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ABSTRACT: The response of severe local storms to environmental evolution across the early evening transition (EET)

remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the

increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environ-

mental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset.

Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across

the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-

shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight

physical processes governing stormmaintenance and tornadogenesis in the absence of large instability. Last, statistical analysis

is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic

(or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for

multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC

environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments

sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compen-

sating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of

nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP)

remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering

variables like precipitable water, downdraft CAPE, and effective inflow base.

SIGNIFICANCE STATEMENT: The environments in which storms occur change near and after sunset, making it

difficult to anticipate how these storms will respond and whether they can produce tornadoes. Southeast U.S. tornadoes

can occur even with limited instability, which only adds to this challenge. To this end, we examine the different pathways

that Southeast storm environments can evolve into the evening and consider how the frequency and characteristics of

their tornadoes change for each pathway. We found that the amount of instability present before sunset influences how

storm environments change afterward, and, therefore, how those storms produce tornadoes. Last, we identify what

variables best predict tornadoes for each pathway, and these are used to construct new Southeast tornado forecasting

parameters.
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1. Introduction

The hours soon before and after local sunset constitute the

early evening transition (EET), a period during which surface

radiational cooling results in increasing static stability and

convective inhibition (CIN). These thermodynamic changes

are often accompanied by the onset of nocturnal low-level jets

(NLLJ; Blackadar 1957; Shapiro et al. 2016), which can intro-

duce additional low-level shear and storm-relative helicity

(SRH) into nocturnal storm environments (relative to daytime

environments) and have potential ramifications for storm

maintenance and tornadogenesis (e.g., Maddox 1993; Markowski

et al. 1998; Parker 2014). These and other related factors have

been offered up as explanation for the peak in near-sunset

tornado counts noted in the literature (e.g., Kelly et al. 1978;

Mead and Thompson 2011). Understanding how these envi-

ronmental features and their impact on accompanying con-

vection evolve with time are vitally important for determining

the ability of storms to produce severe hazards through the

EET. However, it remains unclear whether presunset ther-

modynamic and kinematic characteristics influence the nature

of this evolution and subsequent storm features.

The impact of boundary layer stabilization on near-ground

rotation and the maintenance of intense updrafts has been

addressed by the recent literature, largely within the context of

supercells (e.g., Ziegler et al. 2010; Nowotarski et al. 2011;

MacIntosh and Parker 2017), or transitions between supercells

and other convective modes (e.g., Billings and Parker 2012;
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Peters et al. 2017; Geerts et al. 2017; Gropp and Davenport

2018; Gray and Frame 2019). Whether ingesting near-surface

(as inMacIntosh and Parker 2017) or elevated air parcels (as in

Nowotarski et al. 2011), the updrafts of nocturnal supercells

have been shown to persist in spite of increasing environmental

near-surface static stability. This resilience may be due to the

upward pressure gradient accelerations caused in part by up-

draft rotation (e.g., Rotunno and Klemp 1982; Rotunno and

Klemp 1985), which can lift negatively buoyant air (Markowski

et al. 2012). Increases in low-level shear and SRH associated

with the NLLJ may enhance upward accelerations in the lower

updraft as demonstrated by the results of Coffer and Parker

(2015), which act to increase the participation of near-surface

parcels within updrafts in spite of their reduced buoyancy, as in

Davenport and Parker (2015) and Gray and Frame (2019).

These increases in low-level shear (along with deep-layer

shear) have also been shown to increase the magnitude of

storm-relative (SR) flow (e.g., Warren et al. 2017; Peters et al.

2019), which can both facilitate the transition from non-

supercellular to supercellular modes (Peters et al. 2020b) as

well as increase updraft width, buoyancy, and vertical velocity

(Peters et al. 2019). Thermodynamic explanations for low-level

updraft accelerations have also been offered in studies such as

Brown and Nowotarski (2019), which demonstrated that up-

ward buoyancy pressure accelerations (BPA) can exist in su-

percells below their level of free convection (LFC) despite the

presence of CIN and negative buoyancy, which could be of

importance for nocturnal supercells. Despite these studies,

however, it is not apparent which situations allow these ac-

celerations to overcome low-level stabilization during the

EET, and which do not.

Gropp and Davenport (2018) analyzed Great Plains super-

cells and their near-storm environments as they progress

through the EET. Using RUC and RAP proximity soundings,

the authors found that large increases in SRH coupled with

minimal increases in most unstable (MU)CIN support intense

rotating updrafts, allowing supercells to persist well into the

evening hours. This agrees with previous studies that found a

greater risk of nocturnal supercell tornadoes in the presence

of increased SRH (e.g., Davies and Fischer 2009) and reduced

low-level static stability (e.g., Mead and Thompson 2011)

associated with local moisture increases. This SRH relation-

ship could again be a consequence of increased low-level SR

flow (Peters et al. 2019, 2020b). Nevertheless, not all noc-

turnal tornadoes are supercellular, nor are they confined to

the Great Plains. Previous studies of quasi-linear convective

systems (QLCS) and their associated hazards (e.g., Trapp

et al. 2005; Ashley et al. 2019) as well as the nocturnal tor-

nado climatology of Kis and Straka (2010) have noted a

nocturnal maximum in QLCS tornadoes, though the design

and precision of their respective QLCS classification

methods vary. Such studies specifically noted that Southeast

(SE) events comprise an appreciable fraction of the noc-

turnal and/or QLCS tornado climatologies. These insights,

combined with both preexisting and projected vulnerability

to SE tornado hazards due to mobile home density, increased

poverty rates, population increases, and expanding exurbia

footprints (e.g., Simmons and Sutter 2007; Ashley et al. 2008;

Strader et al. 2017), have given way to increased research focus

on SE U.S. tornadoes.

The aforementioned body of research has noted several

characteristics common to SE storms and near-storm envi-

ronments, including a skew toward cool season months and

their nocturnal persistence, characterized by strongly sheared

environments with limited buoyancy—termed high-shear, low-

CAPE, or HSLC environments (e.g., Guyer and Dean 2010;

Sherburn and Parker 2014; Sherburn et al. 2016; Anderson-

Frey et al. 2019; Brown and Nowotarski 2020). Even the

forcing of relevant atmospheric features like LLJs differ for the

Southeast. For instance, Great Plains LLJs are influenced by

the region’s sloped terrain, whose associated thermal wind

reversal in evening hours leads to a geostrophic windmaximum

above the surface (e.g., Holton 1967) which can enhance pre-

existing NLLJs driven by nocturnal decoupling. This sloping

terrain influence is diminished in the Southeast, and the

strength of LLJs is instead perhaps modulated by ageostrophic

jet streak circulations associated with midlatitude cyclones

(Uccellini and Johnson 1979). Furthermore, Southeast LLJs

and their attendant moisture transport can be enhanced by

flow over the Intra-Americas Sea (IAS; Rasmusson 1967).

Sometimes referred to as the IAS-LLJ, this feature has been

shown to influence precipitation and tornadoes across the

Southeast (Muñoz and Enfield 2011).

Regarding predictability, Brown and Nowotarski (2020)

demonstrated that climate-scale variability (e.g., Arctic

Oscillation) can modulate SE synoptic patterns in ways that

make them more favorable for tornado outbreaks, and even

contribute to the formation of HSLC environments. On the

storm-scale, however, HSLC tornadoes can bemore difficult to

predict than HSHC tornadoes (Dean and Schneider 2008;

Dean and Schneider 2012; Anderson-Frey et al. 2019), and

their increased nocturnal frequency poses enhanced risk to the

public (e.g., Ashley et al. 2008). These factors provide both

scientific and societal impetus to improve our physical under-

standing of how HSLC storm environments respond to and

evolve across the EET, and what consequences these changes

have for nocturnal tornadogenesis.

While some of these studies have considered diurnal varia-

tion in tornado characteristics, none to our knowledge have

specifically examined how the changes in CAPE, shear, SRH,

and CIN that occur during the EET influence the characteris-

tics of subsequent tornadoes. One of the few studies we are

aware of that has directly addressed the predictability of SE

tornadoes occurring in the vicinity of the EET is Bunker et al.

(2019), which found that effective-inflow layer quantities are

more skillful nocturnal tornado predictors than fixed-layer

quantities. The reason for this added skill of effective-inflow

layer quantities is unclear, however, as is the matter of whether

this skill is retained in low-CAPE environments. In other

words, it is possible that the factors that help facilitate torna-

dogenesis in low-CAPE environments differ from those rele-

vant in high-CAPE environments. Understanding how the

atmospheric features discussed thus far evolve in time and in

different background environments is crucial to assess the net

effect of the EET on tornadogenesis potential. Based on this

knowledge gap, this study addresses the following questions:
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1) How do CAPE, shear, SRH, and CIN change during the

EET in Southeast storm environments, and does this evo-

lution depend on the amount of CAPE present before the

EET (e.g., high CAPE versus low CAPE)?

2) If EET evolution is CAPE-dependent, what impact do

these differing evolution pathways have on the frequency

and storm mode of subsequent tornadoes?

3) What environmental variables best discriminate between

SE tornadic (or significantly tornadic) and nontornadic

storms, and does their predictive skill vary as a function

of background CAPE and/or storm mode?

4) Can existing forecast guidance metrics, such as STP,

be adapted to better predict SE tornadoes using these

variables?

Using a tornado event database [originally developed by

Smith et al. 2012] spanning 2003–18, we seek to identify SE

tornadic events spanning the EET and characterize the CAPE

and deep-layer shear of their near-storm environments prior to

the EET. We will then analyze how these near-storm envi-

ronments and the characteristics of their attendant convection

evolve across the EET as a function of their CAPE and shear

classifications. The next section details the severe weather re-

port database and environmental data utilized in this study, as

well the rationale for case selection and temporal binning.

Section 3 reports on the results of our analyses, including the

temporal characteristics of the SE tornado climatology, the

evolution of the near-storm environment and associated storm

and tornado characteristics, and the predictability of these

tornadoes using proximity sounding–derived quantities.

Finally, section 4 discusses the implications of these findings

within the broader scope of the literature, as well as future

research directions relevant to the study at hand.

2. Data and methods

The storm reports utilized in this study are from the updated

version of the dataset originally developed in Smith et al.

(2012), as used in Anderson-Frey et al. (2019), appended with

all 2018 events. This tornado event dataset is developed by

mapping county tornado segment data onto a 403 40 km2 grid,

and filtering such that the highest (E)F-scale rating is retained

in every given hour and grid box. Severe wind or hail reports

corresponding to grid hours with no tornadoes are used to

characterize nontornadic environments.1 Environmental data

are matched with each report using the closest data grid point

from the SPC hourly mesoanalysis grids (Bothwell et al. 2002),

the basis of which are the Rapid Update Cycle (RUC;

Benjamin et al. 2004) or Rapid Refresh Model (RAP;

Benjamin et al. 2016), using the same 40-km grid spacing as the

grid-hour report filtering described previously. Furthermore,

the models assimilate rawinsonde, profiler, radar, lightning,

and other data (Benjamin et al. 2016, their Table 3). Profiles of

temperature, moisture, and wind above the ground were based

on the RUC model through April 2012, and the RAP model

beginning in May 2012, with data every 25 hPa in the vertical.

The SHARPpy sounding analysis software (Blumberg et al.

2017) was used for all parameter calculations for the SPC

mesoanalysis sounding profiles matched to each grid-hour

tornado or severe-storm event. As with any model output,

this dataset carries its own limitations and biases, the details of

which are discussed extensively in Thompson et al. (2012) and

Anderson-Frey et al. (2016). Limitations relevant to this

study—particularly grid spacing—are discussed in later

sections.

Radar data and a convective mode decision tree (Fig. 2 in

Smith et al. 2012) are then used to manually classify convective

mode. As noted in previous literature, the majority of resulting

modes such as QLCS and right-moving supercell (RMS) are

mutually exclusive, though some overlap is allowed with clas-

sifications such as tropical cyclone (TC). Similar to Brown and

Nowotarski (2020), all reports associated with TCs are re-

moved, as TC tornado environments are beyond the scope of

this study. The remaining storm modes are consolidated into

three broad categories—supercell (including all isolated su-

percells and supercell in line features), QLCS (including all

QLCS, bow echo, and nonsupercellular cell in line structures),

and disorganized (all nonsupercellular clusters, cells, and any

combinations thereof). Additionally, tornadoes with rating

F/EF0–1 are considered weakly tornadic, and F/EF21 con-

sidered significantly tornadic.2 The same domain defined in

Anderson-Frey et al. (2019), consisting of Alabama, Arkansas,

Georgia, Kentucky, Louisiana, Mississippi, and Tennessee, is

used for consistency with previous literature.

To isolate storm environments likely impacted by the EET,

local sunset (SS) time is computed for each storm report based

on its location and time of year, and rounded to the nearest

hour. Each storm report time is similarly rounded, and then

arranged into hourly bins relative to its associated SS. TheEET

is defined following past studies of this time of day, such as

Anderson-Frey et al. (2019), spanning 62 h off local SS time.

The four hours immediately prior to and after this transition

(i.e., from SS 2 6 to SS 2 3, and from SS 1 3 to SS 1 6) con-

stitute the pre- and post-transition periods, respectively. By

focusing our analyses on this 66-h window centered on local

SS, we can specifically analyze the environmental changes in-

troduced by the EET, and limit potential overlap of severe

convection persisting into subsequent days.

We also seek to classify background CAPE/shear to assess

potential influence on environmental changes across the EET.

Numerous classification methods have been implemented in

the literature. For the purposes of this study, we have chosen a

1 Significant wind and hail reports are obtained using conven-

tional definitions for 2003–12. Wind and hail reports from 2014 to

2015 were obtained as part of Thompson et al. (2017), which em-

ploys an additional effective bulk shear criterion of 40 kt (1 kt ’
0.51m s21). Nontornadic cases are not included for 2013 and 2016–

18. Analyses were recomputed for only 2003–12 reports to test

sensitivity to these varying classifications, and results largely re-

mained unchanged.

2 These cutoffs are chosen for consistency with numerous other

studies in the literature. The suitability of these cutoffs for the SE

tornado climatology is examined in section 4.
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blend of two common methods in which a 0–6-km bulk wind

difference (SHR6) of $18m s21 is used to denote high-shear.

Low-shear conditions are not examined as they correspond to

only 10% of all SE tornadoes, consistent with the SHR6 dis-

tributions of Thompson et al. (2013). Low-CAPE is defined as

an environment with surface-based (SB)CAPE# 500 J kg21 as

well as MUCAPE # 1000 J kg21 (as in Sherburn and Parker

2014), while high-CAPE requires mixed-layer (ML)CAPE $

1000 J kg21 (e.g., the complement of the method used in

Anderson-Frey et al. 2019). This approach gives two mutually

exclusive CAPE/shear categories (HSHC and HSLC) and will

assist in determining how aspects of the near-storm environ-

ment relevant to tornadogenesis change as a function of

buoyancy.

3. Results

a. Diurnal tornado distributions

The criteria described above yield 9250 severe events

spanning 1448 individual days (1200–1200 UTC periods) in our

prescribed domain and study period. Limiting our scope to the

three periods defined earlier (pre-transition, EET, and post-

transition), there are 7052 severe events spanning 1258 unique

EET periods (66 h from local SS). Of these reports, 2796

(39.6%) are significant wind (sigwind), 1105 (15.7%) are

significant hail (sighail), 2518 (35.7%) are weak tornadoes

(weaktor), and 633 (9.0%) are significant tornadoes (sigtor).

These 3151 tornadoes represent over 70% of all SE tornado

reports, further underscoring the need to understand the en-

vironmental changes induced during the EET.

Before we consider environmental evolution, however, we

must examine the temporal distribution of SE tornadoes.

Figure 1a shows the diurnal cycle of SE tornadoes (in light

blue) and sigtors (in black) during the pre-transition, EET, and

post-transition periods (marked in dotted black). Tornadoes

show a broad bell curve skewed slightly toward pre-SS hours,

peaking one hour prior to sunset. Sigtors peak at this same

hour, but show less diurnal variability overall such that sigtors

account for a larger fraction (over 25%) of post-transition

tornadoes. Figures 1b–d break down these diurnal tornado

distributions further by mode. Unsurprisingly, we see that su-

percell tornadoes and sigtors (Fig. 1b)—the predominant tor-

nadic mode in the climatology—are nearly identical to the

overall distribution, though sigtors make up an even larger

fraction of nocturnal supercell tornadoes. QLCS tor/sigtors

(Fig. 1c) are less frequent than supercell tornadoes, but still

constitute an appreciable fraction of the SE tornado climatol-

ogy. This QLCS subset exhibits almost no diurnal variation,

with tornadoes and sigtors occurring somewhat equally

through the EET. Disorganized tornadoes (Fig. 1d) differ en-

tirely in that they are largely confined to daytime hours and

contain no sigtors, as might be expected for this convective

FIG. 1. Diurnal cycle of tornadoes (in light blue) and sigtors (in black) during the pre-transition, EET, and post-

transition for (a) all, (b) supercell, (c) QLCS, and (d) disorganized tornadoes, with the EET bounds delineated by

black dotted lines; the number of tornadoes in each period is shown in the top left with and number of sigtors in

parentheses.
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mode. Post-EET increases in nonsupercellular tornado counts

may be related to the theorized peak in NLLJ intensity roughly

6-h postsunset presented in the literature (Shapiro et al. 2016),

though this model applies to the Great Plains NLLJ.

b. Storm environment evolution

The near-storm environment can change quickly and sub-

stantially during the EET. For instance, afternoon HSHC

conditions may transition to evening HSLC conditions as

buoyancy decreases in response to EET cooling and stabili-

zation. Therefore, we must examine these changes and deter-

mine whether they have an impact on the frequency, timing,

and convective mode of tornadoes. To do so, we categorize

each severe convective day based on when its associated storm

reports occurred; these temporal groupings include the pre-

transition, EET, and post-transition (as defined earlier) and all

combinations thereof, resulting in seven mutually exclusive

categories. The category of days with reports in only the pre-

and post-transition periods is excluded from subsequent ana-

lyses due to substantially smaller report counts. By analyzing

the remaining categories, we can ascertain what aspects of the

near-storm environment impede or facilitate the maintenance

of severe convection across the EET.

We will first examine the days in which storms persisted

across all three of our defined periods. Interestingly, only 10%

of severe convective days in the SE climatology fall in this

category, emphasizing the unique conditions that are likely

necessary for convection to produce severe hazards through

the EET. For each day and period, we classify its general

CAPE/shear characteristics and consider how variables evolve

consequently. For instance, if the average pre-transition envi-

ronment is HSHC, how do CAPE and shear evolve conse-

quently? Alternatively, if the post-transition environment is

HSHC, how do CAPE and shear evolve earlier to arrive at that

environment? This process is carried out for both environ-

mental classifications, providing a ‘‘road map’’ of how storm

FIG. 2. Time series of average (a)–(c) SBCAPE (J kg21), (d)–(f) MLCAPE (J kg21), (g)–(i) MUCAPE (J kg21), and (j)–(l) 0–6-km

shear (m s21) based on environment in the pre-transition (Pre, column 1), early evening transition (EET, column 2), and post-transition

(Post, column 3). Gray shading corresponds with the period on which each pattern is predicated, and red and blue lines correspond to

HSHC and HSLC environmental classifications, respectively; black dotted lines mark thresholds corresponding to our CAPE classifi-

cation scheme. Filled (unfilled) data points represent statistically significant (insignificant) differences betweenHSHC andHSLCpatterns

in each period, following two-sample t tests (at the 95% confidence level).
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environments can evolve diurnally, as shown in Fig. 2. Each

figure column corresponds to the period that is being used to

determine the CAPE/shear category (i.e., column 1 graphs are

classified based on the pre-transition environment, and so on as

shaded in gray). HSHC andHSLCpatterns are displayed in red

and blue, respectively. This means, for example, that a blue line

in column 2 represents a pattern corresponding to days in

which the EET has average HSLC conditions. A two-sample t

test (at the 95% confidence level) is carried out between the

data in each period. Filled (unfilled) data points indicate when

the differences between the HSHC and HSLC patterns are

statistically significant (insignificant). The sample sizes associ-

ated with these patterns are provided in Table 1.

HSHC environments show gradual decreases in CAPE

throughout the day regardless of which period is used. HSLC

CAPE patterns, however, vary based on the constraining pe-

riod. When the pre-transition environment is HSLC (blue line

in column 1), CAPE values start low, but increase gradually

during the EET, likely due to increases in moist instability

signaled by changes in low-level equivalent potential temper-

ature ue (as computed in SHARPpy; supplemental Fig. 1a) or

other related low-level thermodynamic variables (supple-

mental Table 1). When the EET or post-transition environ-

ment is HSLC (blue line in columns 2–3, respectively), CAPE

starts at moderate values during the pre-transition, before

decreasing and remaining relatively low. Interestingly, HSLC

CAPE values remain statistically lower than HSHC values the

entire day, despite being conditioned on only one period.

Regarding SHR6, both environments exhibit sustained, high

values the entire day regardless of the constraining period, but

HSLC patterns (particularly those based on the pre-transition

and EET) maintain higher overall shear magnitudes than

HSHC. If we were to examine those environments that com-

prise the middle ground between these classifications (high

shear, moderate CAPE), we would see that their associated

CAPE/shear values understandably lie in between the HSHC

and HSLC patterns, but the shape of their patterns largely

resemble HSHC patterns.

If we consider the implications of these patterns for storm

environment, we see that HSHC environments remain almost

entirely in that environmental category, despite diurnal CAPE

decreases. In contrast, there are no mean pathways in which an

HSLC storm environment persists from the pre-transition

through to the post-transition. Rather, HSLC environments on

average are transient, evolving from or into other environ-

ments throughout the day (even all the way from HSHC

conditions). In fact, only four severe convective days in the

entire dataset maintain average HSLC conditions through all

three periods. This of course could be influenced by the coarse

spatial resolution of the environmental dataset utilized and the

CAPE/shear thresholds employed, the implications of which

are discussed later. However, these insights, combined with the

fact that these HSLC transitions occur primarily near local SS,

highlight the unique relationship between the EET and the

formation of HSLC environments.

To characterize the low-level accelerations potentially as-

sociated with the NLLJ, Fig. 3 displays 0–1-km SRH and shear

patterns (SRH1 and SHR1, respectively) following the same

approach as Fig. 2. As is expected, both of these quantities

show relatively similar patterns, with SRH1/SHR1 values

steadily increasing through and past local SS. As with SHR6,

HSLC pre-transition and EET conditions correspond to

uniformly higher SRH1/SHR1 values than HSHC patterns.

Though representing a different portion of the atmosphere,

effective layer SRH (Eff SRH) was also considered, and

showed similarly favorable SRH trends associated with HSLC

pre-transition conditions (supplemental Fig. 2a). Interestingly,

HSLC pre-transition patterns show a decrease in SRH1/SHR1

during the EET before rapid post-transition increases, perhaps

related to changes in boundary layermixing and/or stabilization.

Regardless, these observations suggest that at least some por-

tion of these storm environments coincide with the strength-

ening flow and helicity associated with an intensifying LLJ,

which may play a compensating role in buoyancy-deficient

environments.

Given studies such as Mead and Thompson (2011) and

Gropp and Davenport (2018) relating CIN to nocturnal su-

percell maintenance, Fig. 4 shows time series of SB, ML, and

MUCIN following the same environment-time classification of

Fig. 2. Regardless of the period used for classification, HSHC

CIN values generally increase in absolutemagnitude with time.

The same can be said of several HSLC CIN patterns, particu-

larly those conditioned on the post-transition environment

(column 3 in Fig. 4). Though these patterns are largely indis-

tinct from HSHC post patterns, uniformly lower downdraft

CAPE (DCAPE) values (supplemental Fig. 3c) may contrib-

ute to weaker (e.g., less negatively buoyant) outflow such that

storm updrafts are able to persist despite lower CAPE and

increasing CIN. In contrast to these HSLC Post patterns, CIN

patterns associated with pre-transition or EET HSLC condi-

tions (Figs. 4a,b,e,h) exhibit destabilization (or more gradual

stabilization) as the evening progresses, with statistically

TABLE 1. Storm report count for days with severe convection across all three temporal periods, broken down by environmental classi-

fication; total counts are provided along with counts attributed to supercell (SC) and QLCS modes.

Storm environment (period)

No. of Pre-reports

[All (SC/QLCS)]

No. of EET reports

[All (SC/QLCS)]

No. of Post-reports

[All (SC/QLCS)]

HSHC (Pre) 423 (311/80) 872 (515/258) 353 (136/190)

HSHC (EET) 344 (246/71) 754 (453/225) 313 (134/152)

HSHC (Post) 219 (184/15) 379 (261/81) 185 (86/86)

HSLC (Pre) 43 (10/32) 109 (54/43) 34 (11/22)

HSLC (EET) 83 (37/42) 168 (87/71) 108 (30/68)

HSLC (Post) 220 (124/81) 555 (331/160) 203 (54/127)
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smaller nighttime CIN magnitudes relative to HSHC patterns.

These decreases in CIN magnitude develop in tandem with

increases in low-level lapse rates (supplemental Fig. 1b), pre-

sumably driven by warm-air advection (or differential advec-

tion) often associated with NLLJs.

Clearly the near-storm environments of SE storms evolve

differently as a function of CAPE/shear characteristics, so it

should stand to reason that the frequency and convective

modes of their tornadoes do so too. To test this, we consider

both the fraction of storm reports in each period that are tor-

nadic, as well as the modal breakdown of those tornadoes,

following the same period classification as Figs. 2–4. Normalizing

by climatological fractions in each period,3 we diagnose the

percentage change in the frequency and mode of tornadoes, as

shown in Fig. 5. For instance, if climatologically 5% of all re-

ports in the pre-transition produce tornadoes, and some subset

of those reports associated with one of our environmental

classifications is comprised of 7.5% tornadoes, Fig. 5 would

display a 50% increase in the fraction of pre-transition storms

(for that classification) that produce tornadoes.

Interestingly, HSHC conditions have a limited influence on

tornado fraction, thoughHSHC post-transition conditions (red

bars in Fig. 5c) correspond to slightly increased EET and post-

transition tornado fractions likely due to overall higher CAPE

values. HSLC conditions in a given period lead to decreases in

tornado fraction during that period (i.e., pre-transition HSLC

bar in Fig. 5a, post-transitionHSLC bar in Fig. 5c), likely due to

their inherently limited instability. However, pre-transition

HSLC conditions progress with large pre to post-transition

swing toward increased tornado fraction in association with

overall higher and increasing SRH1/SHR1 values (Figs. 3a,d)

and postsunset decrease in SBCIN magnitude (Fig. 4a). If

we condition based on the high-shear, moderate-CAPE

environment discussed earlier (not shown), we see large,

uniform increases in tornado (and sigtor) fraction regardless

of the threshold period, which could imply there exists an

ideal combination of the ample instability of HSHC envi-

ronments and invigorated low-level dynamic support of

HSLC environments.

Regardingmode, HSHC conditions tend to have a small, but

generally positive effect on the prevalence of supercellular

tornadoes, particularly when the post-transition has HSHC

conditions (Fig. 5f). HSLC conditions in any period, as with

tornado fraction, facilitate a decrease in supercellular tornadoes

in that and subsequent periods (Figs. 5d–f). Conversely, these

HSLC conditions correspond to an increase in the prevalence of

QLCS tornadoes (Figs. 5g–i). If wewere to consider raw changes

relative to climatology (not shown) rather than normalized

changes, we would see that these shifts in the prevalence of su-

percell and QLCS tornadoes are nearly equal and opposite,

implying a direct trade-off between these modes as a function of

environment. It is worth noting that the relative magnitudes of

the HSHC and HSLC trends may be influenced by differing

sample sizes (also shown in Table 1), but these results still

highlight the noticeable influence that the daytime storm envi-

ronment can have on storm characteristics later that evening.

Given the modal exchanges shown in Fig. 5d-i, Figs. 6–8

present the patterns of Figs. 2–4, respectively, separated by

mode. Given reduced sample size in portions of this modal

subset, median values andMann–Whitney tests are substituted

for mean values and t tests in order to account for potential

nonnormality. Solid lines represent supercell patterns and

dashed represent QLCS patterns, and statistical testing is

performed across environments for each mode (e.g., data

FIG. 3. Time series of average (a)–(c) SRH1 (m2 s22) and (d)–(f) SHR1 (m s21), with the same line/color scheme as in Fig. 2.

3 These climatological fractions were computed across all days in

which convection persisted across all three periods.
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points on dotted lines represent statistical differences between

HSHC and HSLC QLCS patterns). Figures 6a–i shows that

CAPE patterns are generally consistent across mode, with

slightly higherCAPE values for supercells. The same can be said

of SHR6 (Figs. 6j–l), though the differences betweenHSHCand

HSLC QLCS patterns are more pronounced than they are for

supercells. This latter point is also true for SRH1/SHR1 (Fig. 7),

particularly when conditioning on the pre-transition environ-

ment (Figs. 7a,d). Also peculiar in Fig. 7a is that the HSLC Pre

pattern associated with supercells does not show the monotonic

SRH1/SHR1 increase that the QLCS pattern does, suggesting

diminished NLLJ influence and perhaps more influence of

cyclone-induced LLJs (as with the strong synoptically forced

HSLC environments in Sherburn et al. 2016). The HSLC noc-

turnal destabilization demonstrated in Fig. 4 is also apparent in

the modal CIN patterns of Fig. 8, though post-transition CIN

values are smaller in magnitude for supercells. Altogether, these

modal patterns suggest that increased low-level shear/SRH as-

sociated with HSLC conditions can be primarily attributed to

QLCS modes, which draws into question what environmental

factors are compensating for a lack of instability in HSLC su-

percell environments. Perhaps the subtle destabilization shown

in Figs. 6, 8 coupled with overall high shear values is sufficient to

sustain supercells in HSLC Pre environments.

As noted, however, it is far more likely for severe convection

not to persist through all three periods. Thus, we also consider

the evolution of environmental variables as a function of noc-

turnal persistence. For instance, do variables like CAPE evolve

differently for storms occurring only in the pre-transition rela-

tive to those which persist into subsequent periods? Figure 9

shows the hourly averaged variables examined in Figs. 2–4

along with three derived parameters associated with each

temporal period combination. The sample sizes for each tem-

poral category (summed over each of its constituent periods)

are included in Table 2. The limiting factor for storms to persist

past that pre-transition appears to be overall smaller values of

SRH/SHR variables, as with storms occurring solely in the pre-

transition period (red lines in Figs. 9d–f). Though convection

clearly can form in these environments, the favorable dynamic

forcing associated with increased shear and SRH may be

necessary for storms to survive the rapid CAPE decreases

and CIN magnitude increases of the EET. The same can be

said about storms that fail to persist past the EET (orange

and yellow lines in Figs. 9d–f), which have noticeably lower

EET SRH1/SHR1 values compared to patterns which per-

sist into the post-transition (green and black lines in

Figs. 9d–f). These EET-limited patterns also display more

rapid decreases in MLCAPE and increases in MUCIN

FIG. 4. Time series of average (a)–(c) SBCIN, (d)–(f) MLCIN, and (g)–(i) MUCIN (all in J kg21), with the same line/color scheme as

in Fig. 2.
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magnitude (Figs. 9b,i, respectively). Conversely, days in which

convection spans all three periods (black lines) exhibit sus-

tained higher values of shear and SRH paired with more

gradual changes in CAPE and CIN. These differences manifest

themselves in the evolution of common derived metrics, in-

cluding supercell composite parameter (SCP; Thompson et al.

2012), the original STP formulation (STP-T03; Thompson et al.

2003) and effective layer STP (STP-E; Thompson et al. 2012),

as shown in Figs. 9j–l. Of the derived metrics utilized in this

study (as summarized later), STP-T03 shows the largest spread

numerically between the different temporal periods for STP

parameters, as does SCP for non-STP parameters.

We then ask whether the environmental variability in Fig. 9

influences the prevalence and characteristics of tornadoes

among the analyzed temporal categories. To this end, Fig. 10

shows the period-wide tornado characteristics for the storms

contributing to the patterns in Fig. 9, following the same color

scheme. These include the fraction of all storms in each period

(as indicated in Table 2) producing tornadoes (Fig. 10a) and

sigtors (Fig. 10b), as well as the convective mode (Figs. 10c–d)

and environment (Figs. 10e–f) of these tornadoes. This means,

for example, that the yellow circle in Fig. 10a corresponds to

the fraction of storms contributing to the yellow lines in Fig. 9

that produced a tornado. From Figs. 10a–b, we see that the

highest tor and sigtor percentages occur in those categories

involving the EET and/or the post-transition, possibly related

to overall higher 0–1-km shear and SRH values maintained on

these days. For storm mode (Figs. 10c–d), the majority of

tornadoes occur in supercells, regardless of category or period.

Regarding environment, Fig. 10e shows that the two categories

spanning both the EET and post-transition (EET and Post, and

All Periods) have noticeably higher HSHC fractions, consis-

tent with the CAPE patterns presented thus far. Additionally,

the prevalence of HSLC tornadoes gradually increases as the

day progresses (Fig. 10f), along with an increase in QLCS

tornado percentage, as suggested by the tornado diurnal cycles

FIG. 5. Bar plots displaying the percent change (relative to climatological average fraction in each period) of (a)–(c) fraction of storms

producing tornadoes and the fraction of those tornadoes occurring within (d)–(f) supercells and (g)–(i) QLCS modes, with the same time

classification and color scheme as in Fig. 2.
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in Fig. 1. The same general trends hold true for sigtors (not

shown), though understandably an increased skew toward HSHC

and supercell classifications exist for this subset of tornadoes.

c. Storm environment and tornado predictability

The factors contributing to tornadogenesis in high-CAPE

(particularly HSHC) environments have been thoroughly ex-

plored in the literature, but less in low-CAPE environments.

As such, we seek to identify environmental variables that ef-

fectively discriminate between tornadic (or significantly tor-

nadic) and nontornadic storms in HSLC environments and

compare them to HSHC predictors. There are a number of

potential physical pathways by which HSLC environments

may be able to sustain robust low-level updrafts and support

tornadogenesis. From a thermodynamic perspective, previous

HSLC studies (e.g., Sherburn and Parker 2014; Sherburn

et al. 2016) have demonstrated that increased low-level (e.g.,

0–1, 0–3 km) lapse rates help sustain HSLC convection by

invigorating low-level buoyant accelerations, and therefore

contribute to their longevity and ability to develop intense

near-surface vortices (Sherburn and Parker 2019). Similar

consequences may result from an accumulation of low-level

instability such as 0–3-km CAPE (Sherburn et al. 2016), or

less negatively buoyant outflow (e.g., Markowski et al. 2002;

FIG. 6. Time series ofmedian (a)–(c) SBCAPE (J kg21), (d)–(f)MLCAPE (J kg21), (g)–(i)MUCAPE (J kg21), and (j)–(l) 0–6-km shear

(m s21), with the same time classification and color scheme as in Fig. 2, but now broken down by convectivemode (solid lines for supercell,

or SC, patterns and dotted lines for QLCS patterns). Filled (unfilled) data points represent statistically significant (insignificant) differ-

ences between modal HSHC and HSLC patterns in each period, following Mann–Whitney U tests (at the 95% confidence level).
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Shabbott and Markowski 2006; Brown and Nowotarski 2019).

Alternatively, increased low-level shear and SRH in the pres-

ence of a low-level mesocyclone can result in dynamically en-

hanced vertical accelerations (e.g., Coffer and Parker 2015;

Sherburn and Parker 2019), which dominate the production of

intense low-level vertical velocities in CAPE-deficient storms

(Wade and Parker 2021). Also relevant for low-level updraft

maintenance are the storm’s effective inflow layer (EIL)

FIG. 7. Time series of median (a)–(c) SRH1 (m2 s22) and (d)–(f) SHR1 (m s21), with the same line/color scheme as in Fig. 6.

FIG. 8. Time series of median (a)–(c) SBCIN, (d)–(f) MLCIN, and (g)–(i) MUCIN (all in J kg21), with the same line/color scheme as in Fig. 6.
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characteristics and low-level SR flow that could influence the

thermodynamic and kinematic characteristics of these updrafts.

The raw variables used to characterize the near-storm en-

vironments of the analyzed storms are shown in supplemental

Table 2 (Peters et al. 2020a).4 A number of preexisting derived

metrics were also considered, including STP-T03, fixed-layer STP

as defined in SHARPpy (STP-F; Blumberg et al. 2017), STP-F

appended with an SBCIN scaling term (STP-FCIN), STP-E, and

effective layer STP with 0–500-m SRH (STP500; Coffer et al.

2019). An alternate version of STP500 is also tested (denoted

STP500*), in which the EIL base criteria is loosened such that

the metric is only set to zero if the majority of the EIL lies outside

the 0–500m layer (i.e., effective inflowbase, orEff Base. 250m).

Also tested were the Craven–Brooks significant severe pa-

rameter (Sig-Sev; Craven et al. 2004), energy helicity index

utilizing MLCAPE and SRH3 (EHI; Hart and Korotky 1991),

enhanced stretching potential (ESP; Blumberg et al. 2017),

FIG. 9. Time series of average hourly (a)–(c) SB/ML/MUCAPE (J kg21); (d) 0–6-kmSHR (m s21); (e) 0–1-kmSRH (m2 s22); (f) 0–1-km

SHR (m s21); (g)–(i) SB/ML/MUCIN (J kg21); and (j)–(k) SCP, STP-T03, and STP-E (all unitless), respectively, corresponding to each of

the analyzed temporal categories. A 2-h moving average is applied to smooth the hourly mean data.

4 Storm-relative (SR) flow for categories including supercells

are computed using Bunkers right mover storm motion vector

(Bunkers et al. 2000), whereas QLCS-specific categories use

Corfidi downshear vector (Corfidi 2003). SRH, however, is uni-

formly computed relative to the Bunkers RM vector.
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SCP, CIN-scaled SCP (CSCP; Gropp and Davenport 2018),

SHERBE and SHERBS3 (Sherburn and Parker 2014), and

theta-E index (TEI) to diagnose potential instability (Blumberg

et al. 2017). It is worth noting that the primary purpose of these

non-STP parameters is not to distinguish between nontornadic

and tornadic environments, so comparisons with STP param-

eters must be taken with that consideration in mind.

To assess the skill of each variable in distinguishing between

tor/sigtor and nontor events, the true skill statistic (TSS; Wilks

2011) is computed over a range of thresholds, following

TSS5
ad2bc

(a1 c)(b1d)
, (1)

where a represents the sum of correct tor/sigtor forecasts, b

represents the sum of incorrect tor/sigtor forecasts, c repre-

sents the sum of correct nontor forecasts, and d represents the

sum of incorrect nontor forecasts. A more detailed description

of this process is shown in Fig. 11. Given that TSS calculations

are prone to ‘‘hedging’’ when used to predict too rare of events

(Doswell et al. 1990), categories are only considered if their

nonevent to event ratio (i.e., nontor to tor/sigtor) does not

TABLE 2. Storm report count for each mutually exclusive tem-

poral category (e.g., Pre, EET, Post, and combinations thereof) in

each of their associated periods.

Day

classification

No. of

reports (Pre)

No. or

reports (EET)

No. of

reports (Post)

Pre only 499 — —

Pre and EET 993 682 —

EET only — 751 —

EET and post — 538 409

Post only — — 171

All periods 805 1523 616

FIG. 10. Breakdown of (a),(b) tornado and significant tornado report percentages, as well as the fraction of those tornadoes that were

(c) supercellular, (d) QLCS, (e) HSHC, or (f) HSLC in each of the temporal categories in Fig. 9; the overall report counts associated with

each temporal category (and associated periods) can be found in Table 1.
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exceed 10:1. Heidke skill scores (Wilks 2011) were also com-

puted, and similar predictors were identified, albeit with lower

skill scores.

Table 3 contains the highest raw and derived-variable TSS

magnitudes associated with HSHC and HSLC tor environ-

ments and their predominant modes, and associated variable

thresholds. Bolded values indicate a variable whose maximum

TSS value was negative, implying that there is maximized skill

for values less than the provided threshold. In general, HSLC

TSS values are uniformly lower than HSHC values, consistent

with previous studies (e.g., Anderson-Frey et al. 2019) noting

the decreased predictability of HSLC tornadoes (relative to

HSHC tornadoes). This lack of predictability is most evident

for HSLC QLCS tornadoes. SRH1 shows the most skill of the

tested SHR and SRH quantities across almost all categories,

while SB/MLLCL shows the most consistent skill among

thermodynamic variables. The remaining HSHC predictors

mostly comprise other low-level dynamic variables, whereas

HSLC categories contain a number of thermodynamic variables

including precipitable water (PW) and DCAPE (and perhaps

700–500-hPa lapse rate, LR75, by extension)—consistent with

earlier discussion regarding HSLC Post storm environments

(supplemental Fig. 3). HSLC supercells are specifically pre-

dicted by both SBCAPE and 0–3-km CAPE (3CAPE) as well

as Eff Base, while HSLCQLCSs are predicted by Eff/MLCIN.

Regarding derived variables, STP-T03 is the best tornadic

discriminator across all HSHC categories, as well as for HSLC

QLCS, with other STP parameters (viz., STP-E and STP500)

and SCP also showing consistent skill. Fixed-layer STP quan-

tities, especially STP-FCIN, are useful HSLC predictors, per-

haps due to the HSLC CIN patterns presented earlier (Fig. 4).

Table 4 contains the same information as Table 3, but

instead distinguishing between sigtor and nontor environ-

ments. Nearly all categories, regardless of environment, show

0–500m, 0–1 km, 0–3 km, and effective-layer shear and SRH as

valuable sigtor predictors. Deep-layer shear (SHR6) and 0–

1-km SR flow only show predictive strength for HSHC envi-

ronments, while SBCAPE, Eff Base, and PW show unique skill

across both HSLC categories. In terms of modal patterns,

0–500-m quantities take on greater relative importance for

supercells (compared to overall categories) and increased 0–

1-km lapse rate (LR1) shows specific skill for HSLC supercells.

Similar to the tor results, STP-T03 is generally the most skillful

derived metric, with STP-F also providing skill for HSLC su-

percells. These results highlight that traditional STP metrics

still have forecasting value for the Southeast, even in HSLC

environments. That being said, their most skillful values are

below standard guidance (i.e., STP; 1), as previously noted in

Sherburn and Parker (2014). For both tor and sigtor (partic-

ularly HSLC categories), STP500* outscores the original

STP500 formulation, possibly due to the fact that while lower

Eff Base is a tornadic predictor, this within itself impliesEffBase

values greater than zero. Furthermore, while SHERBE and

SHERBS3 have superior skill discriminating between significant

severe and nonsevere HSLC environments (their intended

purpose), they do not improve on STP metrics in distinguishing

between HSLC tor/sigtor and nontor environments.

Comparing Tables 3 and 4, we see a shift from more ther-

modynamic tor predictors to more kinematic sigtor predictors,

with HSHC sigtor predictors comprised entirely of deep-layer

and low-level shear and SRH quantities. HSLC sigtor cate-

gories still maintain some of the thermodynamic predictors

from Table 3, such as PW, SBCAPE, and Eff Base, but low-

level shear and SRH quantities have now superseded these

variables in predictive skill. Overall, TSS scores for sigtor

predictors are higher than those of the tor predictors, as ex-

pected given that the tor category includes environments of

weak (i.e., F/EF0–1) tornadoes, which have been shown to

more strongly resemble nontornadic environments (Thompson

et al. 2003). Both the HSHC and HSLC subsets of QLCS sig-

tors are not shown since they violate the event ratio criteria

discussed earlier, but they share the same general predictors as

theQLCS results in Table 3with a skew toward SRHquantities

(especially SRH3 and Eff SRH). Despite the overall im-

provements in sigtor prediction using SRH500 in Coffer et al.

(2019), only HSLC supercell shows SRH500 as the highest

ranked SRH variable. Moreover, the original formulation of

STP500 only shows enhanced skill in HSHC environments, and

is outperformed by the alternate formulation in every pre-

sented tor/sigtor category. If we consider the thresholds of the

presented variables, we see that for both tor and sigtor envi-

ronments nearly all shear and SRH quantities show noticeably

higher thresholds for HSLC categories (relative to HSHC

categories), again highlighting the importance of low-level

dynamic support for HSLC tornadogenesis. This is particu-

larly intriguing for Eff SRH, given that the low CAPE con-

straint corresponds to shallower EILs and lower equilibrium

level heights, which would act to reduce Eff SRH (all else held

constant).

We also considered the TSS results for a given mode and/or

environment across each temporal period (supplemental

Tables 3–7), in order to see if the variables relevant to

FIG. 11. Sample TSS curve (corresponding to SRH1 for HSLC

sigtors, with threshold values inm2 s22), with explanation of the

procedure used to determine the optimal variable threshold and

associated metrics. Note, the performance metrics discussed are

computed using the terms in Eq. (1) corresponding to the maxi-

mum TSS.
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tornadogenesis change as a function of time (e.g., thermody-

namic variables become more relevant as environmental

CAPE decreases). However, the interpretation of these results

is made difficult by the diurnal CAPE and shear trends shown

earlier (Figs. 2–9) and associated changes in environment and

mode (Figs. 10c–f). For instance, if we consider the evolution of

predictors, they resemble supercell/HSHC predictors in the

pre-transition, but look increasingly like HSLC/QLCS pre-

dictors by the post-transition. Classifying further by time, en-

vironment, and mode, though scientifically interesting, limits

sample size such that TSS results become dubious. Therefore,

it is best to only consider the environment-mode combinations

presented, with the foreknowledge that they inherently carry

some temporal information.

The final question that remains is whether the prediction of

SE tornadoes can be advanced by way of these TSS results. To

this end, we construct a number of new STP parameters for

each of the four categories shown in Table 4, as well as QLCS

tornado parameters (since no QLCS sigtor categories met our

event ratio criteria). As we are not partitioning our data into

separate training and verification subsets, fivefold cross vali-

dation5 is performed to ensure that the initial TSS results are

not simply a by-product of this particular dataset, and can in-

stead generalize to other tested datasets (in this case, sub-

samples of the original data). This process is accomplished by

randomly sampling 80% of the reports for a given category,

computing associated TSS and threshold values, and con-

structing the parameter using the most skillful variables.

Correlation analysis is performed on the variables considered

for each parameter to ensure they are independent, with the

exception of low-level SRH and deep-layer shear. Note that

CAPE variables largely do not appear in these new parameters

as a result of already partitioning between low and high CAPE.

If the top ranked variables change between folds (i.e., a dif-

ferent SRH quantity ranks highest), they are also tested, and

the more skillful variable is retained. These variables are then

normalized using optimal thresholds motivated by the TSS

analysis, such that parameter values $ 1 represent increased

likelihood of their associated hazard. This parameter is then

tested on the remaining 20% of the reports for each fold to

determine its performance metrics. Both the training and

testing report subsets associated with each fold are required to

meet the established event ratio criteria.

Following the design of previous STP metrics, such as STP-

T03 and STP-E, all deep-layer shear terms (e.g., SHR6, Eff

SHR) in the resultant parameters are capped at a value of 1.5.6

Also following the treatment of LCL and CIN terms in previ-

ous STP metrics, all thermodynamic terms are capped at a

value of 1 and negative values are set to 0 (unless otherwise

stated). The HSHC parameter is as follows:

STP(HSHC)5
SRH1

250m2 s22
3

SHR6

27:5m s21
3
15002SBLCL

1000m

3
15002DCAPE

750 J kg21
. (2)

The HSHC supercell (SC) version of this STP is similar,

except the DCAPE term is removed and the SRH1 and SHR6

thresholds are adjusted to 225m2 s22 and 30m s21, respec-

tively. The HSLC STP parameter substitutes Eff SHR for

SHR6 and adds SBCAPE and PW terms, as follows7:

TABLE 4. As in Table 3, but for sigtor predictors.

HSHC HSLC HSHC supercell HSLC supercell

Environmental sigtor predictors

SRH1 0.576 (247.2) SRH1 0.31 (329.2) SRH1 0.562 (243.3) SRH500 0.358 (198.4)

SRH3 0.546 (324.1) Eff SHR 0.306 (23.4) SHR1 0.538 (14.7) SRH1 0.348 (329.2)

SHR1 0.537 (14.7) SRH500 0.292 (211.6) SRH500 0.521 (171) SHR1 0.348 (19.6)

Eff SRH 0.534 (286.1) SHR1 0.284 (19.6) SHR500 0.513 (10.5) SHR500 0.295 (13.4)

SRH500 0.528 (174.7) SRH3 0.277 (415.3) SRH3 0.502 (324.3) Eff SRH 0.279 (365.5)

SHR500 0.48 (10.5) Eff SRH 0.273 (315.5) Eff SRH 0.499 (286.3) SRH3 0.276 (372.3)

SR500 0.456 (16.2) SBCAPE 0.24 (154.4) SR500 0.406 (16.2) Eff Base 0.267 (276.8)

SHR3 0.443 (21) SHR500 0.232 (13.4) SHR3 0.388 (23.2) SBCAPE 0.264 (80.7)

SHR6 0.392 (26.9) Eff Base 0.229 (41.7) SHR6 0.344 (29.2) LR1 0.253 (3.9)

SR1 0.39 (14) PW 0.222 (1.4) SR1 0.34 (14) PW 0.252 (1.4)

Derived sigtor predictors

STP-T03 0.597 (4.4) STP-T03 0.357 (0.9) STP-T03 0.57 (4.2) STP-F 0.399 (0.2)

STP500* 0.507 (2.7) STP500* 0.344 (0.4) STP500* 0.476 (2.7) STP500* 0.394 (0.4)

STP-E 0.504 (2.3) STP-F 0.337 (0.3) STP500 0.458 (2.6) STP-FCIN 0.376 (0.1)

SCP 0.5 (13.2) STP-FCIN 0.337 (0.1) SCP 0.451 (13.2) STP-T03 0.35 (0.8)

STP500 0.495 (2.6) EHI 0.286 (0.4) CSCP 0.443 (13.2) EHI 0.321 (0.7)

5 The 10-fold cross validation was also tested. The resulting

variable rankings were virtually identical to those identified with

fivefolds, but the limited size of the testing dataset led to large

variability in the performance of themetrics constructed with these

rankings.

6 Note that there is no explicit lower bound for this shear term,

since our CAPE/shear classification implicitly sets a lower bound.
7 The SBCAPE term is capped at 2.
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STP(HSLC)5
SRH1

325m2 s22
3
Eff SHR

25m s21
3

SBCAPE

150 J kg21
3

PW

1:4 g kg21
.

(3)

The HSLC SC STP substitutes SRH500 for SRH1 and re-

places SBCAPE with Eff Base, simplifying as follows8:

STP(HSLC SC)5
SRH500

200m2 s22
3

5002Eff Base

250m
3

PW

1:4 g kg21
.

(4)

The construction of the HSHC and HSLC QLCS tor pa-

rameters (HSHC-Q and HSLC-Q, respectively) was less

straightforward, given the inherently decreased predictability

of these phenomena, with few variables providing consistently

high skill. For HSHC-Q, a simple combination of SRH1 and

and MLLCL proved most skillful, as follows:

HSHC2Q5
SRH1

275m2 s22
3
20002MLLCL

1400m
. (5)

HSLC-Q retains the LCL term (with adjusted thresholds),

but adds PW and DCAPE,9 as follows:

HSLC2Q5
16002MLLCL

1000m
3
12002DCAPE

800 J kg21
3

PW

1:4 g kg21
.

(6)

Figure 12 shows the performance diagram (Roebber 2009)

containing the POD and success ratio (1 2 FAR) corre-

sponding to these new metrics, as well as the top preexisting

metrics for each of the analyzed categories (as shown in

Tables 3–4). Comparisons between the TSS values, area under

curve (AUC) values associated with the receiver operating

characteristic (ROC; Mason 1982) curves, and probability of

false detection (POFD) for these metrics are also included.

The new HSHC STP metrics show minimal improvement over

STP-T03, which is not entirely surprising given that most ex-

isting STP metrics have been formulated with this sort of en-

vironment (e.g., ample instability and shear) in mind. HSLC

STP shows marked improvement, with both increases in POD,

success ratio and TSS, and decreases in POFD. Both QLCS

parameters show increases in POD (and by extension, TSS),

though no appreciable change in success ratio.

4. Discussion and conclusions

a. Summary of results

Now that we have examined the evolution of SE nocturnal

storm environments and the predictability of their tornadoes,

we will revisit the questions we set out to address within the

context of the literature. The first of these was simply: how do

FIG. 12. (a) Performance diagram for the most skillful preexisting metrics for each analyzed category from

Tables 2–3 (in black) and the new STP and QLCS Tor metrics (in red). The displayed values of probability of

detection (POD) and success ratio are those associated with the maximum TSS values for each metric. Forecast

bias is shown in dashed gray lines, and critical success index (CSI) is shown in light blue lines. Note that the y axis

begins at a POD of 0.5 to highlight differences between metrics; also shown are comparisons of (b) true skill

statistic (TSS), (c) area under curve (AUC), and (d) probability of false detection (POFD) for the presented

metrics.

8 The Eff Base term is set to zero for Eff Base. 250m, as in our

formulation of STP500*.
9 All thermodynamic terms in both HSHC-Q and HSLC-Q are

capped at a value of 1.
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storm environments evolve across the EET? When severe

convection persists across the EET, its associated environment

typically displays a gradual decrease in CAPE (Fig. 2a–i) and

an increase in static stability (Fig. 4), accompanied by increases

in low-level shear and SRH (Fig. 3). However, the shape and

magnitude of these trends can vary as a function of the average

CAPE/shear characteristics in the near-storm environment.

When the pre-transition or EET environments exhibit HSLC

conditions, associated storm environments tend to exhibit

larger deep-layer shear and low-level shear/SRH values for

the remainder of the day relative to HSHC environments.

Furthermore, many of these HSLC environments actually

destabilize as the evening progresses, which along with asso-

ciated CAPE increases resemble the evolution detailed inKing

et al. (2017). These CAPE increases and CIN magnitude de-

creases are strongly correlated with increases in low-level ue
and LR1 (supplemental Fig. 1), respectively, which underscore

the importance of low-level warm air and/or differential ad-

vection (as in King et al. 2017) and steepened low-level lapse

rates (as in Sherburn and Parker 2014) for HSLC storm

maintenance. The sum total of these factors likely plays a

compensatory role given reduced instability, allowing HSLC

convection to persist and produce hazards well into the

evening. However, some of these compensating factors were

primarily attributed to QLCS modes (Figs. 6–8), such that

the factors contributing to HSLC supercell maintenance are

less clear.

We also explored how environmental variables evolve when

severe convection fails to persist into and past the EET to

determine what factors potentially govern nocturnal storm

maintenance. Days in which severe convection persisted into

and through the EET show initially larger shear and SRH

values (Figs. 9d–f), as well as slower decreases in CAPE

(Figs. 9a–c) and slower increases in CINmagnitude (Figs. 9g–i,

particularly ML/MUCIN) across the EET. These results share

some similarities with the findings of Gropp and Davenport

(2018) (cf. their Fig. 9), suggesting that these observations re-

garding nocturnal stormmaintenance may hold true in a broader

sense for different storm modes and geographical regions.

Our next question asked whether the presented environ-

mental evolution can influence the prevalence and convective

mode of tornadoes. HSLC pre-transition conditions were

found to initially suppress tornadoes, but increase the preva-

lence of tornadoes later in the day (Fig. 5a), possibly in re-

sponse to associated SRH and CIN patterns. With respect to

mode, HSHC conditions generally favor supercellular torna-

does, while HSLC conditions in a given period increasingly

favor the prevalence of QLCS tornadoes later that day

(Figs. 5d–f). Similar results hold true even when severe con-

vection fails to persist through the EET, with an uptick in

HSLC and QLCS tornadoes into the evening hours (Figs. 10c–

f). These findings highlight that CAPE/shear characteristics

in a given period can influence the tornado characteristics not

only then, but also during subsequent periods.

We then examined which near-storm environment variables

most effectively discriminate between tor/sigtor and nontor

storm environments. Regardless of environment or mode, low-

level shear/SRH quantities (and by extension, SR flow) are

consistently skillful predictors for tor/sigtor (Tables 3–4, re-

spectively), as expected. HSLC tornadoes are specifically

predicted by moisture-related variables, including increased

PW and decreased DCAPE. The former indicates an increase

in local moisture, which has been shown in studies such as

Mead and Thompson (2011) to preclude the formation of near-

surface stable layers via advection of higher ue air by the LLJ

(as in Maddox 1983). This slowed CIN development—perhaps

related to the presented destabilization of HSLC environments

(Figs. 4a,b)—would facilitate storm maintenance into evening

hours (Gropp and Davenport 2018), thus increasing the likeli-

hood of nocturnal tornadogenesis (Mead and Thompson 2011).

Interpretation of the latter, DCAPE, is less straightforward.

Decreased DCAPE may be related to reduced evaporation

(perhaps aided by the local moisture enhancements discussed

earlier) and less negatively buoyant outflow, though we must

be careful drawing direct comparison between the two due to

entrainment effects (Gilmore and Wicker 1998). Such a rela-

tionship would be physically plausible, given the favorable

influence of less negatively buoyant outflow on supercell

tornadogenesis (e.g., Markowski et al. 2002; Shabbott and

Markowski 2006), primarily by making it easier for near-

surface parcels to be dynamically lifted. Furthermore, this

prevents outflow from undercutting low-level circulations and

reducing the ability of their associated dynamic pressure ac-

celerations to stretch and converge near-surface rotation

(Markowski and Richardson 2014; Brown and Nowotarski

2019). Even for nonsupercellular tornadoes, less negatively

buoyant outflow may allow QLCS updrafts to remain upright

rather than sloping back over their attendant cold pools

(Rotunno et al. 1988), a crucial ingredient for QLCS torna-

dogenesis (e.g., Schaumann and Przybylinski 2012; Williams

et al. 2018). That being said, the exact relationship between

observed HSLC cold pool deficits and tornadogenesis remains

unclear (McDonald and Weiss 2021). In addition to the

aforementioned variables, HSLC tornadic supercells also ex-

hibit increased LR1 consistent with previous HSLC studies

(e.g., Sherburn and Parker 2014; Sherburn et al. 2016), along

with lowered Eff Base and increased SBCAPE and 3CAPE.

These findings imply that with reduced environmental insta-

bility, SE tornadogenesis becomes particularly sensitive to low-

level thermodynamic characteristics and the ability for storms

to remain more surface based.

In terms of existing forecasting metrics, STP-T03 shows the

highest skill for both tor and sigtor across nearly every

environment-mode combination. This is somewhat surprising,

given that more recent iterations of STP incorporating

effective-layer quantities and SRH500 are generally thought to

be improvements upon this original STP formulation. That

said, Table 4 in Coffer et al. (2019) indicated that the second

lowest skill for STP500was across the lowerMSValley (LVM),

so this insight is consistent with past work. For HSLC super-

cells, STP-F and STP-FCIN are effective predictors, due per-

haps to their inclusion of more surface-based quantities

(SBLCL and SBCAPE). Finally, a number of new STP and

QLCS tor metrics were also developed. Admittedly, there is

minimal room for such improvement with HSHC categories,

since most STP parameters are designed for prototypical
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convective environments with appreciable shear and instabil-

ity. Noticeable improvements can be made, however, for

HSLC/HSLC SC sigtor categories with the addition of pre-

dictors such as PW and Eff Base. Note that these parameters

have only been constructed and evaluated numerically. More

in depth analysis, including a 2D spatial assessment of these

new parameters relative to traditional STP parameters and

observed storm reports, is necessary before such parameters

can reliably be put into practice. In particular, one needs to

consider that these new parameters are conditioned on the

occurrence of storms within specific CAPE regimes, and

therefore could incur large false alarm rates if applied blindly.

b. Considerations and limitations

As with any study using near-storm model soundings as a

proxy for observations, there are a number of limitations that

must be considered. First is the potential for error in the

sounding-derived data ascribed to each severe convective re-

port. These errors could stem from the underlying model

output, such as the near-surface cool and dry biases of theRUC

model, which can lead to underestimates of CAPE on the order

of 100–250 J kg21 (e.g., Thompson et al. 2003, their Fig. 3).

Similar magnitude variability in CAPE calculations can also

result from the method used to lift parcels and compute their ue
upon saturation. For instance, Coffer et al. (2019) noted

that CAPE values computed with NSHARP/SHARPpy—like

those used in this study—tend to be higher than most other

computational methods, particularly for high CAPE sound-

ings. Both sources could introduce uncertainty into the

CAPE/shear classification of individual reports, as well as our

characterization of CAPE and CIN evolution. Overestimates

of CAPEwould lend confidence to our characterization of low-

CAPE environments but bring into question our high-CAPE

classification (and vice versa with underestimates). Though

worth consideration, the design of our two environmental

categories helps limit this uncertainty. For instance, if we

perturb our calculated CAPE values by the maximum error

bound in the above literature (250 J kg21), less than 1% of the

cases in either category switch classification (e.g., HSHC

switching to HSLC, or vice versa).

There are also potential spatiotemporal errors associated

with the mesoanalyses utilized. The 40-km spacing and hourly

time step could ascribe inaccurate data to reports occurring

near tight gradients (e.g., baroclinic zones), and also smooth

out relevant small-scale features like the narrow bands of moist

instability shown in King et al. (2017) to be important for

sustaining HSLC convection. For studies like this compositing

environments across large report samples, the net impact of the

discussed biases may ultimately be small (e.g., Thompson et al.

2003; Thompson et al. 2012), but it is important to understand

that the statistic robustness afforded by larger datasets does not

always translate to practical relevance for forecasting, as noted

in Anderson-Frey et al. (2016).

From a methodology standpoint, there is a great deal of

subjectivity when applying fixed CAPE/shear environmental

thresholds. Though physically motivated, the HSHC/HSLC

definitions developed herein (and in the literature) are some-

what arbitrary constructs used to isolate and analyze unique

subsets of the storm climatology. Both represent only portions

of a much broader CAPE/shear parameter space in which

Southeast severe convection and tornadoes can exist (e.g.,

Anderson-Frey et al. 2019, their Fig. 2a), as demonstrated by

the uniformly favorable impact of high-shear, moderate-

CAPE conditions for tor/sigtor prevalence noted in section 3b.

Furthermore, the CAPE values which qualify as ‘‘high’’ or

‘‘low’’ vary by (and evenwithin) geographical regions (Thompson

et al. 2013). Also worth consideration is our EF21 cutoff for

significant tornadoes. Though largely consistent with previous

observational tornado studies, its utility for the SE tornado

climatology is debatable. Thompson et al. (2017), particularly

their Fig. 14, demonstrated that low-level rotational velocities

are approximately 10 kt lower in MS/AL for the same EF-scale

ratings compared to the Great Plains, perhaps due to the rel-

ative lack of potential damage indicators in much of the Great

Plains, with some accompanying potential for tornadoes to be

underrated by the EF scale (away from urban areas). As such, a

stricter significant tornado criterion of EF31 might be war-

ranted for the SE to help avoid the conflation of someweak and

significant tornadoes. For instance, roughly 93% of the QLCS

sigtors identified by our original criteria have an EF2 rating.

This helps to explain their inherent lack of predictability, but it

also suggests that QLCS tornadoes may be a less impactful

portion of the overall SE tornado climatology than commonly

thought, particularly given the aforementioned potential for

biases in damage ratings in this region.

c. Future work

There are numerous avenues for future research that would

build upon and contextualize the results presented in this

study. For instance, it might prove useful to repeat similar

analyses for other geographical regions in order to gauge the

uniqueness of our SE results, and help advance a unified theory

regarding the stormmaintenance and tornadogenesis potential

of storms persisting across the EET. Breaking the presented

analyses down by season may also reveal additional findings,

given the seasonal variability of SE storm environments shown

in Anderson-Frey et al. (2019). Furthermore, numerical sim-

ulations could help determine the net impact of the increased

low-level SRH and nocturnal destabilization on low-level up-

draft forcing in HSLC storm environments in spite of overall

limited buoyancy. Paired with the base-state substitution

(BSS) technique of Davenport et al. (2019), such simulations

could provide storm-scale insight into how environmental

evolution across the EET influences the dynamical processes

relevant for HSLC tornadogenesis.
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