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Abstract
Analyses of transient dynamics are critical to understanding infectious disease transmission and persistence. Identifying 
and predicting transients across scales, from within-host to community-level patterns, plays an important role in combating 
ongoing epidemics and mitigating the risk of future outbreaks. Moreover, greater emphases on non-asymptotic processes will 
enable timely evaluations of wildlife and human diseases and lead to improved surveillance efforts, preventive responses, 
and intervention strategies. Here, we explore the contributions of transient analyses in recent models spanning the fields of 
epidemiology, movement ecology, and parasitology. In addition to their roles in predicting epidemic patterns and endemic 
outbreaks, we explore transients in the contexts of pathogen transmission, resistance, and avoidance at various scales of 
the ecological hierarchy. Examples illustrate how (i) transient movement dynamics at the individual host level can modify 
opportunities for transmission events over time; (ii) within-host energetic processes often lead to transient dynamics in 
immunity, pathogen load, and transmission potential; (iii) transient connectivity between discrete populations in response to 
environmental factors and outbreak dynamics can affect disease spread across spatial networks; and (iv) increasing species 
richness in a community can provide transient protection to individuals against infection. Ultimately, we suggest that transient 
analyses offer deeper insights and raise new, interdisciplinary questions for disease research, consequently broadening the 
applications of dynamical models for outbreak preparedness and management.
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Introduction

Since the pioneering work of Kermack and McKendrick 
(1927), a large proportion of epidemiological modeling 
has been based on analyses of deterministic, nonlinear 
dynamical systems (Guckenheimer and Holmes 1983; 
Strogatz 2018). The primary focus of such studies has been 
to identify the stability of attractors, the special solutions 
to which all trajectories eventually converge, e.g., equi-
libria, limit cycles, or chaotic attractors (Schwartz and 
Smith 1983; Diekmann and Heesterbeek 2000; Brauer 
et al. 2019). However, in the broader context of ecologi-
cal systems, there has been a growing recognition that 
asymptotic dynamics of models give only a partial and 
potentially misleading impression of what we should 
expect to observe in the real world (Hastings et al. 2018). 
The dynamical characteristics of transients, trajectories 
that have not reached an attractor, may tell us more about 
real systems than can be gleaned from attractors. If tran-
sients play an important dynamical role in ecological sys-
tems, then it stands to reason that they deserve attention 
when assessing epidemics across human, wildlife, and 
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agricultural systems and designing management strate-
gies to combat them.

As an example, the general concept of transient disease 
dynamics has recently entered public consciousness in 
the ongoing COVID-19 pandemic. As of May 2021, more 
than three million deaths have been reported worldwide, 
accompanied by major disruptions to the global economy  
(McKibbin and Fernando 2020), transportation networks 
(e.g., travel bans, control of mass population movement; 
Chen et al. 2020), and social norms (e.g., physical distanc-
ing, household quarantine, closures of schools and university 
campuses; Wilder-Smith and Freedman 2020). In response, 
there have been numerous media headlines early on urging 
the public to help “flatten the curve”, a message promoting 
the idea that preventive actions can help reduce transmis-
sion and avoid overloading healthcare systems. In a world 
that continues to grapple with this crisis, transient analyses 
(e.g., Arthur et al. 2020; Ferguson et al. 2020) have assisted 
in forward projections of outbreak severity, estimations 
of resurgence risk, and policy recommendations ahead of 
worst-case scenarios.

As COVID-19 information accumulates, so too has evi-
dence of transient dynamics related to its pathogenesis, 
transmission window, and management efforts. Symptoms 
of some infected individuals under clinical care have been 
shown to subside temporarily before the sudden onset of 
severe illness (Zhou et al. 2020). SARS-CoV-2 emerged in 
the human population following a rare cross-species trans-
mission event from a wildlife reservoir (Andersen et al. 
2020; Wu et al. 2020). Cases were initially localized to the 
region where the virus spilled over into humans, individual 
movement and metapopulation connectivity drove sub-
sequent transmissions and spatial spread across the globe 
(Wu and McGoogan 2020). As the outbreak spread, con-
nections into and out of affected populations were tran-
siently strengthened, suppressed, or redirected as a result 
of mass exodus, government-imposed lockdown, and self-
quarantines (Jia et al. 2020). These short-lived patterns at 
the within-host, individual host, and host metapopulation 
levels show that, to fully understand the disease and control 
the pandemic effectively, it is not sufficient to only predict 
the system’s transient dynamics at the population level, e.g., 
measuring disease incidence. Instead, we must also account 
for transient structural changes that are reflected in lower- 
and higher-level processes (Fig. 1).

In part one of this paper, we examine the prevalence and 
properties of transients in observed time-series of infectious dis-
ease incidence and the analytical methods used to detect them. 
In subsequent parts, we draw from multiple disciplines transect-
ing disease ecology, underlining timely case studies and theo-
ries that demonstrate different forms of structural transients.

We use case studies of both human and animal diseases to 
specifically show that at the individual host level, transient 

movement dynamics can modify opportunities for trans-
mission events over time. We also show that within-host 
energetic processes can lead to transient dynamics in indi-
vidual immunity, pathogen load, and transmission poten-
tial. In metapopulations, transient connectivity between 
discrete populations in response to environmental factors 
and outbreak dynamics can determine outbreak trajectory 
and pathogen spread across spatial networks. Finally, we 
show that increasing species richness in a community can 
provide transient protection to individuals against infection. 
Our survey of transient disease dynamics across ecological 
scales reinforces the idea that hierarchical factors affecting 
pathogen exposure and susceptibility to infection must be 
aligned in space and time to convert transmission risk to 
reality (Plowright et al. 2017).

I. Transient behaviors in population models

The term “population” can be broadly applied to any collec-
tion of conspecifics that are not explicitly connected through 
a spatial network (for that description, see metapopulation 
level transients in Section IV). The transient nature of out-
break dynamics in a population can be observed across a 
variety of temporal scales determined by the duration of 
pathogen persistence.

Common scales: regional to national, single 
epidemic duration

When a pathogen emerges or re-emerges, such as COVID-
19 or Ebola, respectively, asymptotic dynamics are not the 
primary concern for disease management efforts. Instead, 
attention is focused on characterizing the initial pattern 
of spread, forecasting cases and deaths in the absence of 
interventions, and investigating (usually through simula-
tions) whether and how the outbreak can be contained 
(Ferguson et al. 2016). Typically, there is a flurry of activ-
ity to estimate the basic reproduction number (Anderson 
et  al. 1992; van den Driessche and Watmough 2002;  
Wallinga and Teunis 2004; Pourbohloul et al. 2009; Park 
et al. 2020), initial growth rate (Wallinga and Lipsitch 
2007; Ma et al 2014; Champredon and Earn 2016; Chowell  
2017; Earn et  al. 2020), expected final epidemic size  
(Kermack and McKendrick  1927; Ma and Earn 2006), 
etc., and how the estimated values of these quantities 
should influence control strategies (Bauch et al. 2003; 
Earn et al. 2012; Molina and Earn 2015). In most models, 
the dynamics of interest are transient. Thus, in the con-
text of forecasting and controlling outbreaks, whether for 
SARS (Lipsitch et al. 2003), pandemic influenza (Yang 
et al. 2009), Ebola (Bellan et al. 2014), Zika (Gao et al. 
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2016), COVID-19 (Anderson et al. 2020), or other dis-
eases, there has always been an appreciation for, and 
emphasis on, transient dynamics.

The transients that span only a single epidemic are short-
lived relative to any kind of asymptotic behavior. The timing, 
intensity, and targets of response during the transient phase 

Fig. 1   Examples of transient disease dynamics organized along an 
ecological hierarchy from within-host processes to host communi-
ties. Section III: Within an infected host, illness-induced anorexia can 
strongly influence infection dynamics prior to host recovery. Section 
II: Between hosts, transitional space use patterns before a home range 
or territory is stabilized can provide rare opportunities for infective 
contacts. Section I: At the host population level, the critical epide-
miological questions address the spread of a transmissible pathogen 
through the population over time. Section IV: Within a host metap-
opulation, landscape disturbances (e.g., flooding, forest clearcutting, 

road construction, wildfires) may lead to transient windows of con-
nectivity between habitat patches that reappear at various frequencies 
(solid lines: low; dashed lines: intermediate; dotted lines: high). Sec-
tion V: At the host community level, interspecific variation in reser-
voir competence—shown here using examples for Lyme disease (see 
Levi et al. 2016)—can reduce the risk of infection to a particular host 
species, a phenomenon referred to as the dilution effect, or increase it 
as per the amplification effect. Roman numerals next to the ecological 
scales indicate corresponding sections in the text. Illustration credit: 
Life Science Studios (https://​lifes​cienc​estud​ios.​com) 

https://lifesciencestudios.com
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can have drastic consequences for intervention success (e.g., 
Ferguson et al. 2001; Haydon et al. 2006; Tao et al. 2021). 
Recently, there has been an increased interest in dynamic 
control strategies that can adapt to the transient states of 
the epidemic (e.g., Handel et al. 2007; Probert et al. 2019) 
and resolve the epistemic uncertainties about transmission 
and treatment via real-time surveillance (Shea et al. 2014; 
Bradbury et al. 2017). These temporally nuanced approaches 
have typically led to significant improvement in manage-
ment outcomes. As public health faces a growing threat from 
emerging infectious diseases (Jones et al. 2008; Heymann 
et al. 2015), new theories of dynamic control strategies that 
can provide timely, context-dependent solutions (e.g., when 
to reprioritize control objectives) may be better positioned 
to facilitate discourses between modelers, stakeholders, and 
policymakers.

In the age of social media, fears regarding the safety 
of recommended practices (e.g., vaccination, use of face 
masks) are prone to amplify general resistance to control 
strategies intended to lower susceptible recruitment and 
transmission opportunities. Recent game-theoretical models 
(e.g., Bauch and Earn 2004; Bauch and Bhattacharyya 2012) 

have explored individual vaccination behavior during bouts 
of vaccine scares. Additional theories that anticipate tran-
sients in the dynamics of both disease incidence and public 
trust could help manage policy expectations according to 
social currents and identify effective alternative strategies.

Common scales: regional, decadal

In contrast to novel epidemics, for endemic diseases, the 
system’s dynamical behavior away from the attractor is 
generally maintained much longer. Transients could play 
a dominant role since temporal forcing and perturbations 
might keep orbits away from an attractor (Schwartz and 
Smith 1983; Keeling et al. 2001; Bharti et al. 2011; Becket 
et al. 2019). These types of dynamics are notably associ-
ated with oscillatory incidence time-series found in endemic 
childhood diseases (Fig. 2), in particular, diseases such as 
measles, rubella, and whooping cough that are strongly 
affected by contact differences between school holidays and 
school terms (London and Yorke 1973; Earn et al. 2000; 
Keeling et al. 2001; Bauch and Earn 2003). In early stud-
ies, identifying the periods of the system attractors alone 

Fig. 2   Comparison of predicted vs. observed measles dynamics in 
New York City (NYC), 1891–1984. Reprinted with permission from 
Hempel and Earn (2015). Top panel: Square root of measles case 
reports, normalized by total concurrent population. Middle panel: 
Approximate volumes of basins of attraction near the observed NYC 
measles incidence for each year from 1891 to 1984. For each year, we 
display the proportion of 10,000 simulations that reach each period. 
See Hempel and Earn (2015) for details. Bottom panel: Color depth 
plot of a continuous wavelet transform of the square root of normal-
ized observed NYC measles cases (color warmth scales with spectral 

power and 95% significance contours are shown in black). The pre-
dicted attractor and transient periods are overlaid (only the periods 
of annual and biennial attractors are short enough to appear on this 
graph and to be observable). Unfilled black circles identify predicted 
attractor periods that are consistent with the observed data. White 
vertical bars show the possible ranges of the transient period asso-
ciated with these attractors; the filled white dot on each bar marks 
the median transient period. There is a good qualitative agreement 
between the predicted transient periods and the observed power near 
periods 2 and 3 during 1891–1909, 1917–1945, and 1964–1973
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correctly predicted the annual or biennial spectral peaks in 
the incidence time-series (Earn et al. 2000). However, the 
same approach does not capture the “non-resonant peaks” 
that occur at arbitrary frequencies and are sometimes found 
to be the most significant for the long-term dynamics for 
these diseases. Bauch and Earn (2003) identified noise-sus-
tained transients to be the source of the non-resonant peaks. 
Their method of linear perturbation analysis involves con-
verting a continuous-time model into a Poincaré map and 
then computing the eigenvalues of the linearization about 
its attractors. The results show that the greater presence of 
demographic noise associated with a smaller population can 
slow or prevent convergence to the attractor. Reduction of 
susceptible recruitment level over time (i.e., fewer births 
or more vaccination) can also promote transient effects for 
(at least) two reasons: lower effective reproduction number 
yields (i) more prominent non-resonant peaks associated 
with non-convergence to attractors (e.g., Fig. 2c of Bauch 
and Earn 2003) and (ii) more likely stochastic switching 
between basins of co-existing attractors (Earn et al. 2000; 
Hempel and Earn 2015).

Although non-resonant spectral peaks in incidence 
time-series have been identified largely in the context of 
human diseases, similar dynamical patterns can also be 
expected to unfold in temporally forced zoonotic diseases. 

For instance, widespread outbreaks of Rift Valley fever, an 
endemic, arthropod-borne disease that affects both human 
and ruminant populations, typically occur in cycles vary-
ing between 7 and 11 years (Manore and Beechler 2015). 
How the pathogen is able to persist during the inter-epidemic 
periods remains unclear. Recent model explanations have 
been limited to vertical transmission, seasonality of vector 
abundance, and environmental stochasticity (e.g., Cavalerie 
et al. 2015; Manore and Beechler 2015). Extending perturba-
tion analyses to such systems might offer a new, mechanisti-
cally simpler explanation: much like the rubella dynamics 
in the pre-vaccine era (cf. Bauch and Earn 2003, Figs. 1c,g 
and 3), these infrequent large outbreaks, with frequent small 
outbreaks or no detectable outbreaks in between, could be 
no more than a manifestation of intrinsically driven non-
resonant spectral peaks. This line of investigation might 
therefore help to better inform the surveillance programs 
for zoonotic pathogens that have potential for long-term, 
silent circulation.

Transient structural dynamics in disease systems 
at sub‑population levels

Despite the extensive use of population models, there remain 
epidemiological challenges where the needs to reduce 

Fig. 3   Contrasting model descriptions of a traveling host (or host 
group behaving as a unit) coming into contact with vector clusters 
in a constant environment. A ruminant herd is depicted to encoun-
ter mosquitoes when moving near watering holes, a key transmission 
pathway of Rift Valley fever (Manore and Beechler 2015). To account 
for transient space use dynamics (a), the movement of the host was 
modeled as a utilization distribution (UD) converging toward an equi-
librium (yellow circles of increasing opaqueness) centered around a 
spatial point attractor (triangle). Here, time evolution of the UD is 
determined by a Fokker–Planck equation with constant coefficients in 
the advection and diffusion terms. Infective contact occurs at a rate 

proportional to the instantaneous overlap between the UD and the 
vector distribution (blue circles). See Fieberg and Kochanny (2005) 
for candidate indices of overlap, e.g., integral of the joint distribu-
tion. The resultant time-series of contact rate is characterized by 
irregular peaks. In b, the transient UDs are aggregated to produce a 
time-independent probability density surface of the host’s location, 
yielding a constant contact rate. The model in c incorporates only the 
asymptotic UD. This reduces the contact process to a constant, which 
could drastically underestimate the animal’s risk of infection over the 
course of its resettlement
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uncertainties are better addressed by anticipating the poten-
tial experience of individuals at various stages of infection 
than by predicting the population dynamics. For instance, 
targeted conservation may require close surveillance of 
individual host movement near a small number of colonies. 
Clinical outcomes could also be improved by personaliz-
ing treatment based on the infection dynamics within each 
patient. In models suited for these purposes, the spatial scale 
of transient disease dynamics ranges from the host body size 
to the parts of an environment in which a host (or a group of 
hosts behaving as a single unit) may traverse; the relevant 
time scales tend to be short compared to those in population 
models.

II. Effects of transient host movement 
dynamics

Common scales: individuals to collective groups, 
short‑term encounters to long‑term range shifts

Within a population, the risk of pathogen transmission to a 
recipient host is largely driven by host movement (Fig. 1, Sec-
tion II). Direct transmission occurs through contact between a 
susceptible and an infected host while indirect transmission can 
occur when an infected and susceptible host spatially overlap 
with some temporal lag (Dougherty et al. 2018). Advanced 
knowledge of host movement contributes to our understand-
ing and management of emerging zoonotic diseases. Numer-
ous studies have highlighted the downstream effects of myriad 
movement behaviors including bat foraging activities during 
periods of agricultural and urban intensification (e.g., Nipah 
virus: Pulliam et al. 2012, Hendra virus: Plowright et al. 2011), 
long-distance dispersals of pre-breeding ruminants (e.g., bovine 
tuberculosis, Rift Valley fever: Caron et al. 2016), and worker 
resettlements and air travel (e.g., Ebola: Alexander et al. 2015, 
Zika virus: Ali et al. 2017). Despite the importance of host 
movement as a predictor of outbreaks, many compartmental 
models assume populations are well-mixed and the per-capita 
contact rate is time-invariant in the absence of temporal forcing. 
These simplifying conditions imply homogeneity in population 
contact structures and that each host has a stationary range distri-
bution unless changes happen in the environment (e.g., seasonal 
transitions). By not recognizing contact rate as a host-specific 
variable that is dependent on both space and time, important 
transmission opportunities could be missed.

Mechanistic space use models (see a historical overview 
in Potts and Lewis 2014) have laid the foundation for predict-
ing movement dynamics of individual hosts. The analyses 
predominantly focus on the utilization distribution (UD), a 
probability density surface that describes the range and uncer-
tainties of an individual’s possible locations at any point in 
time. UDs can be solved numerically when they are modeled 

using partial differential equations or estimated from outputs 
of agent-based simulations (see Potts and Lewis 2014 and 
references therein). A host’s UD may equilibrate slowly, if at 
all (Fryxell et al. 2008; Potts and Lewis 2016). It may also be 
sensitive to local conditions, such as terrain (Moorcroft et al. 
2006), resource availability (Moorcroft et al. 2006; Bateman 
et al. 2015), and the presence of conspecifics or predators 
(Lewis and Moorcroft 2001; Bateman et al. 2015; Tao et al. 
2016; Potts et al. 2018). The transitional UDs may be highly 
variable and create short-term opportunities for host-pathogen 
contacts that impact population, metapopulation, and com-
munity level transmissions (Plowright et al. 2011; Ramsey 
et al. 2014; White et al. 2020). Conversely, an individual’s 
exposure to pathogens could temporarily change where it may 
go (Zidon et al. 2017). Thus, explicit inclusion of transient 
movement dynamics in disease models could have far-reach-
ing consequences for the implementation of biosurveillance 
systems.

In basic compartmental models, transmission is com-
monly treated as a single process: a product of infective 
contact rate, averaged over both time and individuals, and 
the probability of transmission during contact. We propose 
separating these two components and describing the encoun-
ter process as a function fc of the transient space use pattern 
at the host level, such that, without vital dynamics,

where ui(�, t) and vj(�, t) denote the UD of each susceptible 
host and the distributional pattern of each pathogen source, 
respectively. S is the number of susceptible hosts. Î  may 
refer to the number of (a) infected hosts, (b) vector-infested 
sites, or (c) patches containing pathogen. Upon contact, 
transmission happens with probability � . Epidemic predic-
tions that account for transient space use dynamics can differ 
considerably from those based on asymptotic, mean field 
approaches (Tao et al. 2018). We conjecture that, by track-
ing, at minimum, ui(�, t) and the consequent rate of con-
tact over time, this framework will help bring into focus the 
period and spatial region of host movement most critical for 
disease transmission (Fig. 3).

Mass vaccination campaigns in regions with underper-
forming health services often require mobilization (e.g., 
house-to-house visits) of healthcare workers for vaccine 
delivery (polio: Curry et al. 2014; measles: Mbabazi et al. 
2015), reaching inhabitants in a limited geographical region 
at a time. In such scenarios, the deployment of response per-
sonnel into a target population can also be modeled as a UD 
evolving over time. Evaluating the impact of this strategy 
on management success allows us to address operational 
questions, namely, how fast or from where response effort 

(1)Ṡ = −𝜅

S�
i=1

fc

⎛
⎜⎜⎝
ui(�, t),

�I�
j=1

vj(�, t)

⎞
⎟⎟⎠
,
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should be distributed, thus extending control recommenda-
tions beyond the equilibrium criterion (e.g., threshold herd 
immunity). Tao et al. (2018) did so by combining a diffu-
sion model of probabilistic vaccine delivery with an agent-
based simulation of disease transmission. This produces 
site-specific, time-dependent rates of vaccine uptake. The 
race between local vaccinations and disease spread deter-
mines the optimal deployment strategy to minimize overall 
outbreak severity. We expect to see further development of 
models centered on transient phases of human movement 
that can be used to optimize resource allocation and mini-
mize delays during an emergency response.

III. Effects of transient within‑host dynamics

Common scales: pathogen population inside a host, 
time to recovery or death

Host level movement processes that drive pathogen trans-
mission are often tightly coupled to environments within 
hosts: a host’s immunity against invading pathogens weaken 
following energetically costly migration (Owen and Moore 
2008); individuals carrying high pathogen loads may also 
become sedentary and shed pathogens in concentrated areas 
that are frequently visited by conspecifics (Patterson and 
Ruckstuhl 2013). Modeling infection dynamics of individ-
ual hosts could therefore help us understand the epidemio-
logical costs of certain host behaviors (Lunn et al. 2019) 
and identify short-term ecological contexts that might pro-
mote the existence of superspreaders (Hawley and Altizer 
2011).

Infection dynamics arise from within-host interac-
tions between host immunity and pathogens, which 
behave, respectively, as predators and prey that also 
compete over limited resources (Smith and Holt 1996; 
Cressler et al. 2014; Greenspoon et al. 2018). The onset 
and duration of specific immune phases in an infected 
host, and the associated shifts in its metabolic processes, 
can regulate infection dynamics, affecting the time until 
pathogen clearance, i.e., host recovery from infection. 
Dynamic models have been recently developed to track 
energetic flows within hosts. The included mechanisms 
may describe energy (or resources) being assimilated after 
feeding, stolen by pathogens, and allocated toward host 
immunity, maintenance, reproduction, and growth (see 
Hall et al. 2009; Hite and Cressler 2018; Civitello et al. 
2018; Van Leeuwen et al. 2019). The model framework 
has helped explain divergences in disease chronicity, i.e., 
why some hosts clear a pathogen rapidly (acute infec-
tion) while others develop persistent, sometimes life-long, 
infection (chronic infection). For instance, Van Leeuwen 
et al. (2019) demonstrate how a high pathogen dose can 

strongly modulate a host’s metabolism and lead to long-
term pathogen persistence, as opposed to a low dose that 
could be quickly cleared. Transient analysis may thus 
resolve well-documented uncertainties in host patholo-
gies (see Wilber et al. 2017) and project individual risks 
of onward transmission.

Although immune responses are often energetically 
expensive, many infected individuals have been found 
to voluntarily suppress their feeding behavior in order to 
“starve out” the pathogen (Fig. 1, Section III). Illness-
mediated anorexia (reviewed in Hite et al. 2020), a tem-
porary but substantial suppression of appetite during key 
phases of infection, can function as a first line of defense 
by limiting pathogen growth and replication (“antigrowth 
resistance”) or infection-induced pathology (“tolerance”). 
This caloric restriction begins after seconds to days of 
exposure and appears strategically tuned to specific stages 
of pathogen life cycles. To further complicate matters, 
empirical evidence indicates that anorexia can be manipu-
lated, directly or indirectly, by pathogens to increase their 
rate of shedding or vector transmission (Adamo et  al. 
2007; Rogers and Bates 2007; Rao et al. 2017). There is 
currently only a small number of studies that model the 
interactions between infection dynamics and anorexia 
(see Hite and Cressler 2019; Hite et al. 2020). Neverthe-
less, subverting the loss of appetite has been a part of 
many standard treatments for humans and livestock (Fox 
et al. 2002; Schütz et al. 2014; Rodrigues et al. 2015; Hite 
et al. 2020). Future theoretical advances in this area could 
help evaluate their efficacies across different individuals 
and optimize treatment schedules to minimize infection 
duration.

Models of within-host dynamics have mostly been used 
to predict population-level consequences such as infec-
tion prevalence and evolution of virulence. Typically, the 
pathogen is assumed to reach carrying capacity immedi-
ately after successful host invasion and colonization, irre-
spective of local metabolic condition (Mideo et al. 2008). 
Resource availability outside the host is sometimes incor-
porated as a slowly changing external factor. This time-
scale separation has aided mathematical tractability and 
provided general insights into pathogenesis, transmission 
fitness, and unwelcome repercussions of vector-reduction 
programs (Mideo et al. 2008; Handel and Rohani 2015; 
Civitello et al. 2018). However, an alternative framework 
could integrate multiple intrinsic time scales: i.e., slow 
environmental resource dynamics interacting with fast 
infection dynamics. Models that “internalize” the slowly 
changing variables might reveal long, relatively disease-
free periods in individuals interrupted by infection during 
population-wide epidemics (see Hastings et al. 2018 on 
how slow-fast systems promote long-lived, quasi-stable 
transients).
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Transient structural dynamics in disease systems 
above the host population level

In metapopulations and communities, inter-population and 
interspecific interactions drive transient disease dynamics 
(Fig. 1, Sections IV and V). At this upper echelon of the 
ecological hierarchy, transient behaviors typically operate 
over an area sufficiently large to accommodate substantial 
heterogeneity in contact structure, disease susceptibility, 
and pathogen transmissibility. Unlike population models, 
the time scale can be a fraction of an epidemic cycle (or a 
natural disturbance cycle); alternatively, it can persist for 
many host generations until significant species turnover has 
been achieved.

IV. Effects of transient network dynamics 
in host metapopulation

Common scales: multiple populations, phase 
of an outbreak

Since Hanski’s  classic works on the ecological importance 
of metapopulation structure (e.g., Hanski 1998), the notion 
of connectivity between geographic areas (e.g., habitat 
patches) has been the cornerstone of network-related mod-
els, including the many theoretical frameworks currently 
available for predicting disease spread. In metapopulation 
models, transient dynamics related to local and global popu-
lation densities have long been a subject of interest (Saravia 
et al. 2000; Ovaskainen and Hanski 2002; Labra et al. 2003); 
nevertheless, connectivity itself, i.e., the spatial distribution 
of population flow rates, is typically assumed to exist in an 
asymptotic state (but see Perry and Lee 2019; Karnatak 
and Wollrab 2020). Given their enormous implications for 
transmission dynamics (Hess 1996; Grenfell and Harwood 
1997; Hanski 1998; Keeling et al. 2004), models that can 
explicitly account for the transient dynamics of connectivity 
can help quickly predict and prevent the spread of infectious 
diseases. Below, we outline some of the most common types 
of transient dynamics of connectivity pertinent to disease 
modeling. These are classified as network advection, sup-
pression, and diffusion (Supplementary Table).

Network advection (Fig. 4a) denotes transient immigra-
tion to a patch. This can describe safety or health-seeking 
behavior in humans, such as when patients travel to areas 
with more stability or higher quality, more accessible health 
resources (Bharti et al. 2015). We observed this trend during 
the 2013 Ebola outbreak in West Africa (Bogoch et al. 2015; 
Fallah et al. 2018), which was facilitated by improvements 
in transportation infrastructure relative to previous sites of 
Ebola spillover (Chowell et al. 2004; Malvy et al. 2019). 
Advection may also describe species range shifts. Marsh 

fritillary butterflies may relocate en masse following land 
cover changes (e.g., forest clearcutting) that result in the 
conversion of an inhospitable matrix habitat into a transient 
movement corridor (see Wahlberg et al. 2002; Driscoll et al. 
2013). In both scenarios, the short-term establishment of 
directional bias in connectivity, especially early in an out-
break, may allow pathogen dispersal into and colonization 
of new, susceptible host populations (Helble 2011; Alegana 
et al. 2012).

Under network advection, the potential impact of an 
outbreak would be strongly dependent on travel time rela-
tive to the mean infectious period. Direct and rapid travel 
toward health care while infectious is essential for timely 
treatment and recovery of an individual; yet, it also enables 
onward transmission at the destination patch. Conversely, 
circuitous routing that delays travel time past the infectious 
stage may increase the chance of pathogen introduction at 
stopover sites but prevent introduction at the destination. 
Therefore, differences in transportation infrastructures and 
habitat matrix conditions (terrain, elevation, favorability, and 
other attributes affecting crossings) might have long-term, 
opposing effects on disease dynamics that should be explic-
itly considered in multi-patch models.

When new infections are concentrated in one or a few 
patches, severing connections between infected and unin-
fected or low-prevalence populations, i.e., network sup-
pression (Fig.  4b), becomes critical for containment  
(Chinazzi et al. 2020; Wells et al. 2020). Suppression may 
arise intrinsically through disease avoidance behavior 
(Widmar et al. 2017), or be a result of top-down quarantine 
measures (SARS: Riley et al. 2003, COVID-19: Ainslie et al. 
2020; Chinazzi et al. 2020). In wildlife systems, transient 
habitat fragmentation caused by extreme weather events can 
produce an analogous effect. For example, after a riverine 
floodplain has experienced unusually high precipitation, ter-
restrial species may be temporarily unable to move between 
habitat patches due to localized flooding (e.g., Angelone 
et al. 2011; Erös and Grant 2015).

There are significant geographic differences in compli-
ance with prevention guidelines across socio-economic and 
urban-rural divides (see Painter and Qiu 2020; Wright et al. 
2020), particularly if polarization in attitude towards public 
health measures grows. Future multi-patch epidemic mod-
els might need to investigate the correlation between local 
compliance and the duration and spatial scale of network 
suppression. On the other hand, to study the effects of sup-
pression on epizootics, metapopulation models may consider 
incorporating sudden appearances of impermeable matrices 
and their restorations to suitable habitats over time (see the 
concept of transient connectivity window in Ziegler and 
Fagan 2014).

As incidence within a patch surges, resident individuals 
might attempt to escape toward disease-free patches until the 
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outbreak is brought under control. Meanwhile, the immigra-
tion rate to infected patches should decline due to disease 
avoidance or restrictions on patch entries (Médecins Sans 
Frontières 2009; Bengtsson et al. 2015). Co-occurrence 
of these two transient responses, termed network diffu-
sion (Fig. 4c), has been observed in management scenarios 
characterized by “leaky lockdowns” (Ebola: Dellicour et al. 
2018; Mukandavire et al. 2011, cholera: Bengtsson et al. 
2015). Diffusion can also stem from sporadic, patchy dis-
turbances. Low-intensity wildfires, for instance, can induce 
local wildlife to search for suitable habitats beyond the fire 
boundary (Nimmo et  al. 2019). This temporary change 
in connectivity, which could disseminate pathogens via 
infected individuals into neighboring populations within a 
short time interval, promotes the emergence of an outbreak 
cluster at the metapopulation level.

Network diffusion aptly describes the Syrian refugee cri-
sis, where large cohorts with low levels of immunity against 
vaccine-preventable diseases (e.g., polio, measles, rubella) 
entered new environments, increasing the transmission risk 
in refugee camps as well as in the imperfectly immunized 
communities to which they were displaced (Eichner and 

Brockmann 2013). We postulate that synchronous patho-
gen invasions into multitudes of new susceptible pools, in 
responses to humanitarian crises or stochastic habitat losses, 
are widespread across human and wildlife systems. Models 
that can capture the effects of such events could be critical 
for predicting epidemiological repercussions of socio-polit-
ical unrest and human-accelerated environmental changes.

V. Transient effects of host community 
dynamics

Common scales: ecosystem, multiple host 
generations

The idea that increased species richness reduces disease 
transmission, referred to as the “dilution effect” (Keesing 
et al. 2010), is popular yet controversial. This hypothesis pos-
its that adding infection-incompetent host species, or species 
that are incapable of efficient onward pathogen transmission, 
to a community will increase the density of pathogen sinks 
and thus reduce the spread of a host-specific pathogen (Fig. 1, 
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Fig. 4   Examples of outbreak-induced transients in human network 
connectivity: a network advection: health-seeking behavior; b net-
work suppression: disease avoidance behavior; c network diffusion: 
disease escape and avoidance. Top row: Metapopulation level inci-
dence time-series with (black solid) and without (black dashed) the 
transient population flows pictured in the bottom schematic. Mid-
dle row: Metapopulation level connectivity time-series between 
an infected patch (red circle below) and its neighboring uninfected 
patches (blue circles). Red lines show network connectivity in the 

presence (solid) and absence (dashed) of the illustrated transient 
population flows out of the focal infected patch; blue lines show it in 
the presence (solid) and absence (dashed) of transient flows into the 
focal infected patch. Bottom row: Transient population flows between 
patches (circles). Patch size is proportional to local population size. 
Straight lines show unchanged connectivity dynamics; triangles show 
increased flow from point to wide end; bar lines show no immigra-
tion. Brackets above the schematic mark the time window during an 
outbreak when these transient dynamics might occur
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Section V). Therefore, in a diverse community composed of 
relatively abundant incompetent host species, a susceptible, 
competent host individual would have a lower risk of infec-
tion by benefiting from “safety in numbers” (Johnson et al. 
2013).

Negative correlations between host diversity and infection 
rate have been broadly found in recent studies, leading to 
suggestions of its generality (Keesing et al. 2010; Civitello 
et al. 2015). However, large-scale studies (e.g., Dunn et al. 
2010; Randolph and Dobson 2012; Lafferty and Wood 2013; 
Wood et al. 2017) tend to indicate an opposite trend, with 
evidence of biodiversity increasing disease transmission, 
presumably due to an amplification effect characterized by 
a disproportionate abundance of competent host species for 
a generalist pathogen (Keesing et al. 2010). These contradic-
tory patterns may be explained by the dilution effect being 
a scale-dependent phenomenon that is observed either in 
small-scale experiments or under short durations (see Cohen 
et al. 2016; Halliday and Rohr 2019; Rohr et al. 2019). The 
latter explanation considers that added hosts, irrespective 
of their competence, might buffer the original hosts against 
infections early on by intercepting free-living stages of the 
pathogen (e.g., parasite eggs, cysts). However, if the added 
host is competent, the initially observed dilution effect will 
weaken over time and the original hosts could experience 
a net increase of infection risk after the pathogen spreads 
through the newcomers. In other words, amplification can 
transiently appear as dilution in the short term. The same 
principle may apply to human communities. For example, 
immigration of many vaccine-immunized hosts into a sus-
ceptible population may provide it with transient herd immu-
nity via a temporary increase in immune diversity. However, 
the risk of infection will be amplified in the long run (due 
to high population density) if immunity fades or if new off-
spring are not sufficiently vaccinated.

We present a heuristic model to demonstrate how infec-
tion risk changes over time within a diversifying community. 
It assumes that a new host species is seeded randomly in a 
well-mixed system that previously contains a single com-
petent host species. The pathogen’s questing, attacking, 
and consuming stages are combined using a separation of 
time scales, giving a saturating transmission function that is 
necessary for dilution to occur (after Lafferty et al. 2015). 
We further assume the transition from infection to pathogen 
production is fast relative to host generation time. In this 
system,

where I is the density of infected individuals of any host 
species and X1 is the density of all individuals of target 
host species 1. Free-living pathogen stages are produced at 

(2)İ =
b𝛽(X1 − I)I

d + 𝛽X1

− 𝛾I

rate b per infected host and removed at rate d . Contact with 
any host (susceptible, infected, or non-competent) occurs 
at rate � and leads to the loss of the pathogen stage. A new 
infection is generated if the host is uninfected and compe-
tent. To maintain constant host density, infected hosts are 
replaced with susceptibles at rate � upon death or recov-
ery. When species 1 is the only host present, X1 − I is the 
density of susceptible hosts, and this model would reduce 
to the familiar SI model if one assumes that the pathogen 
stage has such a high background morality rate that loss 
due to contact is trivial.

Adding a competent host species X2 at the system equi-
librium modifies the time derivative to

where K = d∕� is the familiar Michaelis-Menton half-
saturation constant from enzyme kinetics (Lafferty et al. 
2015). A simple derivation shows that, initially, the per-
capita infection rate for host species 1 ,

decreases with the addition of another competent host spe-
cies, much in resemblance to the dilution effect (Fig. 5). 
However, as t → ∞ , the rate

exceeds the single-species threshold. In contrast, adding 
a non-competent host species X3 always reduces the per-
capita infection rate for the target host,

even as the system heads to a new equilibrium (Fig. 5).
In summary, at the initiation of a study where a sec-

ond host species is introduced, both diluting and amplify-
ing hosts transiently appear to dilute transmission. Over 
time, however, their variable levels of competence lead 
to divergent epidemic potentials. In practice, an ampli-
fication effect could be very difficult to detect from field 
and experimental data collected over short time spans. We 
therefore caution that the support for a dilution effect by 
these studies should not be extrapolated to predict long-
term system behavior, or be generalized. Moreover, the 
existence of transients in our model results suggests that 
disease-control strategies with immediate benefits may 
have future negative consequences that should be care-
fully considered.

(3)İ =
b(X1 + X2 − I)I

K + X1 + X2

− 𝛾I

(4)Ω1(t = 0) =
bX1 − �

(
K + X1

)
K + X1 + X2

(5)Ω∗
1
=

b(X1 + X2)

K + X1 + X2

− �

(6)Ω∗
1
=

bX1

K + X1 + X3

− �
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Concluding remarks

Analyses of transients in dynamical systems are of vital 
importance to disease research. Although the scientific 
interest in transients was first motivated by rigorous math-
ematics, the results of many recent models carry implica-
tions for actionable measures that are far from theoretical 
abstractions. Predictions of transient dynamics, with a pre-
vailing emphasis on an “ecologically relevant time scale”  
(Hastings 2004), increasingly demonstrate their wide-ranging  
utilities to problems of applied epidemiology. Here, using a 
sample of models across ecological scales, we highlight the 
importance of understanding transient dynamics at different 
stages of disease transmission and outbreak response. This 
approach can improve standard protocols of drug delivery, 
timeliness of outbreak surveillance and intervention, accu-
racy of epidemic forecast, and effectiveness of large-scale 
disease management policies.

We observed that transient patterns at a population level 
may erupt early and rapidly, e.g., during an outbreak, or may 
reoccur periodically as in the case of many endemic child-
hood diseases. Individually, spatial interactions between 
a host and its environment through movement determine 
infective contact opportunities and the window of transmis-
sion; transient immune and physiological responses could 
mean the difference between recovery and chronic illness. 
At the metapopulation level, transient increase or loss of 

connectivity between patches may significantly reshape an 
epidemic curve. Within a host community, observations of a 
dilution effect can mislead conclusions regarding a species’ 
long-term infection risk.

We discussed a wide range of disease models to show 
transient behaviors may be critical for a variety of reasons. 
The importance of studying transient behavior depends on 
how long the system remains away from the attractors and 
how information collected during those periods might be 
interpreted and applied in an epidemiological context. For 
instance, the transients discussed in population and within-
host models (Sections I and III) share the common feature 
that the asymptotic state can be disease-free. The adverse 
effects on individuals or populations occur during the tran-
sient phase in such cases; an ability to predict transients is 
advantageous for clinical care and outbreak management no 
matter how short the transient phase. This stands in con-
trast to the transient dynamics that are slow to equilibrate, 
which may describe endemic incidence, animal space use 
patterns, as well as conspecific rates of infection in a diver-
sified community (Sections I, II, and V). The dynamics 
likely persist over the time scales that are most relevant for 
addressing questions in epidemiology. In the special case 
where the transient regimes are quasi-stable for a long time 
(see Hastings et al. 2018; Morozov et al. 2020), their short-
term dynamics could be mistaken for an asymptotic state, 
which would undermine long-term forecasting (e.g., mislead 
conclusions on the generality of the dilution effect) and sce-
nario planning. We also featured systems in which opposing 
inferences are drawn from the transient and the asymptotic 
behaviors (e.g., dilution versus amplification effects; Sec-
tion V), and systems that contain multiple attractors with 
divergent outcomes (e.g., host recovery versus chronic infec-
tion; Section III). Here, the need for understanding transient 
dynamics is tied to the importance of early interventions 
that aim to maintain a system in, or force it towards, a more 
desirable state. Finally, in models of individual host move-
ment and host metapopulations (Sections II and IV), the 
transient behaviors, which can be fleeting, reflect changes 
in the probabilities of rare, brief, or localized events (e.g., 
spillover infections, emergency travel restrictions) that might 
have long-term, large-scale implications for disease spread. 
Transient analyses of these systems could therefore be criti-
cal to developing early detection methods that are able to 
forestall low-risk but high-impact transmissions.

Recognizing the impacts of transient disease dynam-
ics can help modelers decide which processes should be 
included in a system. At sub-population levels (Sections II 
and III), scheduled pharmaceutical interventions, territorial 
conflicts, and other events that delay equilibration tend to 
occur on a time scale shorter than the transient’s lifetime in 
the absence of these perturbations; as a result, the predicted 
transient phase could be substantially shortened by excluding 
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Fig. 5   Per-capita infection rate of a target host species over time 
under three biodiversity scenarios. The addition of a non-competent 
host in a single-species community leads to a dilution effect (white 
space), characterized by the target host species being infected at 
a permanently reduced rate (cf. blue and black lines). In contrast, 
adding a competent host results in only a temporary rate reduction 
(dashed line), reflecting a transient dilution effect. As the system 
approaches its new attractor, the target host species becomes infected 
at a higher rate than it would without the increase in species richness 
(cf. red and black lines), in accordance with an amplification effect 
(gray space). Model parameters X1 , X2 , and X3 = 1 , K = 1.2 , � = 0.1 , 
b = 5
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them. By contrast, if the transient behavior were to dampen 
quickly such that the system’s controlling parameters stay 
near-constant during the transient’s lifetime, incorporating 
external processes might still be important in long-term 
studies since it may identify repeated transitions between 
the different transient and asymptotic states. In population 
and metapopulation models where changes in management 
and environmental conditions are often infrequent (Sections 
I and IV), predicting the timing of their recurrences could 
help evaluate multi-generational trends and sudden shifts 
in large-scale dynamics, thereby providing a stronger test 
of the system’s epidemiological resilience. Finally, in the 
two systems driven by spatial behaviors (Sections II and 
IV), the transients (e.g., individual migrations away from 
pathogen hotspots, changes in population flow patterns) are 
direct responses to the disease itself. A model that couples 
movement and disease dynamics may then contribute to the 
development of control strategies that are robust to behav-
ioral changes by anticipating how hosts might balance the 
trade-offs between infection risk and travel cost as an out-
break continues.

Transients do not always lend themselves easily to 
examinations by conventional mathematical methods. Nev-
ertheless, ongoing advances in dynamical systems analy-
sis, numerical simulations, and network analysis show that 
transient dynamics can be modeled explicitly and combined 
with asymptotic analysis to enhance responses to infections, 
contagion, and outbreaks. The recent proposal of applying 
adaptive management approaches to guide public health 
decision-making (Shea et al. 2014) further suggests that our 
description of a disease system and the recommended man-
agement actions are transient in themselves due to inherent 
model uncertainty, which can be resolved over time through 
continuous surveillance. Consequently, a greater acknowl-
edgment of transients will not only influence our model con-
clusions, but will also provide an objective basis for real-
time model improvement.
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