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Abstract

We study the computational and statistical trade-
offs in inferring combinatorial structures of high
dimensional simple zero-field ferromagnetic Ising
model. Under the framework of oracle com-
putational model where an algorithm interacts
with an oracle that discourses a randomized ver-
sion of truth, we characterize the computational
lower bounds of learning combinatorial structures
in polynomial-time, under which no algorithms
within polynomial-time can distinguish between
graphs with and without certain structures. This
hardness of learning with limited computational
budget is shown to be characterized by a novel
quantity called vertex overlap ratio. Such quan-
tity is universally valid for many specific graph
structures including cliques and nearest neigh-
bors. On the other side, we attain the optimal
rates for testing these structures against empty
graph by proposing the quadratic testing statistics
to match the lower bounds. We also investigate
the relationship between computational bounds
and information-theoretic bounds for such prob-
lems, and found gaps between the two boundaries
in inferring some particular structures, especially
for those with dense edges.

1. Introduction

In various problems, data are presented and interpreted in
the form of a graph G = (V, E), where we observe fea-
tures X, for each vertex v € V representing an individual,
and the inter-dependency among them are encoded by the
graph edges in E. For example, in bioinformatics, (Fried-
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man, 2004) studies relationships among observed cellulars
using graphical models, and in social network analysis like
(Lazega et al., 1995), (Grabowski & Kosinski, 2006), rela-
tionships of people are encoded by a graph. To represent
probablity structures of observations, or features of the in-
dividuals (vertices) in graphical models, Markov random
field (MRF) family is widely used, among which Gaussian
graphical model and Ising model are the most popular.

The main focus of this paper is to test whether the underly-
ing graph has a certain structure property. There have been
a lot of work on algorithms and information-theoretic limits
for such structural inference for graphical model, especially
for Gaussian graphical model and Ising model, which are
fundamental models in the Markov random field family.
See (Louigi et al., 2010), (Ery & Verzelen, 2014), (Bresler
et al., 2014), (Neykov et al., 2016), (Neykov & Liu, 2017).
However, to the best of our knowledge, it remains unclear
whether it is possible and how to achieve the information-
theoretic limits by efficient algorithms with certain compu-
tational budgets under the Ising model. Due to the discrete
nature of the Ising model, the theoretical analysis is more
challenging than the Gaussian distribution.

Our paper aims to solve this problem from two major per-
spectives: (1) the theoretical gap between the computational
and statistical rates for recovering various combinatorial
structures in Ising model; and (2) polynomial-time algo-
rithms to detect these structures efficiently. When consid-
ering the computational budgets, we employ the compu-
tational oracle model developed and explored in (Kearns,
1998), (Feldman et al., 2013), (Wang et al., 2015), etc.

Related work: Our work follows the nature of recent work
on computational-statistical tradeoffs for various problems
like PCA, sparse linear regression, etc., see (Feldman et al.,
2013), (Hajek et al., 2014), (Zhang et al., 2014), (Chen &
Xu, 2014), (Wang et al., 2016), (Wang et al., 2015), (Cai
et al., 2017), (Fan et al., 2018). In comparison, we focus
on a family of structural property testing problems in undi-
rected graphical models. (Neykov et al., 2016) provides
the information-theoretic limits while (Lu et al., 2018) pro-
vides the computation-efficient limits for Gaussian graphical
model. But for Ising model, another fundamental model in
the family of Markov random field, there are only results re-
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lated to information-theoretic bounds for structure property
inference, see (Neykov & Liu, 2017) and (Daskalakis et al.,
2016).

To characterize the computational complexity, our analysis
in this paper is carried out under the framework of oracle
computational model, which is proposed by (Kearns, 1998)
and generalized by (Feldman et al., 2013), (Wang et al.,
2015), (Fan et al., 2018). This general framework captures
the computational properties of a wide range of algorithms
including moments-based methods, stochastic optimization
methods, local search, Markov chain Monte Carlo and most
other learning alrogithms. The same oracle computational
model is adopted in (Lu et al., 2018), but it focuses on com-
putational efficiency of Gaussian graphical model, which
has different probability structure and therefore relies on dif-
ferent approach of analysis. A more recent work (Cao et al.,
2018) also studies the efficiency of structure inference in
Ising model without focus on comparison with information-
theoretic bounds. We also differ in that they investigate
additive statistics while we focus on oracle computational
models.

Contributions: (1) Firstly, under the oracle computational
model, we establish the general computational efficient
lower bounds for inferring structural properties in simple
zero-field Ising model, under which no polynomial-time
queries can distinguish between two hypotheses. In this
result, we propose a novel topological quantity on the com-
plexity of the structure of interest: the vertex overlap ra-
tio. We show that it is essential to the trade-off for various
graph properties. (2) Secondly, we propose query functions
and test functions with polynomial computational budgets
which attain the lower bounds for specific property testing
problems. The two results together form the computational-
efficient boundary for these problems. (3) Thirdly, we dis-
cuss the relationship between information-theoretic limits
and computational-efficient limits for inferring particular
structures. We find that for clique detection and nearest
neighbor graph detection problem, there is a gap between
computational efficiency and statistical accuracy. However,
for relatively sparse structure like perfect matching, we
provide information lower bounds that are the same as the
computational-efficient limits. This means that for such
problem, there is no gap between computational efficiency
and statistical accuracy.

Notation: We use the following notations in the paper. For a
set D, we use | D] to denote its cardinaliry. For any positive
integer n, we use [n] to denote the set {1,...,n}. For a
graph G = (V, E), we use V = V(G) to denote the vertex
setand E = E(G) the edge set of G. An element in E(G) is
denoted by (u,v) with u,v € V(G). The maximum degree
of G is denoted by deg(G) := max,cv () |[{v € V(G) :
(u,v) € E(G)}|. Similarly, for edge set E in G, we denote

its vertex set V(E) := {u € V|3v € V, st.(uy,v) €
E} C V where V is the vertex set of G. For two quantities
f and g (usually some order associated with (n, s, d)), we
say f(x) = O(g(x)) if there exists positive number M
such that |f(z)| < M|g(x)| for sufficiently large z. We
say f(z) = Qg(x)) or f = g if f(z) = O(g(x)) and
g(x) = O(f ().

2. Background
2.1. Simple zero-field ferromagnetic Ising model

Consider a d-dimensional random vector X =
(X1,...,Xq)" € R following the ferromagnetic
Ising model parameterized by € = (0 )y,ve[q)> Where

Po(X = x) o< exp ( Z OuvTuy),

1<u<v<d

where X takes value in {+1}% and 6,,, > 0.

More specifically, we consider the simple zero-field fer-
romagnetic Ising models, where a graph G = (V, E) is
encoded by 6 = (0uv)y,ve[q) and Oy, € {0,60} for some
¢ € RT. Thus the graph has edge set E = {(u,v) € V :
Oy = 9}, and a simple zero-field ferromagnetic Ising model
is encoded by 6 with distribution

Po(X =x) = Z(B)_1 exp(6 Z Toyoy) (1
(u,v)EE

over all vectors of spins x € {£1}¢, and Z(0) is the nor-
malizing constant, also known as partition function, such
that Py is a probability distribution. One usual challenge
in examining Ising model is due to the calculation of the
partition function, which is often intractable.

Hereafter, we consider graphs containing d vertices, and
denote the parameter space ® of interest as all encoding
vectors @ = (0yy)u,vecjq) Whose elements are either 0 or
6 > 0. For subset of vertice Vy C [d], denote Oy, as the
sub-vector containing 6., for all pairs u,v € V.

2.2. Oracle computational model

In this section we introduce an oracle computational model
which describes the interactions between algorithms and
data and characterizes algorithmic complexity. Let X be
the domain of X, the random vector of interst, and .7 be an
algorithm.

Definition 2.1 (Oracle Computational Model). Under the
oracle model, of interacts with an oracle O for T rounds.
In each round, the algorithm <f sends a query function
q: X — [-M,M] to an oracle O, where q € Q ., called
the query space of <. The oracle O responds the algorithm
with a realization z, € R of a random variable Z, which
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satisfies
P( () {17, -EaX)]I < 7}) 21-2 @
q€EQw
where
ry = {2 [3(Qur) + 01/,

¢ 2 urfg(0)] - 1(Qur) + 1og<1/5>]}. @)

Here £ € [0,1/4), 1, is the tolerance parameter and
1(Q.r) > 0 measures the capacity of query space. If Q o
is finite, then 1(Q) = log|Q|. T is called the oracle
complexity.

Note that in Definition 2.1, n can be any relevent quan-
tity such that Equations (2) and (3) hold, while in many
situations n is actually the sample size.

Intuitively, Definition 2.1 describes the concentration prop-
erty of the query. For example, for i.i.d. samples X, i € [n],
for query function ¢, an oracle may return the sample mean
of g(z) as Z(q) = L Y1 | q(X;). By Bernstein’s inequal-
ity combined with the union bounds, the deviation agrees
with that in Equation (2). Such a definition is quite general,
and more concrete examples can be found in (Wang et al.,

2015).

2.3. Combinatorial Structure Inference

In this section, we formally define the test problem of
interest in this paper. Denoting the set of all possible
graphs over vertex set V' as G, a binary graph property
isamap P : G — {0,1}. Consider two disjoint sets of
graphs Go NGy = &, G, G1 C G with different properties
P(Go) = 0,YGqy € Gp and P(G1) = 1, VG; € Gy. Given
a sample of size n, property testing problems aim to test the
hypotheses:

Hy:GeGyversus Hy : G € Gy.

Or equivalently, based on the correspondance between graph
G and its encoding vector 8(G), the goal is to test the
hypotheses:

Hy:60 € Cy versus Hy : 0 € Cq,

where Cy and C; is the set of encoding vectors for Gy and
G1. We list a few concrete examples of tests as follows (see
Figure 1 for the illustration).

Clique Detection: Let Gy = {(V,@)} and G : {G :
G is an s-clique}. We aim to detect whether G is a clique
(fully connected subgraph) with s vertices. See Figure 1(a)
for a clique of s = 5. Note that the number of vertices d
can be much larger than s.

Perfect Matching: Let Go = {(V,2} and G; = {G :
|V (G)| = s and each vertex is incident to exactly one edge
in E(G)}. It means that each vertex has degree 1, and is
paired with another unique vertex via one edge. See Figure
1(b) for an illustration.

Nearest neighbor graph detection: Let Gy = {(V, 2}
and G; = {G : G is an s/4-nearest neighbor graph}. A
s/4-nearest neighbor graph is defined by first constructing
a cycle with s vertices, and then connect each vertex in this
cycle with vertices with distance < s/4 to it. Without loss
of generality we assume s/4 is an integer. See Figure 1(c)
for an illustration for s = 8.

For testing Cy against Cq, we define the minimax testing risk
Rn (Co, Cl ) as

Rn(COacl) = inf sup ]P)G(QZ} = 1) + sup Pe(l/f = O) )
P 6cCy 0cCy
“)

where the infimum is taken over all possible test functions
based on observations {x; };[,). Formally, we are interested
in the conditions for any test to be asymptoticall powerless,
which means liminf,, o, R, (Co,C1) = 1. With limited
computational budgets, define a minimax risk for testing
Co against C; with oracle O given n observations under the
oracle computational model as

R?L(COacla M7 OaT)

= inf sup P =1)+supP =0)|,
YeEH(,0,T) ee(lz)g 0¥ ) eeg ol¥ )
(5)

where H (o7, O, T) is the set of all tests based on algorithm
o/ and oracle O, where & interacts with O for at most
T rounds. By this definition, we are interested about un-
der which condition will there be an oracle O such that
liminf,, o Rn(Co,C1, 4,0, T) = 1 which means any
hypothesis test based on algorithm .7 with at most 7" rounds
of query would be asyptotically powerless. Note that T" can
grow with parameters n, d, s.

3. Main Results

In this section we present the main results of this paper, the
computational and information bounds of detecting com-
binatorial structures and analysis of the existence of gap
between them. In simple zero-field ferromagnetic Ising
model, the parameter § can be viewed as signal strength.
Specifically, when 6 is large, the realizations with more pairs
of nodes taking the same value will be of higher probability,
making it easier to identify certain structures.
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3.1. Computational Lower Bounds

In this section we present the computational lower bound
under the oracle model. We show that under some threshold,
no algorithms using polynomial-time queries can distinguish
the hypotheses. First, define null-alternative separator as
follows.

Definition 3.1 (Null-Alternative Separator). Let Gy =
(V, Ey) € Go be some graph under null hypothesis. A col-
lection of edge sets £ is called a null-alternative separator
with null base G for Gy, if for all edge sets S € &£, we
have SN Ey = @ and (V,Ey U S) € Gy. Hereafter, with
some abuse of notation we do not distinguish G, and its
corresponding set of encoding vectors Cy1, and also call € a
null-alternative separator with null base G for C;.

In other words, a null-alternative separator is a collection of
edge sets that do not overlap with the null base, and would
change the graph G to the alternative if added. For example,
for the case of clique detection where Gy = (V, @), a null-
alternative separator would include some edge sets that
contain all edges among s nodes.

Given two edge sets S and S’, we write Vg g0 = V(S) N
V' (S") for simplicity. We define the vertex overlap ratio of
a null-alternative separator £ as follows.

Definition 3.2 (Vertex Overlap Ratio). Given a null-
alternative separator € with null base Gy for Cy, let k =
, the vertex overlap ratio is defined as

C—min i {9 €&:|Vss| =i}l
Seco<j<k-1|{S' €& : |Vg | =7+ 1}

maxg sieg |Vs,s

(6)

where the quotient is defined as +co when the denominator
is zero. Naturally there are some symmetry for the edge sets
in null-alternative separator £. For example, they are the
same up to permutations of vertices. Intuitively, the quantity
|Vs,s/| characterizes how correlated two edge sets are: if
there are more shared vertices, they may be more related.
Therefore the vertex overlap ratio quantifies the growth of
correlation between edge sets in a null-alternative separator.

To be specific, we consider the case where the property
testing problem focuses on some graphs where there are s
vertices among all d vertices involved in a interdenpendent
structure. We can say they *work’ in the graph. For example,
in a graph with d vertices has nothing but an s-clique, there
are s fully connected vertices, and the remaining d — s
vertices are of degree 0, thus independent to others.

We have the following theorem on computational lower
bounds for Ising model.

Theorem 3.1. Suppose we have a null-alternative separator
E with null base G the empty graph for C1, and let Cy be
the singleton of encoding vector for empty graph. Under the
oracle computational model, if the computation budgets are

(a) Clique, s = 5

(b) Perfect matching, s = 12

(c) Nearest neighbor graph, s = 8

Figure 1: Examples of graph properties for the combinato-
rial inference of Ising model.

(b) Perfect mathching graphs with |Vg ¢/| = 5

Figure 2: Examples of overlapping S, S’ € £: In (a), two
edge sets 5,5 (colored grey and blue respectively) in £
are both 5-cliques, and satisfies |Vg ¢/| = 2, where the
red vertices are Vs s/ In (b), two edge sets S, S’ € £ are
colored grey and blue respectively, and are both perfect
matching graphs. The red vertices belong to Vs s» with
Vs = 5.
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polynomial, i.e. T < d" for some fixed n > 0, then if the
vertex overlap ratio for C; C O satisfies liminfy ,., ¢ > 1
and the parameter 6 > 0 for simple zero-field ferromagnetic
Ising model satisfies

rlog ¢ log(1/£) A 1
~ logd 4+ log¢ n 4s’

)

where k is a sufficiently small positive constant that only
depends on n, then for any algorithm </ which interacts
with the oracle for at most T' rounds, there exists an oracle
O such that lim inf,,_, o R, (Co,C1,/,0,T) = 1.

Proof of Theorem 3.1. See Appendix A. O

Note that even though this theorem only covers the hard-
ness of distinguishing alternative against an empty graph, it
forms the basis for describing the hardness for more general
null hypotheses, due to the monotonicity of minimax risk
Rn(CO,Cl, JZ%, 0, T) in C(),Cl.

In the cases we dicussed above, we can take ( > d/s.
Therefore the bound in Equation (7) can be taken to be

log(1/6) , 1

0 < ,
=0 n 4s

®)

for some sufficiently small « that only depends on 7.

With Theorem 3.1 in hand, we have three corollaries of
specific properties.

Corollary 3.1 (Clique Detection). For testing whether the
graph has an s-clique, define

Co=1{6 €O PV, Cld, Vo] =s,

0, encodes an s-clique}
the set of all graphs without an s-clique, and

C={6€O:3V,Cld, Vo =s,

O, encodes an s-clique}

the set of all graphs containing an s-cligeu. Under the ora-
cle computational model where an algorithm < interacts
with the oracle O for at most T = d" rounds for some
n > 0, then if s = O(d®*) for some o € (0,1/2) and
0 < min{x/v/n,1/(4s)} where k is a sufficiently small
constant that only depends on 1, there exists an oracle O
such that the risk liminf,,_,o R, (Co,C1,2/,0,T) = 1.

Proof of Corollary 3.1. LetC§ = {0 : 0y, = 0,Vu, v} the
empty graph, and C; = {6 : 3V, C [d],|Vo| = s, E(0) =
{(u,v) : u,v € Vy}} the collection of exact s-cliques.
Then since C; C Co, C; C Cy, by definition in Equation (5)
we know R, (Co,C1,7,0,T) > R,(C3,Cy,o,0,T).

So it suffices to show lim inf,,_, R, (C§,Cs, o/, 0,T) =
1.

Let Gy = (V,@) with |[V]| = s, then £ = {E(G) : G €
C7} is anull-alternative separator with null base Go. We first
compute the vertex overlap ratio ¢ and then apply Theorem
3.1. Cleatrly, for any fixed S € Cy, there are n; = (j) (‘f:;)
elements S’ € C; with |[Vg /| = j. Therefore the vertex
overlap ratio is

j+1)(d—2 i+ 1
0<j<s—1 (s —7)2 52
Therefore if s = O(d®) for some « € (0, 3), the ratio ¢
satisfies the condition for Theorem 3.1. Plugging in this
quantity we get the desired result. O

Corollary 3.2 (Perfect Matching). For testing whether the
graph is perfect matching, define

Co=1{0 €O PV, Cld], Vo] =s,
O, encodes a perfect matching}

the set of all graphs without an s-perfect matching, and

Ci=1{0€© IV Cld |V =s,

Oy, encodes a perfect matching}

the set of all graphs containing an s-perfect matching. Un-
der the oracle computational model where an algorithm
o interacts with the oracle for at most T = d" rounds
for some n > 0, if s = O(d®) for some a € (0,1/2) and
0 < min{x/\/n,1/(4s)} where k is a sufficiently small
constant that depends only on 1, there exists an oracle O
such that the risk liminf, _, . R, (Co,C1,</,0,T) = 1.

Proof of Corollary 3.2. Similar to the proof
of Corollary 3.1, it suffices to show
liminf, o Rn(C§,CF, 7,0, T) = 1, where C}

contains the empty graph and Cj is the collection of exact
s-perfect matching graphs (i.e., containing a subgraph of s
vertices that is a perfect matching, while the other d — s
vertices have degree 0).

For any fixed S € Cf, there are

() o

elements S’ € C} with |Vg g/| = j. Therefore similar to the
proof of 3.1, we have { = Q(é%) Then if s = O(d®) for
some o € (0,1/2), the ratio £ satisfies the conditions for
Theorem 3.1. Plugging in this quantity yields the desired
result. O
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Corollary 3.3 (Nearest Neighbor Graph Detection). For
testing whether the graph is a nearest neighbor graph, define

Co=1{0c O :HVCld, Vs =s,
0, encodes an s/4-NN graph}

the set of all graphs containing an s/4-nearest neighbor
graph, and

C1={0 €03V C[d, W =s,
0y, encodes an s/4-NN graph}

the set of all graphs containing an s/4-nearest neighbor
graph. Suppose we test the hypotheses under the oracle
computational model where an algorithm < interacts with
the oracle O for at most T = d" rounds for some 1 >
0. Then if s = O(d*) for some a € (0,1/2) and 0 <
min{k/\/n,1/(4s)} where k is a sufficiently small constant
that depends only on n, there exists an oracle O such that
the risk liminf,,_, oo R, (Co,C1, 7,0, T) = 1.

Proof of Corollary 3.3. Similar to the proof
of Corollary 3.1, it suffices to show
liminf, o Rn(C§,CF, 7,0, T) = 1, where C}

contains the empty graph and Cj is the collection of exact
s/4-nearest neighbor graphs (i.e., containing a subgraph of
s vertices that is an s/4-nearest neighbor graph, while the
other d — s vertices have degree 0).

For any fixed S € Cf, there are n; = () (f:;) (s —1)!
elements S’ € C} with |Vs /| = j. Therefore similar to
the proof of 3.1, we have ( = Q(-%). Thenif s = O(d®)
for some o € (0,1/2), the ratio £ satisfies the conditions
for Theorem 3.1. Plugging in the quantity yields the desired
result. O

In the above examples, due to symmetry in the structure,
all of the vertex overlap ratios can be set as ¢ = (d/s?),
yielding similar results for computational lower bounds.

3.2. Computational Upper Bounds

In this section we provide upper bounds for clique detec-
tion problem that matches the lower bound in Section 3.1,
which is obtained by pair-wise correlation test defined as
follows. Here we consider testing empty graph against a
graph containing an s-clique.

Given n i.i.d. observations from a simple zero-field ferro-
magnetic Ising model G = (V| E) with |V| = d, for each
J, k € [d] with j # k we define query functions

gik(x) = zjor, 9)

and test function (+) as

X)=1 (X)) — min g (X
Y(X) gn;gqgk( ) g;ggqjk( )

2 (5]

(10)

Then we have the following general computational upper
bound attained by the aforementioned query fuctions and
test function.

Theorem 3.2. Suppose we use the aforementioned query
functions in Equation (9) and test function in Equation (10)
to test empty graph against some particular structure. If
logd/n = o(1) and

d(d—1)

% ) (11)

0>4 glog(
n

for some sufficiently large constant ¢ > 0 that does not
depend on &, we have

sup Pg[tp = 1] 4 sup Pgltp = 0] < 4¢.
0¢eCo 0¢cCy

Proof of Theorem 3.2. See Appendix B.1. O

Note that this theorem allows all situations where there
is at least one edge in the structure that interests us. The
idea is that under Hy, all queries has expectation of zero
and variance 1, and under H;, at least one query has ex-
pectation Eg[X; X%] > 6, and meanwhile all queries are
with variance no greater than 1. Therefore the deviation
of the realization ¢;,(X) will be bounded, and once the
signal strength 6 overwhelms the statistical deviation, the
two hypotheses can be distinguished.

Theorem 3.2 can be applied to perfect matching problem,
leading to the following corollary.

Corollary 3.4 (Computational Upper Bound for Perfect
Matching). Suppsose we employ the query functions in
Equation (9) and test function in Equation (10) to test empty
graph against s-perfect matching graphs. If log d/n = o(1)
and

d(d—1)

2
0>4 ﬁlog( %€ ),

then we have

sup Pg[¢p = 1] + sup Pg[¢p = 0] < 4€.
0¢cCo 0cC,y
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By Equation (3.4), if we omit the logarithm term and
s2/n = O(1), the computational upper bound matches the
computational lower bound provided in Corollary 3.2.

However, when the structure of interest involves sufficiently
many edges, the correlation Eg[X; X}] has a better lower
bound than merely 6. In some cases like clique detection and
s/4-nearest neighbor graph detection, the computational up-
per bound may be sharper than what is provided by Theorem
3.2, as specified by the following two theorems.

Theorem 3.3 (Computational Upper Bound for Clique De-
tection). Suppose we employ the query functions in Equa-
tion (9) and test function in Equation (10) to test Cy the
empty graph against Cy all graphs containing an s-clique.
Iflogd/n = o(1) and

d(d—1) c

2
0>4 ﬁlog (T) A (;) (12)

for some sufficiently large constant ¢ > 0 that does not
depend on &, we have

sup Pg[t) = 1] + sup Pg[tp = 0] < 4¢€.
0eCy 0eCq

Proof of Theorem 3.3. See Appendix B.2. O

By Equation (12), if we omit the logarithm term, the
computational upper bound matches the computational
lower bound provided in Corollary 3.1. This bound is the
efficient detection boundary for testing nearest neighbor
graphs using polynomial-time algorithms.

For detecting nearest neighbor graphs, the following com-
putational lower bound is attained by employing aforemen-
tioned query functions and test function.

Theorem 3.4 (Computational Upper Bound for Nearest
Neighbor Graph Detection). Suppsose we employ the afore-
mentioned query functions in Equation (9) and test in Equa-
tion (10) to test Cy the empty graph against Cy all graphs
containing an s/4-nearest neighbor graph. If logd/n =
o(1) and

d(d—1) c

2
0 >4y —log(——) A (- 13
>ay 2o (M A G ay
for some sufficiently large constant c, then we have
sup Pg¢) = 1] + sup Pg[y) = 0] < 4¢.
6cCo 6ecCy
Proof of Theorem 3.4. See Appendix B.3. O

Note that this computational upper bound matches the com-
putational lower bound provided in Corollary 3.3. It is the
efficient detecting boundary for polynomial-time algorithms,
and is attained by queries and test functions defined before.

3.3. Information Upper Bounds

In this section, we consider another test function ) with no
limits on computation budgets. With unlimited computation
budgets, we can potentially better investigate the structure
of the underlying graph. Here we define a new set of query
functions and the corresponding test function . The detect-
ing ability of ¢ gives an information upper bound for some
kind of property testing problems.

Given n i.i.d. observations {X;},c[, from a simple zero-
field ferromagnetic Ising model G = (V, E) with |V| = d,

for each subset S C [d], |S| = s, we consider the query
functions )
1
X) = (f Xi) 14
as(X) = (- ; (14)

and the test function

15)

=1 m

1
X)—-> d
SC[d],a[A)S‘ﬂ:s S( ) s = 7"(71, ,8,5)}

for some ¢ € (0,1/2), where

s d 1 d
r(n,d,s,f):c.max{nlog(sg),Q nslog(sg)}

for some constant ¢, then we have the following theorem
providing general information upper bound for detecting
structures with sufficiently many edges.

Theorem 3.5. Suppose we use the query functions intro-
duced in Equation (14) and test function in Equation (15)
to test empty graph in Cy against graphs in C1. Suppose
(s/n)log(d/s) = o(1), and for each G € C; we have
|V(G)| = s and |E(G)| > ~ - s> for some constant v > 0,
then for any & € (0,1/4), if

. g2 d
92(6 > log(—))\/c'
n S
for a sufficiently large constant ¢ > 0, then

sup Pg (1) = 1) + sup Pg(1p = 0) < 4¢.
0¢cCo 0cC,y

Proof of Theorem 3.5. See Appendix C. O

The conditions in Theorem 3.5 apply for structures with
dense edges, yielding the following two corollaries.
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Corollary 3.5 (Information Upper Bound for Clique Detec-
tion). Suppose we use the aforementioned query functions
gs(X) in Equation (14) and test function ¢(X) in Equation
(15) for s-clique detection. Suppose (s/n)log(d/s) = o(1),
then for any £ € (0,1/4), if

0> (CnS

d d
log Ve — 1 og
() (5¢)
for a sufficiently large constant ¢ > 0, then

sup Pg(¢) = 1) + sup Po(1) = 0) < 4¢.
0cCo 0cC,y

Proof of Corollary 3.5. Directly apply Theorem 3.5 with
~v = 1/3, since there are s(s — 1)/2 edges in an s-clique,
then the results hold. O

Note that when n is sufficiently large compared to s, for
example n = O(s?), the detecting boundary for the test in
Equation (15) is lower than the detecting boundary for the
test in Equation (10) when computational budgets are lim-
ited to polynomial. This means that there is a gap between
the computational efficient bound and information-theoretic
bound, where exponential-time algorithms can be used.

For detecting s/4-nearest neighbor graph, we have the fol-
lowing information upper bound, which is also attained
by the query functions specified in Equation (14) and test
function specified in Equation (15).

Corollary 3.6 (Information Upper Bound for Nearest
Neighbor Graph Detection). Suppose we use the afore-
mentioned query functions and test function qs(X), ¢ for
S C [d],|S]| = s for s/4-nearest neighbor graph detection
(assume that s/4 is integer). Supose (s/n)log(d/s) = o(1),
then for any £ € (0,1/4), if

c-s? d
0> (“Zog (<)) Ve
> (S n0g () ve
for a sufficiently large constant ¢ > 0, then

sup Po(¢ = 1) 4 sup Po(1p = 0) < 4€.
0eCo 6cC,

d
)

71g(

Proof of Corollary 3.6. Directly use Theorem 3.5 with v =
1/4, since there are s?/4 edges in an s/4-nearest neighbor
graph. O

Note that by Corollary 3.6, when n is sufficiently large
compared to s, the information upper bound is lower than
the computational-efficient boundary. This means that there
is a gap between computational efficiency and statistical
accuracy in the nearest neighbor graph detection problem.

3.4. Information Lower Bound for Perfect Matching

In this section we consider the information lower bound for
perfect matching, saying that when the signal strength 6 is
below some threshold, no algorithm can distinguish empty
graph against perfect matching graph of size s with proba-
bility larger than some small constant. This completes our
discussion on computational-statistical gaps for particular
examples. Specifically, we have the following theorem.

Theorem 3.6 (Information Lower Bound for Perfect Match-
ing). Consider the problem of testing perfect matching
graph with Cy = {(V, @)} and C; = {0 : 0 is exact perfect
matching}. Given n i.i.d. samples from Py, if the parameter
0 for ferromagnetic Ising model satisfies

c c
0< —AN-

N (16)

for some sufficiently small constant ¢ > 0, then no algorithm
can distinguish between the two hypotheses with probability
larger than a small constant ¢ that depends on c.

Proof of Theorem 3.6. See Appendix D. O

Note that the information lower bound for perfect matching
provided in Equation (3.6) is of the same order as the compu-
tational efficient boundary, which means that for detecting
perfect matching graphs, there is no such gap between com-
putational efficiency and statistical efficiency.

4. Conclusion

We characterize the computational lower bounds for testing
structure in simple zero-field ferromagnetic Ising models via
a novel quantity called vertex overlap ratio. We show that
such quantity could capture the compuatational boundaries
of a large family of graph properties, which are actually
obtained by efficient algorithms when testing some partic-
ular structures against empty graph. We also investigate
information-theoretic boundaries in these problems, and
find a computational-statistical gap in detecting cliques and
nearest neighbor graphs. Meanwhile, we provide informa-
tion lower bound for testing perfect matching, which shows
that there is no such gap for this problem. The difference
in the gaps is shown to be related to the density of edges
within the structure of interest.

In the future, we aim to generalize our framework to a
larger family of discrete graphical models, including the
anti-ferromagnetic Ising model, Poisson graphical model
and the mixed-value graphical models.
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