 2004)/Gradient-
corrected BLYP density functional theory describes the reactive
part of the active site and the AMBER force field describes the rest
of the proteins, the solvent, and the counterions that are needed
to balance the QM/MM description. The authors find that the
orientation and the flexibility of the reactants, determined by the
embedding protein structure, are important in determining the
activation barrier for the reaction. This shows the need to include
the larger structure as well as the ability of the QM/MM approach
to address the problem.

As another example, a recent study (Ahsan and Senapati,
2019) on the effect of water, i.e., hydrogen bonds, in a catalytic
role in epoxide ring opening in aspartate proteases using
QM/MM show that the process follows a two-step mechanism
with the formation of an oxyanion intermediate, which is
stabilized with up to 30 kcal/mol supplied by the hydrogen
bonds from the water molecules near the protein active site. This
example, too, illustrates that the treatment of the whole system is
crucial for a correct understanding of the biochemistry enabled
by the hybrid approach.

3.2. From DFT to Strongly Correlated
Systems: Quantum Embedding Theory for
Molecules and for the Hubbard Model
Transition-metal molecular complexes with d and f electrons
often demonstrate strong correlation effects. Active centers of
many enzymes are transition-metal complexes; e.g., photosystem
I and II have iron-sulfur and manganese-oxide clusters as
their active centers. The large number of atoms in ligands
makes high-level calculation of the whole molecule impossible.
In this situation, quantum embedding is necessary. Note that
quantum embedding is different from the hybrid quantum-
classical simulation discussed in section 3.1. Here, we embed
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FIGURE 4 | Schematic of a hybrid simulation framework for molecules that employs a hierarchical embedding strategy.

FIGURE 5 | (A) Sketch of the hybrid simulation framework as applied to amorphous glasses from Du et al. (2004). Three sizes of the quantum region were chosen

(panels a–c on the left) to ensure the convergence of the reaction energy. (B) The right picture relates energy path with water splitting process. The energy barrier is

only 0.4 eV and is zero when the reaction involves only two water molecules.

a strongly correlated subspace in a single electron space. So,
we need a single-particle theory for the whole molecule and
a many-body theory for the correlated subspace, which is a
small but functional part of the molecule. One embedding

scheme utilizes density functional theory (DFT) as the single-
particle theory and does the embedding via dynamical mean-
field theory (DMFT) (Georges et al., 1996). In DMFT, the
correlated subspace is referred as an impurity and the impurity
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problem is solved by an impurity solver. We can use unitary
coupled-cluster theory, which can be run on quantum computers,
to create an approximation of the ground state of the active
region of the molecule. Then additional qubits are employed to
represent the self-consistent bath that the impurity is coupled
to. Time evolution then allows the Green’s function to be
determined for the impurity, which can be directly measured
and have its self-energy extracted after the Green’s function data
is transformed from the time domain to the frequency domain.
The impurity self-energy is then approximated as the self-energy
of the molecule in DMFT, and we can use it to obtain the
molecular interacting Green’s function, which in turn will be
used to calculate physical properties of the molecule. Most likely,
these problems will require an inhomogeneous DMFT approach,
with separate impurity problems for the different atomic sites in
the strongly correlated material. The challenging computation
of the local Green’s function for each atomic site from the local
self-energy would be carried out on a classical computer.

The impurity model is defined, in part, from the on-site
Coulomb interaction U-matrix. One reliable way to determine
these parameters from first principles is the constrained Random
Phase Approximation (cRPA) method (Aryasetiawan et al., 2004,
2006). One aims to estimate the screened Coulomb interaction
for selected bands of interest, that is, within a specified energy
window. For this purpose, the particle-hole polarization between
all possible pairs of occupied and unoccupied states is taken into
account. This approach uses the Random Phase Approximation
(RPA) and directly calculates the particle-hole polarization
(Petersilka et al., 1996; Aryasetiawan et al., 2004).

To make DFT+DMFT fully ab initio, the hopping parameters
and the Coulomb interaction parameters should be provided
from first principles (in the DFT part of the calculation). The
Hubbard Hamiltonian can be written as

ĤHubbard =
∑

i,j

tij ĉ
†
i ĉj +

∑

i,α,β ,γ ,δ

Ui,αβγ δ ĉ
†
i,α ĉ

†

i,β ĉi,γ ĉi,δ . (1)

The hopping matrix tij comes from the DFT eigenenergies and
provides the bath Green’s function in DMFT. The Coulomb
interaction Ui,αβγ δ comes from the cRPA calculation described
above, which is the only fully quantum-mechanical way to obtain
the Coulomb interaction parameters. With the bath Green’s
function and U at hand, the effective action of the impurity
problem is constructed. DMFT solves for the impurity Green’s
function by direct numerical sampling of the Green’s function

Gij,σ (t) = −〈Tĉi,σ (t) ĉ†
j,σ (0)〉. A classical computer algorithm

often uses the continuous time quantum Monte Carlo algorithm
(CT-QMC) (Gull et al., 2011; Zhang et al., 2019).

It has been proposed (Bauer et al., 2016) that a quantum
computer algorithm could replace the CT-QMC calculation and
provide the impurity Green’s function Gij,σ (t), especially in cases
where the classical computation suffers from the sign problem.
Such a calculation embeds the impurity solver onto the quantum
computer (quantum computing task), while the remainder of
the DFT+DMFT iteration is carried out on classical computers.
However, because describing the bath for the impurity problem

is complex, it might be fruitful to instead simply solve the many-
band lattice problem directly on the quantum computer. Indeed,
this latter approach is more likely to be generalizable to large
molecular systems. Of course, becausemolecules are not periodic,
one will likely need to use inhomogeneous DMFT approaches if
one takes the impurity problem approach.

It often is important to embed the DFT+DMFT iteration
into a larger loop of charge-density (ρe) self-consistency (CSC)
(Figure 6). It is known that CSC DFT+DMFT is necessary to
capture charge density re-distributions even for very simple
transition metal oxides like V2O3 under ambient conditions
(Leonov et al., 2015). Similarly, in molecular calculations, charge
redistribution is important for any simulation involving catalysis
or other reactions. It is clear that all of these types of calculations
must continue to be done on a classical computer. Only the
complex strongly correlated part, involving the measurement of
the Green’s function will be done on the quantum computer.
Because it can be directly measured, the connection between
the quantum and classical calculation is simple to implement in
this case.

4. BRIEF OVERVIEW OF CHEMISTRY ON
QUANTUM COMPUTERS

4.1. Quantum Algorithms and Methods
One basic challenge in computational chemistry is finding a
way to avoid having to explicitly maintain the full many-body
wave function, because the classical resource requirements of
doing so grow exponentially with the system size. In a quantum
computer, on the other hand, this scaling is linear in the number
of qubits used. Another classical computational challenge is
propagating the wave function in time by computing e−iHt |9〉.
This calculation can also be efficiently implemented, in principle,
on a quantum computer. This gives the promise of eventually
being able to use a quantum computer to handle systems that
cannot be feasibly calculated on classical computer. Such analysis
can even be extended to beyond Born-Oppenheimer effects by
including additional orbitals for the nuclei (Veis et al., 2016),
but those approaches require significantlymore resources and are
likely to be applied to these large systems only far into the future.
The disadvantage of working on the quantum computer is that
the wave functions cannot be directly retrieved—either we resort
to multiple calculations and measurements to obtain statistical
knowledge of the wave function, or we settle for measuring some
property of the wave function. Thus quantum algorithm design
is not trivial.

In the last 20 years, significant progress has been made
toward the goal of performing quantum chemistry on quantum
computers (Cao et al., 2019). Most recently, Google has achieved
a milestone in computational quantum chemistry by performing
a Hartree-Fock calculation, the foundational algorithm in the
field, on a superconducting quantum computer (Google AI
Quantum and Collaborators, 2020). In this section, we describe
two paradigmatic algorithms. The first is the variational quantum
eigensolver (Peruzzo et al., 2014; McArdle et al., 2020), which
is viewed today as the best candidate for performing chemistry
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FIGURE 6 | Schematic plot of the charge density self-consistent loop in conjunction with DFT+DMFT.

on so-called noisy intermediate-scale quantum (NISQ) hardware.
We also discuss the more accurate quantum phase estimation
algorithm (Kitaev, 1995), which will ultimately emerge as the
gold standard for quantum chemistry on a quantum computer
because it can compute ground-state energies with only small
systematic errors.

Of course, the first chemical systems put onto quantum
computers are not going to be large biological molecules. But,
with the development of the right algorithms for embedding,
hierarchical structuring, and low-depth circuits, one might be
able to advance biological science sooner than later. At the least,
we should position ourselves to be able to try.

4.1.1. Variational Quantum Eigensolver
In the NISQ era, quantum computers will not be able to
accurately execute deep circuits. They also generate results
that require error/noise mitigation due to errors in state
preparation and measurement, and from infidelities in quantum
gate executions. Within this realm of quantum hardware, there
is an algorithm that shows great promise—the variational
quantum eigensolver algorithm (Peruzzo et al., 2014). This
algorithm is essentially a “state preparation and then measure”
algorithm leading to low-depth circuits governed primarily
by the complexity of the state preparation. One starts from

a single reference state (usually the Hartree-Fock state) and
then creates a variational ansatz that depends on a set of
variational parameters. There are several options for how to
do this, discussed below. Extensions and generalizations of
the algorithm to determine excited states, which are important
in many biological processes, have been developed such as to
maintain the low-depth characteristic so important for the ability
to run on NISQ systems (Higgott et al., 2019; Nakanishi et al.,
2019).

However the wavefunction has been prepared on the quantum
computer, we next need to measure the expectation value of the
Hamiltonian to complete the calculation. The Hamiltonian is a
Hermitian operator rather than a unitary one, so it cannot be
evaluated directly on the quantum computer. Instead, we break
it up into a sum of its mutually commuting unitary components
and evaluate the expectation value of each unitary—the total
expectation value is found by accumulating the total of all of the
terms. As the number of orbitals increases, the number of terms
in the Hamiltonian also increases. To date, only quite simple
molecules have been computed on available quantum hardware
(usually with minimal bases). The first approach was hydrogen
and other simple binary and tertiary molecules (Kandala et al.,
2017). More recently, the more complex system H2O in the
STO-3G basis (Nam et al., 2020), has been handled.
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Of course, this forms just the inner loop of the full
variational calculation. One must now adjust the parameters in
the variational wavefunction and repeat the whole process until
the result converges with the minimum energy value. Because
the data emerging from the quantum computer is noisy, this
optimization problem requires complex algorithms on classical
computers. The noise may even make it challenging to complete
the calculation to the point where a true minimum can actually
be located. The optimization problem may also suffer from
“barren plateaus” which are large areas where the cost function
gradient is extremely small. The sensitivity to noise can be
reduced by calculating the derivative of how the energy changes
when a variational parameter is changed from a matrix element
measured directly on the quantum computer (Grimsley et al.,
2019).

Because quantum computers have much slower clock cycles
than classical computers, even with a quantum advantage for
computing the results of a given measurement the quantum
computations are expected to be slow. In addition, the
parameters of a quantum computer often drift with time,
creating additional issues associated with a changing accuracy
for different expectation values over time. One may even need
to correct for the drift over time or risk having data that is
not accurate enough to be able to complete the outer loop of
the variational cycle. Nevertheless, this approach remains the
most promising approach available for now. Until we are able to
perform extensive time evolution on a quantum system, it will
remain the only viable strategy for quantum chemistry on NISQ
era machines.

4.1.2. Phase Estimation
The quantum phase estimation (QPE) algorithm was invented
by Kitaev (1995) and is closely related to the quantum Fourier
transform. It provides an alternative to solving the traditional
eigenvalue problem H|ψ〉 = E|ψ〉 on a quantum computer by
transforming the problem to a unitary one and determining the
phase λE arising from the application of eiλH to the eigenfunction
as follows:

eiλH|ψ〉 = eiλE|ψ〉. (2)

The λ parameter is introduced and a value chosen to ensure we
can read the energy off without having the phase increase past
2π . We also need to measure enough binary digits in the number
λE to have an accurate measure of the energy. In addition, to
get the energy corresponding to a particular eigenstate with high
probability, onemust prepare an initial state that has high overlap
with that eigenstate. This could then involve a synergy with
the variational quantum eigensolver algorithms in the following
way: since the variational state is an approximation, it should
have a high overlap with the true ground state, allowing it
to be a good choice for the initial state that is used for the
phase-estimation algorithm.

There are many benefits to the phase-estimation approach.
First, it will give us an accurate estimate of the ground-state
energy, with the accuracy determined by how many binary
digits representing the phase are computed on the quantum
computer. Second, it projects onto the eigenstate it measures.

This allows it to also be employed as a state-preparation protocol;
measuring the ground-state energy also has the consequence
of preparing the ground-state wavefunction directly on the
quantum computer where it can then be employed for further
quantum computations. For example, if the embedding strategy
for self-energy embedding theory (described in detail in section
5) is used, one can compute the zero-temperature Green’s
function directly from the ground-state eigenfunction after it has
been prepared by QPE.

The challenge with phase estimation is that it requires us to
be able to accurately perform time evolution. This is currently
beyond the scope of available hardware and most likely we will
need to wait for large-scale fault-tolerant quantum computers
to be available to be able to carry out such computations.
Nevertheless, it is important to think through how one would
work with such an algorithm now, to be ready when such
hardware becomes available. Also, sparse embedding theories
will allow for time evolution sooner, and possibly even on
NISQ machines.

4.1.3. State Preparation
Both VQE and QPE require preparing an initial ansatz on
the quantum computer. In other words, we start with an easy
to initialize state, such as the Hartree-Fock state represented
by |ψ0〉 = |0 . . . 0〉, and apply operations to transform
that state to a representation of the desired wave function.
The complexity of this step can be non-trivial. The ADAPT-
VQE approach (Grimsley et al., 2019) dynamically constructs
the ansatz by iteratively choosing operators from a pool of
available operators. Another approach uses a unitary coupled
cluster ansatz. In standard coupled cluster, the wave function
has the form

ψ = eT̂ |ψ0〉 (3)

where T̂ = T̂1 + T̂2 + T̂3 + .... represents singles, doubles,
triples, etc. excitations relative to the Hartree-Fock ground state
reference function. In principle, one can work out as many
terms as computationally feasible. In conventional coupled-
cluster theory, the operator is not unitary, but can be made

unitary by letting T̂ → T̂ − T̂†. Unitary coupled cluster is
not practical computationally on classical computers, but is well-
suited for quantum computers. A unitary singles and doubles
coupled cluster approach will use a Trotterized form of the
unitary coupled cluster ansatz (with only singles and doubles
excitations in the exponent). Factorized forms of the unitary
coupled cluster approach have also been considered, but usually,
these approaches are not easily restricted to certain classes of
excitations andmight be better thought of within an ADAPT type
methodology (Grimsley et al., 2019). There also are ansatzes that
employ tensor-product-based wavefunctions (Cao et al., 2019).

5. QUANTUM COMPUTER EMBEDDING
STRATEGIES

The molecular systems of interest in biological processes are
complex as well as geometrically extensive. It is also known
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that some processes depend crucially on small differences in
structure and their associated energy differences. The timescales
of processes may also span several orders of magnitude, from
femtoseconds for molecular vibrational changes to milliseconds
for some electron transfer processes and conformation changes.
The challenge is that highly accurate calculations are needed for
these extreme systems.

In addition, biological processes happen at finite temperature
in a liquid environment, as opposed to many chemical processes
that can be understood by studying the gas phase or materials
structures that are often analyzed in isolation and at absolute
zero. This means that a statistical description is needed to
describe the full process and to obtain accurate reaction rates.
Entropy and free energy play a crucial role.

Hence, biological molecules appear to be an ideal application
for the promised power of quantum computing. However,
with noisy intermediate-scale quantum computers (NISQ), such
calculations are currently out of reach. Even when more fully
fault-tolerant quantum computers become available, it is likely
that the complete statistical quantum description of realistic
biomolecular systems and processes will require decomposition
of the system into parts, with the parts of the molecule
involving the most demanding calculations done on the quantum
computer and the less expensive calculations involving the rest
of the molecule done on a classical computer. This section
describes several such approaches which will necessarily be
hybrid quantum-classical algorithms.

5.1. Quantum Computing on Fragments
In computational chemistry for large systems, the fragment
molecular orbital (FMO) method (Gordon et al., 2012; Zahariev
and Gordon, 2012; Tanaka et al., 2014) was developed to solve
the problem described above: namely that the system is too large
to treat directly as a whole. In that case, the molecule is divided
into fragments that can be chosen to (in some sense) contain
atoms that interact strongly with each other, but less strongly with
atoms in other fragments. First, standard methods are used to
obtain an accurate description of the isolated fragments. Then,
other methods, also standard, are used to describe the interaction
between the fragments and the effect those interactions have on
the internal structure and properties of the fragments. The result
converges to a solution for the complete system of all interacting
fragments with controllable accuracy. In addition, the method
shows linear scaling for large systems.

To describe the biochemical systems, one can envision a
similar approach. Now, however, instead of using different
methodologies for different regions, one uses a classical computer
to describe one region and a quantum processor for the region
where the model can use the advantage offered by quantum
computing. The self-consistency would typically be carried out
on a classical computer. The approach is similar to the VQE
method described in section 4.1.1 for quantum chemistry on
quantum computers: Part of the computation is performed on
the quantum computer, some information is extracted from
that calculation and handed to a classical computer, which then
performs the next part of the computation. That computation

results in new values to be used for the next iteration on the
quantum computer.

For a hybrid description of a complex biological systems, the
different parts of the computation are not only different stages
in an algorithm, but also describe different spatial regions of
the system. Let us call the region described on the quantum
computer “primary” and the region described on the classical
computer, which most often surrounds the primary region in
space, the “environment.” We assume that the primary region
fits in the quantum computer in the sense that it has sufficient
qubits to represent both the quantum state in some encoding
from fermions to spins (McArdle et al., 2020) and all the ancillary
qubits necessary to execute the chosen algorithm.

It is necessary to choose quantum-mechanical methods to
represent the states of both the primary and environment regions
of the biological system so that the desired accuracy for the
complete system can be achieved. It is not necessary that both
regions are treated with the same method, as long as the
physical description is consistent. The algorithm then inevitably
requires that information is exchanged between the classical
and quantum computers about the state description of the
respective components. The classical computer can easily provide
the necessary information to the quantum computer, which
usually changes the state preparation on the quantum computer.
However, as with VQE, obtaining accurate information about
the state of the primary region as represented on the quantum
computer can be challenging if the quantum state is complicated
since there is no efficient way to directly access the entangled
wavefunction stored on the qubits in the quantum processor.
If a process of measurement needs to be called, then accurate
calculations may require unacceptably large numbers of repeat
runs of the program to obtain the required accuracy.

The general algorithm works as follows.

1. Specify a computational chemistry model for the environment
region and initialize its state.

2. Specify a computational chemistry model for the primary
region and prepare its state using the environment state
parameters as needed.

3. Perform the algorithm to solve the computational chemistry
model for the primary region on the quantum computer.

4. Extract the required information from the state of the primary
region to perform the next iteration of the algorithm to
converge the environment.

5. Perform the classical part of the algorithm for the primary
region, using state information of the environment as needed.

6. Using information obtained by the classical part of the
algorithm for the primary region, re-prepare the quantum
computer for the quantum part of the algorithm for the
primary region.

7. Repeat until the defined convergence criterion is met.

5.2. Sparse Green’s Function Embedding
Schemes
One of the challenges with accurate quantum chemistry
calculations is that a large percentage of the correlation energy
arises from the sum of many small contributions. This arises in
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part, because any standard orbital basis results in fairly full single-
particle and two-particle interaction matrices. Hamiltonian
evolution, or even variational methods require evaluating many,
many terms. On a quantum computer, this leads to high-depth
circuits, which become difficult to run on NISQ machines and
may even be problematic on the expected fault-tolerant ones.
One way around this problem is to transform the problem into
a representation that is more sparse, or even to approximately
force it into an extremely sparse representation. This is the
idea behind the self-energy embedding theory (Tran et al.,
2018).

Starting from an inexpensive classical calculation (such
as Hartree-Fock plus MP2), one computes a representation
for the self-energy of the full chemical system. Next, one
determines the high-frequency moments of the self-energy. For
the retarded Green’s function, these moments of the self-energy
are often determined by parameters in the Hamiltonian itself
(the constant term is exactly determined from the Hartree-Fock
approximation, the zeroth moment from the interaction, the
first moment involves a few two-particle correlation functions,
and so on). The strategy is then to construct an extremely
sparse interaction for the effective Hamiltonian. This has the
full single-particle contributions, but restricts the Coulomb
interaction to on-site direct or exchange interactions only. These
interaction terms are chosen to require that the low-order
moments are preserved in the effective model. Then, one solves
for the full self-energy of the effective model and then uses
the effective self-energy as the self-energy for the full system.
This approach guarantees that the low-energy moments of the
final description of the molecule are exactly preserved. A self-
consistency scheme is employed to update the approximation,
as the moments depend on some expectation values which
change as the Green’s functions change with each iteration of the
calculation. We also note that equality of low-order moments
also implies that the two Green’s functions agree exactly for
short times.

The way we envision using this on a quantum computer
for large molecules is to apply this approach to the strongly
correlated core (or strongly correlated fragments) and one ends
up with a much lower depth circuit for the time evolution
because the Hamiltonian is so much sparser. This will allow
more complex systems to be simulated earlier than possible
with algorithms that include the full chemical complexity. The
quantum computer simulates only the sparse Hamiltonian and
determines the Green’s function (or self-energy), which then
is sent to the classical computer for the remainder of the
algorithm. Even in the future, when fault-tolerant quantum
computers become available, methods like the self-energy
embedding theory will remain valuable as they can significantly
streamline the number of operations needed to be run on the
quantum computer.

6. CHALLENGES

There are a few challenges associated with the modeling of
biochemical systems. The first challenge is the accuracy required

to describe the structures and processes. The standard is 1
kcal/mol or 4 kJ/mol, which in atomic units used in quantum
mechanics is equal to 27.2 meV or 1 mHartree. Given that
the energies of large molecules relevant in biochemistry are in
the thousand Hartree range, the energies need to be calculated
with a precision of 6 to 8 digits, which corresponds to a
single precision IEEE floating point number on a classical
computer. There are a large number of integrals with weights
that are small. The contribution from each integral is small,
but the sum adds up to a non-negligible contribution to the
total energy. Because these numbers are obtained by a large
number of floating point operations in the classical part of the
computation, the minimum precision needed to perform this
classical part of the calculation with controlled rounding error
is 15 digits, which corresponds to the double precision floating
point number on classical computers. For large molecules,
relevant to biology, the integral contributions are sorted and
added with small numbers first to build larger numbers that
can be meaningfully added together to avoid critical round-
off errors. That means that the step in the hybrid quantum-
classical algorithm where values must be measured from the
state in the quantum processor, these results need to be obtained
with the right precision. Because the standard deviation of
statistical sampling with N trials goes like 1/

√
N, the number

of measurements for a given accuracy ε is N = ε−2. A careful
analysis is needed on what precision will be needed for the
various terms to get acceptable accuracy for the total energies,
because the required precision directly impacts the number of
measurements that will be required, with a quadratic impact on
total run time. Some further research to improve the algorithm
for processing of the integrals will be needed to determine the
minimum precision of each wave function component that must
be combined with each integral to get the correct precision of the
final result.

The second challenge in biochemical structure and process
analysis and design is that the systems are at some finite
temperature. That means a statistical description is essential.
This has been taken into account for decades in the molecular
dynamics simulations (Karplus and McCammon, 2002; Seabra
et al., 2007; Salomon-Ferrer et al., 2013), with the method of
replica exchange being one of the leading approaches (Roe et al.,
2008).

However, chemical accuracy may not be sufficient. Decades
of research to design drugs, enzymes, and catalysts has not
been as successful as once hoped. A possible root cause is that
chemical accuracy is insufficient to distinguish the competing
mechanisms from each other, especially once the proper statistics
at room temperature are taken into account. If 1 kcal/mo
were adequate, scientists should have made more progress in
identifying new mechanisms. To make the computations really
insightful, it is likely that at least one and probably two or three
orders of magnitude higher accuracy is required to generate
new insights into drug, enzyme, and catalyst activities and
reaction mechanisms.

These considerations make it clear that biochemical structures
and processes are a fertile ground of problems to use and
demonstrate the advantage of quantum computing over classical
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computing. It also shows the road to success will be difficult. But
it promises to be wonderful journey!

7. CONCLUSION

This short review leaves us hopeful, but with many unanswered
questions. It is clear that there are significant challenges that must
be met before we can reap the benefits of quantum computers
for biochemical applications. Nevertheless, due to the complexity
involved in properly partitioning the sub units of these problems
and then combining the results together, we need to start now
to properly plan for how this will work. We can bring in ideas
from a number of different areas where similar “divide and
conquer” approaches have been tried and successfully completed.
But the strategies that employ quantum co-processors to handle
the most difficult parts of the calculations need to be properly
thought out and structured so we can make rapid advances once
the hardware is available. We did not map out a complete plan
for how one can proceed. Instead, we described the different
strategies that need to work together to achieve this goal. We are
looking forward to seeing how everything comes together and
how quantum computation will yield important and significant
impacts on biochemistry.

AUTHOR CONTRIBUTIONS

CL wrote the biochemistry section. H-PC wrote the multi-
scale simulation section. ED wrote the fragment method and
its extension to quantum-classical hybrid application and the
challenges. JF and BS wrote algorithms. All authors worked on
the overall structure of the paper.

FUNDING

This material was based upon work supported by the National
Science Foundation under Grant No. OMA-1936853. JF was
also supported by the National Science Foundation under grant
number CHE-1836497 and the McDevitt bequest at Georgetown.
H-PCwas also supported byDOE/BESDE-FG02-02ER45995. CL
was also supported by the Bodor Professorship fund.

ACKNOWLEDGMENTS

The authors thank the participants of the Workshop on
Applications of Quantum Computing to Biology and Chemistry
held in conjunction with the Sanibel Symposium, February
21-22, 2020.

REFERENCES

Ahsan, M., and Senapati, S. (2019). Water plays a cocatalytic role in epoxide ring

opening reaction in aspartate proteases: a QM/MM study. J. Phys. Chem. B 123,

7955–7964. doi: 10.1021/acs.jpcb.9b04575

Aryasetiawan, F., Imada, M., Georges, A., Kotliar, G., Biermann, S., and

Lichtenstein, A. I. (2004). Frequency-dependent local interactions and low-

energy effective models from electronic structure calculations. Phys. Rev. B

70:195104. doi: 10.1103/PhysRevB.70.195104

Aryasetiawan, F., Karlsson, K., Jepsen, O., and Schönberger, U. (2006).

Calculations of Hubbard u from first-principles. Phys. Rev. B 74:125106.

doi: 10.1103/PhysRevB.74.125106

Bakowies, D., and Thiel, W. (1996). Hybrid models for combined quantum

mechanical and molecular mechanical approaches. J. Phys. Chem. 100,

10580–10594. doi: 10.1021/jp9536514

Bauer, B., Wecker, D., Millis, A. J., Hastings, M. B., and Troyer, M. (2016). Hybrid

quantum-classical approach to correlated materials. Phys. Rev. X 6:031045.

doi: 10.1103/PhysRevX.6.031045

Bender, A., Gardberg, A., Pereira, A., Johnson, T., Wu, Y., Grenningloh, R.,

et al. (2017). Ability of Bruton’s tyrosine kinase inhibitors to sequester

y551 and prevent phosphorylation determines potency for inhibition of fc

receptor but not b-cell receptor signaling. Mol. Pharmacol. 91, 208–219.

doi: 10.1124/mol.116.107037

Budarapu, P. R., Gracie, R., Yang, S. W., Zhuang, X. Y., and Rabczuk, T. (2014).

Efficient coarse graining in multiscale modeling of fracture. Theor. Appl. Fract.

Mech. 69, 126–143. doi: 10.1016/j.tafmec.2013.12.004

Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferova, M., et al.

(2019). Quantum chemistry in the age of quantum computing. Chem. Rev. 119,

10856–10915. doi: 10.1021/acs.chemrev.8b00803

Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.,

et al. (2006). Structural insights into histone demethylation by JMJD2 family

members. Cell 125, 691–702. doi: 10.1016/j.cell.2006.04.024

Cohen, S., Graham,M., Lovrecz, G., Bache, N., Robinson, P., and Reddel, R. (2007).

Protein composition of catalytically active human telomerase from immortal

cells. Science 315, 1850–1853. doi: 10.1126/science.1138596

Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., and Karplus, M. (2001). A

QM/MM implementation of the self-consistent charge density functional

tight binding (SCC-DFTB) method. J. Phys. Chem. B 105, 569–585.

doi: 10.1021/jp0029109

Du, M.-H., Kolchin, A., and Cheng, H.-P. (2004). Hydrolysis of a two-membered

silica ring on the amorphous silica surface. J. Chem. Phys. 120, 1044–1054.

doi: 10.1063/1.1630026

Emani, P. S., Warrell, J., Anticevic, A., Bekiranov, S., Gandal, M., McConnell, M. J.,

et al. (2019). Quantum computing at the frontiers of biological sciences. arXiv

preprint arXiv:1911.07127v1.

Feynman, R. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21,

467–488. doi: 10.1007/BF02650179

Friesner, R. A., and Guallar, V. (2005). Ab initio quantum chemical and

mixed quantum mechanics/molecular mechanics (QM/MM) methods

for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 56, 389–427.

doi: 10.1146/annurev.physchem.55.091602.094410

Gao, H. J., and Klein, P. (1998). Numerical simulation of crack growth in an

isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids

46, 187–218. doi: 10.1016/S0022-5096(97)00047-1

Gao, J. L., Amara, P., Alhambra, C., and Field, M. J. (1998). A generalized

hybrid orbital (GHO) method for the treatment of boundary atoms

in combined QM/MM calculations. J. Phys. Chem. A 102, 4714–4721.

doi: 10.1021/jp9809890

Gao, J. L., and Xia, X. F. (1992). A priori evaluation of aqueous polarization

effects through Monte Carlo QM-MM simulations. Science 258, 631–635.

doi: 10.1126/science.1411573

Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M. J. (1996).

Dynamical mean-field theory of strongly correlated fermion systems

and the limit of infinite dimensions. Rev. Modern Phys. 68, 13–125.

doi: 10.1103/RevModPhys.68.13

Google AI Quantum and Collaborators (2020). Hartree-fock on a

superconducting qubit quantum computer. Science 369, 1084–1089.

doi: 10.1126/science.abb9811

Gordon, M. S., Fedorov, D. G., Pruitt, S. R., and Slipchenko, L. V. (2012).

Fragmentation methods: a route to accurate calculations on large systems.

Chem. Rev. 112, 632–672. doi: 10.1021/cr200093j

Grimsley, H. R., Economou, S. E., Barnes, E., andMayhall, N. J. (2019). An adaptive

variational algorithm for exact molecular simulations on a quantum computer.

Nat. Commun. 10:3007. doi: 10.1038/s41467-019-10988-2

Frontiers in Chemistry | www.frontiersin.org 12 November 2020 | Volume 8 | Article 587143



Cheng et al. Application of Quantum Computing to Biochemical Systems

Gull, E., Millis, A. J., Lichtenstein, A. I., Rubtsov, A. N., Troyer, M., andWerner, P.

(2011). Continuous-time Monte Carlo methods for quantum impurity models.

Rev. Mod. Phys. 83, 349–404. doi: 10.1103/RevModPhys.83.349

Harvey, R. (2014). Biochemistry, Lippincott’s Illustrated Reviews. Philadelphia, PA:

Wolters Kluwer Health.

Higgott, O., Wang, D., and Brierley, S. (2019). Variational quantum computation

of excited states. Quantum 3:156. doi: 10.22331/q-2019-07-01-156

Hoekstra, A., Chopard, B., and P., C. (2014). Multiscale modelling and

simulation: a position paper. Philos. Trans. R. Soc. A 372:20130377.

doi: 10.1098/rsta.2013.0377

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., et al.

(2017). Hardware-efficient variational quantum eigensolver for small molecules

and quantum magnets. Nature 549, 242–246. doi: 10.1038/nature23879

Karplus, M., and McCammon, J. A. (2002). Molecular dynamics simulations of

biomolecules. Nat. Struct. Biol. 9, 646–652. doi: 10.1038/nsb0902-646

Kitaev, A. (1995). Quantum measurements and the abelian stabilizer problem.

arXiv preprint arXiv:quant-ph/9511026.

Laio, A., VandeVondele, J., and Rothlisberger, U. (2002). A Hamiltonian

electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics

simulations. J. Chem. Phys. 116, 6941–6947. doi: 10.1063/1.1462041

Leonov, I., Anisimov, V. I., and Vollhardt, D. (2015). Metal-insulator transition

and lattice instability of paramagnetic v2o3. Phys. Rev. B 91:195115.

doi: 10.1103/PhysRevB.91.195115

Liu, B., Huang, Y., Jiang, H., Qu, S., and Hwang, K. C. (2004). The atomic-scale

finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864.

doi: 10.1016/j.cma.2003.12.037

McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C., and Yuan, X.

(2020). Quantum computational chemistry. Rev. Modern Phys. 92:015003.

doi: 10.1103/RevModPhys.92.015003

Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H., and Skordalakes, E. (2010).

Structural basis for telomerase catalytic subunit TERT binding to RNA template

and telomeric DNA.Nat. Struct.Mol. Biol. 17, 513–518. doi: 10.1038/nsmb.1777

Nakanishi, K. M., Mitarai, K., and Fujii, K. (2019). Subspace-search

variational quantum eigensolver for excited states. Phys. Rev. Res. 1:033062.

doi: 10.1103/PhysRevResearch.1.033062

Nam, Y., Chen, J.-S., Pisenti, N. C., Wright, K., Delaney, C., Maslov, D., et a;.

(2020). Ground-state energy estimation of the water molecule on a trapped-ion

quantum computer. NPJ Quant. Inform. 6:33. doi: 10.1038/s41534-020-0259-3

Ng, S., Kavanagh, K.,McDonough,M., Butler, D., Pilka, E., Lienard, B., et al. (2007).

Crystal structures of histone demethylase JMJD2A reveal basis for substrate

specificity. Nature 448, 87–91. doi: 10.1038/nature05971

Pedersen, M., and Helin, K. (2010). Histone demethylases in development and

disease. Trends Cell Biol. 20, 662–671. doi: 10.1016/j.tcb.2010.08.011

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., et al.

(2014). A variational eigenvalue solver on a photonic quantum processor. Nat.

Commun. 5:4213. doi: 10.1038/ncomms5213

Petersilka, M., Gossmann, U. J., and Gross, E. K. U. (1996). Excitation energies

from time-dependent density-functional theory. Phys. Rev. Lett. 76, 1212–1215.

doi: 10.1103/PhysRevLett.76.1212

Piana, S., Bucher, D., Carloni, P., and Rothlisberger, U. (2004). Reaction

mechanism of HIV-1 protease by hybrid carparrinello/classical md simulations.

J. Phys. Chem. B 108, 11139–11149. doi: 10.1021/jp037651c

Reiher, M., Wiebe, N., Svore, K. M.,Wecker, D., and Troyer, M. (2017). Elucidating

reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. U.S.A. 114,

7555–7560. doi: 10.1073/pnas.1619152114

Roe, D., Okur, A., Simmerling, C., and WalkerX, R. (2008). Tutorial A7:

Replica Exchange. Available online at: https://ambermd.org/tutorials/advanced/

tutorial7/index.htm

Rountree, C. L., Kalia, R. K., Lidorikis, E., Nakano, A., Van Brutzel, L., and

Vashishta, P. (2002). Atomistic aspects of crack propagation in brittle materials:

multimillion atom molecular dynamics simulations. Annu. Rev. Mater. Res. 32,

377–400. doi: 10.1146/annurev.matsci.32.111201.142017

Rudd, R. E., and Broughton, J. Q. (2000). Concurrent coupling of length

scales in solid state systems. Phys. Status Solidi B Basic Res. 217, 251–291.

doi: 10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A

Sadava, D., Hillis, D., Heller, C., and Berenbaum, M. (2011). Life: The Science of

Biology. Sunderland, MA: Sinauer Associates Inc.

Salomon-Ferrer, R., Case, D. A., and Walker, R. C. (2013). An overview of the

Amber biomolecular simulation package.WIREs Comput. Mol. Sci. 3, 198–210.

doi: 10.1002/wcms.1121

Seabra, G. D. M., Walker, R. C., Elstner, M., Case, D. A., and Roitberg, A.

E. (2007). Implementation of the SCC-DFTB method for hybrid QM/MM

simulations within the Amber molecular dynamics package. J. Phys. Chem. A

111, 5655–5664. doi: 10.1021/jp070071l

Talebi, H., Silani, M., Bordas, S. P. A., Kerfriden, P., and Rabczuk, T. (2014).

A computational library for multiscale modeling of material failure. Comput.

Mech. 53, 1047–1071. doi: 10.1007/s00466-013-0948-2

Tanaka, S., Mochizuki, Y., Komeiji, Y., Okiyamac, Y., and Fukuzawace,

K. (2014). Electron-correlated fragment-molecular-orbital calculations for

biomolecular and nano systems. Phys. Chem. Chem. Phys. 16, 10310–10344.

doi: 10.1039/C4CP00316K

Tran, L. N., Iskakov, S., and Zgid, D. (2018). Spin-unrestricted self-

energy embedding theory. J. Phys. Chem. Lett. 9, 4444–4450.

doi: 10.1021/acs.jpclett.8b01754

Veis, L., Visnak, J., Nishizawa, H., Nakai, H., and Pittner, J. (2016). Quantum

chemistry beyond Born-Oppenheimer approximation on a quantum computer:

a simulated phase estimation study. Int. J. Quant. Chem. 116, 1328–1336.

doi: 10.1002/qua.25176

Vreven, T., Morokuma, K., Farkas, O., Schlegel, H. B., and Frisch, M. J.

(2003). Geometry optimization with QM/MM, ONIOM, and other combined

methods. I. Microiterations and constraints. J. Comput. Chem. 24, 760–769.

doi: 10.1002/jcc.10156

Walsh, T. R., Wilson, M., and Sutton, A. P. (2000). Hydrolysis of the amorphous

silica surface. II. Calculation of activation barriers and mechanisms. J. Chem.

Phys. 113, 9191–9201. doi: 10.1063/1.1320057

Witzany, G. (2008). The viral origins of telomeres, telomerases and their important

role in eukaryogenesis and genome maintenance. Biosemiotics 1, 191–206.

doi: 10.1007/s12304-008-9018-0

Zahariev, F., and Gordon, M. S. (2012). Development of a combined quantum

Monte Carlo-effective fragment molecular orbital method. Mol. Phys. 117,

1532–1540. doi: 10.1080/00268976.2019.1574363

Zhang, L., Staar, P., Kozhevnikov, A., Wang, Y. P., Trinastic, J., Schulthess, T.,

et al. (2019). DFT plus DMFT calculations of the complex band and tunneling

behavior for the transition metal monoxides MnO, FeO, CoO, and NiO. Phys.

Rev. B 100:035104. doi: 10.1103/PhysRevB.100.035104

Zheng, W., and Huang, Y., (2014). The chemistry and biology of the a-

ketoglutarate-dependent histone N3-methyl-lysine demethylases. Med. Chem.

Commun. 5:297. doi: 10.1039/c3md00325f

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Cheng, Deumens, Freericks, Li and Sanders. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 13 November 2020 | Volume 8 | Article 587143


	Application of Quantum Computing to Biochemical Systems: A Look to the Future
	1. Introduction
	2. Motivating Examples
	2.1. A Transition-Metal-Ion-Containing Enzyme: Histone Demethylase
	2.2. Non-Metal-Ion-Containing Enzyme: Telomerase
	2.3. Molecular Recognition: Biotin-(Strept)Avidin Binding

	3. Classical Computer Embedding Strategies
	3.1. Hybrid Quantum-Classical Molecular Dynamics
	3.2. From DFT to Strongly Correlated Systems: Quantum Embedding Theory for Molecules and for the Hubbard Model

	4. Brief Overview of Chemistry on Quantum Computers
	4.1. Quantum Algorithms and Methods
	4.1.1. Variational Quantum Eigensolver
	4.1.2. Phase Estimation
	4.1.3. State Preparation


	5. Quantum Computer Embedding Strategies
	5.1. Quantum Computing on Fragments
	5.2. Sparse Green's Function Embedding Schemes

	6. Challenges
	7. Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


