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ABSTRACT

Systems exhibiting nonlinear dynamics, including but not limited
to chaos, are ubiquitous across Earth Sciences such as
Meteorology, Hydrology, Climate and Ecology, Engineering such
as chemical reactions and structural dynamics, as well as Biology
such as neural and cardiac processes. However, System
Identification remains a challenge. Thus, in climate and earth
systems models, while governing equations follow from first
principles and understanding of key processes has steadily
improved, the largest uncertainties are often caused by
parameterizations such as cloud physics, which in turn have
witnessed limited improvements over the last several decades.
Climate scientists have pointed to Machine Learning enhanced
parameter estimation as a possible solution, with proof-of-concept
methodological adaptations being examined on idealized systems.
While climate science has been highlighted as a “Big Data”
challenge owing to the volume and complexity of archived model-
simulations and observations from remote and in-situ sensors, the
parameter estimation process is often relatively a “small data”
problem. The latter is caused by multiple interacting factors such
as inadequate data and imperfect physics at high-enough
resolutions, limited historical records before the dawn of remote
sensors such as earth-observing satellites and weather radars. A
crucial question for data scientists in this context is the relevance
of state-of-the-art data-driven approaches including those based on
deep neural networks or kernel-based processes. Here we consider
a chaotic system — two-level Lorenz-96 — used as a benchmark
model in the climate science literature [6], adopt a methodology
based on Gaussian Processes for parameter estimation and compare
the gains in predictive understanding with a suite of Deep Learning
and strawman Linear Regression methods. Our results show that
adaptations of kernel-based Gaussian Processes can outperform
other approaches under small data constraints along with
uncertainty quantification; and needs to be considered as a viable
approach in climate science and earth system modeling.
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1 Introduction

With the advent of big data, machine learning and data science has
ushered in a new era of predictive understanding of complex, high-
dimensional data in problems like image classification and speech
recognition [1, 2]. Given massive datasets, state-of-the-art deep
learning architectures can be trained to act as universal functional
approximators to achieve results which sometimes even exceed
human accuracy. For example, ResNet, which won the ImageNet
challenge in 2015, was trained on 1.2 million images [3]. However,
many fundamental problems in science deal with “small data”
where data availability is limited, and simulated data is difficult to
generate due to high computational cost or may even be infeasible
due to incomplete understanding of the underlying process physics.
While a simple online search returns thousands of pictures of a
particular object, and millions of Wikipedia articles are
downloaded in seconds, collecting a single run of a high-resolution
climate model is both time-consuming and expensive. Such a
critical dependency on large datasets has limited the success of
machine learning in problem spaces where data is hard to come by.

Nonlinear dynamical (NLD) systems are ubiquitous in nature with
wide applications ranging from fluid dynamics, biomedical signal
processing (e.g., ECG), epidemiology and climate modeling [4-6]
among others. However, the sheer complexity of the system may
render a first-principles modeling approach infeasible. Instead,
data-driven methods provide an alternative to discover the
governing equations from observations. These systems are
mathematically defined using a set of coupled differential
equations. In its simplest form, a dynamical system is of the form:

x = f(x,u)
y=h(x)+ n

The vectors x and u denotes the state of the system and input,
respectively, at time t and the function f(.) defines the dynamic
constraints that define the system including parametrization. The
vector y refers to the measured observations and h is the
transformation mapping states to observations, and 7 is the
measurement noise. Depending on whether the model structure is
known (black-box vs white box modeling), the goal of system
identification is to estimate either the model itself or the model
parameters. In this work, we assume that the model structure is
known as is the case in climate modeling.
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The focus in this work is on NLD systems and parameter estimation
in the context of earth system/climate modeling. To this end, we
use a benchmark chaotic system — two-level Lorenz-96 (L96-2L) —
developed by Lorenz [7] representative of the general circulation
of the atmospheric and exhibiting similar properties such as a
chaotic error growth rate and multiscale interaction. It consists of a
coupling of variables evolving over slow and fast timescales
(discussed in detail in Section 3.1). It has served as a testbed for
machine learning research in parameter estimation for more
complex actual climate models [8, 9, 38].

The specific goal of this paper is twofold: first, to derive
probabilistic estimates of the model parameters of the L96-2L
system using Gaussian Process Regression (GPR); second,
sampling from the estimated parameter distribution, the system
attractor is then replicated and compared with the true attractor. A
suite of shallow and deep learning algorithms are used as
benchmarks to compare the relative performance under the small
data constraint as discussed above.

The remainder of the paper is organized as follows. Section 2
discusses some of the recent works in NLD system identification.
Section 3 presents the background (methodology and data)
necessary for this study. In Section 4 (Results) we compare our
method with two deep learning methods and linear regression as
baselines. Section 5 outlines a discussion on the results, limitations
and future work.

1.1 Relevance to Climate Modeling

Earth System Models (ESMs), previously known as Global Climate
Models (GCMs), have become useful tools for climate science as
well as for stakeholder and policy communities (e.g.,
Intergovernmental Panel for Climate Change [23]; United Nations
Sustainable Development Goals. However, despite advances in our
understanding of the relevant physics and biogeochemistry, along
with developments in computational power and availability of Big
Data from remote sensors and archived model simulations, crucial
knowledge-gaps remain. While the fundamental structures of
ESMs are often based on first-principles physics encapsulated
within partial differential equations, key processes like cloud
physics rely on simplified parameterizations [39, 40] owing to
uncertainties in physics [53], inadequacy of computational
resolutions, and limitations of data availability. The challenges in
parameterizations can cause major uncertainties [50] in predictive
understanding, as exhibited by the latest generation ESMs rather
prominently (e.g., in the scientific literature [24, 41] and even in the
media [25]).

Climate and earth system modelers have recently pointed to the
potential value of Machine Learning, including Deep Learning in
parameter estimation or crucial processes such as cloud convention
where long-standing knowledge gaps continue to exist. A paper in
the journal Geophysical Research Letters [6] proposed “Earth
System Modeling 2.0 and showcased (with the 96-2L model as a
proxy for ESMs) how Machine Learning can help in parameter
estimation. A perspective article in the journal Nature [21] and an

editorial article in Science magazine [22] pointed to the challenges
and the opportunities. A recent paper [8] in the journal Proceedings
of the National Academy of Sciences presented a Deep Learning
approach to represent sub-grid cloud processes. A schematic of
how Machine Learning can inform ESMs — along with the
connection to an idealized Nonlinear Dynamical System
(specifically, the L96-2L) often used as a proxy model — is shown
schematically in Figure 1.

2 Related Work

We approach System Identification as parameter estimation, which
is as such a well-developed subject []. Classical estimation
approaches include variational solutions to two-point boundary
value problems (2BVP) [10], the recursive Kalman and extended
Kalman filters, and the Rauch-Tung-Striebel smoother [11].
Practical Bayesian joint state-parameter estimation with
uncertainty quantification for nonlinear high-dimensional systems
have emerged in the form of efficient ensemble filters [27], fast
ensemble smoothers [28] and Particle Filters [29], with numerous
variants.  Probabilistic Graphical Models unify Bayesian
estimation for both random fields and stochastic processes and
many Bayesian inference algorithms can be reduced to a form of
Belief Propagation [30].

More recently, in the ML/DL (“Learning”) space, researchers have
used reservoir computing [12, 13], LSTMs [14], Random Forests
[4], multi-step Deep Neural Networks [15, 49] for forecasting the
future states in different canonical problems in NLD using only the
past observations. Although the above methods show good
predictive performance, the methods do not capture the true
governing mechanism of the system; in the sense that model
parameters are not estimated.

Although Learning is itself often a parameter estimation problem,
our interest is in its use for parameter estimation of dynamical
systems, in particular through the use of ensemble and deep
learning, and kernel machines. Although some approaches for
dynamical systems unrelated to present work including Ensemble
Learning [31] and Information-theoretic Learning alternatives [32]
have been proposed, learning in parameter estimation is not well
developed. Gaussian Processes (GPs) [35] as a learning method
proposed here are closely related to Gaussian Graphical models
(the update equations are similar, but the formulations are different)
[33]. GPs are also related to deep learning [26] in the sense of an
infinite-width limit.

In this work, instead of directly predicting future states, we first
estimate the model parameters which combined with the model
structure provides us the complete system information to simulate
new data for different initial conditions. [16]. We draw motivation
from the recent works of Raissi et al. [17] that have used Gaussian
Processes (GPs) for solving partial differential equations. GPs offer
several practical advantages: 1) Intrinsic Bayesian approach
captures model uncertainty [52] by providing confidence bounds
over the estimated parameters 2) ability to incorporate prior domain
knowledge by selecting appropriate kernel functions 3) Occam’s
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Figure 1: Schematic diagram showing the parameterization problem in coarse global climate models. Machine Learning based
parameterization method is proposed to replace traditional heuristic parameterization schemes. Inset shows the two-level
Lorenz-96 system (L96-2L) used as a simplified testbed model as suggested in emerging literature (ESM 2.0 [6]). The butterfly-
shaped Lorenz-63 attractor is shown as a representational image for a NLD (chaotic) system.

Razor [47] automatically incorporated by the marginal likelihood
function - a more complex model can account for many more data
sets than a simple model, but the probabilities have to integrate to
unity, thus, more complex models are automatically penalized
more. On the other hand, GPs are caveated by its cubic
computational complexity. The inversion of the n x n covariance
matrix requires a memory complexity of 0(n?) and computational
complexity of O(n3). This cost becomes prohibitive for large
training data. Decreasing the computational complexity of GPs is
an active research area with different algorithms available that
extract low-rank approximation [46, 51] for the covariance matrix.
For example, a rank-m Cholesky factorization can be computed in
O(nm?) time. Since the central idea of this work is to demonstrate
GPs on small data, we have not looked into reducing the time
complexity.

3 Background

3.1 Two-Level Lorenz-96 System

The two-level Lorenz-96 [7] is a prototype model of the mid
latitude atmosphere. The model describes the time evolution of the
components X; of a spatially discretized atmospheric variable over

a single latitude circle. Associated with each X; are Y variables

representing  unresolved subgrid processes (e.g. cloud
microphysics).

dXy _

T —Xp—1(Xi—z — Xp41) — X + F — hely (1]

1.dY, h

e at = k(e = Yoak) = Ve + X (2]
where,

This set of equations are coupled through the mean term ¥ and
this coupling is controlled by three keys parameters: b, ¢ and h. The
parameter b controls the amplitude of the nonlinear interactions
among the fast variables, while the parameter ¢ controls how
rapidly the fast variables fluctuate relative to the slow variables and
the parameter h controls how strong the coupling between the fast
and slow variables is. Lorenz-96 is commonly used as a benchmark
model for weather and climate prediction as well as recently in ML
based parametrization schemes for Earth System Models.
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3.2 Gaussian Processes

Definition 1: 4 Gaussian process is a collection of random
variables, any finite number of which have a joint Gaussian
distribution. [18]

A Gaussian process (GP) is completely specified by its mean
function m(x) and covariance function k(x,x"). This is a natural
generalization of the Gaussian distribution whose mean and
covariance is a vector and matrix, respectively. The Gaussian
distribution is defined over finite-dimension vectors, whereas the
Gaussian process is over functions, discrete or continuous. We can
write:

f= GP(mk)

i.e. the function f is distributed as a GP with a mean function m
and covariance function k. The covariance kernel function used in
this work is the squared exponential kernel [34].

Now, for any finite subset X = {xy, x,, ... x;) in the domain of x,
the marginal distribution f(X) is a multivariate Gaussian
Distribution (definition 3.1):

fX) = N@m(X), kX, X))
with mean ¢ = m(X) and covariance matrix £ = k(X, X)

Let f be the known function values of the training cases and let f *
be a set of function values corresponding to the test set inputs, X *.
we write out the joint distribution of everything we are interested

Fl=n(le] L2 2

where we’ve introduced the following shorthand: 4 = m(x;),i =

1,...,n for the training means and analogously for the test means
U,; for the covariance we use X for training set covariances, X * for
training-test set covariances and X ** for test set covariances. Since
we know the values for the training set f we are interested in the
conditional distribution of f * given f which is expressed as:

fUf~N@. + T2 — ), Z.-Z27'L)
This is the posterior distribution for a set of test cases. The
corresponding posterior process is:
f*|I D~ GP(mp, kp)
mp(x) =m(x) + X, x)" 271(f —m)
kp(x,x) =k(x,x") — 2(X,x)TZ715 (X, x")

4 Problem Formulation

The regression problem here is to estimate the coupling parameter
h as a function of the resolved, large-scale variable X. Since all X;
are statistically similar, considering only X; should suffice. Each
input datapoint is a length n temporal “snapshot” extracted from the
X, time series (see Data Generation). The corresponding target is
the value of parameter h used to generate the X; trajectory.

To estimate: f*,| fn, with fi, ~ GP(m(X{"), k(X{', X{")

where X;' is a finite subset of X; = {X;(¢t) ....X;(t + nAt)}
available as training data.

5 Experiments

Data Generation: 8 experiments with 200 simulation each for
different combinations of the parameters b,cand h are
considered. For each simulation, we solve equations [1] and [2]
using a Fourth Order Runge-Kutta numerical solver with a step
At = 0.005 up 4100 timesteps. Accounting for transient effects,
the first 1000 points are discarded resulting in a time series of 4000
point. From here on, we express (1 / At) timesteps as 1 Model Time
Unit (MTU) [36, 37]. In total, 1600 such time series are generated.

The eight experiments differ by varying the number of slow (X)
and fast variables (Y), the forcing F and the temporal regime from
where the training data is extracted. A higher forcing F results in
more chaotic behavior of the L96-2L system, while the two training
data regimes correspond to low and high temporal variability in the
trajectories of the X;. The details are described below:

Table 1: Summary of Experiments

Experiment# X Y F Training Regime
1 4 4 10 5<MTU<7

2 4 4 10 15<MTU

3 4 4 20 5<MTU<7

4 4 4 20 15<MTU

5 8 8 10 5<MTU<7

6 8 8 10 15<MTU

7 8 8 20 5<MTU<7

8 8 8 20 15<MTU

Data Preprocessing: To emulate a real scenario of availability of
only partial observations, only the resolved (observed) variable X
is considered as input for training data. The unresolved variable Y
represents sub-grid processes in a climate model are often not
available as observations from coarse-resolution climate models.

From each X time series, 5 temporal snapshots of length n=10 are
extracted as the training data. Thus, shape of the training data for
each experiment is [simulations=200; no. of datapoints per
simulation=5; length of each datapoint = 10] which is reshaped into
a [1000, 10] NumPy array. The corresponding target shape is
[1000, 1]. For different experiments (such as #1 and #2), all else
being equal, the temporal “snapshots” are generated from two
different regimes in the X; time series. For 5<MTU<7, the variation
in X; is less drastic, while MTU > 15 is considered to capture
greater chaotic behavior and compare the predictive performance
of the models.
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6 Results

Performance metrics for the 8 experiments are presented in Table 2
to Table 9. The metrics used are:

Mean Squared Error (MSE)
Mean Absolute Error (MAE)
Coefficient of Determination R? — provides a measure of
the proportion of total variation of outcomes explained
by the model.
X0 - w)?

2 — yi)?
Bhattacharya Distance — used to measure similarity
between the inferred and true probability distribution of
the estimated parameter (h). For two probability
distributions, p(x) and q(x), it is calculated as:

Dy = =In () p()q())

X EX
Pearson’s Correlation

R? =

Baseline Models used to compare the performance of GP:

FC-DNN - a 4-layer [64, 32, 16, 8, 1] fully connected
deep neural network

Stacked-LSTM — a 2-layer stacked LSTM with [64, 32]
hidden units

Linear Regression (LR)

6.1 Evaluation

Performance Metrics:

In the less variable training regime (< 5 MTU < 7),
Gaussian Process Regression (GPR) consistently
outperforms across all metrics, for both levels of chaotic
behavior (Table 2 to Table 5). Between the two DL
models, FC-DNN performs no better than a simple linear
regression; and the stacked-LSTM performs worse.

For the MTU > 15 training regime (Table 6 to Table 9),
predictive power of GPR deteriorates while it remains
roughly the same for the two DL models. GPR still
marginally outperforms FC-DNN for the less chaotic
(F=10) Lorenz-96. However, the performance of GP, FC-
DNN and stacked-LSTM converge as chaoticity
increases, because the intrinsic dimensionality of the
system attractor increases and the system inherently
unpredictable. For F=20 and MTU > 20 training regime,
all methods lose their predictive power as noted by their
near-zero Ry scores.

Estimated Probability Distribution:

The estimated PDFs for parameter h are presented in
Figure 2 and Figure 3. In lines with the above metrics, for
PDFs estimated by GPR are closest to the true PDF (as
noted by low Bhattacharya Distance in the metrics
Tables) in the less variable training regime (Figure 2);
and performance deteriorates in the high variability
regime (Figure 3). The stacked-LSTM performs the

worst in all experiments barring one (X, Y=8, F=20,
MTU>15) which is hard to qualify as statistically
significant.

Error Growth in Predicted X Trajectory

(Averaged over different sampled h wvalues) For
5<MTU<7 training regime (Figure 4), all models show
low error growth in X, for MTU upto 1. In addition, for
GP, the error growth amplitude remains the lowest
through the MTU range considered.

In the MTU > 15 training regime, error growth is lowest
for the less chaotic case (Figure 5 (A) and (C), F=10). It
reinforces the above results that GPs exhibits superior
predictive power in the less temporal variable and
relatively low training chaotic regimes. However, for
high chaoticity, error growth for GP converges to FC-
DNN and stacked-LSTM.

Estimated Parameter h with Uncertainty Bounds

To compare the performance of GP alone across different
experiment cases, the estimated parameter h for 80 test
data points is plotted in Figure 6. As observed by the
increasing width of uncertainty bounds, the predictive
power of GPs decline as chaoticity increases (Figure 6[A]
and 6[B]) and worsens further when complemented with
a more variable training regime (Figure 6[C]).

Table 2: X=4, Y=4, F=10, Training Regime: S <MTU <7

Model MSE MAE R? Bhatta. Corr.
Distance

GP 0.124 0.265 0.642 0.565 0.807

FC-DNN 0.247 0.410 0.291 1.124 0.549

Stacked- 0.329 0.482 0.058 0.835 0.284

LSTM

LR 0.242 0.389 0.313 1.165 0.573

Table 3: X=4, Y=4, F=20, Training Regime: 5 <MTU <7

Model MSE MAE R? Bhatta. Corr.
Distance

GP 0.119 0.249 0.656 0.524 0.819

FC-DNN 0.247 0.404 0.290 1.183 0.541

Stacked- 0.333 0.487 0.044 1.216 0.254

LSTM

LR 0.252 0.406 0.530 1.222 0.288
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Figure 5: Error Growth in Predicted Trajectory of X; for the 4 Experiments in Training Regime MTU < 7.
[A] X=4, Y=4, F=10; [B] X=4, Y=4, F=20; [C] X=8, Y=8, F=10 [D] X=8, Y=8, F=20. (1 MTU = 1/At timesteps)

Table 4: X=8, Y=8, F=10, Training Regime: 5 <MTU <7 Table 5: X=8, Y=8, F=20, Training Regime: 5 <MTU <7
GP 0.185 0.292 0.553 0.585 0.871 GP 0.164 0.298 0.516 0.669 0.804
FC-DNN  0.205 0.374 0411 0.725 0.681 FC-DNN  0.315 0.472 0.096 1.070 0.389
Stacked- 0.348 0.501 0.154  1.265 0.453 Stacked- 0.351 0.502  0.005 1.053 0.049
LSTM LSTM

LR 0.255 0.398 0.266 1.100 0.524 LR 0.359  0.506 0.001 1.080 0.048
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Table 6: X=4, Y=4, F=10, Training Regime: MTU>15

Model MSE MAE R2 Bhatta. Corr.
Distance

GP 0.247 0.393 0.290 0.755 0.556

FC-DNN 0.253 0.403 0.274 0.878 0.534

Stacked- 0.308 0.442 0.117 0.110 0.410

LSTM

LR 0.321 0.479 0.079 0.833 0.288

Table 7: X=4, Y=4, F=20, Training Regime: MTU>15

Model MSE MAE R? Bhatta. Corr.
Distance

GP 0.296 0.452 0.148 0.845 0.398

FC-DNN 0.299 0.462 0.117 0.813 0.363

Stacked- 0.313 0.465 0.100 1.120 0.324

LSTM

LR 0.332 0.480 0.048 0.944 0.230

Table 8: X=8, Y=8, F=10, Training Regime: MTU>15

Model MSE MAE R2 Bhatta. Corr.
Distance

GP 0.270 0.419 0.225 0.670 0.490

FC-DNN 0.279 0.426 0.199 0.909 0.518

Stacked- 0.297 0.445 0.147 1.155 0.392

LSTM

LR 0.360 0.501 -0.033 0.830 0.102

Table 9: X=8, Y=8, F=20, Training Regime: MTU>15

Model MSE MAE R2 Bhatta. Corr.
Distance

GP 0.348 0.499 0.020 0.821 0.191

FC-DNN 0.352 0.489 -0.009 0.794 0.160

Stacked- 0.353 0.492 -0.007 0.610 0.134

LSTM

LR 0.346 0.500 0.006 1.179 0.128

7 Discussion and Future Work

Parametrization schemes in climate models are one of the biggest
sources of uncertainty in climate projections and accurate
estimation of these parameters can translate to more accurate future
predictions. Taking forward the general problem defined in [6], we
apply Gaussian Processes for parameter estimation on the canonical
Lorenz-96 NLD system representative of the atmospheric behavior.
The intrinsic Bayesian treatment in GPs [52] also provides tools for
uncertainty quantification. Where deep learning methods become
ill-suited under the small data constraint, GP Regression offers a

viable data-efficient learning approach as noted in the various
performance metrics across different experiments.

Future work entails scaling GPs for larger datasets [43] and then
making a comparison with state-of-the-art deep learning methods.
Recent works in Deep GPs [44] show exciting results combining
the expressiveness of deep neural nets and the ability of GPs to
encode prior (physically guided) information through appropriate
design of kernels.

It is pertinent to point out the “no free lunch theorem” [20] which
argues that no one model performs best for all possible situations.
Nearly all machine learning algorithms make certain assumptions
(learning bias) about the predictor and the target value. Further,
infinite width single-layer neural networks are known to be
equivalent to a GP [26]. In our case, the superior performance of
GP can be largely attributed to the fact the target variable is indeed
jointly Gaussian and this information is hardcoded into the model
through an appropriate kernel function. We observe that as training
data becomes “noisier,” GPR loses its predive power considerably
as the underlying assumption may not hold as tightly [34]. On the
other hand, deep learning models which may search over a larger
solution space do not show such deterioration [45]. Although we
have used the same kernel for both training regimes considered, a
natural way forward is adaptive learning by using different kernel
functions or even completely different learning machines for
different training data.
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Figure 6: Estimated coupling parameter ‘h’ [6] (with 95% confidence bounds) by GP Regression. X=4, Y=4.
[A] F=10, Training Regime: S<MTU<7 [B] same as [A] except F=20 [C] F=20, Training Regime: MTU>15. (1 MTU =
1/At timesteps)



