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Seismic fragility analysis using nonlinear autoregressive neural networks with
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ABSTRACT
Rapidly growing societal needs in urban areas are increasing the demand for tall buildings with com-
plex structural systems. Many of these buildings are located in areas characterized by high seismicity.
Quantifying the seismic resilience of these buildings requires comprehensive fragility assessment that
integrates iterative nonlinear dynamic analysis (NDA). Under these circumstances, traditional finite
element (FE) analysis may become impractical due to its high computational cost. Soft-computing
methods can be applied in the domain of NDA to reduce the computational cost of seismic fragility
analysis. This study presents a framework that employs nonlinear autoregressive neural networks with
exogenous input (NARX) in fragility analysis of multi-story buildings. The framework uses structural
health monitoring data to calibrate a nonlinear FE model. The model is employed to generate the
training dataset for NARX neural networks with ground acceleration and displacement time histories
as the input and output of the network, respectively. The trained NARX networks are then used to
perform incremental dynamic analysis (IDA) for a suite of ground motions. Fragility analysis is next
conducted based on the results of the IDA obtained from the trained NARX network. The framework
is illustrated on a twelve-story reinforced concrete building located at Oklahoma State University,
Stillwater campus.
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1. Introduction

The need to improve the resilience and sustainability of
building infrastructure in active seismic zones and in other
areas at significant risk due to the recent increase in
induced seismic hazards has been increasing in recent years
(Ellsworth, 2013; Sarkisian, Mathias, Garai, & Horiuchi,
2017). This demand requires structural engineers to design
innovative and sometimes very complex structural systems
to enhance the performance of new buildings under earth-
quake hazards. The dynamic response of these structures
becomes highly intricate because of the significant contribu-
tion of higher modes (Rajbhandari, Anwar, & Najam, 2017).
These complexities add to the challenges of accurately pre-
dicting the behaviour of these structures and the associated
seismic demands (Zain, Anwar, Najam, & Mehmood, 2017).
In such situations, the most desired analysis procedure is
the nonlinear dynamic analysis. Very often, especially dur-
ing the preliminary design phase, structural engineers are
interested in quantifying a specific performance measure of
the structure under different loading scenarios (Rajbhandari
et al., 2017). These performance measures include, for
example, the maximum drift ratio or the ductile and non-
ductile component strength based on material behaviour
under various earthquake motions corresponding to differ-
ent hazard levels (Moehle, 2005). In these situations, the

iterative execution of full nonlinear dynamic analyses
becomes necessary.

Over the past few years, several locations within the cen-
tral United States have experienced a significant increase in
earthquake activity due to induced seismicity (Ellsworth,
2013). Most of the structures in these areas have not been
designed to withstand this higher seismicity given the previ-
ously low natural earthquake hazard levels in these regions;
accordingly, it is necessary to quantify the seismic risk of
these vulnerable structures under updated seismic hazard
scenarios. Performance-based earthquake engineering
(PBEE) (Shokrabadi, Banazadeh, Shokrabadi, & Mellati,
2015) offers robust means for evaluating the seismic risk of
structures with complex systems and irregular geometries.
When used in conjunction with structural health monitoring
(SHM), PBEE can provide a realistic prediction of the
dynamic behaviour of the investigated structure. A PBEE
framework that helps in quantifying the fragility of the
structure, requires proper seismic hazard quantification and
response assessment at various hazard levels (Aghayan,
Jaiswal, & Siahkoohi, 2016; Lagaros & Papadrakakis, 2012).

Fragility analysis is a method to estimate the probability
of a structure reaching or exceeding a certain damage state
given a specific hazard intensity (Gidaris et al., 2017). This
method, which is a key component of the risk assessment,
can be conducted using incremental dynamic analysis (IDA)
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(Ibrahim, 2018) that quantifies the structural response under a
suite of ground motions with different intensity levels
(Vamvatsikos & Cornell, 2002). Hence, the process of develop-
ing the fragility curves for a given structure involves conducting
numerous nonlinear analyses in order to properly incorporate
the underlying uncertainties (Kiani, Camp, & Pezeshk, 2019).

Various finite element (FE) analysis software packages that
are currently available can be used for conducting nonlinear
dynamic analyses. In general, these packages can predict the
seismic demand forces for complex structures with reasonable
accuracy (Zhang et al., 2019). However, detailed nonlinear
time history analysis (NLTHA) can be computationally very
demanding and the computational cost increases significantly
for complex structural systems (Lavaei & Lohrasbi, 2012). For
instance, Zain et al. (2017) analysed a 55-story building using
PERFORM 3D (CSI, 2020) and reported a computational
time of 30 hours to conduct the analysis using a desktop com-
puter with a 3.4GHz processor and 4.0GB RAM.
Accordingly, risk assessment of complex structures that inte-
grates traditional NLTHA may be deemed unfeasible due to
the associated computational cost. In these situations, it is
necessary to develop more efficient and robust tools that can
predict the nonlinear dynamic response of structures; espe-
cially if the long-term objective is to use the response predic-
tion tools in probabilistic risk analysis or near real-time
performance prediction and damage assessment.

One approach to reduce this computational burden is to
use surrogate models, also known as metamodels (Gidaris,
Taflanidis, & Mavroeidis, 2015). Soft computing methods,
based on heuristic approaches that exploit the tolerance for
imprecision and uncertainty, have been proposed to develop
metamodels for various engineering problems. Artificial
neural networks (ANNs), genetic algorithms, fuzzy logic, and
decision tree analysis are among the popular methods in soft
computing (Zain et al., 2017). Owing to their computational
efficiency and ability to predict accurate relationship between
data points (Alexandridis, 2013), ANNs have been widely
used in solving structural engineering problems such as
design optimization (e.g. Lagaros, Plevris, & Papadrakakis,
2010; Papadrakakis & Lagaros, 2002), structural reliability
analysis (e.g. Hurtado & Alvarez, 2001; Khandel & Soliman,
2021; Lagaros & Fragiadakis, 2007), and damage detection
and localization (Khandel, Soliman, Floyd, & Murray, 2020).
ANNs have also been used in the field of structural dynamics.
For example, they have been implemented in Ok, Son, and
Lim (2012) to predict displacement caused by dynamic load-
ing on bridges. Additionally, Masri, Nakamura, Chassiakos,
and Caughey (1996) adopted a multi-layer perceptron (MLP)
architecture (Pal & Mitra, 1992) to predict the dynamic
response of various systems.

In the context of predicting the seismic response of
buildings, where nonlinear response at a certain time instant
depends upon the previous state of the system (i.e. time ser-
ies problems), regular neural networks such as MLP archi-
tectures suffer inefficiencies due to their simple architecture
and require numerous iterations for their training (Patra &
Bornand, 2010). Therefore, research is still needed to
develop approaches that can accurately predict the dynamic

response of nonlinear structures using ANNs. Recently,
Zhang et al. (2019) have implemented deep long short-term
memory (LSTM) networks to predict the nonlinear seismic
response of structures. However, training LSTM networks
for datasets containing long range dependencies becomes
difficult since LSTM networks may suffer from the gradient
vanishing problem (Arjovsky, Shah, & Bengio, 2016).

This is a particular issue with the networks that utilize
the gradient descent learning algorithms and have ‘hidden
states’ in their architecture (Lin, Horne, Tino, & Giles,
1996). In Wu and Jahanshahi (2018), deep convolution
neural networks have been applied for system identification
and estimation of nonlinear structural dynamic response.
However, as demonstrated in Wu and Jahanshahi (2018),
deep convolution neural networks require a relatively large
training dataset. The need for large training datasets negates
the benefits sought after by using metamodels.

To address these limitations, nonlinear autoregressive
neural networks with exogenous input (NARX) are used in
this paper to predict the response of complex nonlinear
dynamic systems. Recently, NARX neural networks have
been used in various engineering problems involving model-
ing of nonlinear systems. Inundation levels during typhoons
have been predicted in Ouyang (2017) using both open loop
and closed loop NARX neural networks while Ruiz, Cuellar,
Calvo-Flores, and Jimenez (2016) predicted energy con-
sumption in buildings using NARX networks. These NARX
networks not only use gradient descent learning algorithms
that are more efficient than other recurrent networks such
as LSTM networks, but they also rely on tapped feedback
delays which make them suitable for modeling systems with
long range data dependencies (Lin et al., 1996).

Accordingly, this paper adds to existing literature by
establishing a framework for seismic fragility analysis of
complex structural systems using NARX neural networks.
The presented approach integrates neural networks and
nonlinear FE analysis to quantify the structural response
during seismic excitations. Such approach was found to pro-
vide a highly accurate prediction of the structural response
during high-intensity seismic events compared to existing
methodologies relying on other surrogate models such as
feedforward ANNs or LSTM networks. SHM information
collected during seismic events is used to calibrate key input
parameters of the FE model. NARX neural networks are
then trained using the results of nonlinear FE analyses of
the structure. The trained NARX networks are used to
obtain the critical peak ground accelerations and maximum
interstory drift by means of incremental dynamic analysis.
These quantities are next used to develop the seismic fragil-
ity curve of the investigated building. The framework is
illustrated on an existing twelve-story reinforced concrete
building in Stillwater, Oklahoma.

2. Seismic fragility analysis

Fragility quantification is a crucial component in seismic
risk assessment based on PBEE (Kiani et al., 2019). In add-
ition to its role in risk assessment, fragility analysis is
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generally needed for retrofit design and post-disaster deci-
sion making and planning (Celik & Ellingwood, 2009).
Seismic fragility can be defined as the conditional probabil-
ity of exceedance of a limit state function given a certain
seismic intensity measure. Mathematically, seismic fragility
Fr can be expressed as (Zain et al., 2017):

Fr ¼ PðLS > l j IM ¼ mÞ (1)

where LS represents the limit state function, l being the
limit of the function, IM represents the intensity measure,
and m denotes a particular value of intensity measure.

Several approaches have been proposed for establishing
the fragility curves of structural systems depending upon
the processes used to capture the structural response.
These approaches can be classified into three broad cate-
gories: (a) analytical approaches, which are based on
investigating data obtained from structural analyses (Ibarra
& Krawinkler, 2005); (b) empirical models, in which the
statistical analysis of post-earthquake data is used to
establish the exceedance measures (Sabetta, Goretti, &
Lucantoni, 1998); and (c) heuristic approaches based
on expert opinions (Jaiswal, Aspinall, Perkins, &
Porter, 2012).

To properly quantify the structural fragility, a model cap-
able of representing the realistic nonlinear inelastic behav-
iour of the system is required. This can be achieved for
newly designed structures; however, for existing structures,
developing an accurate numerical model may not be a
straightforward task. For these structures, modeling difficul-
ties may arise due to the absence of detailed construction
drawings, variations between the design and as-built charac-
teristics, and unknown material properties. In addition,
depending on the age of the structure, time-dependent
deterioration (e.g. corrosion and concrete cracking) or struc-
tural damage due to excessive or repetitive loading (e.g. his-
tory of significant seismic exposure) may have caused a shift
in the structural properties that adds to the challenges in
constructing an accurate structural model. In this context,
SHM plays a vital role in quantifying the realistic dynamic
performance of the investigated structure. During a seismic
event, SHM can record the input excitation affecting the
structure and the resulting response output.

The structural performance parameters of interest are
typically the: (a) accelerations, measured by strong motion
accelerometers, (b) rotations, measured in special cases by
gyroscopes, and/or (c) precise displacements, measured by
Global Positioning System (GPS) receivers, strainmeters, or
string potentiometers. By integrating SHM with system
identification methods, the optimum values of key model
parameters can be achieved resulting in a better representa-
tion of the structural behaviour (Sheikh, Khandel, Soliman,
Haase, & Jaiswal, 2019). Furthermore, SHM systems assist
in detecting changes in the structural properties (Yi et al.,
2012) and the occurrence of structural damage (Rainieri,
Fabbrocino, & Cosenza, 2011) along the service life of
a structure.

Conducting nonlinear dynamic analysis can be achieved
either by fast nonlinear analysis (FNA) or direct integration.

FNA, also known as modal time history analysis, is based
on modal analysis with a nonlinear force vector. Owing to
its computational efficiency, it is widely used in the design
community, but it has limited capabilities in accounting for
the nonlinear system attributes. On the other hand, the dir-
ect integration method is a step-by-step method which
allows the inclusion of different nonlinear components
within the analysis model (CSI, 2018).

This paper implements the direct integration method to
model the nonlinear behaviour using cross-sectional fibres
and plastic hinges which cannot be properly considered
using the FNA. Mathematically, the direct integration
method involves solving the equation of motion:

Ku tð Þ þ Cu0 tð Þ þMu00 tð Þ ¼ F tð Þ (2)

in which K represents the stiffness matrix of the system, C
represents the damping matrix of the system, M is the mass
matrix, F tð Þ is the force vector, and u tð Þ, u0 tð Þ, and u00 tð Þ
are the displacement, velocity and acceleration vectors of
the system, respectively. In general, FE solvers use numerical
approaches such as Newmark’s method (Newmark, 1959) or
Hilber-Hughes-Taylor method (Hilber, Hughes, & Taylor,
1977) to solve the equation of motion.

Incremental Dynamic Analysis, sometimes referred to as
dynamic pushover analysis, is a parametric analysis tech-
nique that can be used to develop analytical fragility curves
(Ibrahim, 2018). In the IDA, a suite of ground motion time
histories, either real or simulated, are selected, scaled pro-
gressively, and applied to the nonlinear model of the struc-
ture until a specific limit state or failure criterion is
achieved (Vamvatsikos & Cornell, 2002). The incremental
dynamic analysis results in the IDA curves which provide
the relationship between the ground motion, as the intensity
measure, and the engineering demand parameter of the
structural response (e.g. maximum interstory drift). IDA not
only provides a useful engineering insight on the behaviour
of a structure, but it offers deeper understanding of the
structural response under different intensities of
ground motion.

Analytical fragility curves can be established from the
outcome of the dynamic analysis under multiple excitations
using the Log-Normal (LN) cumulative distribution function
(CDF). The LN distribution model has been shown to pro-
vide accurate representation of the seismic fragility (Ibarra
& Krawinkler, 2005; Lallemant, Kiremidjian, & Burton,
2015). Due to the multiplicative reproducibility characteris-
tic of the LN distribution, it has emerged as a powerful tool
in the development of reliability and risk metrics (Lallemant
et al., 2015). Mathematically, a fragility function, based on
LN CDF, is expressed as (Baker, 2015):

P LSjIM ¼ xð Þ ¼ U
lnðx=MÞ

r

� �
(3)

where U represents the standard normal cumulative distri-
bution function (CDF), P LSjIM ¼ xð Þ is the probability that
the ground motion with IM ¼ x will cause the structure to
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reach the defined damage state LS, M is the median of the
fragility function, and r is logarithmic standard deviation,
also referred to as the dispersion of IM:

However, as indicated earlier, conducting several full-
scale dynamic analyses may not be computationally feasible,
especially when nonlinear behaviour is incorporated in the
model. Alternatively, the approach presented in this paper
uses soft-computing tools to reduce this computational bur-
den. Herein, a trained NARX neural network will be used to
conduct the IDA for developing the fragility curves of the
investigated structure.

3. NARX neural network

NARX is a nonlinear, dynamic model that relates two time
series, an input/independent time series to an output/
dependent time series (Siegelmann, Horne, & Giles, 1997).
It estimates the current value of a time series data with
respect to past values of the same series and the current and
past values of an exogenous/independent series. In case of
approximating the structural response given an earthquake
excitation time history, the independent/input or exogenous
time series, v, will represent the realization of the earth-
quake ground acceleration time history, and the dependent/
output time series, u, will represent the output displacement
time series of the structural response at each floor. G is the
mapping (transformation) function that establishes the rela-
tionship between the input and output which will eventually
replace the nonlinear FEM model with a computationally
efficient approximation. In general, the NARX structure can
be mathematically represented as (Lin, Horne, Tino, &
Giles, 1996):

uðtÞ ¼ Gðuðt � 1Þ, uðt � 2Þ, :::, uðt � kÞ,
vðtÞ, vðt � 1Þ, vðt � 2Þ, :::, vðt � kÞÞ (4)

where k represents the number of feedback and/or input
delays (Menezes & Barreto, 2006).

When this nonlinear function G is approximated using
neural networks, the resulting system is known as NARX
neural network (Siegelmann, Horne, & Giles, 1997). A
neural network is an algorithm intended to identify numer-
ical patterns in data. A neural network consists of at least
three layers; input, hidden, and output layers. The input
layer introduces input data to the neural network which is
then fed to the hidden layer(s). The output layer is the last
layer of a neural network which yields the output of the net-
work (Montana & Davis, 1989).

Apart from these layers, there are two essential compo-
nents of a neural network; activation functions and model
parameters. An activation function accepts an input value
and yields an output value by transforming the activation
level of a neuron (Sibi, Jones, & Siddarth, 2013). The model
parameters are the weights and bias values associated with
the connections between the neurons of a network.
Mathematically, an activation function for a single neuron i
can be represented by a linear combination as (Sibi, Jones,
& Siddarth, 2013):

yi tð Þ ¼ g
Xnj
j¼1

wijðtÞ � xjðtÞ þ biðtÞ
0
@

1
A (5)

where xjðtÞ represents the input value of parameter j at time
t, yiðtÞ represents the output quantities at neuron i and
time t, g denotes the nonlinear activation function, nj is the
number of parameters, wijðtÞ is the weight assigned by neu-
ron i to the input value of parameter j at time t, and biðtÞ
represents the bias value at neuron i and time t:

These weights and bias values are adjusted during the
training phase of the neural network which results in the
estimation of the mapping function G: Hence, training a
neural network is establishing the optimum values of these
weights and bias values. A network training function is used
to update these model parameters by evaluating a cost func-
tion such that the difference between the predicted values
obtained by the network and the target values is minimum
(Wang, Pedroni, Zentner, & Zio, 2018). The mean squared
error (MSE) is one of the commonly used cost functions
and is computed as (Joghataie & Farrokh, 2008):

MSE ¼ 1
nt

Xnt
i¼1

unetwork � utargetð Þ2 (6)

where unetwork is the value predicted by the neural network,
utarget is the target value, and nt is the number of time
points in a given input. Figure 1 presents a configuration of
a typical neural network. The depicted neural network
architecture contains one input, one output and m hidden
layers. Each hidden layer includes h neurons. The arrows
connecting the neurons pass the predicted output and the
assigned weight and bias values associated with each neuron
to the next layer.

NARX is a type of neural network that can be imple-
mented in both feedforward and recurrent network configu-
rations. A feedforward network consists of a series of layers
where input layer and output layer sandwich the hidden
layer(s) (Mathworks, 2019). There are no closed loops in
this network configuration, hence no feedback, and the data
flows in one direction. However, in a recurrent neural net-
work, there are closed loops which provide feedback in the
form of output data to the input of neural network again
(Ouyang, 2017). NARX neural networks have been shown
to be very efficient compared to ordinary neural networks;
hence, these networks are known to be equivalent to Turing
machines (Menezes et al., 2006).

Figure 1. Typical configuration of a neural network.
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A NARX neural network can be used in both architectures;
open loop (or series-parallel) and closed loop (or parallel) as
shown in Figure 2. In open loop, both time series are given as
input to the model, while in the closed loop architecture, the
NARX predicts the value of the dependent series and then
feeds the predicted values up to that time point back into the
model in place of the known target time series (Ouyang,
2017). In this paper, the open loop configuration is used for
training the neural network while the closed loop configur-
ation is used for the validation and prediction. For training,
the seismic excitation signal (i.e. v tð Þ) and the corresponding
structural response (i.e. utarget) are used as input time series,
while for testing, the network uses only the seismic excitation
to predict the structural response (i.e. unetwork).

In this paper, NARX networks are used within an inte-
grated framework for quantifying the seismic fragility of
multistory buildings. The layout of the framework is shown
in Figure 3. The framework starts with constructing the
finite element model of the investigated structure. In this
phase, a nonlinear structural model is required to represent
the realistic behaviour of the structure during seismic
events. SHM data is integrated to calibrate the structural
model. A suite of ground motion records is selected based
on magnitude and source to site distance. The calibrated FE
model is then used to conduct nonlinear dynamic analyses
to generate the training and testing datasets for the NARX
neural networks. The dataset is next used to train and valid-
ate the NARX neural networks. Once trained, the NARX
networks are used to conduct the IDA considering peak
ground acceleration (PGA) as the intensity measure and
maximum interstory drift ratio (IDR) as the engineering
demand parameter. Seismic fragility curves are then devel-
oped based on the generated IDA curves.

Note that the presented framework can be used for
design and assessment of new or existing structures. SHM
data may not be available in the design phase of new build-
ings; additionally, SHM data collection may be expensive or
not feasible for existing systems. Accordingly, the framework
is designed with the FE model calibration as an optional
step. In summary, if SHM data is unavailable, the FE model
can still be directly integrated into the framework to estab-
lish the training and testing dataset for the NARX network.

4. Illustrative example

The presented framework for fragility analysis using NARX
neural networks is illustrated on a twelve-story reinforced

concrete building located on the campus of Oklahoma State
University, Stillwater. The selected building, Kerr hall, is a
residential building constructed in the 1960s. The building
is 57m (187.5 ft) long and 16.8 m (55.3 ft) wide with a total
height of 36.7 m (122.3 ft). The height of first story is 3.7 m
(12.3 ft) while the rest of the stories are 3 m (10 ft) high.
The lateral load resisting system consists of moment frames
and shear walls while the gravity load system consists of
reinforced concrete slabs and gravity columns.

Figure 2. Configuration of NARX neural network: (a) open loop, (b) closed loop.

Figure 3. Layout of the proposed framework for conducting fragility analysis
using NARX neural networks.
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The building has two staircases and two shear wall cores
that house the elevators. Figure 4 shows the plan view of the
investigated building. Given the increase in the seismic activ-
ity in the region, the building was instrumented to assess its
acceleration response, rotations and displacements during
seismic events. A GPS antenna, shown in Figure 5, was
installed on the roof level of the building to measure the real-
time displacements during an earthquake. The difference
between the GPS positions before and after an earthquake can
provide the residual deformations. Two triaxial strong motion
accelerometers, one at the ground level and one at the roof,
were mounted to record the ground acceleration and building
response during an earthquake. Similarly, two triaxial gyro-
scopes were installed to capture the rotational behaviour of
the building during seismic events. Figure 6 depicts the
installed accelerometer and gyroscope.

On April 07, 2018, an earthquake of magnitude 4.6 struck
northern Oklahoma. The epicentre was located at approxi-
mately 47 km from the investigated building at a depth of
10 km. At the time of the earthquake, only the triaxial acceler-
ometers and the GPS were fully functional. However, because
the earthquake was not large enough to generate displace-
ments above the GPS noise level, only the acceleration time

histories recorded during this earthquake will be used herein
to calibrate the finite element model of the building.

4.1. Finite element modelling

A three-dimensional finite element model of the building, as
shown in Figure 7, is created in CSi SAP2000 environment
(CSI, 2018) based on the as-built structural drawings pro-
vided by the university administration. Nonlinearity in the
model is introduced at both the material and geometric lev-
els. Reinforced concrete is modelled using Mander’s con-
crete model (Mander, Priestley, & Park, 1988) as an
isotropic material with cylinder compressive strength of 34.5
MPa (5,000 psi) for columns and shear walls, and 27.6 MPa
(4,000 psi) for all other members.

Figure 8 displays the stress-strain curve for 34.5 MPa
(5,000 psi) concrete used in this analysis. A parametric stress-
strain model which takes into account the strain hardening
behaviour (CSI, 2018) is used for the steel reinforcement. The
stress-strain profile for the adopted parametric model is given as:

r ¼
Ee for e < ey
ry for ey< e< esh

ry þ ru � ryð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�esh
eu � esh

r
for e> esh

8>>><
>>>:

(7)

Figure 4. Plan view of the investigated building.

Figure 5. GPS antenna mounted on the roof.

Figure 6. Instrumentation installed in the building (a) accelerometer and
(b) gyroscope.
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in which r is the rebar stress, E is the modulus of elasticity,
e is the rebar strain, ry represents the yield stress, ru is the
ultimate stress, ey is the yield strain, esh is the strain at the
onset of strain hardening, and eu is the ultimate strain.
Figure 9 shows the stress-strain profile for the steel
reinforcement with yield strength of 345 MPa (50 ksi) used
in this model.

Fibre modelling is adopted to properly account for the
inelastic sectional behaviour of columns. This technique
allows the inclusion of plasticity distribution along the
member and across its section (Celik & Ellingwood, 2009;
Salihovic & Ademovic, 2017). In the fibre modelling
approach, the cross-section of the column is divided into
small axial fibres. Depending upon the material, whether
steel or concrete, each fibre is assigned its own nonlinear
stress-strain curve. This process allows capturing the axial
force and moment interaction in the elements, as well as the
effects of cracking and yielding across and along the mem-
ber (PEER/ATC-72, 2010). Integrating the resultant behav-
iour on the cross-section level along the length using the
aforementioned material constitutive laws provides the
required force-deformation relationships. This approach is
not only suitable for quantifying the nonlinear inelastic
response under dynamic loading, but it also provides a

reliable and efficient solution (Lagaros & Papadrakakis,
2012). Figure 10 depicts a schematic representation of fibre
modelling approach.

Plastic hinges are assigned to the ends of the beams to
model the nonlinear frame behaviour as lumped plasticity.
Plastic hinge modelling has been shown to properly repre-
sent the building behaviour near collapse loading conditions
and also allows capturing the concrete crushing and rebar
buckling behaviour in the model (Shokrabadi et al., 2015).
Simulating the nonlinear behaviour of plastic hinges was
achieved by defining a backbone curve as opposed to fibre
modelling where each fibre is assigned a full nonlinear
stress-strain curve. The backbone curve parameters (i.e.
plastic rotation angle and residual strength ratio) are
selected herein based on FEMA 356 (FEMA, 2000). A plastic
hinge backbone curve is shown in Figure 11 where ‘a’, ‘b’,
and ‘c’ are parameters that depend on the material proper-
ties, cross-sectional dimensions, and reinforcement ratio.

The hysteretic behaviour is incorporated in this example
using Takeda’s stiffness degrading model (Takeda, Sozen, &
Nielsen, 1970). This model was shown to represent the real-
istic behaviour of reinforced concrete systems under
dynamic loading. It takes into account the change in stiff-
ness associated with flexural cracking and yielding of
reinforcement in addition to incorporating the strain-hard-
ening effects (Otani, 1980). In this model, the unloading
curve follows the elastic portion of the backbone curve and
the reloading curve follows a secant line. If the applied load
exceeds the yield load, the unloading curve follows an expo-
nential function (Takeda, Sozen, & Nielsen, 1970). However,
this exponential unloading behaviour is considered linear
herein due to software limitations. The maximum deform-
ation point in the previous cycle becomes the target point

Figure 7. Finite element model of the building in CSi SAP2000.

Figure 8. Stress-strain curve of the 34.5 MPA (5,000 psi) concrete using
Mander’s model.

Figure 9. Parametric stress-strain relationship for steel reinforcement with yield
stress of 345 MPA (50 ksi).

Figure 10. Typical cross-section as implemented in the fiber model-
ing approach.
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for the secant line in next cycle. As a result, the hysteresis
loop continues to reflect the reduction in energy dissipation
with increased deformation levels. Since hysteretic damping
is already considered within the hysteresis behaviour,
Rayleigh damping of 4% is used to account for viscous
damping as opposed to the traditionally adopted 5% (PEER/
ATC-72, 2010). Second-order nonlinear behaviour is also
incorporated explicitly in the model.

Being a residential hall, the building consists of a large
number of infill walls that may have a significant influence
on the stiffness of the structure. The stiffness contribution
of infill walls is included in the model using equivalent diag-
onal compression-only struts following FEMA 356 recom-
mendations (FEMA, 2000). The strut thickness is chosen
equal to the thickness of the walls while the width of the
strut a is calculated as (FEMA, 2000):

a ¼ 0:175 k1hcolð Þ�0:4rinf (8)

in which:

k1 ¼
Emetinf sin 2h

4EfeIcolhinf

" #1
4

(9)

where tinf is the thickness of infill wall and strut, Linf is the
length of infill wall, rinf represents the diagonal length of
infill wall, Icol is the second moment of area of column, Eme

is the expected elastic modulus of infill wall, Efe is expected
elastic modulus of frame, and h represents the angle whose
tangent is the infill height-to-length ratio. As shown in
Figure 12, hinf represents the height of infill wall and hcol is
the height of column. The behaviour of all floor slabs is
assumed elastic and they are modelled as thin shell elements
where transverse shear deformations are neglected. Rigid
diaphragms are assigned to each story level to model the in-
plane stiffness.

4.2. FE model calibration

To improve the ability of the FE model to represent the
analysed structure, SHM information is used to calibrate the
structural model. The ground acceleration recorded during
the April 07, 2018 earthquake is applied to the finite elem-
ent model and the corresponding recorded roof acceleration
is compared to the time history resulting from the FE model
under the same excitation.

Bending stiffness values of the columns along both axes
are chosen as the calibration parameters. Optimum values
of these parameters are determined such that the difference
between the modal frequencies obtained from SHM data
analysis and the finite element model is minimized. For this
optimization, the objective function is defined as:

e Xð Þ ¼
Xn
i¼1

Wi:
fco, i Xð Þ�fo, i Xð Þ

fo, i Xð Þ

 !2

(10)

where eðXÞ is the objective function, fco, i Xð Þ is the com-
puted natural frequency of mode i using finite element ana-
lysis, fo, i Xð Þ is the observed natural frequency of mode i
using SHM data analysis, Wi is the weighting factor of
mode i, n is the number of considered vibration modes,
and X is the vector of calibration parameters (i.e. bending
stiffness for columns). This optimization problem is solved
using a sequential quadratic programming algorithm to
establish the optimum values of the column stiffness. TheFigure 11. Backbone curve for the plastic hinge using FEMA 356.

Figure 12. Equivalent diagonal compression strut model using FEMA 356.
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first three natural modes of the building, which cover
almost 90% of the modal mass participation, are considered
for model calibration. These modes are assumed to be
equally important with weighting factors equal to one.
Figure 13 depicts the convergence plot for the FE calibration
optimization. As shown, the value of the objective function
reaches the minimum value after 14 iterations.

Figures 14 and 15 illustrate the roof-to-base power spec-
tral density (PSD) ratio for the SHM recorded response and
calibrated FE model in both directions. As shown, the FE
model is capable of representing the structural behaviour.
The power spectral ratio of FE model and actual structure
are close in both low and high frequency ranges. However,
a variation between some of the SHM-based and FE-simu-
lated peak amplitudes can be observed. This variation can
be attributed to the complex damping behavior of
the structure.

Figure 16 displays the probability plot of the frequencies
at which peaks occur in the roof-to-base PSD ratio plots
obtained from SHM data and the FE model. As shown, the
FE model reports the peak values to occur at almost the
same frequencies at which the SHM data exhibit peaks;
especially in lower frequencies that have higher contribution
to the system response. Figure 17 depicts the structural
health monitoring acceleration time series recorded at the
rooftop for the April 07, 2018 earthquake and the response
generated by the FEM model. As can be seen from this fig-
ure, the FE model is capable of predicting the dynamic
response of the building under seismic excitations, closely
matching the amplitude of shaking following the shear
wave. Figure 17(b) illustrates the realistic reproduction of
the predominant frequencies at 2Hz and 12–13Hz.

4.3. Neural network training

Ideally, a set of historically recorded ground motion records
at the region of interest should be used for performing IDA
analysis. Each of these records is then scaled to cover mul-
tiple levels of seismic intensities to force the structure
through its entire behaviour spectrum. However, the struc-
ture investigated herein is located in Stillwater, Oklahoma,
which recently started to experience high seismic activity
induced by oil and gas production (McNamara et al., 2015).

Consequently, the limited earthquake acceleration records
available for the region are not sufficient for conducting the

IDA analysis and fragility assessment. Accordingly, ground
motion records of real earthquakes are obtained from the
Next Generation Attenuation (NGA-West2) database cre-
ated by the Pacific Earthquake Engineering Research (PEER)
centre (PEER, 2008). The selected earthquake records have
magnitude range of 4.0–7.5 and Joyner-Boore (Joyner &
Boore, 1981) distance RJB (PEER, 2008) of less than 100 km.
The selected acceleration time histories are then used in the
finite element analysis to generate the training dataset for
the NARX neural networks.

These earthquake signals cover the expected PGA range
needed for conducting the IDA and fragility analysis. They
also exceed the intensity level expected to occur at the
building location based on the probabilistic hazard assess-
ment conducted in Petersen et al. (2018). Additionally, the
highly nonlinear behavior of the structure was evident by
the large number of plastic hinges that formed under the
selected earthquake records with high intensity.

The NARX neural network is implemented using the
neural network toolbox in MATLAB (Mathworks, 2019). In
this paper, a tan-sigmoid transfer function in the hidden
layer and linear transfer function in the output layer are
used. Ground motion acceleration time histories are chosen
as input and FE analysis results (i.e. displacement time his-
tories on each floor) are chosen as target values. Bayesian
regularization (MacKay, 1992) is adopted as the training
algorithm to determine the optimum combination of bias
values and weights that minimizes the neural network pre-
diction errors.

Figure 14. Comparison of PSD ratio (N-S direction).

Figure 15. Comparison of PSD ratio (E-W direction).

Figure 13. Convergence of the FE calibration optimization.
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A total of 10 ground motion records are used to train
the model. NLTHA is conducted for each selected earth-
quake using step-by-step direct integration in CSi SAP2000
(CSI, 2018). The selected ground motions and their corre-
sponding displacement time histories are then used to train
the NARX neural networks. For training the network, an
open loop NARX neural network is used as both input and
output data are available during the training phase. The
configuration of a neural network is one of the most
important aspects that govern its performance. As no sig-
nificant literature is available for NARX network configur-
ation in nonlinear seismic response prediction applications,
a trial network configuration with one hidden layer of 5
neurons and input and feedback delay of 10 is selected.

Accordingly, the network uses 10 points (i.e. 0.05 sec) in
the ground motion time series preceding the current time to
predict the response at the current time. With this configur-
ation, it was observed that the network was unable to accur-
ately predict the dynamic response. After various systematic
trials with different numbers of neurons, a network config-
uration of 1 hidden layer with 10 neurons is selected.
Moreover, the number of input and feedback delays are
selected as multiples of the fundamental natural time period
of the building. Sensitivity analysis with respect to the delay
is conducted to select the optimal delay value.

Figure 18 presents the mean square error with respect to
different delay values. As shown, a delay value of 50% of
the fundamental natural period significantly reduces the
mean square error. Increasing the delay beyond 50% has a
lower impact on the mean square error. Since larger delay
values increase the training computational time, and in
some cases may cause non-convergence, a delay value corre-
sponding to 50% of the fundamental natural period
(T¼ 0.77 s) for both input and feedback is selected in this
paper. With this configuration, accurate network perform-
ance is observed.

A separate network is trained to predict the response
time history of each story. Training data are scaled to range
between �1, þ1 in order to improve the training efficiency
of the model (Zhang et al., 2019). The weights and bias val-
ues are adjusted iteratively during the training using the
Bayesian regularization back-propagation algorithm
(MacKay, 1992) such that the error between the predicted
network values and target values reaches a minimum. The
MSE, as shown in Equation (6), is taken as the training per-
formance indicator (Arjovsky et al., 2016). Figure 19 shows
the variation of MSE with respect to the number of neurons.
It can be seen from the figure that adding more neurons
after 10 does not decrease the MSE appreciably; hence, 10
neurons are used for training purposes.

Once the networks are trained, they are converted into
closed loop configuration to assess their predictive accuracy
using another set of earthquakes containing 5 ground
motion time series that are not used in training phase.

Figure 16. Probability plot comparing occurrence of peaks in PSD ratio for SHM and FE model.

Figure 17. Comparison of acceleration response of the roof obtained from the
FE model and SHM data (a) 40 sec. view and (b) 3 sec. view.

10 I. A. SHEIKH ET AL.



Figures 20 and 21 show the predicted response of the
trained neural network for first and roof stories, respect-
ively, under the effect of one of the earthquake signals
included in the testing database. As shown, the NARX
neural network is capable of predicting the displacement
time history with appreciable accuracy. A similar level of
prediction accuracy was also observed for the other four
earthquake time series of the testing database.

Additionally, a comparison of the predicted displacement
time histories in all other stories revealed that the employed
NARX configuration with 10 neurons can accurately predict
the response of the building under seismic excitation. To
further evaluate the accuracy of the trained networks, Figure
22 compares the probability plot of displacement amplitudes
obtained using FE analysis to the NARX predictions. The
figure compares the FE predicted values obtained for all of
the testing data set (i.e. the five testing ground motion sig-
nals) to the NARX predicted values. As shown, the NARX
network was capable of predicting the displacement with a
maximum prediction error of 3% compared to the FE
results. It should be noted that other types of ANNs (e.g.
feedforward ANNs and LSTM networks) were also trained
and tested; however, none of these investigated networks
matched the accuracy of the adopted NARX configuration.

Note that given the structural attributes, efficiency of the
training algorithm, and the configuration of the adopted
neural networks, the number of seismic records required for
training can greatly vary. In general, it is essential to define
a comprehensive training and testing database that well rep-
resents the underlying problem. A larger training database
should yield better results; however, given the computational
expense associated with direct integration nonlinear finite
element analysis, executing the minimum number of FE
analysis is preferred. On the other hand, a limited training
database can lead to over-fitted models that are not well
generalized. The coefficient of determination R2 provides an
appropriate measure to judge the adequacy of the training
dataset (Ouyang, 2017; Tabarsa & Davodi, 2018; Wang,
Pedroni, Zentner, & Zio, 2018).

4.4. Incremental dynamic analysis

The trained networks in closed loop configuration are used
next to conduct the incremental dynamic analysis. PGA is

taken as the intensity measure and the IDR is chosen as
engineering demand parameter. Fifteen additional ground
motions are selected and scaled to cover various levels of
PGA, starting from 0.05 g, with 0.05 g increments, until fail-
ure. Note that this set of ground motions is not the same
one adopted for training and testing the network. Failure is
assumed to occur when the maximum IDR reaches or
exceeds 3%, which is more than the 2.5% conventional col-
lapse prevention limit (Ibrahim, 2018). Figure 23 shows the
profiles of maximum IDR for each earthquake with respect
to the story level and the median of the maximum IDR
with respect to the story level. It can be seen from this fig-
ure that for a given ground motion intensity, the 6th and 7th

stories experience relatively higher drifts than others.

Figure 18. Variation of MSE with delay. Figure 19. Variation of the MSE with the number of neurons.

Figure 20. Comparison of displacement response of the first floor predicted
using the NARX network and FE analysis.

Figure 21. Comparison of displacement response of the roof predicted using
the NARX network and FE analysis.
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Figure 24 illustrates the results of IDA for the same add-
itional 15 earthquakes where the response at each story was
calculated using the trained NARX neural networks in terms
of PGA versus maximum IDR along with the median of the
maximum IDR. As shown by the median profile, the max-
imum IDR increases linearly till PGA of almost 0.6 g,
depicting linear behaviour of the building. After a median
average value of 0.6 g, softening occurs, signalling the onset
of the nonlinear response.

The NARX networks conducted the IDA analysis shown
in Figure 24 in approximately five minutes. Conducting
nonlinear dynamic analysis for one earthquake using
SAP2000 required approximately four hours. This translates
to more than 45 days to complete such analysis using trad-
itional nonlinear FE analysis. On the other hand, a total of
15 ground motion records, requiring 60 hours of FE ana-
lysis, were used to generate the training and testing data-
base. Additionally, once the NARX networks are trained, a
larger number of earthquake records can be easily consid-
ered for IDA analysis with nearly no additional computa-
tional cost. The analysis has been conducted on a desktop
computer with Intel(R) Core (TM) i7-7700 CPU at
3.60GHz and 16GB of RAM.

After conducting the IDA, the fragility curves are devel-
oped using Equation (3). Figure 25 displays the fragility
curve based on the lognormal cumulative distribution func-
tion. It can be seen from the figure that the probability of
failure (i.e. probability of exceedance of 3% drift ratio limit)
is 50% for PGA value of 0.85 g and almost 100% at 1.3 g.
Note that recent probabilistic hazard assessments indicate

that the PGA with 1% probability of being exceeded in the
next year is approximately 0.5 g, using the annual peak seis-
mic hazard estimates relevant to seismicity with anthropo-
genic sources in Oklahoma (Petersen et al., 2018).

5. Conclusions

This paper presented a framework for conducting seismic
fragility analysis of multi-story buildings using nonlinear
autoregressive exogenous (NARX) input neural networks.
The study integrates structural health monitoring data with
finite element analysis to calibrate a structural model. A
relatively small number of FE simulations, using the cali-
brated FE model with a range of input ground motions, is
used to train and test the NARX networks. The trained net-
works are then utilized to create response time histories and
conduct incremental dynamic analysis. The results of IDA
are then used to construct the seismic fragility curves of the
building. The presented framework was illustrated on a
twelve-story reinforced concrete building. The following
conclusion can be drawn:

� NARX neural networks are capable of predicting the
nonlinear dynamic response of structural systems sub-
jected to seismic excitations. Nevertheless, care should be
taken in generating the network training dataset to
encompass the range of earthquakes required for the
seismic fragility analysis.

Figure 22. Probability plot of displacement values obtained from the FE ana-
lysis versus the NARX prediction.

Figure 23. Maximum interstory drift ratio with respect to story level at col-
lapse s.

Figure 24. IDA analysis results conducted using NARX networks.

Figure 25. Seismic fragility curve of the investigated building.
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� The defined feedback delay in the NARX network has a
significant effect on the prediction accuracy. It was found
that, for the investigated structure, a delay of approxi-
mately 50% of the fundamental time period of the struc-
ture, both in input and feedback layers, yields optimum
training of the NARX network. Lower feedback delay
resulted in loss of accuracy in the results while larger
delay required significantly longer training time without
considerable gains in prediction accuracy. Sensitivity
analysis similar to the one presented in Figure 18 is
necessary to establish the optimum value of the feedback
delay required to minimize the prediction error.

� The IDA is an important tool in assessing the seismic
behaviour of structures. It provides the relationship
between the seismic intensity and the corresponding
structural response parameter. The IDA curves can be
efficiently generated using the proposed framework for a
given response parameter. Multiple response parameters
can be included in the analysis; however, training time
will be affected by the number of required
response parameters.

� The proposed framework can efficiently construct the
seismic fragility curves of multi-story buildings.
Integrating NARX networks and FE analysis to construct
the fragility curves led to a significant reduction in the
computational time of the fragility analysis. For the
investigated case study, the computational time was
reduced by approximately 18 times.
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