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ABSTRACT: The response of severe local storms to environmental evolution across the early evening transition (EET)
remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the
increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environ-
mental interactions, Southeast severe convective reports spanning 2003-18 are temporally binned relative to local sunset.
Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across
the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-
shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight
physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis
is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic
(or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for
multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC
environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments
sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compen-
sating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of
nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP)
remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering
variables like precipitable water, downdraft CAPE, and effective inflow base.

SIGNIFICANCE STATEMENT: The environments in which storms occur change near and after sunset, making it
difficult to anticipate how these storms will respond and whether they can produce tornadoes. Southeast U.S. tornadoes
can occur even with limited instability, which only adds to this challenge. To this end, we examine the different pathways
that Southeast storm environments can evolve into the evening and consider how the frequency and characteristics of
their tornadoes change for each pathway. We found that the amount of instability present before sunset influences how
storm environments change afterward, and, therefore, how those storms produce tornadoes. Last, we identify what
variables best predict tornadoes for each pathway, and these are used to construct new Southeast tornado forecasting
parameters.
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1. Introduction environments) and have potential ramifications for storm
maintenance and tornadogenesis (e.g., Maddox 1993; Markowski
et al. 1998; Parker 2014). These and other related factors have
been offered up as explanation for the peak in near-sunset
tornado counts noted in the literature (e.g., Kelly et al. 1978;
Mead and Thompson 2011). Understanding how these envi-
ronmental features and their impact on accompanying con-
vection evolve with time are vitally important for determining
the ability of storms to produce severe hazards through the
EET. However, it remains unclear whether presunset ther-
modynamic and kinematic characteristics influence the nature
of this evolution and subsequent storm features.

Z Supplemental information related to this paper is available at The impact of boundary layer stabilization on near-ground
the Journals Online website: https:/doi.org/10.1175/WAF-D-20- | it-tion and the maintenance of intense updrafts has been
O191.s1. addressed by the recent literature, largely within the context of

supercells (e.g., Ziegler et al. 2010; Nowotarski et al. 2011;
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The hours soon before and after local sunset constitute the
early evening transition (EET), a period during which surface
radiational cooling results in increasing static stability and
convective inhibition (CIN). These thermodynamic changes
are often accompanied by the onset of nocturnal low-level jets
(NLLJ; Blackadar 1957; Shapiro et al. 2016), which can intro-
duce additional low-level shear and storm-relative helicity
(SRH) into nocturnal storm environments (relative to daytime
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Peters et al. 2017; Geerts et al. 2017; Gropp and Davenport
2018; Gray and Frame 2019). Whether ingesting near-surface
(as in MacIntosh and Parker 2017) or elevated air parcels (as in
Nowotarski et al. 2011), the updrafts of nocturnal supercells
have been shown to persist in spite of increasing environmental
near-surface static stability. This resilience may be due to the
upward pressure gradient accelerations caused in part by up-
draft rotation (e.g., Rotunno and Klemp 1982; Rotunno and
Klemp 1985), which can lift negatively buoyant air (Markowski
et al. 2012). Increases in low-level shear and SRH associated
with the NLLJ may enhance upward accelerations in the lower
updraft as demonstrated by the results of Coffer and Parker
(2015), which act to increase the participation of near-surface
parcels within updrafts in spite of their reduced buoyancy, as in
Davenport and Parker (2015) and Gray and Frame (2019).
These increases in low-level shear (along with deep-layer
shear) have also been shown to increase the magnitude of
storm-relative (SR) flow (e.g., Warren et al. 2017; Peters et al.
2019), which can both facilitate the transition from non-
supercellular to supercellular modes (Peters et al. 2020b) as
well as increase updraft width, buoyancy, and vertical velocity
(Peters et al. 2019). Thermodynamic explanations for low-level
updraft accelerations have also been offered in studies such as
Brown and Nowotarski (2019), which demonstrated that up-
ward buoyancy pressure accelerations (BPA) can exist in su-
percells below their level of free convection (LFC) despite the
presence of CIN and negative buoyancy, which could be of
importance for nocturnal supercells. Despite these studies,
however, it is not apparent which situations allow these ac-
celerations to overcome low-level stabilization during the
EET, and which do not.

Gropp and Davenport (2018) analyzed Great Plains super-
cells and their near-storm environments as they progress
through the EET. Using RUC and RAP proximity soundings,
the authors found that large increases in SRH coupled with
minimal increases in most unstable (MU)CIN support intense
rotating updrafts, allowing supercells to persist well into the
evening hours. This agrees with previous studies that found a
greater risk of nocturnal supercell tornadoes in the presence
of increased SRH (e.g., Davies and Fischer 2009) and reduced
low-level static stability (e.g., Mead and Thompson 2011)
associated with local moisture increases. This SRH relation-
ship could again be a consequence of increased low-level SR
flow (Peters et al. 2019, 2020b). Nevertheless, not all noc-
turnal tornadoes are supercellular, nor are they confined to
the Great Plains. Previous studies of quasi-linear convective
systems (QLCS) and their associated hazards (e.g., Trapp
et al. 2005; Ashley et al. 2019) as well as the nocturnal tor-
nado climatology of Kis and Straka (2010) have noted a
nocturnal maximum in QLCS tornadoes, though the design
and precision of their respective QLCS classification
methods vary. Such studies specifically noted that Southeast
(SE) events comprise an appreciable fraction of the noc-
turnal and/or QLCS tornado climatologies. These insights,
combined with both preexisting and projected vulnerability
to SE tornado hazards due to mobile home density, increased
poverty rates, population increases, and expanding exurbia
footprints (e.g., Simmons and Sutter 2007; Ashley et al. 2008;
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Strader et al. 2017), have given way to increased research focus
on SE U.S. tornadoes.

The aforementioned body of research has noted several
characteristics common to SE storms and near-storm envi-
ronments, including a skew toward cool season months and
their nocturnal persistence, characterized by strongly sheared
environments with limited buoyancy—termed high-shear, low-
CAPE, or HSLC environments (e.g., Guyer and Dean 2010;
Sherburn and Parker 2014; Sherburn et al. 2016; Anderson-
Frey et al. 2019; Brown and Nowotarski 2020). Even the
forcing of relevant atmospheric features like LLJs differ for the
Southeast. For instance, Great Plains LLIJs are influenced by
the region’s sloped terrain, whose associated thermal wind
reversal in evening hours leads to a geostrophic wind maximum
above the surface (e.g., Holton 1967) which can enhance pre-
existing NLLJs driven by nocturnal decoupling. This sloping
terrain influence is diminished in the Southeast, and the
strength of LLJs is instead perhaps modulated by ageostrophic
jet streak circulations associated with midlatitude cyclones
(Uccellini and Johnson 1979). Furthermore, Southeast LLJs
and their attendant moisture transport can be enhanced by
flow over the Intra-Americas Sea (IAS; Rasmusson 1967).
Sometimes referred to as the IAS-LLJ, this feature has been
shown to influence precipitation and tornadoes across the
Southeast (Mufioz and Enfield 2011).

Regarding predictability, Brown and Nowotarski (2020)
demonstrated that climate-scale variability (e.g., Arctic
Oscillation) can modulate SE synoptic patterns in ways that
make them more favorable for tornado outbreaks, and even
contribute to the formation of HSLC environments. On the
storm-scale, however, HSLC tornadoes can be more difficult to
predict than HSHC tornadoes (Dean and Schneider 2008;
Dean and Schneider 2012; Anderson-Frey et al. 2019), and
their increased nocturnal frequency poses enhanced risk to the
public (e.g., Ashley et al. 2008). These factors provide both
scientific and societal impetus to improve our physical under-
standing of how HSLC storm environments respond to and
evolve across the EET, and what consequences these changes
have for nocturnal tornadogenesis.

While some of these studies have considered diurnal varia-
tion in tornado characteristics, none to our knowledge have
specifically examined how the changes in CAPE, shear, SRH,
and CIN that occur during the EET influence the characteris-
tics of subsequent tornadoes. One of the few studies we are
aware of that has directly addressed the predictability of SE
tornadoes occurring in the vicinity of the EET is Bunker et al.
(2019), which found that effective-inflow layer quantities are
more skillful nocturnal tornado predictors than fixed-layer
quantities. The reason for this added skill of effective-inflow
layer quantities is unclear, however, as is the matter of whether
this skill is retained in low-CAPE environments. In other
words, it is possible that the factors that help facilitate torna-
dogenesis in low-CAPE environments differ from those rele-
vant in high-CAPE environments. Understanding how the
atmospheric features discussed thus far evolve in time and in
different background environments is crucial to assess the net
effect of the EET on tornadogenesis potential. Based on this
knowledge gap, this study addresses the following questions:
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1) How do CAPE, shear, SRH, and CIN change during the
EET in Southeast storm environments, and does this evo-
lution depend on the amount of CAPE present before the
EET (e.g., high CAPE versus low CAPE)?

If EET evolution is CAPE-dependent, what impact do
these differing evolution pathways have on the frequency
and storm mode of subsequent tornadoes?

What environmental variables best discriminate between
SE tornadic (or significantly tornadic) and nontornadic
storms, and does their predictive skill vary as a function
of background CAPE and/or storm mode?

Can existing forecast guidance metrics, such as STP,
be adapted to better predict SE tornadoes using these
variables?

2)

3)

4)

Using a tornado event database [originally developed by
Smith et al. 2012] spanning 2003-18, we seek to identify SE
tornadic events spanning the EET and characterize the CAPE
and deep-layer shear of their near-storm environments prior to
the EET. We will then analyze how these near-storm envi-
ronments and the characteristics of their attendant convection
evolve across the EET as a function of their CAPE and shear
classifications. The next section details the severe weather re-
port database and environmental data utilized in this study, as
well the rationale for case selection and temporal binning.
Section 3 reports on the results of our analyses, including the
temporal characteristics of the SE tornado climatology, the
evolution of the near-storm environment and associated storm
and tornado characteristics, and the predictability of these
tornadoes using proximity sounding-derived quantities.
Finally, section 4 discusses the implications of these findings
within the broader scope of the literature, as well as future
research directions relevant to the study at hand.

2. Data and methods

The storm reports utilized in this study are from the updated
version of the dataset originally developed in Smith et al.
(2012), as used in Anderson-Frey et al. (2019), appended with
all 2018 events. This tornado event dataset is developed by
mapping county tornado segment data onto a 40 X 40 km? grid,
and filtering such that the highest (E)F-scale rating is retained
in every given hour and grid box. Severe wind or hail reports
corresponding to grid hours with no tornadoes are used to
characterize nontornadic environments.! Environmental data
are matched with each report using the closest data grid point
from the SPC hourly mesoanalysis grids (Bothwell et al. 2002),
the basis of which are the Rapid Update Cycle (RUC;
Benjamin et al. 2004) or Rapid Refresh Model (RAP;

! Significant wind and hail reports are obtained using conven-
tional definitions for 2003-12. Wind and hail reports from 2014 to
2015 were obtained as part of Thompson et al. (2017), which em-
ploys an additional effective bulk shear criterion of 40kt (1kt ~
0.51ms ™ '). Nontornadic cases are not included for 2013 and 2016~
18. Analyses were recomputed for only 2003-12 reports to test
sensitivity to these varying classifications, and results largely re-
mained unchanged.
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Benjamin et al. 2016), using the same 40-km grid spacing as the
grid-hour report filtering described previously. Furthermore,
the models assimilate rawinsonde, profiler, radar, lightning,
and other data (Benjamin et al. 2016, their Table 3). Profiles of
temperature, moisture, and wind above the ground were based
on the RUC model through April 2012, and the RAP model
beginning in May 2012, with data every 25 hPa in the vertical.
The SHARPpy sounding analysis software (Blumberg et al.
2017) was used for all parameter calculations for the SPC
mesoanalysis sounding profiles matched to each grid-hour
tornado or severe-storm event. As with any model output,
this dataset carries its own limitations and biases, the details of
which are discussed extensively in Thompson et al. (2012) and
Anderson-Frey et al. (2016). Limitations relevant to this
study—particularly grid spacing—are discussed in later
sections.

Radar data and a convective mode decision tree (Fig. 2 in
Smith et al. 2012) are then used to manually classify convective
mode. As noted in previous literature, the majority of resulting
modes such as QLCS and right-moving supercell (RMS) are
mutually exclusive, though some overlap is allowed with clas-
sifications such as tropical cyclone (TC). Similar to Brown and
Nowotarski (2020), all reports associated with TCs are re-
moved, as TC tornado environments are beyond the scope of
this study. The remaining storm modes are consolidated into
three broad categories—supercell (including all isolated su-
percells and supercell in line features), QLCS (including all
QLCS, bow echo, and nonsupercellular cell in line structures),
and disorganized (all nonsupercellular clusters, cells, and any
combinations thereof). Additionally, tornadoes with rating
F/EF0-1 are considered weakly tornadic, and F/EF2+ con-
sidered significantly tornadic.> The same domain defined in
Anderson-Frey et al. (2019), consisting of Alabama, Arkansas,
Georgia, Kentucky, Louisiana, Mississippi, and Tennessee, is
used for consistency with previous literature.

To isolate storm environments likely impacted by the EET,
local sunset (SS) time is computed for each storm report based
on its location and time of year, and rounded to the nearest
hour. Each storm report time is similarly rounded, and then
arranged into hourly bins relative to its associated SS. The EET
is defined following past studies of this time of day, such as
Anderson-Frey et al. (2019), spanning =2 h off local SS time.
The four hours immediately prior to and after this transition
(i.e., from SS — 6 to SS — 3, and from SS + 3 to SS + 6) con-
stitute the pre- and post-transition periods, respectively. By
focusing our analyses on this =6-h window centered on local
SS, we can specifically analyze the environmental changes in-
troduced by the EET, and limit potential overlap of severe
convection persisting into subsequent days.

We also seek to classify background CAPE/shear to assess
potential influence on environmental changes across the EET.
Numerous classification methods have been implemented in
the literature. For the purposes of this study, we have chosen a

2 These cutoffs are chosen for consistency with numerous other
studies in the literature. The suitability of these cutoffs for the SE
tornado climatology is examined in section 4.
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FIG. 1. Diurnal cycle of tornadoes (in light blue) and sigtors (in black) during the pre-transition, EET, and post-
transition for (a) all, (b) supercell, (¢) QLCS, and (d) disorganized tornadoes, with the EET bounds delineated by
black dotted lines; the number of tornadoes in each period is shown in the top left with and number of sigtors in

parentheses.

blend of two common methods in which a 0-6-km bulk wind
difference (SHR6) of =18 ms ™! is used to denote high-shear.
Low-shear conditions are not examined as they correspond to
only 10% of all SE tornadoes, consistent with the SHR6 dis-
tributions of Thompson et al. (2013). Low-CAPE is defined as
an environment with surface-based (SB)CAPE = 500 J kg ™' as
well as MUCAPE = 1000J kg™ ' (as in Sherburn and Parker
2014), while high-CAPE requires mixed-layer (ML)CAPE =
1000Tkg™" (e.g., the complement of the method used in
Anderson-Frey et al. 2019). This approach gives two mutually
exclusive CAPE/shear categories (HSHC and HSLC) and will
assist in determining how aspects of the near-storm environ-
ment relevant to tornadogenesis change as a function of
buoyancy.

3. Results
a. Diurnal tornado distributions

The criteria described above yield 9250 severe events
spanning 1448 individual days (1200-1200 UTC periods) in our
prescribed domain and study period. Limiting our scope to the
three periods defined earlier (pre-transition, EET, and post-
transition), there are 7052 severe events spanning 1258 unique
EET periods (=6h from local SS). Of these reports, 2796
(39.6%) are significant wind (sigwind), 1105 (15.7%) are
significant hail (sighail), 2518 (35.7%) are weak tornadoes
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(weaktor), and 633 (9.0%) are significant tornadoes (sigtor).
These 3151 tornadoes represent over 70% of all SE tornado
reports, further underscoring the need to understand the en-
vironmental changes induced during the EET.

Before we consider environmental evolution, however, we
must examine the temporal distribution of SE tornadoes.
Figure la shows the diurnal cycle of SE tornadoes (in light
blue) and sigtors (in black) during the pre-transition, EET, and
post-transition periods (marked in dotted black). Tornadoes
show a broad bell curve skewed slightly toward pre-SS hours,
peaking one hour prior to sunset. Sigtors peak at this same
hour, but show less diurnal variability overall such that sigtors
account for a larger fraction (over 25%) of post-transition
tornadoes. Figures 1b—d break down these diurnal tornado
distributions further by mode. Unsurprisingly, we see that su-
percell tornadoes and sigtors (Fig. 1b)—the predominant tor-
nadic mode in the climatology—are nearly identical to the
overall distribution, though sigtors make up an even larger
fraction of nocturnal supercell tornadoes. QLCS tor/sigtors
(Fig. 1c) are less frequent than supercell tornadoes, but still
constitute an appreciable fraction of the SE tornado climatol-
ogy. This QLCS subset exhibits almost no diurnal variation,
with tornadoes and sigtors occurring somewhat equally
through the EET. Disorganized tornadoes (Fig. 1d) differ en-
tirely in that they are largely confined to daytime hours and
contain no sigtors, as might be expected for this convective
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FIG. 2. Time series of average (a)-(c) SBCAPE (Jkg™"), (d)-(f) MLCAPE (Jkg™'), (2)-(i) MUCAPE (Jkg™ "), and (j)~(1) 0-6-km

shear (ms~') based on environment in the pre-transition (Pre, colu

mn 1), early evening transition (EET, column 2), and post-transition

(Post, column 3). Gray shading corresponds with the period on which each pattern is predicated, and red and blue lines correspond to
HSHC and HSLC environmental classifications, respectively; black dotted lines mark thresholds corresponding to our CAPE classifi-
cation scheme. Filled (unfilled) data points represent statistically significant (insignificant) differences between HSHC and HSLC patterns
in each period, following two-sample ¢ tests (at the 95% confidence level).

mode. Post-EET increases in nonsupercellular tornado counts
may be related to the theorized peak in NLLJ intensity roughly
6-h postsunset presented in the literature (Shapiro et al. 2016),
though this model applies to the Great Plains NLLJ.

b. Storm environment evolution

The near-storm environment can change quickly and sub-
stantially during the EET. For instance, afternoon HSHC
conditions may transition to evening HSLC conditions as
buoyancy decreases in response to EET cooling and stabili-
zation. Therefore, we must examine these changes and deter-
mine whether they have an impact on the frequency, timing,
and convective mode of tornadoes. To do so, we categorize
each severe convective day based on when its associated storm
reports occurred; these temporal groupings include the pre-
transition, EET, and post-transition (as defined earlier) and all
combinations thereof, resulting in seven mutually exclusive
categories. The category of days with reports in only the pre-
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and post-transition periods is excluded from subsequent ana-
lyses due to substantially smaller report counts. By analyzing
the remaining categories, we can ascertain what aspects of the
near-storm environment impede or facilitate the maintenance
of severe convection across the EET.

We will first examine the days in which storms persisted
across all three of our defined periods. Interestingly, only 10%
of severe convective days in the SE climatology fall in this
category, emphasizing the unique conditions that are likely
necessary for convection to produce severe hazards through
the EET. For each day and period, we classify its general
CAPE/shear characteristics and consider how variables evolve
consequently. For instance, if the average pre-transition envi-
ronment is HSHC, how do CAPE and shear evolve conse-
quently? Alternatively, if the post-transition environment is
HSHC, how do CAPE and shear evolve earlier to arrive at that
environment? This process is carried out for both environ-
mental classifications, providing a “road map” of how storm

ou by TEXAS A & M UNIV | Unauthenticated | Downloaded 08/31/21 07:03 PM UTC



1436

WEATHER AND FORECASTING

VOLUME 36

TABLE 1. Storm report count for days with severe convection across all three temporal periods, broken down by environmental classi-
fication; total counts are provided along with counts attributed to supercell (SC) and QLCS modes.

No. of Pre-reports

Storm environment (period) [All (SC/QLCS)]

No. of EET reports
[All (SC/QLCS)]

No. of Post-reports
[All (SC/QLCS)]

HSHC (Pre) 423 (311/80)
HSHC (EET) 344 (246/71)
HSHC (Post) 219 (184/15)
HSLC (Pre) 43 (10/32)
HSLC (EET) 83 (37/42)

HSLC (Post) 220 (124/81)

872 (515/258)
754 (453/225)
379 (261/81)
109 (54/43)
168 (87/71)
555 (331/160)

353 (136/190)
313 (134/152)
185 (86/86)
34 (11/22)
108 (30/68)
203 (54/127)

environments can evolve diurnally, as shown in Fig. 2. Each
figure column corresponds to the period that is being used to
determine the CAPE/shear category (i.e., column 1 graphs are
classified based on the pre-transition environment, and so on as
shaded in gray). HSHC and HSLC patterns are displayed in red
and blue, respectively. This means, for example, that a blue line
in column 2 represents a pattern corresponding to days in
which the EET has average HSLC conditions. A two-sample ¢
test (at the 95% confidence level) is carried out between the
data in each period. Filled (unfilled) data points indicate when
the differences between the HSHC and HSLC patterns are
statistically significant (insignificant). The sample sizes associ-
ated with these patterns are provided in Table 1.

HSHC environments show gradual decreases in CAPE
throughout the day regardless of which period is used. HSLC
CAPE patterns, however, vary based on the constraining pe-
riod. When the pre-transition environment is HSLC (blue line
in column 1), CAPE values start low, but increase gradually
during the EET, likely due to increases in moist instability
signaled by changes in low-level equivalent potential temper-
ature 6, (as computed in SHARPpy; supplemental Fig. 1a) or
other related low-level thermodynamic variables (supple-
mental Table 1). When the EET or post-transition environ-
ment is HSLC (blue line in columns 2-3, respectively), CAPE
starts at moderate values during the pre-transition, before
decreasing and remaining relatively low. Interestingly, HSLC
CAPE values remain statistically lower than HSHC values the
entire day, despite being conditioned on only one period.
Regarding SHR6, both environments exhibit sustained, high
values the entire day regardless of the constraining period, but
HSLC patterns (particularly those based on the pre-transition
and EET) maintain higher overall shear magnitudes than
HSHC. If we were to examine those environments that com-
prise the middle ground between these classifications (high
shear, moderate CAPE), we would see that their associated
CAPE/shear values understandably lie in between the HSHC
and HSLC patterns, but the shape of their patterns largely
resemble HSHC patterns.

If we consider the implications of these patterns for storm
environment, we see that HSHC environments remain almost
entirely in that environmental category, despite diurnal CAPE
decreases. In contrast, there are no mean pathways in which an
HSLC storm environment persists from the pre-transition
through to the post-transition. Rather, HSLC environments on
average are transient, evolving from or into other environ-
ments throughout the day (even all the way from HSHC
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conditions). In fact, only four severe convective days in the
entire dataset maintain average HSLC conditions through all
three periods. This of course could be influenced by the coarse
spatial resolution of the environmental dataset utilized and the
CAPE/shear thresholds employed, the implications of which
are discussed later. However, these insights, combined with the
fact that these HSLC transitions occur primarily near local SS,
highlight the unique relationship between the EET and the
formation of HSLC environments.

To characterize the low-level accelerations potentially as-
sociated with the NLLJ, Fig. 3 displays 0-1-km SRH and shear
patterns (SRH1 and SHR1, respectively) following the same
approach as Fig. 2. As is expected, both of these quantities
show relatively similar patterns, with SRH1/SHR1 values
steadily increasing through and past local SS. As with SHR6,
HSLC pre-transition and EET conditions correspond to
uniformly higher SRH1/SHR1 values than HSHC patterns.
Though representing a different portion of the atmosphere,
effective layer SRH (Eff SRH) was also considered, and
showed similarly favorable SRH trends associated with HSLC
pre-transition conditions (supplemental Fig. 2a). Interestingly,
HSLC pre-transition patterns show a decrease in SRH1/SHR1
during the EET before rapid post-transition increases, perhaps
related to changes in boundary layer mixing and/or stabilization.
Regardless, these observations suggest that at least some por-
tion of these storm environments coincide with the strength-
ening flow and helicity associated with an intensifying LLJ,
which may play a compensating role in buoyancy-deficient
environments.

Given studies such as Mead and Thompson (2011) and
Gropp and Davenport (2018) relating CIN to nocturnal su-
percell maintenance, Fig. 4 shows time series of SB, ML, and
MUCIN following the same environment-time classification of
Fig. 2. Regardless of the period used for classification, HSHC
CIN values generally increase in absolute magnitude with time.
The same can be said of several HSLC CIN patterns, particu-
larly those conditioned on the post-transition environment
(column 3 in Fig. 4). Though these patterns are largely indis-
tinct from HSHC post patterns, uniformly lower downdraft
CAPE (DCAPE) values (supplemental Fig. 3c) may contrib-
ute to weaker (e.g., less negatively buoyant) outflow such that
storm updrafts are able to persist despite lower CAPE and
increasing CIN. In contrast to these HSLC Post patterns, CIN
patterns associated with pre-transition or EET HSLC condi-
tions (Figs. 4a,b,e,h) exhibit destabilization (or more gradual
stabilization) as the evening progresses, with statistically
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FIG. 3. Time series of average (a)-(c) SRH1 (m*s~?) and (d)—(f) SHR1 (ms™ '), with the same line/color scheme as in Fig. 2.

smaller nighttime CIN magnitudes relative to HSHC patterns.
These decreases in CIN magnitude develop in tandem with
increases in low-level lapse rates (supplemental Fig. 1b), pre-
sumably driven by warm-air advection (or differential advec-
tion) often associated with NLLJs.

Clearly the near-storm environments of SE storms evolve
differently as a function of CAPE/shear characteristics, so it
should stand to reason that the frequency and convective
modes of their tornadoes do so too. To test this, we consider
both the fraction of storm reports in each period that are tor-
nadic, as well as the modal breakdown of those tornadoes,
following the same period classification as Figs. 2—4. Normalizing
by climatological fractions in each period,” we diagnose the
percentage change in the frequency and mode of tornadoes, as
shown in Fig. 5. For instance, if climatologically 5% of all re-
ports in the pre-transition produce tornadoes, and some subset
of those reports associated with one of our environmental
classifications is comprised of 7.5% tornadoes, Fig. 5 would
display a 50% increase in the fraction of pre-transition storms
(for that classification) that produce tornadoes.

Interestingly, HSHC conditions have a limited influence on
tornado fraction, though HSHC post-transition conditions (red
bars in Fig. 5c) correspond to slightly increased EET and post-
transition tornado fractions likely due to overall higher CAPE
values. HSLC conditions in a given period lead to decreases in
tornado fraction during that period (i.e., pre-transition HSLC
bar in Fig. Sa, post-transition HSLC bar in Fig. 5¢), likely due to
their inherently limited instability. However, pre-transition
HSLC conditions progress with large pre to post-transition
swing toward increased tornado fraction in association with

3 These climatological fractions were computed across all days in
which convection persisted across all three periods.
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overall higher and increasing SRH1/SHR1 values (Figs. 3a,d)
and postsunset decrease in SBCIN magnitude (Fig. 4a). If
we condition based on the high-shear, moderate-CAPE
environment discussed earlier (not shown), we see large,
uniform increases in tornado (and sigtor) fraction regardless
of the threshold period, which could imply there exists an
ideal combination of the ample instability of HSHC envi-
ronments and invigorated low-level dynamic support of
HSLC environments.

Regarding mode, HSHC conditions tend to have a small, but
generally positive effect on the prevalence of supercellular
tornadoes, particularly when the post-transition has HSHC
conditions (Fig. 5f). HSLC conditions in any period, as with
tornado fraction, facilitate a decrease in supercellular tornadoes
in that and subsequent periods (Figs. 5d-f). Conversely, these
HSLC conditions correspond to an increase in the prevalence of
QLCS tornadoes (Figs. 5g-1). If we were to consider raw changes
relative to climatology (not shown) rather than normalized
changes, we would see that these shifts in the prevalence of su-
percell and QLCS tornadoes are nearly equal and opposite,
implying a direct trade-off between these modes as a function of
environment. It is worth noting that the relative magnitudes of
the HSHC and HSLC trends may be influenced by differing
sample sizes (also shown in Table 1), but these results still
highlight the noticeable influence that the daytime storm envi-
ronment can have on storm characteristics later that evening.

Given the modal exchanges shown in Fig. 5d-i, Figs. 6-8
present the patterns of Figs. 2—4, respectively, separated by
mode. Given reduced sample size in portions of this modal
subset, median values and Mann—Whitney tests are substituted
for mean values and ¢ tests in order to account for potential
nonnormality. Solid lines represent supercell patterns and
dashed represent QLCS patterns, and statistical testing is
performed across environments for each mode (e.g., data
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in Fig. 2.

points on dotted lines represent statistical differences between
HSHC and HSLC QLCS patterns). Figures 6a—i shows that
CAPE patterns are generally consistent across mode, with
slightly higher CAPE values for supercells. The same can be said
of SHR6 (Figs. 6j-1), though the differences between HSHC and
HSLC QLCS patterns are more pronounced than they are for
supercells. This latter point is also true for SRH1/SHR1 (Fig. 7),
particularly when conditioning on the pre-transition environ-
ment (Figs. 7a,d). Also peculiar in Fig. 7a is that the HSLC Pre
pattern associated with supercells does not show the monotonic
SRH1/SHRI1 increase that the QLCS pattern does, suggesting
diminished NLLJ influence and perhaps more influence of
cyclone-induced LLJs (as with the strong synoptically forced
HSLC environments in Sherburn et al. 2016). The HSLC noc-
turnal destabilization demonstrated in Fig. 4 is also apparent in
the modal CIN patterns of Fig. 8, though post-transition CIN
values are smaller in magnitude for supercells. Altogether, these
modal patterns suggest that increased low-level shear/SRH as-
sociated with HSLC conditions can be primarily attributed to
QLCS modes, which draws into question what environmental
factors are compensating for a lack of instability in HSLC su-
percell environments. Perhaps the subtle destabilization shown
in Figs. 6, 8 coupled with overall high shear values is sufficient to
sustain supercells in HSLC Pre environments.

Brought to y

As noted, however, it is far more likely for severe convection
not to persist through all three periods. Thus, we also consider
the evolution of environmental variables as a function of noc-
turnal persistence. For instance, do variables like CAPE evolve
differently for storms occurring only in the pre-transition rela-
tive to those which persist into subsequent periods? Figure 9
shows the hourly averaged variables examined in Figs. 24
along with three derived parameters associated with each
temporal period combination. The sample sizes for each tem-
poral category (summed over each of its constituent periods)
are included in Table 2. The limiting factor for storms to persist
past that pre-transition appears to be overall smaller values of
SRH/SHR variables, as with storms occurring solely in the pre-
transition period (red lines in Figs. 9d—f). Though convection
clearly can form in these environments, the favorable dynamic
forcing associated with increased shear and SRH may be
necessary for storms to survive the rapid CAPE decreases
and CIN magnitude increases of the EET. The same can be
said about storms that fail to persist past the EET (orange
and yellow lines in Figs. 9d—f), which have noticeably lower
EET SRH1/SHR1 values compared to patterns which per-
sist into the post-transition (green and black lines in
Figs. 9d—f). These EET-limited patterns also display more
rapid decreases in MLCAPE and increases in MUCIN
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FI1G. 5. Bar plots displaying the percent change (relative to climatological average fraction in each period) of (a)—(c) fraction of storms
producing tornadoes and the fraction of those tornadoes occurring within (d)—(f) supercells and (g)—(i) QLCS modes, with the same time

classification and color scheme as in Fig. 2.

magnitude (Figs. 9b,i, respectively). Conversely, days in which
convection spans all three periods (black lines) exhibit sus-
tained higher values of shear and SRH paired with more
gradual changes in CAPE and CIN. These differences manifest
themselves in the evolution of common derived metrics, in-
cluding supercell composite parameter (SCP; Thompson et al.
2012), the original STP formulation (STP-T03; Thompson et al.
2003) and effective layer STP (STP-E; Thompson et al. 2012),
as shown in Figs. 9j—-1. Of the derived metrics utilized in this
study (as summarized later), STP-TO03 shows the largest spread
numerically between the different temporal periods for STP
parameters, as does SCP for non-STP parameters.

We then ask whether the environmental variability in Fig. 9
influences the prevalence and characteristics of tornadoes
among the analyzed temporal categories. To this end, Fig. 10
shows the period-wide tornado characteristics for the storms
contributing to the patterns in Fig. 9, following the same color
scheme. These include the fraction of all storms in each period
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(as indicated in Table 2) producing tornadoes (Fig. 10a) and
sigtors (Fig. 10b), as well as the convective mode (Figs. 10c-d)
and environment (Figs. 10e—f) of these tornadoes. This means,
for example, that the yellow circle in Fig. 10a corresponds to
the fraction of storms contributing to the yellow lines in Fig. 9
that produced a tornado. From Figs. 10a-b, we see that the
highest tor and sigtor percentages occur in those categories
involving the EET and/or the post-transition, possibly related
to overall higher 0-1-km shear and SRH values maintained on
these days. For storm mode (Figs. 10c—d), the majority of
tornadoes occur in supercells, regardless of category or period.
Regarding environment, Fig. 10e shows that the two categories
spanning both the EET and post-transition (EET and Post, and
All Periods) have noticeably higher HSHC fractions, consis-
tent with the CAPE patterns presented thus far. Additionally,
the prevalence of HSLC tornadoes gradually increases as the
day progresses (Fig. 10f), along with an increase in QLCS
tornado percentage, as suggested by the tornado diurnal cycles
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in Fig. 1. The same general trends hold true for sigtors (not
shown), though understandably an increased skew toward HSHC
and supercell classifications exist for this subset of tornadoes.

c. Storm environment and tornado predictability

The factors contributing to tornadogenesis in high-CAPE
(particularly HSHC) environments have been thoroughly ex-
plored in the literature, but less in low-CAPE environments.
As such, we seek to identify environmental variables that ef-
fectively discriminate between tornadic (or significantly tor-
nadic) and nontornadic storms in HSLC environments and
compare them to HSHC predictors. There are a number of
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potential physical pathways by which HSLC environments
may be able to sustain robust low-level updrafts and support
tornadogenesis. From a thermodynamic perspective, previous
HSLC studies (e.g., Sherburn and Parker 2014; Sherburn
et al. 2016) have demonstrated that increased low-level (e.g.,
0-1, 0-3km) lapse rates help sustain HSLC convection by
invigorating low-level buoyant accelerations, and therefore
contribute to their longevity and ability to develop intense
near-surface vortices (Sherburn and Parker 2019). Similar
consequences may result from an accumulation of low-level
instability such as 0-3-km CAPE (Sherburn et al. 2016), or
less negatively buoyant outflow (e.g., Markowski et al. 2002;
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Shabbott and Markowski 2006; Brown and Nowotarski 2019).
Alternatively, increased low-level shear and SRH in the pres-
ence of a low-level mesocyclone can result in dynamically en-
hanced vertical accelerations (e.g., Coffer and Parker 2015;
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Sherburn and Parker 2019), which dominate the production of
intense low-level vertical velocities in CAPE-deficient storms
(Wade and Parker 2021). Also relevant for low-level updraft
maintenance are the storm’s effective inflow layer (EIL)
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FIG. 8. Time series of median (a)—(c) SBCIN, (d)~(f) MLCIN, and (g)—(i) MUCIN (all in J kg~ 1), with the same line/color scheme as in Fig. 6.
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characteristics and low-level SR flow that could influence the
thermodynamic and kinematic characteristics of these updrafts.
The raw variables used to characterize the near-storm en-
vironments of the analyzed storms are shown in supplemental
Table 2 (Peters et al. 2020a).* A number of preexisting derived

4Storm-relative (SR) flow for categories including supercells
are computed using Bunkers right mover storm motion vector
(Bunkers et al. 2000), whereas QLCS-specific categories use
Corfidi downshear vector (Corfidi 2003). SRH, however, is uni-
formly computed relative to the Bunkers RM vector.
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metrics were also considered, including STP-TO03, fixed-layer STP
as defined in SHARPpy (STP-F; Blumberg et al. 2017), STP-F
appended with an SBCIN scaling term (STP-FCIN), STP-E, and
effective layer STP with 0-500-m SRH (STP500; Coffer et al.
2019). An alternate version of STP500 is also tested (denoted
STP500%), in which the EIL base criteria is loosened such that
the metric is only set to zero if the majority of the EIL lies outside
the 0-500 m layer (i.e., effective inflow base, or Eff Base > 250 m).
Also tested were the Craven—Brooks significant severe pa-
rameter (Sig-Sev; Craven et al. 2004), energy helicity index
utilizing MLCAPE and SRH3 (EHI; Hart and Korotky 1991),
enhanced stretching potential (ESP; Blumberg et al. 2017),
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TABLE 2. Storm report count for each mutually exclusive tem-
poral category (e.g., Pre, EET, Post, and combinations thereof) in
each of their associated periods.

Day No. of No. or No. of
classification  reports (Pre) reports (EET) reports (Post)
Pre only 499 — —
Pre and EET 993 682 —
EET only — 751 —
EET and post — 538 409
Post only — — 171
All periods 805 1523 616

SCP, CIN-scaled SCP (CSCP; Gropp and Davenport 2018),
SHERBE and SHERBS3 (Sherburn and Parker 2014), and
theta-E index (TEI) to diagnose potential instability (Blumberg
et al. 2017). It is worth noting that the primary purpose of these

Tor Percentage
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non-STP parameters is not to distinguish between nontornadic
and tornadic environments, so comparisons with STP param-
eters must be taken with that consideration in mind.

To assess the skill of each variable in distinguishing between
tor/sigtor and nontor events, the true skill statistic (TSS; Wilks
2011) is computed over a range of thresholds, following

ad — bc

188 = @a+ob+d)’

M
where a represents the sum of correct tor/sigtor forecasts, b
represents the sum of incorrect tor/sigtor forecasts, ¢ repre-
sents the sum of correct nontor forecasts, and d represents the
sum of incorrect nontor forecasts. A more detailed description
of this process is shown in Fig. 11. Given that TSS calculations
are prone to “‘hedging’” when used to predict too rare of events
(Doswell et al. 1990), categories are only considered if their
nonevent to event ratio (i.e., nontor to tor/sigtor) does not
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FIG. 11. Sample TSS curve (corresponding to SRH1 for HSLC
sigtors, with threshold values in m?s~2), with explanation of the
procedure used to determine the optimal variable threshold and
associated metrics. Note, the performance metrics discussed are
computed using the terms in Eq. (1) corresponding to the maxi-
mum TSS.

exceed 10:1. Heidke skill scores (Wilks 2011) were also com-
puted, and similar predictors were identified, albeit with lower
skill scores.

Table 3 contains the highest raw and derived-variable TSS
magnitudes associated with HSHC and HSLC tor environ-
ments and their predominant modes, and associated variable
thresholds. Bolded values indicate a variable whose maximum
TSS value was negative, implying that there is maximized skill
for values less than the provided threshold. In general, HSLC
TSS values are uniformly lower than HSHC values, consistent
with previous studies (e.g., Anderson-Frey et al. 2019) noting
the decreased predictability of HSLC tornadoes (relative to
HSHC tornadoes). This lack of predictability is most evident
for HSLC QLCS tornadoes. SRH1 shows the most skill of the
tested SHR and SRH quantities across almost all categories,
while SB/MLLCL shows the most consistent skill among
thermodynamic variables. The remaining HSHC predictors
mostly comprise other low-level dynamic variables, whereas
HSLC categories contain a number of thermodynamic variables
including precipitable water (PW) and DCAPE (and perhaps
700-500-hPa lapse rate, LR75, by extension)—consistent with
earlier discussion regarding HSLC Post storm environments
(supplemental Fig. 3). HSLC supercells are specifically pre-
dicted by both SBCAPE and 0-3-km CAPE (3CAPE) as well
as Eff Base, while HSLC QLCSs are predicted by Eff/ MLCIN.
Regarding derived variables, STP-T03 is the best tornadic
discriminator across all HSHC categories, as well as for HSLC
QLCS, with other STP parameters (viz., STP-E and STP500)
and SCP also showing consistent skill. Fixed-layer STP quan-
tities, especially STP-FCIN, are useful HSLC predictors, per-
haps due to the HSLC CIN patterns presented earlier (Fig. 4).

Table 4 contains the same information as Table 3, but
instead distinguishing between sigtor and nontor environ-
ments. Nearly all categories, regardless of environment, show
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0-500 m, 0-1 km, 0-3 km, and effective-layer shear and SRH as
valuable sigtor predictors. Deep-layer shear (SHR6) and 0-
1-km SR flow only show predictive strength for HSHC envi-
ronments, while SBCAPE, Eff Base, and PW show unique skill
across both HSLC categories. In terms of modal patterns,
0-500-m quantities take on greater relative importance for
supercells (compared to overall categories) and increased 0—
1-km lapse rate (LR1) shows specific skill for HSLC supercells.
Similar to the tor results, STP-TO03 is generally the most skillful
derived metric, with STP-F also providing skill for HSLC su-
percells. These results highlight that traditional STP metrics
still have forecasting value for the Southeast, even in HSLC
environments. That being said, their most skillful values are
below standard guidance (i.e., STP ~ 1), as previously noted in
Sherburn and Parker (2014). For both tor and sigtor (partic-
ularly HSLC categories), STP500* outscores the original
STP500 formulation, possibly due to the fact that while lower
Eff Base is a tornadic predictor, this within itself implies Eff Base
values greater than zero. Furthermore, while SHERBE and
SHERBS3 have superior skill discriminating between significant
severe and nonsevere HSLC environments (their intended
purpose), they do not improve on STP metrics in distinguishing
between HSLC tor/sigtor and nontor environments.

Comparing Tables 3 and 4, we see a shift from more ther-
modynamic tor predictors to more kinematic sigtor predictors,
with HSHC sigtor predictors comprised entirely of deep-layer
and low-level shear and SRH quantities. HSLC sigtor cate-
gories still maintain some of the thermodynamic predictors
from Table 3, such as PW, SBCAPE, and Eff Base, but low-
level shear and SRH quantities have now superseded these
variables in predictive skill. Overall, TSS scores for sigtor
predictors are higher than those of the tor predictors, as ex-
pected given that the tor category includes environments of
weak (i.e., F/EF0-1) tornadoes, which have been shown to
more strongly resemble nontornadic environments (Thompson
et al. 2003). Both the HSHC and HSLC subsets of QLCS sig-
tors are not shown since they violate the event ratio criteria
discussed earlier, but they share the same general predictors as
the QLCS results in Table 3 with a skew toward SRH quantities
(especially SRH3 and Eff SRH). Despite the overall im-
provements in sigtor prediction using SRH500 in Coffer et al.
(2019), only HSLC supercell shows SRH500 as the highest
ranked SRH variable. Moreover, the original formulation of
STP500 only shows enhanced skill in HSHC environments, and
is outperformed by the alternate formulation in every pre-
sented tor/sigtor category. If we consider the thresholds of the
presented variables, we see that for both tor and sigtor envi-
ronments nearly all shear and SRH quantities show noticeably
higher thresholds for HSLC categories (relative to HSHC
categories), again highlighting the importance of low-level
dynamic support for HSLC tornadogenesis. This is particu-
larly intriguing for Eff SRH, given that the low CAPE con-
straint corresponds to shallower EILs and lower equilibrium
level heights, which would act to reduce Eff SRH (all else held
constant).

We also considered the TSS results for a given mode and/or
environment across each temporal period (supplemental
Tables 3-7), in order to see if the variables relevant to
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TABLE 4. As in Table 3, but for sigtor predictors.
HSHC HSLC HSHC supercell HSLC supercell

Environmental sigtor predictors

SRH1 0.576 (247.2) SRH1 0.31 (329.2) SRH1 0.562 (243.3) SRHS500 0.358 (198.4)
SRH3 0.546 (324.1) Eff SHR 0.306 (23.4) SHR1 0.538 (14.7) SRH1 0.348 (329.2)
SHR1 0.537 (14.7) SRHS500 0.292 (211.6) SRHS500 0.521 (171) SHR1 0.348 (19.6)
Eff SRH 0.534 (286.1) SHR1 0.284 (19.6) SHRS500 0.513 (10.5) SHRS500 0.295 (13.4)
SRHS500 0.528 (174.7) SRH3 0.277 (415.3) SRH3 0.502 (324.3) Eff SRH 0.279 (365.5)
SHRS500 0.48 (10.5) Eff SRH 0.273 (315.5) Eff SRH 0.499 (286.3) SRH3 0.276 (372.3)
SR500 0.456 (16.2) SBCAPE 0.24 (154.4) SR500 0.406 (16.2) Eff Base 0.267 (276.8)
SHR3 0.443 (21) SHRS500 0.232 (13.4) SHR3 0.388 (23.2) SBCAPE 0.264 (80.7)
SHR6 0.392 (26.9) Eff Base 0.229 (41.7) SHR6 0.344 (29.2) LR1 0.253 (3.9)
SR1 0.39 (14) PW 0.222 (1.4) SR1 0.34 (14) PW 0.252 (1.4)
Derived sigtor predictors

STP-TO03 0.597 (4.4) STP-TO03 0.357 (0.9) STP-TO03 0.57 (4.2) STP-F 0.399 (0.2)
STP500%* 0.507 (2.7) STP500%* 0.344 (0.4) STP500%* 0.476 (2.7) STP500%* 0.394 (0.4)
STP-E 0.504 (2.3) STP-F 0.337 (0.3) STP500 0.458 (2.6) STP-FCIN 0.376 (0.1)
SCP 0.5 (13.2) STP-FCIN 0.337 (0.1) SCp 0.451 (13.2) STP-T03 0.35 (0.8)
STP500 0.495 (2.6) EHI 0.286 (0.4) CSCP 0.443 (13.2) EHI 0.321 (0.7)

tornadogenesis change as a function of time (e.g., thermody-
namic variables become more relevant as environmental
CAPE decreases). However, the interpretation of these results
is made difficult by the diurnal CAPE and shear trends shown
earlier (Figs. 2-9) and associated changes in environment and
mode (Figs. 10c—f). For instance, if we consider the evolution of
predictors, they resemble supercellHSHC predictors in the
pre-transition, but look increasingly like HSLC/QLCS pre-
dictors by the post-transition. Classifying further by time, en-
vironment, and mode, though scientifically interesting, limits
sample size such that TSS results become dubious. Therefore,
it is best to only consider the environment-mode combinations
presented, with the foreknowledge that they inherently carry
some temporal information.

The final question that remains is whether the prediction of
SE tornadoes can be advanced by way of these TSS results. To
this end, we construct a number of new STP parameters for
each of the four categories shown in Table 4, as well as QLCS
tornado parameters (since no QLCS sigtor categories met our
event ratio criteria). As we are not partitioning our data into
separate training and verification subsets, fivefold cross vali-
dation® is performed to ensure that the initial TSS results are
not simply a by-product of this particular dataset, and can in-
stead generalize to other tested datasets (in this case, sub-
samples of the original data). This process is accomplished by
randomly sampling 80% of the reports for a given category,
computing associated TSS and threshold values, and con-
structing the parameter using the most skillful variables.
Correlation analysis is performed on the variables considered
for each parameter to ensure they are independent, with the

>The 10-fold cross validation was also tested. The resulting
variable rankings were virtually identical to those identified with
fivefolds, but the limited size of the testing dataset led to large
variability in the performance of the metrics constructed with these
rankings.
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exception of low-level SRH and deep-layer shear. Note that
CAPE variables largely do not appear in these new parameters
as aresult of already partitioning between low and high CAPE.
If the top ranked variables change between folds (i.e., a dif-
ferent SRH quantity ranks highest), they are also tested, and
the more skillful variable is retained. These variables are then
normalized using optimal thresholds motivated by the TSS
analysis, such that parameter values = 1 represent increased
likelihood of their associated hazard. This parameter is then
tested on the remaining 20% of the reports for each fold to
determine its performance metrics. Both the training and
testing report subsets associated with each fold are required to
meet the established event ratio criteria.

Following the design of previous STP metrics, such as STP-
TO03 and STP-E, all deep-layer shear terms (e.g., SHR6, Eff
SHR) in the resultant parameters are capped at a value of 1.5.
Also following the treatment of LCL and CIN terms in previ-
ous STP metrics, all thermodynamic terms are capped at a
value of 1 and negative values are set to 0 (unless otherwise
stated). The HSHC parameter is as follows:

SRH1 SHR6 _ 1500 — SBLCL
STP(HSHC) = 250m2s2" 27.5ms ! 1000 m
1500 — DCAPE
7501 kg

The HSHC supercell (SC) version of this STP is similar,
except the DCAPE term is removed and the SRH1 and SHR6
thresholds are adjusted to 225m?s™2 and 30ms™ !, respec-
tively. The HSLC STP parameter substitutes Eff SHR for
SHR6 and adds SBCAPE and PW terms, as follows”:

% Note that there is no explicit lower bound for this shear term,
since our CAPE/shear classification implicitly sets a lower bound.
7The SBCAPE term is capped at 2.
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FIG. 12. (a) Performance diagram for the most skillful preexisting metrics for each analyzed category from
Tables 2-3 (in black) and the new STP and QLCS Tor metrics (in red). The displayed values of probability of
detection (POD) and success ratio are those associated with the maximum TSS values for each metric. Forecast
bias is shown in dashed gray lines, and critical success index (CSI) is shown in light blue lines. Note that the y axis
begins at a POD of 0.5 to highlight differences between metrics; also shown are comparisons of (b) true skill
statistic (TSS), (c) area under curve (AUC), and (d) probability of false detection (POFD) for the presented

metrics.
STP(HSLC) = SRI;H_2 Eff SH_}} SBCAPE, PW - HSLC—Q = 1600 — MLLCL _ 1200 — DCﬁPE PW .
325m?s 25ms 150) kg l4gkg 1000 m 800J kg 14gkg
3) (6)

The HSLC SC STP substitutes SRH500 for SRH1 and re-
places SBCAPE with Eff Base, simplifying as follows®:

SRH500
200 m?s—2

500 — Eff Base
250 m

PW
14gkg™ "
“4)

The construction of the HSHC and HSLC QLCS tor pa-
rameters (HSHC-Q and HSLC-Q, respectively) was less
straightforward, given the inherently decreased predictability
of these phenomena, with few variables providing consistently
high skill. For HSHC-Q, a simple combination of SRH1 and
and MLLCL proved most skillful, as follows:

STP(HSLC SC) =

SRHI1 %
275m?s72

2000 — MLLCL

HSHC-Q = 1400m

®)

HSLC-Q retains the LCL term (with adjusted thresholds),
but adds PW and DCAPE,’ as follows:

8 The Eff Base term is set to zero for Eff Base > 250 m, as in our
formulation of STP500*.

? All thermodynamic terms in both HSHC-Q and HSLC-Q are
capped at a value of 1.
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Figure 12 shows the performance diagram (Roebber 2009)
containing the POD and success ratio (1 — FAR) corre-
sponding to these new metrics, as well as the top preexisting
metrics for each of the analyzed categories (as shown in
Tables 3—4). Comparisons between the TSS values, area under
curve (AUC) values associated with the receiver operating
characteristic (ROC; Mason 1982) curves, and probability of
false detection (POFD) for these metrics are also included.
The new HSHC STP metrics show minimal improvement over
STP-TO03, which is not entirely surprising given that most ex-
isting STP metrics have been formulated with this sort of en-
vironment (e.g., ample instability and shear) in mind. HSLC
STP shows marked improvement, with both increases in POD,
success ratio and TSS, and decreases in POFD. Both QLCS
parameters show increases in POD (and by extension, TSS),
though no appreciable change in success ratio.

4. Discussion and conclusions
a. Summary of results

Now that we have examined the evolution of SE nocturnal
storm environments and the predictability of their tornadoes,
we will revisit the questions we set out to address within the
context of the literature. The first of these was simply: how do
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storm environments evolve across the EET? When severe
convection persists across the EET, its associated environment
typically displays a gradual decrease in CAPE (Fig. 2a—i) and
an increase in static stability (Fig. 4), accompanied by increases
in low-level shear and SRH (Fig. 3). However, the shape and
magnitude of these trends can vary as a function of the average
CAPE/shear characteristics in the near-storm environment.
When the pre-transition or EET environments exhibit HSLC
conditions, associated storm environments tend to exhibit
larger deep-layer shear and low-level shear/SRH values for
the remainder of the day relative to HSHC environments.
Furthermore, many of these HSLC environments actually
destabilize as the evening progresses, which along with asso-
ciated CAPE increases resemble the evolution detailed in King
et al. (2017). These CAPE increases and CIN magnitude de-
creases are strongly correlated with increases in low-level 6,
and LR1 (supplemental Fig. 1), respectively, which underscore
the importance of low-level warm air and/or differential ad-
vection (as in King et al. 2017) and steepened low-level lapse
rates (as in Sherburn and Parker 2014) for HSLC storm
maintenance. The sum total of these factors likely plays a
compensatory role given reduced instability, allowing HSLC
convection to persist and produce hazards well into the
evening. However, some of these compensating factors were
primarily attributed to QLCS modes (Figs. 6-8), such that
the factors contributing to HSLC supercell maintenance are
less clear.

We also explored how environmental variables evolve when
severe convection fails to persist into and past the EET to
determine what factors potentially govern nocturnal storm
maintenance. Days in which severe convection persisted into
and through the EET show initially larger shear and SRH
values (Figs. 9d-f), as well as slower decreases in CAPE
(Figs. 9a—c) and slower increases in CIN magnitude (Figs. 9g—i,
particularly ML/MUCIN) across the EET. These results share
some similarities with the findings of Gropp and Davenport
(2018) (cf. their Fig. 9), suggesting that these observations re-
garding nocturnal storm maintenance may hold true in a broader
sense for different storm modes and geographical regions.

Our next question asked whether the presented environ-
mental evolution can influence the prevalence and convective
mode of tornadoes. HSLC pre-transition conditions were
found to initially suppress tornadoes, but increase the preva-
lence of tornadoes later in the day (Fig. 5a), possibly in re-
sponse to associated SRH and CIN patterns. With respect to
mode, HSHC conditions generally favor supercellular torna-
does, while HSLC conditions in a given period increasingly
favor the prevalence of QLCS tornadoes later that day
(Figs. 5d—f). Similar results hold true even when severe con-
vection fails to persist through the EET, with an uptick in
HSLC and QLCS tornadoes into the evening hours (Figs. 10c—
f). These findings highlight that CAPE/shear characteristics
in a given period can influence the tornado characteristics not
only then, but also during subsequent periods.

We then examined which near-storm environment variables
most effectively discriminate between tor/sigtor and nontor
storm environments. Regardless of environment or mode, low-
level shear/SRH quantities (and by extension, SR flow) are
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consistently skillful predictors for tor/sigtor (Tables 34, re-
spectively), as expected. HSLC tornadoes are specifically
predicted by moisture-related variables, including increased
PW and decreased DCAPE. The former indicates an increase
in local moisture, which has been shown in studies such as
Mead and Thompson (2011) to preclude the formation of near-
surface stable layers via advection of higher 6, air by the LLJ
(as in Maddox 1983). This slowed CIN development—perhaps
related to the presented destabilization of HSLC environments
(Figs. 4a,b)—would facilitate storm maintenance into evening
hours (Gropp and Davenport 2018), thus increasing the likeli-
hood of nocturnal tornadogenesis (Mead and Thompson 2011).

Interpretation of the latter, DCAPE, is less straightforward.
Decreased DCAPE may be related to reduced evaporation
(perhaps aided by the local moisture enhancements discussed
earlier) and less negatively buoyant outflow, though we must
be careful drawing direct comparison between the two due to
entrainment effects (Gilmore and Wicker 1998). Such a rela-
tionship would be physically plausible, given the favorable
influence of less negatively buoyant outflow on supercell
tornadogenesis (e.g., Markowski et al. 2002; Shabbott and
Markowski 2006), primarily by making it easier for near-
surface parcels to be dynamically lifted. Furthermore, this
prevents outflow from undercutting low-level circulations and
reducing the ability of their associated dynamic pressure ac-
celerations to stretch and converge near-surface rotation
(Markowski and Richardson 2014; Brown and Nowotarski
2019). Even for nonsupercellular tornadoes, less negatively
buoyant outflow may allow QLCS updrafts to remain upright
rather than sloping back over their attendant cold pools
(Rotunno et al. 1988), a crucial ingredient for QLCS torna-
dogenesis (e.g., Schaumann and Przybylinski 2012; Williams
et al. 2018). That being said, the exact relationship between
observed HSLC cold pool deficits and tornadogenesis remains
unclear (McDonald and Weiss 2021). In addition to the
aforementioned variables, HSLC tornadic supercells also ex-
hibit increased LR1 consistent with previous HSLC studies
(e.g., Sherburn and Parker 2014; Sherburn et al. 2016), along
with lowered Eff Base and increased SBCAPE and 3CAPE.
These findings imply that with reduced environmental insta-
bility, SE tornadogenesis becomes particularly sensitive to low-
level thermodynamic characteristics and the ability for storms
to remain more surface based.

In terms of existing forecasting metrics, STP-T03 shows the
highest skill for both tor and sigtor across nearly every
environment-mode combination. This is somewhat surprising,
given that more recent iterations of STP incorporating
effective-layer quantities and SRHS500 are generally thought to
be improvements upon this original STP formulation. That
said, Table 4 in Coffer et al. (2019) indicated that the second
lowest skill for STP500 was across the lower MS Valley (LVM),
so this insight is consistent with past work. For HSLC super-
cells, STP-F and STP-FCIN are effective predictors, due per-
haps to their inclusion of more surface-based quantities
(SBLCL and SBCAPE). Finally, a number of new STP and
QLCS tor metrics were also developed. Admittedly, there is
minimal room for such improvement with HSHC categories,
since most STP parameters are designed for prototypical
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convective environments with appreciable shear and instabil-
ity. Noticeable improvements can be made, however, for
HSLC/HSLC SC sigtor categories with the addition of pre-
dictors such as PW and Eff Base. Note that these parameters
have only been constructed and evaluated numerically. More
in depth analysis, including a 2D spatial assessment of these
new parameters relative to traditional STP parameters and
observed storm reports, is necessary before such parameters
can reliably be put into practice. In particular, one needs to
consider that these new parameters are conditioned on the
occurrence of storms within specific CAPE regimes, and
therefore could incur large false alarm rates if applied blindly.

b. Considerations and limitations

As with any study using near-storm model soundings as a
proxy for observations, there are a number of limitations that
must be considered. First is the potential for error in the
sounding-derived data ascribed to each severe convective re-
port. These errors could stem from the underlying model
output, such as the near-surface cool and dry biases of the RUC
model, which can lead to underestimates of CAPE on the order
of 100-250Tkg ™' (e.g., Thompson et al. 2003, their Fig. 3).
Similar magnitude variability in CAPE calculations can also
result from the method used to lift parcels and compute their 6,
upon saturation. For instance, Coffer et al. (2019) noted
that CAPE values computed with NSHARP/SHARPpy—Tlike
those used in this study—tend to be higher than most other
computational methods, particularly for high CAPE sound-
ings. Both sources could introduce uncertainty into the
CAPE/shear classification of individual reports, as well as our
characterization of CAPE and CIN evolution. Overestimates
of CAPE would lend confidence to our characterization of low-
CAPE environments but bring into question our high-CAPE
classification (and vice versa with underestimates). Though
worth consideration, the design of our two environmental
categories helps limit this uncertainty. For instance, if we
perturb our calculated CAPE values by the maximum error
bound in the above literature (250 J kg '), less than 1% of the
cases in either category switch classification (e.g., HSHC
switching to HSLC, or vice versa).

There are also potential spatiotemporal errors associated
with the mesoanalyses utilized. The 40-km spacing and hourly
time step could ascribe inaccurate data to reports occurring
near tight gradients (e.g., baroclinic zones), and also smooth
out relevant small-scale features like the narrow bands of moist
instability shown in King et al. (2017) to be important for
sustaining HSLC convection. For studies like this compositing
environments across large report samples, the net impact of the
discussed biases may ultimately be small (e.g., Thompson et al.
2003; Thompson et al. 2012), but it is important to understand
that the statistic robustness afforded by larger datasets does not
always translate to practical relevance for forecasting, as noted
in Anderson-Frey et al. (2016).

From a methodology standpoint, there is a great deal of
subjectivity when applying fixed CAPE/shear environmental
thresholds. Though physically motivated, the HSHC/HSLC
definitions developed herein (and in the literature) are some-
what arbitrary constructs used to isolate and analyze unique
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subsets of the storm climatology. Both represent only portions
of a much broader CAPE/shear parameter space in which
Southeast severe convection and tornadoes can exist (e.g.,
Anderson-Frey et al. 2019, their Fig. 2a), as demonstrated by
the uniformly favorable impact of high-shear, moderate-
CAPE conditions for tor/sigtor prevalence noted in section 3b.
Furthermore, the CAPE values which qualify as ‘“high” or
“low” vary by (and even within) geographical regions (Thompson
et al. 2013). Also worth consideration is our EF2+ cutoff for
significant tornadoes. Though largely consistent with previous
observational tornado studies, its utility for the SE tornado
climatology is debatable. Thompson et al. (2017), particularly
their Fig. 14, demonstrated that low-level rotational velocities
are approximately 10 kt lower in MS/AL for the same EF-scale
ratings compared to the Great Plains, perhaps due to the rel-
ative lack of potential damage indicators in much of the Great
Plains, with some accompanying potential for tornadoes to be
underrated by the EF scale (away from urban areas). As such, a
stricter significant tornado criterion of EF3+ might be war-
ranted for the SE to help avoid the conflation of some weak and
significant tornadoes. For instance, roughly 93% of the QLCS
sigtors identified by our original criteria have an EF2 rating.
This helps to explain their inherent lack of predictability, but it
also suggests that QLCS tornadoes may be a less impactful
portion of the overall SE tornado climatology than commonly
thought, particularly given the aforementioned potential for
biases in damage ratings in this region.

c. Future work

There are numerous avenues for future research that would
build upon and contextualize the results presented in this
study. For instance, it might prove useful to repeat similar
analyses for other geographical regions in order to gauge the
uniqueness of our SE results, and help advance a unified theory
regarding the storm maintenance and tornadogenesis potential
of storms persisting across the EET. Breaking the presented
analyses down by season may also reveal additional findings,
given the seasonal variability of SE storm environments shown
in Anderson-Frey et al. (2019). Furthermore, numerical sim-
ulations could help determine the net impact of the increased
low-level SRH and nocturnal destabilization on low-level up-
draft forcing in HSLC storm environments in spite of overall
limited buoyancy. Paired with the base-state substitution
(BSS) technique of Davenport et al. (2019), such simulations
could provide storm-scale insight into how environmental
evolution across the EET influences the dynamical processes
relevant for HSLC tornadogenesis.
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