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ABSTRACT: Precision synthesis of thin films requires an improved mechanistic understanding of the structural evolution of
materials at the atomic scale. Atomic layer deposition (ALD) is a critical nanofabrication technique that enables fine-tuning of
atomic structure and thickness as a result of its layer-by-layer growth behavior. In this study, in situ X-ray absorption spectra of
the S K-edge during ALD growth of ZnS thin films on TiO2 nanoparticles were collected and analyzed. The experimental results
show that both sulfide and sulfate species form during the nucleation phase of ZnS on TiO2. As film growth proceeds, the S K-
edge of the in situ ZnS film converges to that of a representative ex situ ALD ZnS film. By building representative atomistic
models, a high-throughput screening method was developed to determine the most probable atomic configurations as the film
structure evolves. The screening method consisted of a supervised machine learning analysis of thousands of simulated X-ray
absorption near edge structure (XANES) spectra. Atomic-level insight was gained into changes in the coordination environment
of surface species as they transitioned from the nucleation phase toward the crystalline ZnS phase. The experimental and
computational strategies presented herein provide an example of how in situ synchrotron-based characterization can be
leveraged using robust modeling approaches to elucidate the ordering of atoms during thin-film growth.

■ INTRODUCTION

Ultrathin films (<10 nm) play a critical role in a range of
applications, including thin film solar cells,1,2 wearable
transistors,3 and quantum computers.4 Scaling and commerci-
alizing these next-generation technologies requires the ability
to reliably control the atomic structure of thin film surfaces and
interfaces over large areas. Atomic layer deposition (ALD) is a
technique that overcomes critical challenges in thin film
growth associated with the difficulties of simultaneously
controlling thickness, composition, and conformality.5 A
crucial step toward achieving ultrafine control over matter at
the atomic level using ALD is to understand the evolution of
atomic coordination during film growth. However, while
atomistic modeling and vibrational spectroscopy have provided
valuable insights into the initial ALD surface reactions,6,7 there
is a lack of experimental techniques that can directly probe the

dynamic rearrangement of the atomic structure during film
growth, as atoms move from their initial reaction sites into
crystalline lattice positions (Scheme 1).
X-ray absorption near-edge structure (XANES) is an

enabling, element-specific spectroscopy technique for acquiring
local bonding information. We have previously shown that ex
situ S K-edge characterization of sulfides grown by ALD can
capture subtle changes in local atomic and electronic structures
during growth.8−10 This precise analytical resolution is possible
because S K-edge XANES spectra are highly sensitive to
changes in the local coordination environment and oxidation
state.11 Furthermore, information on the local coordination
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environment in XANES spectra can be extracted using
advances in theoretical modeling of X-ray absorption.12−15

Because of this, in situ XANES of metal sulfides is an ideal
methodology to improve our detailed understanding of the
nucleation and growth behavior of thin films.
Previous work on in situ characterization of ALD materials

has also provided valuable insight into the microstructure and
morphology that evolves during ALD nucleation and
growth.16−18 For example, Boichot et al. used a combination
of in situ X-ray techniques on ALD ZnO.18 The study captured
the process in which the overall ZnO grain structure is affected
by interfacial strains due to the structure and chemistry of the
substrate surfaces. In another study, Mack et al. investigated
the grain structure evolution during in situ ALD film growth
using STM on ALD ZnS, which elucidated the densely packed
ZnS structure on gold surfaces at the nanoscale.19 Given these
advances of in situ characterization of grain structure, a natural
next step is to understand how surface species self-organize as
crystalline grains form. Toward this goal, in this study, we
perform in situ characterization of ZnS growth in a customized
ALD reactor together with S K-edge XANES to gain a detailed
understanding of the structural evolution of the S species
during nucleation and film growth.
The extraction of structural information from the rich

XANES spectra is difficult and has hampered the intimate
understanding of structure growth at the nanoscale.20 The
surface structure is inherently local and often consists of
random and disordered atomic arrangements. To address the
challenge of exploring a myriad of configurations, researchers
have combined big-data analytic strategies with first-principles
simulation packages (such as FEFF9) in order to provide
statistical insights into the most likely and prominent atomic
structures of bulk materials.21−23 These high-throughput
screenings of atomic configurations present a viable strategy
to deepen our understanding of the possible atomic arrange-
ments that may occur during film growth, which evolve during
the dynamic surface reactions and nucleation of surface
species.
Herein, we have measured and modeled the S K-edge

XANES data during the nucleation phase of ZnS deposition on
TiO2 nanoparticle (NP) surfaces. The choice of ZnS and TiO2
as a model system is due to the technological relevance of this
material combination in thin-film solar cells.24−26 Improved
understanding of the interfacial structural evolution of this
material system can facilitate the rational design of photo-

voltaic cells. Furthermore, we can leverage the self-limiting,
linear growth, and volatile precursor chemistry of ALD ZnS
when designing the measurement and modeling experi-
ments.27,28 Lastly, the high surface area of the TiO2 NPs
increases the signal-to-noise ratio, which improves our ability
to capture subtle cycle-by-cycle changes in the XANES spectra.
To approximate the evolving atomic surface structure during

the initial cycles, we developed a high-throughput screening
method that incorporated the design of experiments (DoEs)
for sensitivity screening, neural networks, and random forests
to determine likely atomic structures and their corresponding
geometric parameters (e.g., bond lengths and bond angles).
This approach captures the transition from a sulfate-rich
nucleation phase on the TiO2 anatase surface to the sulfide-
dominant ZnS film. This work provides an example of how in
situ XANES measurements and machine learning (ML) can be
leveraged synergistically to yield atomistic insight into surface
reactions and structural evolution during thin-film growth.

■ METHODS
In Situ XANES Measurements. A modular ALD system was

constructed that can safely be used to deposit and characterize ALD
of sulfide materials at multiple beamlines at the Stanford Synchrotron
Radiation Lightsource (SSRL). Owing to the safety concerns
surrounding the use of H2S, extra considerations were taken for the
materials and components used in the ALD system design.29 Figure 1
shows a photograph and schematic of the ALD system used for this
work. The hot-walled reactor consisted of a heated sample holder. A
heated manifold delivered precursors to the chamber, and a pressure
gauge monitored the reaction chamber pressure. The two precursors
used were H2S, which was generated in situ in the precursor source
cylinder via the thermal decomposition of thioacetamide (Sigma-
Aldrich, U.S.A.),27,28 and diethylzinc (DEZ) (Sigma-Aldrich, U.S.A.).
The pulsing conditions consisted of 0.25-s H2S pulses, 0.1-s DEZ
pulses, and 60-s He purges. A total fluorescence yield (TFY) detector
captured the S K-edge XANES spectra. Standard postprocessing of
the XANES spectra was done using the SixPACK and Athena analysis
packages. Additional details on the experimental setup are in the
Supporting Information (SI).

FEFF Simulations and Machine Learning. Theoretical XANES
spectra were generated using the FEFF9 code based on Green’s
function multiple-scattering theory.13,14 To calibrate the parameters
for the FEFF9 models, the S K-edge simulated spectra for ZnS was
converged by varying the cluster, self-consistent field (SCF), and
scattering sphere sizes and obtaining spectral agreement between the
simulated and experimental sphalerite ZnS. A custom platform was
developed to enable high-throughput generation, modeling, and

Scheme 1. Representative Schematic of H2S and Diethylzinc (DEZ) Half Cycle Reactions on an Anatase (101) TiO2 Surface
a

aIn the initial half-cycles, atomic arrangements are driven by ligand-exchange reactions with surface functional groups. After N full cycles of H2S
and DEZ, a structure that converges to crystalline ZnS will form. This study presents a new approach to capture and analyze the structural evolution
that occurs as film growth progresses.
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analysis of atomic configurations. The goal of this platform is to
enable a seamless integration of the ability to customize atomic
structures with machine learning and ab initio simulations using

FEFF9. This code was built using open-source packages for creating
CIF and FEFF input files (Pymatgen30), design of experiments
(pyDOE), and machine learning (ML) models (scikit-learn31). The
atomic structures were illustrated using VESTA.32 Further details on
the platform are in the SI. To confirm the validity of this custom
framework, we compared the results from our platform to the results
obtained from the commercially available JMP33 software package as
described below.

Following ML best practice guidelines for chemical and materials
science research,34 we created a workflow to tune and analyze the
structural parameters of representative S moieties during ALD growth
(Scheme 2 and Scheme SI1). We used two robust and straightforward
regression ML models: random forests (RFs) and artificial neural
networks (NNs). Random forests consist of many decision trees that
learn rules from input features to predict the values of a target input;
they also provide information about the relative importance of each
feature.35 However, the use of parameter importance information in
RF models needs to be done with caution when working with
nonlinear systems.36 In this work, we use parameter importances
determined by the RF models solely to aid the discussion of the
simulation results, and to provide physical insight. The parameter
importances do not play an active role in our modeling process. We
have validated the use of parameter importances for our particular
systems through a full factorial analysis comparison (further details in
Supporting Information).

In our case, the input features are adjustments to the geometric
parameters of the S moieties. The target value is the coefficient of
determination (R2) between the simulated and corresponding
experimental S K-edge spectra. In other words, given a guess of the
structure of the S moieties, we calculate the R2 value of how well the
simulated S K-edge spectrum matches the experimental curve over a
defined energy range. From now on this R2 value will be referred to as
the “Fit” of the simulated curves. Further ML model setup and result
details are in the SI, including corresponding mean square error
(MSE) and root-mean-square error (RMSE) values and plots.

We used RF and NN models on six data sets that contained 1100
different atomic arrangements on average. The data sets were built
and analyzed for the first half cycle (H2S_1), the second half cycle of
DEZ (DEZ_2), the fourth half cycle (DEZ_4), and the sixth half
cycle (DEZ_6). Model parameters were tuned using the training and

Figure 1. Photograph and schematic representation of the modular
and sulfide-compatible ALD system built for in situ synchrotron
radiation studies. Critical components of the design: the pneumatic
gate valves that enable automated X-ray absorbance and detection;
the heated sample holder; and the heated chamber and manifold line.

Scheme 2. Overview of the Workflowa

aSimulations are prepared by using information from in situ XANES spectra and creating FEFF input files with Pymatgen and pyDOE. After
running the simulations, the next step in the framework is to analyze all the data using random forests or neural networks with scikit-learn and JMP,
respectively. This allows one to explore a substantially larger parameter space and hence get a comprehensive understanding of the system. A more
detailed description of the modeling and machine learning workflow is depicted in the Supporting Information.
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validation sets only. The test set was used to verify how well the ML
models generalize to unseen data. Table SI2 (Supporting
Information) summarizes how well the RF and NN ML models can
capture the impact of changes to the structural parameters on the Fit
of the simulated spectra. The tabulated performance metrics are the
R2 values between the actual Fit values and the predicted Fit values by
the ML models. Essentially, we create an ML model of FEFF9 models
in order to explore a larger atomic configuration space more
efficiently. This more efficient exploration cuts down the computa-
tional time required to run a FEFF9 simulation every time.37 As Table
SI2 shows, the RF and NN perform similarly, so we have confidence
that the RF model parameters have been appropriately tuned and
generalize well to unseen data. Further details, including the actual vs
predicted plots of the ML models, plots of the RFs complexity curves,
perceptron schematics of the NN models, and model validation are
provided in the Supporting Information.

■ RESULTS
XANES Spectra. Figure 2 shows the experimentally

measured in situ S K-edge TFY spectra for the initial half

cycle and full cycles of ZnS growth, as well as two ex situ ALD
ZnS references. As depicted in Scheme 1, a half cycle is an
exposure of either H2S or DEZ to the surface followed by inert
gas purging. During the initial cycles, the XANES spectra show
that the film nucleates with a mix of sulfide and sulfate species.
XPS analysis confirms the existence of sulfate species in the
initial cycles of ex situ ALD ZnS from a reference reactor, as
shown in Figure SI5. Therefore, the sulfate species observed in

Figure 2 are not likely a result of trace water or a leak in the in
situ ALD system. It is also important to note that the sulfate
intensity in S K-edge spectra is several times higher than the
sulfide intensity due to the stronger transition dipole arising
from polar bonding.11 As can be seen in the first half cycles
(H2S_1), titanium sulfide (TiSx) with an expected absorption
onset edge around 2470 eV38 and titanium sulfate Ti(SO4)x
with an expected onset absorption edge around 2481 eV39 are
formed. It is possible that the feature labeled as TiSx feature is
also due to physiosorbed H2S on TiO2.
The TiSx and Ti(SO4)x regions of the S K-edge spectra are

delineated with dashed and dashed-dotted lines, respectively.
The overall shape of S K-edge curve remains the same after
pulsing DEZ in the second ALD half cycle (DEZ_2). This
shape similarity suggests either that the DEZ is not reacting
with the surface or that DEZ exposure does not change the
coordination environment of the TiSx and Ti(SO4)x
significantly. As can be seen after exposing the surface to
H2S again in the third half cycle (H2S_3), a distinct ZnSx
feature is observed with an expected absorption onset around
2473 eV, which is consistent with the reference ZnS samples at
the top of Figure 2.
In the H2S_3 half cycle, there is evidence for three distinct

sulfur phases: TiSx, ZnSx, and (Ti, Zn)(SO4)x. The presence of
the ZnSx peak disproves the hypothesis that DEZ did not react
in the DEZ_2 half cycle. Therefore, DEZ reacted in the second
half cycle to form surface monoethylzinc (||-MEZ) species.
This pattern can be observed again after pulsing DEZ in the
fourth (DEZ_4) and sixth (DEZ_6) half cycles. No significant
changes to the S K-edge spectra from the preceding half cycles
occurred, other than a slight decrease in the sulfate intensity,
which is the result of a growing ZnS film on top of the buried
sulfate interface (further analysis is in Figure SI4 and Table
SI1). Only after the H2S pulse in each full cycle can we confirm
with greater certainty that DEZ reacted on the surface. This
qualitative analysis guides the atomic modeling and analysis
below using first-principles XANES simulations and ML, which
provide a more quantitative framework for interpretation.
Figure 2 also shows the S K-edge spectra after 4, 5, 10, and

18 full cycles. The sulfate feature decreases as the ZnS feature
becomes more pronounced. By 18 full cycles (ZnS × 18), the
in situ S K-edge spectrum closely resembles that of a reference
sample that was deposited ex situ with 20 cycles of ZnS
(ZnS×x 20). For a quantitative comparison, we calculated and
plotted the Pearson coefficient between the in situ spectra and
the ex situ ZnS × 20 spectrum (Figure SI6). However, some
slight differences exist when comparing the in situ ZnS × 18 to
the ex situ ZnS × 20 S K-edge spectra. The origin of these
differences is likely due to the pressurization of the reaction
chamber at each measurement; the pressurization allows the
opening of the gate valves to the beamline and detector. The
change in pressure and exposure to the X-ray beam could have
resulted in restructuring or desorption of reactive surface
species (further details in Figure SI3). While there is a
possibility of residual water or a small leak in the system,
especially during the pressurization cycles, the data presented
in Figures SI3, SI5, and SI6 (Supporting Information) suggest
that the chemistry taking place during the in situ experiments is
a valid approximation to the chemistry that takes place in a
more ideal ALD reactor. Thus, in future in situ chamber
designs, we aim to collect the spectra without having to
repressurize the reaction chamber. It is also important to note
that XANES can capture subtle changes in growth behavior

Figure 2. S K-edge spectra of ZnS half cycles, full cycles, and ex situ
references. The titanium and zinc sulfide regions are traced by dashed
and dotted lines, respectively. The dashed-dotted line labels the
sulfate region. The experimental in situ spectra capture how the initial
sulfide and sulfate regions evolve and converge toward ZnS.
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due to changes in processing conditions; such sensitivity can
be exploited in the future to identify process conditions that
facilitate the fabrication of higher quality interfaces or
patterning of thin films in general.
The subsequent sections cover a detailed analysis of the

selected half cycles. Using the machine learning framework, we
show how modeling of the XANES spectra can be used to
provide insight into the structural evolution of the film as it
grows.
H2S_1. As can be seen in Figure 2, sulfide and sulfate

species form after the first half cycle of H2S (H2S_1). Based on
experimental and computational studies of H2S reactions on
metal oxide surfaces,40−44 we propose the following
representative reactions to help explain the formation of the
sulfide and sulfate species, where || represents the substrate
surface:

TiO 2H S TiS 2H O (sulfide formation)2 2 2 2∥‐ + →∥‐ +
(1)

2H S TiO 6H O Ti(SO ) 8H

(sulfate formation)
2 2 2 4 2 2+ ∥‐ + → ∥‐ +

(2)

The atomic structures used for the FEFF9 simulations account
for the hydrogenated surface species that participate in the
ALD reactions. As shown in Figure 3a, we modeled the sulfide
species as a bridged sulfhydryl (−SH) group bonded to Ti
atoms on the surface, which is one of many possible initial
configurations. Similarly, the sulfate species is modeled as a
bridged S atom on two surface O atoms and capped by two
ligand O atoms that formed after reacting with H2O molecules
according to eq 2 (Figure 3d). The models assume a surface
along the TiO2 anatase (101) plane, which is expected to be a
prevalent surface for TiO2 NPs.

45

For the H2S_1 sulfide model in Figure 3a, the structural
parameters that are adjusted and fed into the RF and NN
models consist of changes to the XYZ coordinates of the S
atom (ΔXS, ΔYS, and ΔZS), the S−H bond length (ΔR1), and
the angle of the H atoms (ΔΘX and ΔΘY) with respect to the
X and Y axes shown. The changes to these structural
parameters were fed into the ML models to determine which
geometric configurations resulted in the best fits between the
simulated spectra and the corresponding experimental
spectrum. For the sulfide region of H2S_1, we overlay the
experimental spectrum in black over the simulated S K-edge
spectra in Figure 3b. For all plots that compare the simulated
to the experimental spectra, the Fit values of the individual
spectra are color-coded from blue (R2 = 0) to red (maximum
R2). Larger Fit values correspond to a better match between
the general shape of the experimental and simulated spectra.
We do not expect perfect fits given the limitations of the
FEFF9 theory and the complexity of the actual surface atomic
structure. Figure 3c shows the parameter importances in our
RF model, which is a measure of how sensitive the Fit is to the
geometric parameters. According to the trained RF model, the
most important structural parameters were changes to the XYZ
coordinates of the S atoms. The Fit values were not sensitive to
changes to the H bond length or axial bond angles. This ability
to identify viable atomic structures based on subtle changes
illustrates the power of the ML framework to rapidly screen
geometric configurations and provide valuable mechanistic
insight into the structural evolution of the ALD film.
The structural parameters that were adjusted in the sulfate

model in Figure 3d consist of changes to the XYZ coordinates
of the S atom, the internal O−S−O angle (ΔΘI) with respect
to the ligand O atoms, the rotational angle (ΔΘR) of the ligand
O atoms about the S Z-axis, and the S−O bond lengths (ΔR1
and ΔR2) of the ligand O atoms. Figure 3e shows the overlaid
simulated and experimental spectra. According to the H2S_1

Figure 3. Sulfide (a−c) and sulfate (d−f) models in the H2S_1 half-cycle. (a, d) Atomic schematics of the structural parameters modeled. (b, e) S
K-edge spectra of the sulfide and sulfate experimental regions compared to simulations with the R2

fit distribution. (c, f) The relative importance of
the normalized structural parameters using Random Forests. For all plots that compare the simulated to the experimental spectra, the Fit values of
the individual spectra are color-coded from blue (R2 = 0) to red (maximum R2). The energy range for the sulfide region is limited to below 2476 eV
in order to minimize the influence of the sulfate pre-edge features and background on the fitting calculations.39
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sulfate model parameter importances (Figure 3f), the bond
lengths between the S atom and the ligand O atoms (ΔR1 and
ΔR2) are the most important structural parameters with
combined importance greater than 60%. There is a significant
influence from changes to the Y and Z positions of the S atom,
but they are each less than half of the relative importance of
either ΔR1 or ΔR2. Adjustments to ΔXS, ΔΘI, and ΔΘR all
have less than 5% importance when determining the Fit score
of the simulated S K-edge spectra.
In the subsequent analysis, the best fits from the previous

half cycle initiate the atomic configurations, which were then
adjusted based on representative reactions for each half cycle.
We confirmed the validity of the initial atomic models by
manually inspecting the bond lengths and angles and ensuring
that they are within reasonable ranges as determined by
experiments and previous DFT studies.17,18,46 While the DFT
simulations are limited in capturing a large number of distinct
atomic configurations, their use as starting points for XANES
simulations is verified by the similarity between the
experimental and simulated spectra in Figures 3−6. The
inspection of configurations will be automated in the future to
facilitate the screening of more configurations, but it needs to
be done carefully in order to avoid false positives.
DEZ_2. In the second half cycle (DEZ_2), the substrate

was exposed to DEZ for the first time. The following
representative reactions are used to describe the overall
chemical reactions:

Ti SH Zn(C H ) TiS Zn C H CH (g)2 5 2 2 5 4∥‐ ‐ + → ∥‐ ‐ ‐ +
(3)

Ti(SO ) OH Zn(C H )

TiSO Zn C H CH (g)
3 2 5 2

4 2 5 4

∥‐ ‐ +

→ ∥‐ ‐ ‐ + (4)

For the DEZ_2 sulfide model described by eq 3, a
monoethylzinc (MEZ) group replaced the H atom (Figure
4a). Similarly, in the DEZ_2 sulfate model described by eq 4, a
MEZ ligand replaced the H atom in one of the O ligands, and
the MEZ ligand sits in a bridge position between both O ligand
atoms (Figure 4d). This structure was adapted from a possible
O−Zn−O configuration calculated by first-principles studies of
the ALD ZnO process.46

For this round of modeling, the changes to the XYZ
coordinates of the S (ΔXS, ΔYS, and ΔZS) and MEZ (ΔXMEZ,
ΔYMEZ, and ΔZMEZ) species were the structural parameters
that were varied, keeping all other atomic positions fixed
during the simulations. In reality, we expect that all of the
coordinating atoms will find new positions relative to the
surface atoms, in order to accommodate the influence of the
MEZ species. However, as shown in Figure 4b, limiting the
parameter space in this manner was sufficient to provide a Fit
value of 0.95 when comparing the simulated and experimental
XANES spectra. This straightforward screening demonstrates
the power of our framework to sort and identify likely atomic
arrangements that are descriptive of the evolving atomic
structure. In the future, these configurations will provide a
valuable starting point as an input to DFT studies of fully
relaxed structures.
As shown in Figure 4c, changes to the XYZ coordinates of

the S atom are more important than changes to the MEZ
coordinates. Rotational variations of the MEZ were also
explored but had negligible importance values on the Fit. In
DEZ_2, changes in YS and ZS were about four times more
important than changes in XS. In contrast, in the H2S_1 half
cycle, changes in XS and YS were at least three times more
important than changes in ZS. In the Discussion section,
surface response plots will be presented to provide further
detail on how changes in the S atom positions affect the Fit

Figure 4. Sulfide (a−c) and sulfate (d−f) models in the DEZ_2 half-cycle. (a, d) Atomic schematics of the structural parameters modeled. (b, e) S
K-edge spectra of the sulfide and sulfate experimental regions compared to simulations with the R2

fit distribution. (c, f) The relative importance of
the normalized structural parameters using Random Forests. For all plots that compare the simulated to the experimental spectra, the Fit values of
the individual spectra are color-coded from blue (R2 = 0) to red (maximum R2). The energy range for the sulfide region is limited to below 2476 eV
in order to minimize the influence of the sulfate pre-edge features and background on the fitting calculations.39
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values. Both the H2S_1 and DEZ_2 model results suggest that
the structural changes that have the most significant influence
on the XANES spectra are the S−Ti bond lengths.
There are also slight changes in the S K-edge spectra within

the sulfate regions of H2S_1 (Figure 3e) and DEZ_2 (Figure
4e). According to the DEZ_2 models, the importance of the
MEZ species is more significant in the sulfate model than in
the sulfide model. However, the most important structural
parameters are still adjustments to the XYZ coordinates of the
S atom. The combined importance for ΔXS, ΔYS, and ΔZS is
higher than 70%.
DEZ_2 is the last round of simulations in which we model

sulfate species since the relative intensity of the sulfate region
in the XANES spectra decreases with subsequent cycles.
Furthermore, since the experimental spectrum after each DEZ
pulse resembles the spectrum from the previous H2S half cycle,
we will focus on the DEZ_4 and DEZ_6 half cycles in the
subsequent simulations and ML modeling.
DEZ_4 and DEZ_6. The second DEZ pulse (DEZ_4)

completed two full cycles; the third DEZ pulse (DEZ_6)
completed three full cycles. The chemical reaction on the
surface during DEZ_4 and DEZ_6 can be represented as
follows:

x xSH Zn(C H ) S (Zn C H ) CH (g)x2 5 2 2 5 4∥‐ + → ∥‐ ‐ ‐ +
(5)

Weckman et al. used DFT modeling to show that multiple
MEZ species can coordinate on surface O atoms during ZnO
growth.46 We expect a similar mechanism to occur between
MEZ species and surface S atoms during ZnS growth. The
expected coordination of multiple MEZ species on the surface
is why eq 5 does not specify the stoichiometry. In the actual
atomic models, we assume that two DEZ molecules have
reacted on the S atom of interest. When manually building the
atomic models using atomic arrangements from the previous

simulations, we assume that the surface species self-organize
such that S is 4-fold coordinated. The assumption of 4-fold
self-organization is consistent with in situ X-ray diffraction
(XRD) and scanning tunneling microscopy (STM) measure-
ments of the nucleation phase during ALD of ZnO18 and
ZnS.28 While the initial input configurations to our model were
manually determined based on reported data and knowledge of
the final phase that eventually forms, future work is needed to
automate the screening and implementation of different self-
organizing heuristics in order to identify and explore a broader
range of viable atomic arrangements.
As shown in Figure 5a, for DEZ_4, we have modeled a sulfur

atom that is coordinated by two surface Zn atoms and two
MEZ groups. In this atomic model, the structural parameters
that were varied were (1) the changes to the XYZ coordinates
of the S atom (ΔXS, ΔYS, and ΔZS); (2) the S−Zn bond
lengths between the S and MEZ groups (ΔR1 and ΔR2); and
(3) the rotational angle of the upper MEZ atoms about the S
Z-axis (ΔΘR).
As shown in Figure 5b, the structure of the S−K edge in

DEZ_4 flattens in the range between 2475 to 2480 eV. By
close examination of the plot in Figure 5b, it is clear that
multiple atomic structures produce simulated spectra capable
of capturing the plateau of the S K-edge in this range. The
flattening of the S−K edge is qualitative evidence of a turning
point in the structural evolution of the ZnS film by the DEZ_4
half cycle. In DEZ_2, there is a slight oscillatory profile past
the edge. In contrast, there is a clear downward profile in
DEZ_6 (Figure 5e). Figure 5c indicates that the most
important parameters that influence the Fit for DEZ_4 are
the bond lengths between the Zn atoms of the MEZ groups
and the 4-fold coordinated S atoms (ΔR1 and ΔR2). The total
of the parameter importances of ΔR1 and ΔR2 is above 70%.
The individual importances of the remaining structural
parameters are below 10%.

Figure 5. DEZ_4 (a−c) and DEZ_6 sulfide models (d−f). (a, d) Atomic schematics of the structural parameters modeled. (b, e) S K-edge spectra
of the sulfide experimental regions compared to simulations with the R2

fit distribution. (c, f) The relative importance of the normalized structural
parameters using Random Forests. For all plots that compare the simulated to the experimental spectra, the Fit values of the individual spectra are
color-coded from blue (R2 = 0) to red (maximum R2).
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After the third DEZ pulse (DEZ_6), we expect the surface
reactions to be similar to the second DEZ pulse (DEZ_4). The
initial atomic model is built by using results from the previous
data set (DEZ_4) and incorporating 4-fold coordinated sulfur
atoms. Because there were multiple viable atomic arrange-
ments from DEZ_4, inputs to DEZ_6 were manually inspected
and selected from arrangements that had a Fit value greater
than 0.9.
As shown in Figure 5e, the profile of the S−K edge trends

downward in the range between 2475 and 2480 eV. Thus, we
expect the coordination environment of the S atoms to be
quantitatively different between the DEZ_4 and DEZ_6
atomic structure models that yield the best Fit. As in
DEZ_4, ΔR1 and ΔR2 are important structural parameters,
but in DEZ_6 they have combined importance of less than
50%. In DEZ_6, ΔYS is also an important structural parameter.
In the Discussion section, the influence of the most important
structural parameters on the Fit will be used to provide insight
into the evolution of the coordination environment of the S
atoms.

■ DISCUSSION
From the in situ S K-edge spectra, we were able to deduce
three oxidation states present in the initial half-cycles. The
evolving S−K edge spectra after each cycle contain information
on the mechanism of how the approximated initial sulfide and
sulfate species on the TiO2 surface transform into a crystalline
ZnS film. By simulating the XANES spectra of hundreds of
atomic arrangements in the initial half cycles and applying ML
models to analyze the resulting data sets, we were able to
identify atomic arrangements that provide insight into
structural rearrangements during film growth. As a result, we
now have a trained ML model that can be used to explore a
larger space of atomic configurations and predict the Fit
without having to run new FEFF9 simulations.

Central to this discussion is the collection of response
surfaces for the data sets using the trained RF models (Figure
6). These response surfaces help visualize how a system
responds to a set of parameters. In this case, the focus is
understanding how the predicted Fits between the exper-
imental and simulated XANES spectra respond to changes in
the structural parameters. The initial ranges of the two most
important structural parameters are used to create a two-
dimensional grid of values that will serve as the foundation for
the response surface. To generate a set of input values for the
remaining structural parameters, we used a uniform distribu-
tion of each parameter within a specified range (further details
in the SI). Using a uniform distribution creates speckled
regions in the response surfaces, which indicate how sensitive
the predicted Fit is to changes in the remaining parameters.
For regions in the response surface that appear more
“speckled”, meaning they have a more extensive color gradient
between pixels, the remaining parameters have a relatively
more significant impact on the predicted Fit. Conversely,
uniformly colored regions that appear “solid” in the response
surfaces indicate that the values of the two most important
parameters are sufficient to predict the Fit value. This approach
is the basis for all the response surfaces in Figure 6.
In Figure 6a, the response surface for the sulfide region in

H2S_1 depicts an overall trend of predicted Fit values greater
than 0.6 when changes in the S X position are below 0.3 Å.
Moving the Y position of the S atom, a distance between 0.3
and 0.6 Å in either the positive or the negative direction
resulted in predicted Fit values greater than 0.75. This
mirrored response is consistent with the fact that the local
coordination environment of the S atom is nearly symmetric
about the X-axis, as shown in Figure 3a. The response surface
shows that there is a clear preference for the S atom in Figure
3a to move off the XZ plane created by the bonded Ti surface
atoms.

Figure 6. Response surfaces plotted of the most important parameters on each trained RF model for H2S_1, sulfide (a); H2S_1, sulfate (b);
DEZ_2, sulfide (c); DEZ_2, sulfate (d); DEZ_4, sulfide (e); and DEZ_6, sulfide (f). In regions where the response surfaces appear more
“speckled”, the remaining parameters have a relatively more significant impact on the predicted Fit. Conversely, uniformly colored regions that
appear “solid” in the response surfaces indicate that the values of the two most important parameters are sufficient to predict the Fit value.
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For the H2S_1 sulfate response surface (Figure 6b), there is
a clear trend that atomic arrangements are predicted to have
larger Fit values when increasing the bond lengths between the
S and O ligands (ΔR1 and ΔR2) concurrently by more than
0.15 Å. Given the sulfate species created as described in eq 2,
these models suggest that the ligand O atoms on the S are in
equivalent chemical states.
After the first DEZ pulse, the DEZ molecules have reacted

with the surface sulfide and sulfate species. From the sulfide
response surface in Figure 6c, there is a pronounced trend
toward larger predicted Fit values with increasing the Y and Z
coordinates of the S atom. This trend indicates that the ligand
exchange between the S atom and MEZ species causes the S
atom to elongate from the Ti atoms in both the Y and the Z
directions. There is an overall expansion of the S−Ti bonds
when the MEZ species is present. The increase in Ti−S bond
lengths is an expected consequence of the S atom and the Zn
forming a Lewis acid−base pair. In contrast with the DEZ_2
sulfide response surface, there is no well-defined trend in the
DEZ_2 sulfate response surface (Figure 6d). A possible
explanation for this difference is that a bonding MEZ ligand to
the sulfate species, as shown in Figure 3d, causes small
readjustments of the atomic position of the S atom.
As mentioned earlier, after the second DEZ pulse (DEZ_4),

the resulting MEZ species are likely starting to form a
tetrahedral coordination environment around the S atoms, as
indicated by the transition in the shape of the S K-edge profile.
As shown in the DEZ_4 sulfide response surface in Figure 6e,
there is a clear trend of larger predicted Fit values when the S−
Zn bond lengths (ΔR1 and ΔR2) decrease. A possible
explanation for the S−Zn bond length contraction is that the
second DEZ pulse causes surface reconstructions that start to
resemble more of a symmetric 4-fold coordination.
In the DEZ_6 sulfide response surface (Figure 6f), there is a

clear trend with larger predicted Fit values with increasing ΔYs
and ΔR1. These increases indicate that the coordination
environment around the S atom expands again after the third
DEZ pulse. A possible explanation for this expansion following
the preceding contraction in the S−Zn bond lengths indicates
that there are enough Zn−S species on the TiO2 surface at this
point to start forming a discernible ZnS film. This discernible
ZnS film is a reasonable explanation since the ZnS region of
the S−K edge spectra for subsequent cycles beyond DEZ_6
does not change in its overall shape (Figure 2).

■ CONCLUSION
In this work, we have developed insight into the dynamic
evolution of atomic structure during ALD reactions by using in
situ XANES studies and harnessing machine learning
strategies. Through experimental measurements and a
simulation framework, the detailed atomic structure evolution
of a growing ZnS film on a nanostructured TiO2 substrate was
described. Experimentally, the formation of sulfide and sulfate
species was observed after the first H2S pulse. Subsequent ALD
cycles resulted in the continuous development of the
coordination and oxidation environment of ZnS, as captured
by the convergence of the S K-edge spectra of the growing film
with that of the ZnS references. The likely atomic arrange-
ments that describe the structural evolution during the initial
ALD cycles were identified through high-throughput screening
of atomic arrangements, based on the similarity between their
simulated S K-edge spectra with the corresponding in situ
spectra. As a result of the screening, it is evident that (a) the

initial sulfate species are buried at the interface between the
TiO2 and growing ZnS; (b) by the fourth ALD half cycle, the
sulfur species are in a 4-fold coordination environment; and
(c) by the sixth half cycle, the sulfur species are in a
coordination environment that closely resembles the crystalline
ZnS structure. This work provides an example of a framework
that can be adapted and leveraged when carrying high-
throughput experimental measurements coupled with high-
throughput calculations. In future work, it will be possible to
use this approach to gain a richer understanding of surface
reactions, interfacial structure development, and thin-film
growth.
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