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Abstract—This article presents a method for herding a swarm
of adversarial agents toward a safe area in a 2-D obstacle environ-
ment. The team of defending agents (defenders) aims to block the
path of a swarm of risk-averse, adversarial agents (attackers) and
guide it to a safe area while navigating in an obstacle-populated
environment. To achieve this, a closed formation (StringNet) of
defenders is formed around the adversarial swarm. A combination
of open-loop, near time-optimal controllers (that result in form-
ing the defenders’ formation), and state-feedback controllers with
finite-time convergence guarantees under bounded inputs (that
guide the formation around attackers and toward the safe area)
synthesize the herding strategy. For demonstration purpose, we
consider that the attacking swarm moves under a flocking model,
which however is unknown to the defenders. Collision-free tra-
jectory generation for the defenders, as well as their convergence
to the desired formations, is proved formally, and simulations are
provided to demonstrate the efficacy of the proposed approach. An
implementation of the proposed approach on quadrotor vehicles
simulated in the Gazebo simulator is also provided.

Index Terms—Autonomous agents, cooperative robots, motion
and path planning, multirobots systems.

I. INTRODUCTION

A. Motivation

THEORY and technology of robotic swarms have seen
rapid growth recently. Swarms of ground, marine, or aerial

robots are being deployed to accomplish search and rescue
missions [1], [2], monitoring and mapping in agricultural [3]
andmarine [4] environments, and cooperative transportation [5],
[6]. For more applications of robotic swarms, refer to the review
paper [7].
Nevertheless, ubiquity and rapid advancements of swarm

technology pose significant threat to safety-critical infrastruc-
ture, such as government facilities, airports, and military bases.
The presence of adversarial swarms nearby such entities, with
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the aim of causing physical damage or collecting critical in-
formation, can lead to catastrophic consequences. This necessi-
tates solutions for the protection of safety-critical infrastructure
against such attacks, particularly in crowded urban areas.
Counteracting an adversarial swarm by means of physical

interception, as studied in [8]–[10], at low altitudes in an urban
environmentmay not be desirable due to human presence. Under
the assumption of risk-averse and self-interested adversarial
agents (attackers) that tend to move away from the defending
agents (defenders) and from other dynamic objects, herding can
be used as an indirect way of guiding the attackers to some safe
area.

B. Related Work

Herding has been studied earlier in the literature, see for
instance [11]–[15]. The approach in [11] uses an n-wavefront
algorithm to herd a flock of birds away from an airport, where
the birds on the boundary of the flock are influenced based on
the locations of the airport and a safe area. The framework is
extended to include stability and performance guarantees for a
bird flock under a directed star communication graph [12] and
experiments [13].
The herding method in [14] utilizes a circular-arc formation

of herders to influence the nonlinear dynamics of the herd
based on a potential-field approach, and designs a point-offset
controller to guide the herd close to a specified location. In [15],
biologically inspired strategies are developed for confining a
group of agents; the authors develop strategies based on the
“wall” and “encirclement”methods that dolphins use to capture a
school of fish. In addition, they compute regions fromwhich this
confinement is possible, but the results are limited to constant-
velocity motion. A similar approach called herding by caging
is adopted in [16], where a cage of high potential is formed
around the attackers. A rapidly exploring random tree (RRT)
approach is used tofind amotionplan for the robots; however, the
cage is assumed to have already been formed around the agents,
whereas the caging of the agents thereafter is only ensured with
constant velocity motion under additional assumptions on the
distances between the agents. Forming such a cage could be
more challenging in case of self-interested, risk-averse attackers
under nonconstant velocity motion.
In [17] and [18], the authors discuss herding using a

switched-system approach; the herder (defender) chases targets
(evaders/attackers) sequentially by switching among them so
that certain dwell-time conditions are satisfied to guarantee
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stability of the resulting trajectories. However, the assumption
that only one of the targets is influenced by the herder at any
time might be limiting and nonpractical in real applications.
Deptula et al. [19] use approximate dynamic programming to
obtain suboptimal control policies for the herder to chase a
target agent to a goal location. A game-theoretic formulation
is used in [20] to address the herding problem by constructing
a virtual barrier similar to Pierson and Schwager [14], but the
computational complexity because of the discretization of the
state and control-action space limits its applicability.
Most of the previously discussed studies do not consider

obstacles in the environment. Some approaches on pursuit-
evasion [21] and shepherding [22] do consider obstacles in the
environment, however they use single integrator motion models
for the agents that limit their applicability to real systems. In
our prior work [23], we developed a vector-field-based strategy
for herding a single attacker to a safe area while avoiding static
rectangular obstacles in the environment. Obstacle avoidance
is ensured using vector fields defined around superellipses that
contain the obstacles; in fact, superellipse offers a better over-
approximation of a rectangle compared to circle or ellipse.
Furthermore, all aforementioned approaches assume some

form of potential field to model the repulsive motion of the
attackers with respect to the defenders, and develop herding
strategies for the defenders based on this potential field. Hence,
if the attacker’s strategy is not known, such approaches may fail
to create proper barriers around the attackers. More recently,
in [24], we considered herding strategies for defending a safety-
critical area (protected area) from a swarm of attackers in a
2-D environment. We proposed a method termed as “StringNet
Herding,” in which a closed formation of strings (StringNet) is
formed by the defenders to surround the swarm of attackers.
It is assumed that the string between two defenders serves as
a barrier through which the attackers cannot escape (e.g., a
physical straight-line barrier). The StringNet is then controlled
to herd the swarm of attackers to a safe area. We provided
state-feedback, finite-time control laws for defenders moving
under double integrator dynamics with drag term (damped dou-
ble integrator) to, first, form the StringNet around the attackers,
and then, herd the enclosed attackers to the safe area while
maintaining the StringNet formation. In contrast to the potential
field based herding methods, the “StringNet Herding” approach
only assumes that the attackers aim to avoid collisions with
the defenders, yet the particular form of the repulsive field or
their collision avoidance strategy does not need to be known
a priori. To demonstrate the proposed approach, we adopt a
flocking behavior for the attackers, which however is not known
to the defenders.

C. Overview of the Proposed Approach

The main contribution of this article is advancing the
“StringNet Herding” strategy in each of its phases: Gathering,
seeking, enclosing, and herding. Recall that the defenders must
form the StringNet around the attackers before the attackers
reach the protected area.

Fig. 1. Overview of the herding approach.

1) Gathering Phase: In this phase, compared to the confer-
ence version, we design a near time-optimal1 motion plan for
the defenders. Inspired by the work in [25], we compute near
time-optimal, collision-free trajectories for the defenders toward
desired open-formation positions in the expected (i.e., the short-
est) path of the attackers to the protected area. To this end, we
use path-velocity decomposition [25]: first, we design shortest
paths from the current positions of the defenders to the desired
positions that lie on the desired formation. The shortest paths are
obtained using a special representation of the environment called
C1-tangent graph [26] (inspired from tangent graph [27]). Then,
we compute velocity profiles that minimize the time to traverse
the shortest paths under bounded acceleration [26]. The desired
formation positions and the corresponding shortest paths, along
with the near time-optimal velocity profiles, are then assigned
to the defenders by solving a mixed integer quadratic program
(MIQP), which minimizes the total travel time and total length
of path intersections. Collision avoidance on the chosen paths
and under the given near time-optimal velocity profiles for the
defenders is accomplished by initial-time scheduling, similar
to the approach in [28], using a mixed integer linear program
(MILP). The desired formation is chosen by iteratively solving
the MIQP so that it is as far as possible from the protected area,
and the defenders are able to gather at the desired formation
before the attackers can reach there.
2) Seeking Phase: After the defenders have converged to

their desired formation, they start moving closer to the attacking
swarm (i.e., aswe say, they seek the attackers) whilemaintaining
the desired formation.
3) Enclosing and Herding: Once the distance of the for-

mation center to the center-of-mass of the attacking swarm is
below a certain threshold, the defenders enclose the attackers
by completing the StringNet formation, and herd the attacking
swarm to the safe area.
In each phase, we assume that the agents have a known,

circular footprint, similar to our work [24], and we explicitly
consider the problem of interagent collision avoidance, in con-
trast to earlier work, for instance [14], [16]. The block diagram
in Fig. 1 summarizes the approach.

D. Summary of Our Contributions

Compared to the prior literature and our earlier work in the
conference paper [24], the novelties and the main contributions
of this article are as follows.

1i.e., the actual travel time τ satisfies τ ∗ ≤ τ ≤ (1 + ε)τ ∗ where τ ∗ is the
optimal travel time and ε << 1 is a small, positive constant.
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1) We develop near time-optimal controllers to guide the
defenders to an optimal desired open formation (in order
to later form the StringNet) while avoiding collisions. The
contributions compared to the conference version are as
follows.
1) The formulation of an MIQP to assign desired forma-

tion positions to the defenders, so that the total travel
time and the total length of the path intersections on
the corresponding trajectories are minimized.

2) An iterative scheme that uses the MIQP formulation
to find an optimal desired formation for the defenders
to gather in the expected path of the attackers.

2) We develop state-feedback, finite-time convergent,
bounded control laws for the defenders moving under
damped double integrator dynamics such that their forma-
tion seeks, encloses, and herds the attackers to the safe area
while avoiding the convex polygonal obstacles. Compared
to prior work, we provide explicit guarantees on the time
of convergence under the proposed bounded controllers.

E. Organization

The rest of this article is structured as follows. Section II
discusses problem setup and preliminaries. The “StringNet
Herding” method is discussed in Section III. A formal safety
and convergence analysis is provided in Section IV, followed
by MATLAB simulations in Section V-A. The results on imple-
mentation of the proposed approach on quadrotor vehicles using
physics-based Gazebo simulator are provided in Section V-B.
Finally, Section VI concludes this article.

II. PROBLEM SETUP AND PRELIMINARIES

A. Notation

We use r, v, and u to denote position, velocity, and input
acceleration vector, respectively. We use ξ and η to denote
desired position and velocity vector, respectively. We use both
ρ and � to denote radius. The variables ai, ac , dj , and df used
as subscripts of the aforementioned variables correspond to the
ith attacker, attackers’ center of mass (ACoM), jth defender,
and the defenders’ desired formation, respectively. Similarly,
subscripts pa, sa, ok, and ct denote the protected area, safe area,
the kth obstacle, and the C1−tangent graph, respectively. We
use subscript d to denote common variables that correspond to
all the defenders. Similarly, subscripts a and o denote common
variables corresponding to all the attackers and all the obstacles,
respectively. We use sn and sb as subscripts to denote StringNet
and string barrier, respectively. Any variable with superscript
g, s, e, and h correspond to gathering, seeking, enclosing, and
herding phase, respectively. We denote by δj,k and δf,k virtual
δ-agents (defined later) on the obstacle Ok corresponding to
the jth defender and the defenders’ formation, respectively.
Similarly, δj,c and δj,p denote the δ-agents corresponding to
the jth defender on the connectivity region of the attackers and
the protected area, respectively. The bar notation ( ·̄ ) used on a
variable denotes some form of upper limit of the corresponding
variable. Similarly, underbar notation ( · ) denotes some form of

Fig. 2. Problem formulation.

upper limit of the corresponding variable. The tilde notation ( ·̃ )
used on a vector variable denotes quantity associated with some
form of error. ‖ · ‖ denotes the Euclidean norm of its argument.
| · | denotes absolute value of a scalar argument.

B. Problem Setup

We consider Na attackers denoted as Ai, i ∈ Ia =
{1, 2, . . ., Na}, and Nd defenders denoted as Dj , j ∈ Id =
{1, 2, . . ., Nd}, operating in an environment W ⊆ R2 with a
protected area P ⊂ W defined as P = {r ∈ R2 | ‖r− rpa‖ ≤
ρpa}, and a safe area S defined as S = {r ∈ R2 | ‖r− rsa‖ ≤
ρsa}, where (rpa, ρpa) and (rs, ρsa) are the centers and radii of the
protected and safe area, respectively. The agents Ai and Dj are
modeled as discs of radii ρa > 0 and ρd > 0, for all i ∈ Ia and
j ∈ Id, respectively, andmoveunder double integrator dynamics
with a quadratic drag term (damped double integrator)

ṙai = vai, v̇ai = uai − CD ‖vai‖vai (1)

ṙdj = vdj , v̇dj = udj − CD ‖vdj‖vdj (2)

‖uai‖ ≤ ūa, ‖udj‖ ≤ ūd (3)

where CD > 0 is the known, constant drag coefficient, rai =
[xai yai]

T and rdj = [xdj ydj ]
T are the position vectors of Ai

andDj , respectively;vai = [vxai
vyai

]T andvdj = [vxdj
vydj

]T

are the velocity vectors, respectively, and uai = [uxai
uyai

]T ,
udj = [uxdj

uydj
]T are the accelerations, which serve also as the

control inputs, respectively, all resolved in a global inertial frame
Fgi(̂i, ĵ) (see Fig. 2). The accelerationsuai andudj are bounded
by ūa and ūd as given in (3) such that ūa < ūd. The dynamics
in (1) and (2) takes into account the air drag experienced by
the agents modeled as a quadratic function of the velocity. Note
also that the damped double integrator model inherently poses a
speed bound on each agent under a limited acceleration control,

i.e., ‖vai‖ < v̄a =
√

ūa

CD
and ‖vdj‖ < v̄d =

√
ūd

CD
, and does

not require an explicit constraint on the velocity of the agents
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while designing bounded controllers, as in earlier literature. We
also consider the following.
Assumption 1: There is a navigation system that senses the

position rai and velocity vai of the attacker Ai that lies inside
a circular sensing zoneZd = {r ∈ R2| ‖r− rpa‖ ≤ �d} for all
i ∈ Ia,where�d > 0 is the radius of the defenders’ sensing zone.
The navigation system communicates the sensed information to
the defenders Dj , for all j ∈ Id. Every attacker Ai has a local
sensing zone Zai = {r ∈ R2 | ‖r− rai‖ ≤ �ai}, where �ai >
0 is the radius of the attacker Ai’s sensing zone (see Fig. 2).
This navigation system can include sensors, such as radars,

lidars, and cameras, which are spatially distributed around the
protected area and provide measurements of positions and ve-
locities of the attackers and the defenders.
We considerNo static, convex polygonal obstacles denoted as

Ok, k ∈ Io = {1, 2, . . ., No}, (grey colored polygons in Fig. 2),
described as the convex hull of their vertices

Ok = Conv
(
{r1ok, r2ok, . . ., rMk

ok }
)

(4)

where Conv(Q) is the convex hull of the points given in the
set Q, r�ok = [x�

ok y
�
ok]

T are the positions of the vertices for all
� ∈ {1, 2, . . .,Mk}, Mk is the total number of vertices of Ok,
k ∈ Io. The boundary of Ok is denoted by ∂Ok. Inspired from
Hegde and Panagou [29] and Esquivel and Chiang [30], the
boundaries ∂Ok are inflated by a size of ρō (> ρd) to account
for safety and agent size. The inflated obstacles are denoted by
Ōk, and are given as (see Fig. 2): Ōk = Ok

⊕
B(ρō), where⊕

denotes the Minkowski sum of the sets and B(ρō) denotes
a ball of radius ρō centered at the origin. The boundary ∂Ōk of
the inflated obstacle Ōk is a C1 curve for all ρō > 0.

The attackers aim to reach the protected area P . They are
assumed to stay within a connectivity region of radius ρac
(< ρ̄sn) centered at the ACoM, see Fig. 2, where ρ̄sn is the
radius of the maximum circular footprint of a formation that
can pass through the obstacle-free space in the environment.
The defenders aim to herd the attackers to the safe area S before
they reach P . Formally, we consider the following.
Problem 1 (Herding): Design control actions udj ∀j ∈ Id,

such that: the defenders form a “StringNet” formation around
the flock of attackers in finite time, and the StringNet formation
herds the flock of attackers to the safe area S while avoiding the
obstacles Ok.

C. Preliminaries

We define sigα(x) = x‖x‖α−1. The Euclidean distance be-
tween agent ı and j is denoted as Rj

ı = ‖rı − rj‖. A blending
function σj

ı : [0,∞) → [0, 1] [29], characterized by a user de-
fined doublet (Rj

ı, R̄
j
ı) with 0 < Rj

ı < R̄j
ı , is defined in (5) as a

function of the distance Rj
ı

σj
ı (R

j
ı) =

⎧⎪⎨
⎪⎩
1, Rj

ı ≤ Rj
ı∑3

l=0 A
j
ı,l(R

j
ı)

l, Rj
ı ≤ Rj

ı ≤ R̄j
ı

0, R̄j
ı ≤ Rj

ı

(5)

where the coefficients Aj
ı,3, A

j
ı,2, A

j
ı,1, and Aj

ı,0 are chosen as
in [24] so that σj

ı in (5) is a C1 function. The blending function

σj
ı (R

j
ı) is used to keep certain terms in the controller of agent

ı active only in a local neighborhood around the agent/object j.
The user-defined parameter R̄j

ı specifies the maximum distance
below which the blending function is nonzero and, hence, the
controller term multiplied to it is active only within the distance
R̄j

ı from object j. The parameter Rj
ı < R̄j

ı is chosen to allow
smooth transition from value 0 outside the circle of radius R̄j

ı

to value 1 inside the circle of radius Rj
ı centered at the object

j. The argument Rj
ı of the blending function would be omitted

whenever clear from the context. A saturation function Ωū :
R2 → R2 is defined as

Ωū(g) = min(‖g‖ , ū)g ‖g‖−1 (6)

where ū > 0 is the saturation limit. We define potential function
as follows.
Definition 1 (Potential Function [31]): The potential W j

ı

is a continuously differentiable, nonnegative function of the
distance Rj

ı between agents ı and j, such that: W j
ı (R

j
ı) → ∞

as Rj
ı → Rj,∞

ı and Rj
ı → R̄j,∞

ı , and W j
ı attains its unique

minimum when agents ı and j are located at a desired distance
R̆j

ı . Here, R
j,∞
ı , R̄j,∞

ı , and R̆j
ı are positive numbers such that

(Rj,∞
ı < R̆j

ı < R̄j,∞
ı ).

We choose a potential function W j
ı : Ij

ı −→ [0,∞) as

W j
ı (R

j
ı) = ln

(
w1R

j
ı − w2

Rj
ı − w0

+
Rj

ı − w0

w1R
j
ı − w2

)
(7)

whereIj
ı = (Rj,∞

ı , R̄j,∞
ı ),w0 = Rj,∞

ı ,w1 =
R̆j

ı−Rj,∞
ı

R̄j,∞
ı −R̆j

ı
> 0, and

w2 = w1R̄
j,∞
ı , with R̆j

ı ∈ Ij
ı being the desired distance between

agent ı and agent j. Note that asRj
ı → Rj,∞

ı orRj
ı → R̄j,∞

ı , the
value of the potentialW j

ı → ∞. We choose this form because it
serves twopurposes: first, to generate collision avoidance control
for the defenders, and second, to demonstrate flocking motion
of the attackers (discussed later) because W j

ı (R
j
ı) has a unique

minimum. The derivative of W j
ı is defined as

∂W j
ı

∂Rj
ı
=

−(w2 − w1w0)K1

(w0 −Rj
ı)(w1R

j
ı − w2)K2

where K1 = (w1
2 − 1)(Rj

ı)
2 − (2w1w2 − 2w0)R

j
ı + w2

2 −
w0

2 andK2 = (w1
2 + 1)(Rj

ı)
2 − (2w1w2 + 2w0)R

j
ı + w2

2 +
w0

2.
A control action used by agent ı to avoid collision with agent

j based on the potential function W j
ı is defined as

up(x
j
ı)= − ζjı (vı − vj)− μj

ı

ri − rj

Rj
i

⎧⎪⎨
⎪⎩

∂W j
ı

∂Rj
ı
, if Rj

i ∈ Īj
ı

−ν, if Rj
i < Rj,ν

i

ν, if Rj
i > R̄j,ν

i

(8)
where the joint state vector xj

ı = [rTı ,v
T
ı , r

T
j ,v

T
j ]

T , ζjı and μj
ı

are positive control gains, ν is a very large number;Rj,ν
i , R̄j,ν

i ∈
Ij
ı such that ∂W j

ı

∂Rj
ı
|Rj,ν

i
= −ν, ∂W j

ı

∂Rj
ı
|R̄j,ν

i
= ν and Rj,ν

i < R̄j,ν
i ;

Īj
ı = [Rj,ν

i , R̄j,ν
i ].

We consider a flocking motion model for the attackers for
demonstration purposes. In our previous work [24], we devel-
oped a bounded controller that yields flocking behavior for the
attackers in the presence of rectangular obstacles. For collision
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Fig. 3. Desired positions of the defenders.

avoidance with the obstacles during flocking, an attacker con-
siders a virtual β-agent2 on the superelliptic boundaries around a
rectangular obstacle, and uses a potential function based control,
similar to that in (8), corresponding to the β-agent. The β-agent
strategy can be extended for avoiding convex polygonal obsta-
cles Ok with C1 boundaries ∂Ōk (see Fig. 2), refer to Chipade
and Panagou [24] and references therein for more details on the
flocking controller. Next, we describe “StringNet Herding.”

III. STRINGNET HERDING

To herd the flock of attackers to the safe area S, we build
upon the “StringNet Herding” method proposed in our earlier
work [24]. StringNet is a closed net of connections, called
strings, formed by the defenders, as shown in Fig. 3. The strings
can be thought of as physical mechanisms through which the
attackers cannot pass once the defenders become connected
through the strings; for example, these could be extendable
physical strings or bars connecting the defenders. A closely
related practical implementation of a similar concept can be
found in [32], where a large rope encircled on a pulley attached
to a controlled motor is used to build a bridge. This string barrier
(connection) between twodefenders can have amaximum length
of R̄sb > 0 and is assumed to be a straight line.

The underlying graph for the “StringNet” is defined as fol-
lows.
Definition 2 (StringNet): The StringNet Gsn = (Vsn, Esn) is

a cycle graph consisting of: the defenders as the vertices, Vsn =
{D1,D2, . . .,DNd

}, and a set of edges, Esn = {(Dj ,Dj′) ∈
Vsn × Vsn|Dj

s←→ Dj′ }, where the operator
s←→ denotes a

string connection between the defenders.

2β-agent is a virtual agent located at the projection point of an attacker’s
position on the boundary around the obstacle. The β-agent moves along the
boundary and its velocity is equal to the projection of the attacker’s velocity on
the unit tangent vector to the boundary at the current location of the β-agent.

The StringNet Herding consists of four phases: Gathering,
seeking, enclosing: StringNet formation, and herding. These
phases are discussed as follows.

A. Gathering

The defenders may be initially scattered throughout the
workspace.Once the attackers are sensed in the sensing zoneZd,
the defenders are tasked to herd them away from the protected
areaP toward the safe area S. The gathering is initiated when at
least one of the attackers detected inZd enters a circular region of
radius �ad (< �d) (see Fig. 2). All the attackers that are detected
inside the annular region between the circles of radius �ad and
�d centered at rpa are to be herded by the defenders.
It is important for the defenders to form the StringNet around

the attackers before the attackers reach the protected area. In the
gathering phase, the aim of the defenders is to converge to an
open formation F g

d on the expected path of the attackers (i.e.,
the shortest path of the attackers to the protected area) before the
attackers reach there. Theopen formationF g

d is characterized by
the positions ξgl ∀l ∈ Id, as shown in Fig. 3. Once the defenders
arrive at these positions, the defenders get connected by strings
in the following sense: the defender at ξgl gets connected to the
defender at ξgl+1 for all l = {1, 2, . . .Nd − 1} (see Fig. 3, blue
formation). The open formation is formed such that the normal to
the line joining ξg1 and ξ

g
Nd

(which we refer to as the orientation
vector of the formationF g

d ) faces the attackers on their expected
path, see for example the blue formation in Fig. 3. The design
ofF g

d and the corresponding positions ξgl ∀l ∈ Id is discussed
later in the section.
In order for the defenders to converge to the formation F g

d

as early as possible, we design a near time-optimal motion
plan. Given initial positions for the Nd defenders, and desired
goal positions on the formation F g

d , the objective is to find
defender-goal pairings and corresponding near time-optimal,
collision-free trajectories, which the defenders follow to reach
their assigned goals. The solution to this problem consists of the
following steps.
1) Finding near time-optimal trajectories for all the pairs of

the defenders’ initial positions and the desired positions
onF g

d .
2) Finding optimal pairings among the defenders and the

desired positions onF g
d to minimize total travel time and

total length of the portions of the chosen trajectories that
have a possible collision.

3) Modifying the derived trajectories to avoid collisions.
The near time-optimal trajectory between two given points is

obtained by path-velocity decomposition [25], which consists of
finding the shortest path and a near time-optimal velocity profile
along the shortest path.
Additionally, we want to find the location of a desired forma-

tion that is as far as possible from the protected area, at which the
defenders are able to gather before the attackers reach there. This
problem becomes computationally intractable as the number of
defenders increases.
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To reduce the computational requirements, we generate short-
est paths between a priori known grid points offline. We dis-
cretize the obstacle free space Wfree into a grid of square size
Δw. We then define a C1-tangent graph Gct = {Vct, Ect} [26]
using the grid points and the obstacles. The C1-tangent graph is
inspired from the idea of tangent graph [27]. The C1-tangent
graph consists of C1 paths between any two nodes. For an
obstacle environment with convex polygonal obstacles Ok, the
construction of the C1-tangent graph involves finding common
tangents of each pair of boundaries ∂Ōk and tangents to these
boundaries from all the grid points. The points at which these
tangents touch the boundaries ∂Ōk and the grid points serve as
the nodes onGct, and the tangents serve as the edges onGct. More
details on C1-tangent can be found in [26]. The shortest paths
joining these nodes and the near time-optimal velocity profiles
over these paths are also obtained assuming terminal speeds to
be zero3 and considering the dynamics in (2) and (3) (refer to
Chipade and Panagou [26]).
The case of multiple defenders traveling along their near-

optimal trajectories may give rise to collisions. Since the de-
fenders have finite size, finding trajectory intersections involves
checking the intersections of the tubes thatwould be traversed by
the defenders. Any collision between two defenders following
given velocity profiles can only happen on the intersecting
segments of the tubes over the respective paths. Finding inter-
secting segments of given two shortest paths involves checking
intersections of all the tubes corresponding to the straight-line
and circular segments on the two paths. The intersection can be
found inO(NP1

NP2
) time, whereNP1

andNP2
are the number

of segments on any two pathsP1 andP2. We have the following
lemma about the tube intersections.
Lemma 1 (Lemma 3 in [26]): Let P1 be the shortest path

between the points r11 and r12, and P2 be the shortest path
between the points r21 and r22 obtained using C1-tangent graph.
Then, P1 and P2 intersect at most once.
To find the trajectory intersections, we discretize the intersect-

ing segments of the two paths, and perform a pairwise check
on these discrete locations for a possible collision between
the two agents moving with specified velocity profiles. This
yields the collision time interval for the two agents under the
specified velocity profiles and the corresponding lengths of the
intersecting segments.
In summary, for the C1-tangent graph Gct based on the dis-

cretized grid, we offline compute the shortest paths between all
pairs of the nodes, velocity profiles on these paths, and trajec-
tory intersections for each pair of trajectories. The worst-case
memory requirement for all the aforementioned data for an
environment with No obstacles and N2 grid points is O(N̄3),
where N̄ = 4(N2

o −No +N2No).

3The final speed is required to be zero for the defenders to get connected via
strings. The initial speed being zero is not a conservative assumption because if
a defender has nonzero speed, one can apply acceleration opposite to its velocity
to make the speed zero and assume the initial position for that defender to be
the position at which this speed will become zero.

Fig. 4. Grid for motion planning in gathering phase.

We find an approximate shortest path between any two points
by connecting them to the closest node on the offline computed
C1-tangent graph Gct (see Fig. 4).

In the next sections,wediscuss how thedefenders are assigned
to the goal locations on a given formation F g

d and how the
desired formation F g

d is chosen.
1) Defender-Goal Pairing Assignment: For a given forma-

tion F g
d , we find the near time-optimal trajectories for all

possible defender-goal pairs and intersections of all the pairs
of the obtained time-optimal trajectories from the offline stored
data.
We formulate an MIQP to find the defender-goal assignment

thatminimizes the total timeof travel for all the defenders and the
total length of the intersecting segments of the intersecting tra-
jectories. This is to ensure that minimum alterations are required
in the assigned trajectories for collision avoidance (discussed
later).
Let Ξjl be the decision variable whose value is 1 if the

trajectory between the initial position of defender Dj , rdj(0),
and the goal ξgl is chosen in the defender-goal assignment, i.e.,

ξgl is assigned to Dj , and 0 otherwise for all j, l ∈ Id. Let Lj,′l′

j,l

be the length of the path along the trajectory between rdj(0) and
ξgl that has possible collision with the trajectory between rdj′(0)
and ξgl′ (see Fig. 4). Let T

gl
dj denote the total time required byDj

to travel the near time-optimal trajectory corresponding to ξgl
without considering collision avoidance with other defenders.
The MIQP is formulated as

Minimize
∑
j,l∈Id

T gl
dj Ξjl +

∑
j,j,′l,l′∈Id

Lj,′l′

j,l ΞjlΞj′l′

Subject to
∑
l∈Id

Ξjl = 1 ∀j ∈ Id∑
j∈Id

Ξjl = 1 ∀l ∈ Id

Ξjl,Ξj′l′ ∈ {0, 1} ∀j, l, j,′ l′ ∈ Id

(9)
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where the cost is the total time of travel for all the defenders
and the total length of the intersecting segments of the intersect-
ing trajectories. The first constraint ensures that each defender
is only assigned to a single desired position and the second
constraint ensures that each desired position is only assigned
to a single defender. This MIQP can be solved using, for in-
stance, the off-the-shelf MIP solver GUROBI [33]. The solution
Ξ∗ = {Ξ∗

11,Ξ
∗
12, . . .,Ξ

∗
j1,Ξ

∗
j2, . . .,ΞNd(Nd−1),Ξ

∗
NdNd

} to this
MIQP gives the defender-goal assignment. We define a bijective
mapping a : Id → Id

a(j) = arg max
l∈Id

Ξ∗
jl (10)

such that the desired position ξga(j) is assigned to Dj .
2) Collision Avoidance by Start-Time Scheduling: Defend-

ers may collide with other defenders on their assigned tra-
jectories. To avoid this case, we adopt the MILP formulation
developed in [28], which performs initial-time scheduling so
that the agents start their motion at different initial times, and
move on the given paths with specified velocity profiles to avoid
collisions. In [34], it is established that the given time-optimal
trajectories of multiple robots without considering collision
avoidance remain time-optimal under initial time-scheduling if
Lemma 1 holds. In our case, the trajectories would still remain
near time-optimal after initial-time scheduling.
3) Desired Open Formation: So far, we discussed how to

obtain a near time-optimal motion plan for the defenders to
gather at the given desired formationF g

d . Next, we discuss how
to choose F g

d to ensure that the attackers are enclosed inside
a StringNet formation (discussed later) provided it is possible,
i.e., the attackers have not reached the protected areaP , and can
be herded to a safe area thereafter.
For a given center rdf and orientation φ, consider a semicir-

cular formationF sc
d formed by the points ξscl

ξscl (rdf , φ) = rdf + ρgdf ô(φ
g
l ) (11)

where φg
l = φ+ π

2 + π(l−1)
Nd−1 , for all l ∈ Id, where ô(φg

l ) =[
cos(φg

l ), sin(φg
l )
]T

is the unit vector of orientation φg
l with

respect to the x-axis. We choose the desired positions for the
defenders ξgl , l ∈ Id, as the points on the grid that are closest to
the points ξscl given by (11)

ξgl = fgl (rdf , φ) � minq∈V free
ct

‖ξscl (rdf , φ)− rq‖ (12)

where V free
ct ⊂ Vct contains the nodes that are not on the

obstacle boundaries (see Fig. 4). The radius ρgdf satisfies

ρgdf

√
2− 2 cos( π

Nd−1 ) >
√
2Δw to ensure that there is a unique

grid point that is the closest toξscl . Similarly,we select the closest
grid points řdj(0) to the initial positions of the defenders rdj(0)
and select the desired open formation as discussed below.
We first calculate the shortest path for the ACoM, rac =

1
Na

∑Na

i=1 rai, to the protected area. Let this path bePac and its
length be Γac. The pathPac is associated with mappingsPac :
[0,Γac] → R2 and ϑac : [0,Γac] → [0, 2π]. Here, Pac(γac)
gives the Cartesian coordinates, and ϑac(γac) gives the direction

Algorithm 1: Desired Open Formation.

Input: řd(0), ra(0) = {ra1(0), ra2(0), . . ., raNa
(0)},

rpa, Ō = {Ok|k ∈ Io}, Gct

1: Find ACoM: rac(0) =
∑Na

i=1
rai(0)
Na

;
2: Pac=shortestPath(Ō, Gct, rac(0), rpa);

3: Tlead(γac) =
γac
v̄ac

− T (řd(0), ξ
g(γac));

4: γ∗
ac=bisectionSearch(Tlead(γac)−ΔT g

d , ρpa,Γac);
5: rdf = Pac(γ

∗
ac); φ = ϑac(γ

∗
ac)− π;

6: return ξg(γ∗
ac), rdf , φ

of the tangent to the path at the location reached after traveling
Γac distance along the path from the initial position.On this path,
we use bisection method to find the point rdf around whichF g

d

should be designed such that theminimum time to gather, i.e., the
minimum time for the defenders to reach their desired positions
on F g

d from řd(0) = {řdj(0) ∀j ∈ Id}, is smaller by at least
ΔT g

d (> 0) than the time for the ACoM to reach this point. Here,
ΔT g

d is a user-defined time to account for the time required by
the defenders to travel from the actual initial position rdj(0) to
the closest grid point řdj(0) and the time to get connected by
strings once arrived at the desired formation. Algorithm 1 gives
a detailed iterative scheme to find the desired positions on the
open formation F g

d .
In Algorithm 1, T (řd(0), ξ

g(γac)) is the minimum time,
obtained by solving the MIQP (9) and the MILP [28],
for the defenders to reach the formation F g

d defined by
ξg(γac) = {fgl (Pac(γac), ϑac(γac)− π))|l ∈ Id}; The func-
tion shortestPath(Ō, Gct, rac(0), rpa) finds the shortest path
between rac(0) and rpa on the C1-tangent graph Gct defined
for the environment with obstacles Ō. The term γac

v̄ac
gives

the minimum time the attackers require to travel the dis-
tance γac when they travel at the maximum possible speed
v̄a. Tlead(γac) is the time lead or advantage the defenders
have over the attackers during the gathering phase. The func-
tion bisectionSearch(Tlead(γac)−ΔT g

d , ρpa,Γac) returns γ∗
ac ∈

[0,Γac − ρpa] such that Tlead(γ
∗
ac) = ΔT g

d .
The initial position rdj(0) is connected to the closest grid

point řdj(0) by the largest circular arc that is tangential to the
shortest path obtained between řdj(0) and its goal position ξ

g
a(j)

(see Fig. 4). This gives us an approximate shortest path between
rdj(0) and ξga(j). The near time-optimal velocity profile for the
circular arc is added to that obtained for the grid points řdj(0)
and ξga(j).
If there exists more than one shortest paths for the attackers

to reach the protected area, then Algorithm 1 is run for all such
paths, and the gathering formation on these paths for which the
defenders require the shortest time to gather is chosen as the
final gathering formation.
Using the near time-optimal velocity profiles on the chosen

paths, all the defenders reach their desired positions on F g
d

within finite time T . Upon accomplishment of the gathering
phase, the defenders execute the seeking phase. Next, we de-
scribe the seeking phase.
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B. Seeking

In practice, the attackers may deviate from their optimal
trajectories computed during the gathering phase, i.e., be out-
side the circle ‖r− rpa‖ = ‖rdf (T )− rpa‖ for r ∈ R2. This
requires defenders to move close to the attackers in order to
enclose them. Recall that the defenders have already converged
to the open formationF g

d . Then, during the seeking phase their
goal is tomove as a desired open, rigid formationF s

d centered at
rdf . The formation of the defenders seeks to: (i) get closer to the
attacking swarm (i.e., ‖rdf (t)− rac‖ < Es

trans, for all t > T s
df ,

where Es
trans is a user-defined parameter, T s

df > T is some finite
time at which the seeking phase would be completed), and (ii)
maintain the orientation φ of the formation F s

d toward the at-
tacking swarm (see Fig. 3). We first generate desired trajectories
for each defender assuming rigid-body motion of the desired
formation, and then design finite-time convergent controllers to
track the desired trajectories.
To generate desired trajectories that can be tracked by the

defenders, we first consider that the center rdf is governed
by the same damped double integrator dynamics by which the
defenders’ motion is governed

ṙdf = vdf , v̇df = udf − CD ‖vdf‖vdf (13)

where vdf is the velocity of the formation F s
d . To achieve the

aforementioned objective (i), we design the control input

udf = Ωū
s1
df

(∑
k∈Io σ

δf,k
df up(x

δf,k
df )− k1(rdf − rac)

)
+Ωū

s2
df
(CD ‖vdf‖vdf − k2(vdf − vac))

(14)

where k1, k2 > 0 are control gains, x
δf,k
df =

[rTdf ,v
T
df , r

T
δf,k

,vT
δf,k

]T , where rδf,k and vδf,k are the position
and velocity of the virtual δ-agent on the obstacle Ok

corresponding to the defenders’ formationF s
d , respectively. The

summation term in (14) is for avoiding collision with obstacles.
The avoidance control for obstacle Ok is activated only when
the δ-agent is within a distance of R̄o

df from the formation center

using the blending function σ
δf,k
df characterized by (Rδo

df , R̄
δo
df )

where Rδo
df < R̄δo

df . Two separate saturation functions Ωū
s1
df

and

Ωū
s2
df
, with saturation limits ūs1

df and ūs2
df , respectively, are used

for the terms that correspond to the potentials and velocities,
respectively, to ensure that the desired formation moves with

a bounded velocity, i.e., ‖vdf‖ < v̄sdf �
√

ū
s1
df +ū

s2
df

CD
since each

defender’s velocity is also bounded. We add the quadratic
term CD‖vdf‖vdf to the controller (14) to compensate for
the drag term in the dynamics (13) whenever the controller
is unsaturated to facilitate the convergence analysis of the
resulting trajectories. In order for the desired formation to track
the attackers, it has to move at least as fast as the attackers. To
ensure this, we consider the following.
Assumption 2: The maximum acceleration of the desired for-

mation is larger than the maximum acceleration of the attackers,
i.e., ūa < ūs1

df + ūs2
df .

The desired positions ξsl on F s
d are chosen to be regularly

spaced on a semicircle of radius ρsdf centered at rdf

ξsl = fsl (rdf , φ
s
l ) = rdf + ρsdf ô(φ

s
l ) (15)

where φs
l = φ+ π

2 + π(l−1)
Nd−1 ; φ ∈ [0, 2π] is the orientation of

F s
d , as shown inFig. 3. The semicircular shape is chosenbecause

it ensures largest area in the interior and the largest distance
between the end positions ξs1 and ξ

s
Nd

for the formationF s
d and

requires the defenders to travel minimal distance to complete
the closed regular polygonal formation around the attackers
(discussed later in Section III-C). To achieve the objective (ii)
of the seeking phase, the desired positions ξsl , l ∈ Id, on the
formation F s

d , in addition to moving with the velocity of the
center of F s

d , have a rotational motion around the center rdf .
This motion is governed by

ξ̇
s

l = ηs
l = vdf + ρsdf φ̇ô(φ

s
l +

π
2 )

η̇s
l = v̇df + ρsdf

(
φ̈ô(φs

l +
π
2 )− φ̇2ô(φs

l )
)

φ̈ = −kφd (φ− θ)− kφ̇d (φ̇− θ̇)

(16)

where θ = tan−1(
yac−ydf

xac−xdf
) is the angle between the line joining

the center rac, and rdf . The third equation in (16) aims to align
the orientation of the formation F s

d toward the attackers by
considering proportional-derivative-type feedback controller in

which kφd , k
φ̇
d > 0 are control gains.

Tomaintain the desired formation, the defenders need to track
their desired trajectories. To ensure timely convergence, inspired
by Bhat and Bernstein [35], a finite-time convergent controller
for Dj ∀j ∈ Id, to track (ξsa(j),η

s
a(j)) is designed as

udj = η̇s
a(j) +Ωū

s1
d

(
us1
dj

)
+Ωū

s2
d

(
us2
dj

)
(17)

where ūs1
d , ūs1

d > 0 are saturation limits and

us1
dj = −k0sig

α1(pdj) + ucol
dj

us2
dj = −k0sig

α2(vdj − ηs
a(j)) + CD ‖vdj‖vdj

pdj = rdj − ξsa(j) +
1

k0(2−α2)
sig2−α2(vdj − ηs

a(j))

ucol
dj =

∑
j′∈Ij

d
σdj′

dj up(x
dj′

dj ) +
∑

k∈Io σ
δj,k
dj up(x

δj,k
dj )

+σ
δj,c
dj up(x

δj,c
dj ) + σ

δj,p
dj up(x

δj,p
dj )

(18)

where α1, α2 ∈ (0, 1); k0 > 0; ūs1
d , and Ijd = Id\{j}. In (18),

ucol
dj is the control term for collision avoidance and the terms in

the expression ofucol
dj correspond to collision avoidance from the

other defenders, the obstacles, the connectivity region around the
attackers, and the protected area, respectively. The superscripts
δj,k , δj,c , and δj,p refer to the virtual δ-agents corresponding
to Dj on the obstacle Ok, attackers’ connectivity region, and

the protected area, respectively (see Figs. 2 and 3). σ
δj′
dj , σ

δj,k
dj ,

σ
δj,c
dj , and σ

δj,p
dj are blending functions for Dj corresponding to

Dj′ , Ok, attackers’ connectivity region, and the protected area,
respectively, characterized by (Rd

d, R̄
d
d), (R

δo
d , R̄δo

d ), (Rδc
d , R̄δc

d ),

and (Rδp
d , R̄δp

d ), respectively, for all j, j ′ ∈ Id; k ∈ Io. Again, the
quadratic term CD‖vdj‖vdj is added to compensate the drag in
dynamics (2) when the controller is unsaturated. The radius ρsdf
of the formation F s

d satisfies the following assumption.
Assumption 3: The radius ρsdf is such that the control terms

corresponding to the collision avoidance from other defenders
and the connectivity region are not active for any defender

(σdj′

dj = 0 for all j, j ′ ∈ Id), i.e., ρsdf
√

2− 2 cos
(

π
Nd−1

)
> R̄d

d
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and ρsdf > ρac + R̄δc
d +S̄. Here, S̄ = log(2)

2CD
is the distance an

attacker, moving with maximum speed under (1), would travel
before it comes to rest despite having applied maximum accel-
eration in opposite direction to its velocity. The safety parameter
for the formation is then chosen asRδf,k,∞

df > ρsdf + ρd + R̄δo
d +

S̄d, where S̄d is an additional safety distance that needs to be
taken into account due to the dampeddouble integrator dynamics
and is defined formally later in Theorem 2.
Assumption 3 ensures that once the trajectory of Dj ∀j ∈

Id, converges to (ξ
s
a(j),η

s
a(j)), the input becomes udj = η̇s

a(j) +

CD‖ηs
a(j)‖ηs

a(j) and the tracking errors rdj − ξsa(j) and vdj −
ηs
a(j) stay zero thereafter.
Once the defenders get close to the attackers with their orien-

tation toward the attackers, i.e., ‖rdf − rac‖ < Es
trans and |φ−

θ| < Es
rot, the seeking phase is accomplished and the enclosing

phase is initiated. Here, Es
trans > ρac and Es

rot > 0 are user-
defined parameters. Next, we discuss the enclosing phase.

C. Enclosing: StringNet Formation

In this phase, we want to ensure that the defenders converge
to a StringNet formation (i.e., a closed formation of strings)
around the attackers. The defenders should also ensure that they
do not enter the connectivity region around the ACoM to avoid
collisions with the attackers, and that they do not collide with
each other.
To trap the attackers inside StringNet, a desired regular poly-

gon formation F e
d is designed around the connectivity region

of the attackers centered at ACoM, as shown in Fig. 3. Regular
polygonal formation is chosen for the defenders as it provides
the largest area in the interior of the StringNet formation formed
by a given number of defenders. The desired positions ξel on the
formation F e

d (green circles in Fig. 3) are chosen on the circle
with radius ρsn centered at rac and move with the velocity of
ACoM

ξ̇
e

l = ηe
l = vac, where ξel = rac + ρsnô(φ

e
l ) (19)

where φe
l = φ+ π(2l−1)

Nd
and vac = ṙac, i.e., the formationF e

d

moveswith the speed ofACoM, so that the defenders are reactive
to the motion of the attackers. Let us denote the StringNet
associated with the formation F e

d by Gsn. The defenders start
tracking their desired positions around the attackers using the
controller

udj = Ωū
e1
d

(
ue1
dj

)
+Ωū

e2
d

(
ue2
dj

)
(20)

where ūe1
d and ūe2

d are the control saturation limits for the
enclosing phase and

ue1
dj = −k1(rdj − ξea(j)) + ucol

dj

ue2
dj = −k2(vdj − ηe

a(j)) + CD ‖vdj‖vdj .
(21)

The StringNet is considered to have been formed when the de-
fenders tracking the position ξe1 and ξ

e
Nd

satisfy ‖rdj1 − ξe1‖ <
bd and ‖rdjNd

− ξeNd
‖ < bd, where j1 = a−1(1) and jNd

=

a−1(Nd) where a is given in (10). Here, bd > 0 is the minimum
radius of the ball around the desired trajectory within which the

Fig. 5. Geometry forminimumnumber of defenders. (a) ρcircumsn (R̄′
sb) < ρ̄′sn.

(b) ρcircumsn (R̄′
sb) ≥ ρ̄′sn.

defender’s trajectory will converge in the absence of the knowl-
edge about the attackers’ control acceleration. The parameter bd
is formally defined in Section IV in Theorem 5. The radius ρsn
should satisfy ρac + bd + R̄d

d + S̄ < ρsn ≤ ρ̄sn − bd to ensure
that the StringNet has at least a circular area of radius ρac free
inside it.
During the StringNet formation phase and moving it to the

safe area, we want to ensure that: the defenders do not col-
lide with the attackers, and minimum number of defenders are
used such that the connectivity region of the attackers is com-
pletely contained inside the StringNet. Let Rsb be the distance
between the defenders on the StringNet. Let ρcircumsn (Rsb) =√

(ρac + bd)2 + (0.5Rsb)2 be the radius of the circumscribed
circle of the regular polygon formed by the defenders with side
length equal toRsb. Note that the inscribed circle of this regular
polygon has radius ρac + bd (see Fig. 5), i.e., the attackers can be
completely contained inside this polygon. However, the value of
ρcircumsn (Rsb) cannot be larger than ρ̄′sn = ρ̄sn − bd due to limited
free space between the obstacles. To ensure minimum number
of defenders to achieve the StringNet, we need to place the
defenders as far as possible. We choose Rsb while satisfying
ρcircumsn (Rsb) < ρ̄′sn as follows:

Rsb =

{
R̄sb,

′ if ρcircumsn (R̄′
sb) < ρ̄′sn

2
√

(ρ̄′sn)
2 − (ρac + bd)2, otherwise

(22)
where R̄′

sb = R̄sb − 2bd is the maximum possible safe distance
at which the constraint on the length of the string barrier is not
violated.With this choice ofRsb, we choose ρsn = ρcircumsn (Rsb).
The two cases in (22) are visualized in Fig. 5. Since the defenders
are placed as far as possible, this results into minimum number
of defenders required to herd the given number of attackers with
connectivity region of radius ρac and this number is: Nm

d =
� π

cos−1(
ρac+bd

ρcircumsn (Rsb)
)
�,where �Λ� gives the smallest integer greater

than Λ.
1) Discussion on the Number of Defenders Needed for At-

tackers’ Encirclement: Since the attackers want to avoid de-
fenders, they need to start moving away from the defenders well
before they are at Rd,m

a = S̄ + ρa + ρd < R̄sb distance away
from the defenders for their safety under the given damped
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double integrator dynamics. Consider the worst case, when the
attackers only intend to start moving away from the defenders
when they are Rd,m

a distance away and hope to escape and hit
the protected area otherwise. In the absence of actual barrier
between two defenders, such as in [16], the defenders will have
to be at most 2Rd,m

a away from each other in order to create a
closed virtual barrier around the attackers, assuming the worst
case. In this case, the number of the defenders required to enclose
the attackers with overall circular footprint of ρac and herd them

to the safe area would beN no,bar
d = π(tan−1(

Rd,m
a

ρac+bd
))−1, which

is much larger than Nm
d , which is needed in our approach, for

large values of ρac.

D. Herding: Moving the StringNet to Safe Area

Once the defenders form the StringNet Gsn around the at-
tackers, they track a desired, rigid, closed formation Fh

d that
herds the enclosed attackers to the safe area while avoiding the
static obstacles. Similar to the seeking phase, the dynamics of
the center rdf of the desired formationFh

d are governed by (13),
where the control action is

udf = Ω
ū
h1
df

(
−k1(rdf − rsa) +

∑
k∈Io σ

δf,k
df up(x

δf,k
df )

)
(23)

where ūh1

df is a control design parameter such that ūh1

df < ūa,
which ensures that during the herding phase, the defenders’
desired formation does not move faster than the attackers can
move. The desired positions ξhl of the defenders on Fh

d are
chosen to be on a circle of radius ρsn centered at rdf and are
governed by

ξ̇
h

l = ηh
l = ṙdf = vdf

η̇h
l = v̇df

ξhl = rdf + ρsnô(φ
h
l ), where φ

h
l = φ+ π(2l−1)

Nd
.

(24)

The control action forDj ∀j ∈ Id, to track (ξ
h
a(j),η

h
a(j)) during

the herding phase is designed as

udj = η̇h
a(j) +Ω

ū
h1
d

(
uh1

dj

)
+Ω

ū
h2
d

(
uh2

dj

)
(25)

where uh1

dj and uh2

dj are same as us1
dj and us2

dj obtained after
replacing the superscript s by h in (18), respectively.
The overall approach is summarized in Algorithm 2.

IV. SAFETY AND CONVERGENCE ANALYSIS

In this section, we formally prove the safety of the defenders
and their convergence to their respective desired trajectories so
that they achieve their goals in each phase.

A. Gathering Phase

By construction, the trajectories obtained by solving the
MIQP (9) and the MILP in [28] are safe and near time-optimal,
i.e., defenders reach their respective goal locationswithin a finite
time T on these trajectories without colliding with each other.

B. Seeking Phase

In this section, we prove the safety and the convergence of the
defenders during the seeking phase. The analysis for the seeking
phase is divided into three theorems;Theorem2proves the safety
of the defenders moving under the tracking controller (17).
Theorem 3 proves the finite-time convergence of the tracking
controller to the desired trajectories, and Theorem 4 proves that
the desired trajectories of the defenders converge to the desired
neighborhood of the attackers’ swarm within a finite time.
The defenders should be able to move faster than their desired

positions in order to track these desired positions. For this, we
make the following assumption.
Assumption 4: First, the defenders can move faster than

their desired positions change in time during the seeking
phase, i.e., ūd > ¯̇ηs + ūs1

d + ūs2
d , where ¯̇ηs = ūs1

df + ūs2
df +

ρsdf (

√
(
¯̈
φ)2 + (

¯̇
φ)4) is the maximum value of ‖η̇s

l ‖, for all

l ∈ Id, where
¯̈
φ and ¯̇

φ are the maximum values of |φ̈| and
|φ̇| during the seeking phase, and second, saturation limit on
the terms corresponding to position and collision avoidance
feedback is larger than that for the velocity feedback terms, i.e.,
ūs1
d > ūs2

d .
Next, prove the safety of the defenders.
Theorem 2: Let Assumption 4 hold. Then, under the control

law (17), each defender Dj , j ∈ Id, remains always at least a
safety distance Rd,m

d apart from every other defender Dj′ , j′ ∈
Id\{j}.

Proof: Wewant to show that at any time, the distance between
two defenders remains greater than a specified safety distance
Rd,m

d . Consider the relative dynamics between two defenders
Dj and Dj′

ėr = ṙdj − ṙdj′ = ev
ėv = udj − udj′ − CD ‖vdj‖vdj + CD ‖vdj′ ‖vdj′

= Δη̇s +Ωū
s1
d

(
us1
dj

)
+Ωū

s2
d

(
us2
dj

)
−Ωū

s1
d

(
us1
dj′

)
−Ωū

s2
d

(
us2
dj′

)
− CD(‖vdj‖vdj − ‖vdj′ ‖vdj′)

(26)
where Δη̇s = η̇s

a(j) − η̇s
a(j′) = 2ρsdf sin(

π(a(j′)−a(j))
2(Nd−1) )

(φ̈ô(φs
j,j′) + φ̇2ô(φs

j,j′ +
π
2 ))), where φs

j,j′ =
φs
a(j)+φs

a(j′)
2 .

Only the component of the relative dynamics along the line
joining Dj and Dj′ affects the distance between them. Define

e
‖
v = (vdj − vdj′) · êr = v

‖
dj − v

‖
dj′ , where êr � er

‖er‖ is the

unit vector parallel to er, v
‖
dj and v

‖
dj′ are the components of

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 31,2021 at 19:16:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHIPADE AND PANAGOU: MULTIAGENT PLANNING AND CONTROL FOR SWARM HERDING IN 2-D OBSTACLE ENVIRONMENTS 11

the velocities vdj and vdj′ , respectively. For R
dj′

dj ≤ Rdj,′ν
dj , the

vector
∂V dj′

dj

∂Rdj′
dj

has magnitude ν and is directed away fromDj and

toward Dj′ . ν is chosen to be a very large number such that it is
at least ( 1ε ) times greater than the rest of the terms in us1

dj , where
0 < ε << 1. This gives us (Ωū

s1
d
(us1

dj )) · êr = (1− ε)ūs1
d and

(Ωū
s1
d
(us1

dj′)) · êr = −(1− ε)ūs1
d for all Rdj′

dj ≤ Rdj,′ν
dj . This

yields

ė
‖
v = 2ùs1

d +Δη̇s · êr−k0
(
sigα2(vdj)−sigα2(vdj′)

) · êr
≥ 2(ùs1

d )− 2ρsdf

√
(
¯̈
φ)2 + (

¯̇
φ)4 +K

(27)
where ùs1

d = (1− ε)ūs1
d andK is the minimum value of the last

term in the expression of ė‖v . The gains kφd and kφ̇d are chosen

such that Υ =
ρs
df

√
(
¯̈
φ)2+(

¯̇
φ)4

ù
s1
d

< 1.

If e‖v ≥ 0 atRdj′

dj = Rdj,′ν
dj , thenRdj′

dj would stay equal or larger

than Rdj,′ν
dj . If e‖v < 0, we have v‖dj − v

‖
dj′ < 0 implying K > 0

resulting into

ė
‖
v ≥ 2(ùs1

d )− 2ρsdf

√
( ¯̈φ)2 + ( ¯̇φ)4 = 2(1−Υ)(ùs1

d ). (28)

Using comparison lemma [36] and performing integration on
(28), one can establish that Rdj′

dj ≥ Rdj,′ν
dj − Sd when e

‖
v again

becomes larger than 0 within the time e
‖
v

2(1−Υ)(ù
s1
d )

, where

Sd(e
‖
v) =

(e
‖
v)

2

4(1−Υ)(ù
s1
d )

. In the worst-case head-to-head motion

between the defenders, e‖v = −2v̄d. In this case, we have S̄d =
Sd(−2v̄d) =

ūd

(1−Υ)CD(ù
s1
d )

. For the safety distance Rd,m
d (>

2ρd) between the defenders, we choose Rdj,′ν
dj > S̄d +Rd,m

d

such that Rdj′

dj > Rd,m
d for all times, ensuring safety of the

defenders. �
Analysis similar to that in Theorem 2 can be performed for

the collision avoidance from the δ-agents on the static obstacles
and on the connectivity region of the attackers; and parameters
of the corresponding blending functions are chosen to include
the additional safety distance of S̄d. Next, we define feasible
initial conditions.
Definition 3 (Feasible initial conditions): Any initial con-

dition that does not belong to the set M0 = {rdj ,vdj ∈ R2

∀j ∈ Id|vdj = 0,udj = 0 as per (17)}, or any initial condition
from which the defenders’ trajectories approach M0; the latter
depends on the desired states of the defenders. A formal con-
struction of this set is left open for future research.
For these feasible initial conditions, the finite-time trajectory

tracking by the defenders is proven as follows.
Theorem 3: Under Assumption 4 and feasible initial condi-

tions (see Definition 3), all defenders Dj , j ∈ Id, track their
desired trajectories (ξsa(j),η

s
a(j)) in finite time under the bounded

control action given in (17) while avoiding collisions, if α1 =
α2

2−α2
.

Proof: Safety for the defenders (in terms of no collisions
between the defenders with each other, the static obstacles,
and the connectivity region of the attackers) under the control

action (17) has been proved in Theorem 2. For proving conver-
gence and tracking of the desired trajectories, define the errors
r̃dj = rdj − ξsa(j) and ṽdj = vdj − ηs

a(j). When the defenders
are no longer in conflict with other defenders or obstacles (i.e.,
σdj′

dj = σ
δj,k
dj = σ

δj,c
dj = σ

δj,p
dj = 0 ∀j, j′ ∈ Id; k ∈ Io), the er-

rors satisfy

˙̃rdj = ṽdj

˙̃vdj = Ωū
s1
d

(
ũs1
dj

)
+Ωū

s2
d

(
us2
dj

)
− CD ‖vdj‖vdj

(29)

where ũs1
dj = −k0sig

α1(r̃dj +
1

k0(2−α2)
sig2−α2(ṽdj)) and

us2
dj = −k0sig

α2(ṽdj) + CD‖vdj‖vdj .
Since ‖vdj‖ and ‖ηs

a(j)‖ are bounded, we can choose k0 =
CD v̄2

d

(v̄d−η̄s)α2
such that ‖us2

dj ‖ ≤ ūs2
d , i.e., the control term corre-

sponding to the velocity feedback is unsaturated for all times.
Let x̃dj = [r̃Tdj , ṽ

T
dj ]

T and define Hs
dj = {x̃dj ∈ R4|‖pdj‖ ≤

(
ū
s1
d

k0
)

1
α1 }. Since ‖vdj‖ is bounded, the set Hs

dj is compact and
nonempty. Let x̃dj0 = [r̃Tdj0, ṽ

T
dj0]

T be the initial state. Consider
the following two cases.
Case (i), x̃dj0 ∈ Hs

dj : Inside the set Hs
dj , we have ‖ũs1

dj ‖ ≤
ūs1
d . The error dynamics inside Hs

dj is

˙̃rdj = ṽdj , ˙̃vdj = −k0sig
α1(pdj)− k0sig

α2(ṽdj). (30)

From the dynamics in (30), we have ṗdj =
−pdj‖pdj‖α1−1‖ṽdj‖1−α2 , which implies that the set Hs

dj

is forward invariant. Define a candidate Lyapunov function V s
d

as

V s
d (r̃dj , ṽdj) =

1

α′
2

‖pdj‖α
′
2 + q1ṽ

T
djpdj +

q2

α3−
2

‖ṽdj‖α
3−
2

(31)
whereα′

2 = 3−α2

2−α2
andα3−

2 = 3− α2. The time derivative of V s
d

along the trajectories of (29) is

V̇ s
d (r̃dj , ṽdj) = −‖pdj‖

1+α2
2−α2 ‖ṽdj‖α

−
2 − q1(k0ṽ

T
djpdj ‖ṽdj‖α

−
2

+k0 ‖pdj‖α
+
1 + ṽT

djpdj ‖ṽdj‖α
−
2 ‖pdj‖−α−

1 )

−q2k0(‖ṽdj‖2 + ṽT
djpdj ‖ṽdj‖α

−
2 ‖pdj‖−α−

1 )
(32)

where α−
1 = 1− α1, α−

2 = 1− α2, and α+
2 = 1 + α2. We can

show that for any λ > 0, we have

V s
d (λ

2−α2 r̃dj , λṽdj) = λ3−α2V s
d (r̃dj , ṽdj)

V̇ s
d (λ

2−α2 r̃dj , λṽdj) = λ2V̇ s
d (r̃dj , ṽdj).

(33)

Similar to the analysis in [35], for 0 < q1 < 1, q2 > 1,
and using the homogeneity property in (33), we can

show that V̇ s
d (r̃dj , ṽdj) ≤ −c(V s

d (r̃dj , ṽdj))
2

3−α2 where
c = −maxx̃dj∈HV

V̇ s
d (r̃dj , ṽdj) where HV = {x̃dj ∈

R4|V s
d (r̃dj , ṽdj) = 1}. From [37, Th. 4.2], we can

conclude that the equilibrium r̃dj = ṽdj = 0 is finite-time
stable. The time of convergence T s,tr

dj (x̃dj0) satisfies

T s,tr
dj (x̃dj0) ≤ 1

c(1− 2
3−α2

)
(V s

d (r̃dj0, ṽdj0))
1− 2

3−α2 .

Case (ii), x̃dj0 /∈ Hs
dj : Outside the setHs

dj , we have

˙̃rdj = ṽdj , ˙̃vdj = −ūs1
d

pdj

‖pdj‖︸ ︷︷ ︸
term 1

−k0sig
α2(ṽdj)︸ ︷︷ ︸

term 2

.
(34)
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The time derivative V̇ s
d along the trajectories of (34) is

V̇ s
d = − ū

s1
d

k0
‖pdj‖α

′
2 ‖ṽdj‖α

−
2 − q1ū

s1
d ‖pdj‖

−q2k0 ‖ṽdj‖2 − q2ū
s1
d

ṽT
djpdj

‖pdj‖ ‖ṽdj‖α
−
2

−q1ṽ
T
djpdj

(
ū
s1
d

k0

‖ṽdj‖α
−
2

‖pdj‖ + k0 ‖ṽdj‖−α−
2

)
≤ − ū

s1
d

k0
‖pdj‖α

′
2 ‖ṽdj‖α

−
2 − q1ū

s1
d ‖pdj‖

−q2k0 ‖ṽdj‖2 + q2ū
s1
d ‖ṽdj‖2−α2

+q1

(
ū
s1
d

k0
‖ṽdj‖2−α2 + k0 ‖pdj‖ ‖ṽdj‖α2

)
< 0 ( ∵ ‖ṽdj‖ ≤

(
ū
s1
d

k0

) 1
α2 ).

(35)

This implies that the origin rdj = ṽdj = 0 is an asymptotically
stable equilibrium. Asymptotic convergence of the trajectories
of (34) implies that the error states pdj and ṽdj will reach
inside the setHs

dj in finite time. Since the time derivative V̇ s
d is

only negative and no convergence rate is established, Lyapunov
function based argument cannot be used to find upper bound on
the time of convergence of the trajectories to the set Hs

dj . We
consider a switched system Sw to provide an upper bound on
the time of convergence of the system trajectories to the setHs

dj .
The switched system Sw has two vector fields: f1: right-hand
side (RHS) of (34) and f2: RHS of (34) without term 1. Assume
that the term 1 in (34) is inactive at t = 0, which yields

˙̃rdj = ṽdj , ˙̃vdj = −k0sig
α2(ṽdj). (36)

The distance travelled γ̃dj and the speed ṽdj = ‖ṽdj‖ satisfy

˙̃γdj = ṽdj , ˙̃vdj = −k0(ṽdj)
α2 . (37)

We can integrate the system in (37) to find the time T0 and
distance γ̃0 at which the speed ṽdj becomes zero as

T0(ṽdj0) =
(ṽdj0)

1−α2

k0(1−α2)
, γ̃0(ṽdj0) =

(ṽdj0)
2−α2

k0(2−α2)
. (38)

At t = T0(ṽdj0), let the term 1 in (34) be turned ON, i.e., vector
field f1 is active. Since ṽdj = 0 at t = T0(ṽdj0), we observe that
the position and velocity vectors are parallel and point along
the radial direction r̃dj(T0(ṽdj0)) = r̃dj(0) + γ̃0(ṽdj0)

ṽdj(0)
‖ṽdj(0)‖

for all t > T0(ṽdj0). The distance travelled γ̃dj and the speed
ṽdj are then governed by

˙̃γdj = ṽdj , ˙̃vdj = ūs1
d − k0(ṽdj)

α2 ≥ m0(ṽdj − v̄α2
) (39)

wherem0 = −k0α2(
ū
s1
d

k0
)

α2−1
α2 and v̄α2

= (
ū
s1
d

k0
)

1
α2 . Using com-

parison lemma [36] on (39), we can show that the

γ̃
dj
(t) =

v̄α2

m0
+ v̄α2

(Δt− em0Δt

m0
) ≤ γ̃dj(t)

ṽdj(t) = v̄α2
(1− em0Δt) ≤ ṽdj(t)

(40)

where Δt = t− T0(ṽdj0). We know that after travelling
distance γ̃dj(t) along r̃dj(T0(ṽdj0)) toward the origin, the
position vector r̃dj(t) becomes r̃dj(t) = (‖r̃dj(T0(ṽdj0))‖ −
γ̃dj(t))r̃dj(T0(ṽdj0)). Since ṽdj(t) points in the direction of

r̃dj(T0(ṽdj0)), we have

‖pdj(t)‖ = ‖r̃dj(T0(ṽdj0))‖ − γ̃dj(t)− 1
k0(2−α2)

(ṽdj(t))
1−α2

≤ ‖r̃dj(T0(ṽdj0))‖ − γ̃
dj
(t)− 1

k0(2−α2)

(
ṽdj(t)

)1−α2

= p̄dj(t).
(41)

Let T̄H
dj be the time such that: ( ū

s1
d

k0
)

1
α1 = p̄dj(T̄

H
dj ), i.e., the time

at which the trajectories of the switched system Sw would have
already entered the set Hs

dj . We claim that this time T̄H
dj is an

upper bound to the actual time of convergence, TH
dj , of the trajec-

tories of (34) to the setHs
dj . This is true because turning off term

1 in (34) actually slows down the convergence of the trajectories
toward the origin as term 1 always points toward the origin under
Assumption 4, i.e., more acceleration toward the origin making
convergence of the trajectories faster. Once inside the set Hs

dj

the trajectories converge to the origin in finite time, as described
in the analysis of Case (i). In conclusion, starting at r̃dj0, ṽdj0,
the trajectories of the error dynamics (29) converge to origin in
finite time T s,tr

dj (x̃dj0) ≤ T̄ s,tr
dj (x̃dj0) where T̄

s,tr
dj (x̃dj0)

T̄ s,tr
dj (x̃dj0)=

⎧⎪⎨
⎪⎩

(V s
d (r̃dj0,ṽdj0))

α′′
2

c(α′′
2)

, if x̃dj0 ∈ Hs
dj

T̄H
dj (x̃dj0) +

(V̄ s
d )

α′′
2

c(α′′
2)

,if x̃dj0 /∈ Hs
dj

(42)

where V̄ s
d = maxx̃dj∈Hs

dj
V s
d (r̃dj , ṽdj) and α′′

2 = 1−α2

3−α2
.

We also note that a similar upper bound on the time of
convergence can be provided by considering the initial velocity
to be pointing away from the origin in the radially outward
direction with the same speed as the speed at the initial time. Let
this time be T̄ s,tr,‖

dj . In the interest of space, we do not provide

derivation of T̄ s,tr,‖
dj , but the idea is to integrate the system (34)

to find this time. Then, the minimum of T̄ s,tr
dj and T̄

s,tr,‖
dj is the

upper bound on the time of convergence of the error x̃dj0 to the
origin �
Next, we prove the convergence of the desired formation

during the seeking phase to the desired neighborhood of the
attackers’ formation.
Theorem 4: If Assumption 3 holds, then under the dynamics

in (13), (16) and control action (14), the center rdf of the
formation F s

d reaches within the distance of Es
trans from rac,

i.e., ‖rdf − rac‖ ≤ Es
trans, and the orientation φ reaches within

the distance of Es
rot from θ in finite time, i.e., |φ− θ| < Es

rot,
while not colliding with the obstacles.
Proof: Under Assumption 3, safety of the formationF s

d can
be established by doing analysis similar to that in Theorem 2.
Define the errors r̃dfs = rdf − rac and ṽdfs = vdf − vac.When
the formationF s

d is no longer in conflict with the obstacles, (i.e.,

σ
δf,k
df = 0), the errors satisfy

˙̃rdfs = ṽdfs

˙̃vdfs = Ωū
s2
df
(ũs2

df )−Ωū
s1
df
(k1r̃dfs)− CD ‖vdf‖vdf − v̇ac

(43)
where ũs2

df = −k2ṽdfs + CD‖vdf‖vdf , v̇ac is the acceleration
ofACoM that is unknown to the defenders and acts as a perturba-
tion in (43), and ‖v̇ac‖ ≤ ūa. We will use perturbation analysis
to prove the result. The nominal error dynamics without the
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perturbation v̇ac reads

˙̃rdfs = ṽdfs

˙̃vdfs = Ωū
s2
df

(
ũs2
df

)
−Ωū

s1
df
(k1r̃dfs)− CD ‖vdf‖vdf .

(44)
Under Assumption 2, following Theorem 3 with α1 = α2 = 1,
we can show that the origin r̃dfs = ṽdfs = 0 is an asymptoti-
cally stable equilibrium of (44).
Since ‖vdf‖ and ‖vac‖ are bounded, we can choose k2 =

CD(v̄s
df )

2

(v̄s
df−v̄a)

such that ‖ũs2
df‖ ≤ ūs2

df , i.e., the control term cor-

responding to the velocity feedback is unsaturated for all
times. Let us define the set Hs

df = {r̃dfs , ṽdfs ∈ R2|‖ṽdfs‖ <

v̄sdf + ūa &amp; ‖r̃dfs‖ <
ū
s1
df

k1
}. Consider the largest ball of

radius r̃s, Bs
df , that lies completely inside Hs

df and is de-

fined as Bs
df =

{
r̃dfs , ṽdfs ∈ R2|‖x̃dfs‖ < r̃s

}
, where x̃dfs =

[(r̃dfs)T , (ṽdfs)T ]T . Inside Bs
df , the errors follow:

˙̃xdfs=

[
02 I2

−k1I2 −k2I2

][
r̃dfs

ṽdfs

]
−
[

0

v̇ac

]
=Ãx̃dfs + g̃ (45)

where I2 and 02 are the two-by-two identity and zero matrices,
respectively, the disturbance term g̃ is bounded as ‖g̃‖ ≤ ūa.
The nominal system ˙̃xdfs = Ãx̃dfs is exponentially stable for
k2, k1 > 0. As per [36, Th. 4.6], exponential stability of the
nominal linear time-invariant system guarantees existence of a
positive definite matrix Pd that satisfies the Lyapunov equa-
tion, ÃTPd +PdÃ = −Qd, for any given positive definite
matrix Qd. Then, the Lyapunov function defined as: Vdf =
(x̃dfs)TPdx̃dfs satisfies the conditions as required in [36,
Lemma 9.2] with constants c1, c2, c3, c4 given in terms of the
eigenvalues of Pd and Qd as: c1 = λmin(Pd), c2 = λmax(Pd),
c3 = λmin(Qd), and c4 = 2λmax(Pd). As per [36, Lemma 9.2],

if‖g̃‖ ≤ ūa < c3
c4

√
c1
c2
c0r̃

s for all t > 0, all x̃dfs ∈ Bs
df for some

positive constant c0 < 1, then for all ‖x̃dfs(t0)‖ <
√

c1
c2
r̃s, the

solution x̃dfs(t) of the perturbed system in (45) satisfies the
following:

1) ‖x̃dfs(t)‖ ≤
√

c2
c1

exp(− (1−c0)c3
2c2

(t−
t0))‖x̃dfs(t0)‖ ∀t0 ≤ t < t0 + T s

df ;

2) ‖x̃dfs(t)‖ ≤ bsdf = c4
c3

√
c2
c1

ūa

c0
∀t ≥ t0 + T s

df

for some finite time T s
df ≤ T̄ s

df (x̃dfs(t0)), where

T̄ s
df (x̃dfs(t0)) = t0 − 2c2

(1−c0)c3
log

(
bsdf

‖x̃dfs (t0)‖
√

c1
c2

)
. (46)

We choose Es
trans > bsdf+ρac + ρsn, which guarantees that the

center rdf reaches within a distance of Es
trans from rac.

Similarly, the orientation φ satisfies φ̈ = −kφd (φ− θ)−
kφ̇d (φ̇− θ̇). We have that φ = θ and φ̇ = θ̇ are exponentially
stable equilibrium of (IV-B). Following the similar analysis as
for rdf , we can show that |φ− θ| becomes and stays smaller
than Es

rot in finite time. �

C. Enclosing Phase: StringNet Formation

Next, we prove the safe accomplishment of the StringNet
formation during the enclosing phase in Theorem 5.
Theorem 5: The StringNet Gsn centered at rac is formed

around the attackers in finite time under the state-feedback,
bounded control actions given in (17) (seeking phase) and (20)
(enclosing phase) while avoiding collisions, for all feasible
initial conditions.4

Proof: 1) Seeking Phase: Assumption 3 ensures that the
desired positions ξsa(j) are such that when the defender Dj is

at ξsa(j), for all j ∈ Id, the blending functions σδj,k
dj , σdj′

dj , and

σ
δj
dj are zero. As shown in Theorem 3, the defenders track their

desired trajectories forming the desired rigid formation F s
d in

finite time T̄ s,tr
d = maxj∈Id T̄

s,tr
dj (x̃dj0). The dynamics (13) and

(16), as shown in Theorem 4, ensure ‖rdf − rac‖ ≤ Es
trans and

|φ− θ| < Es
rot in finite time T̄ s

df triggering the enclosing phase
in finite time.
2) Enclosing phase: The safety of the defenders during the

enclosing phase can be established using the similar arguments
as inTheorem2.Let r̃dje = rdj − ξea(j), ṽdje = vdj − ηe

a(j), and

x̃dje = [(r̃dje)
T , (ṽdje)

T ]T . The dynamics governing the errors
r̃dje and ṽdje are same as in (43). Following similar arguments as
in the proof of Theorem 4, we can show that ‖x̃dje(t)‖ ≤ bdj =
c4
c3

√
c2
c1

ūa

c0
, for t > Tdj . This implies that Dj reaches bdj close

to its desired trajectory in finite time and stays bounded within
bdj thereafter. Denote bd = maxj∈Id bdj . All the defenders reach
within bd distance of their desired locations in the StringNet in
finite time T ≥ T + T̄ s

df (x̃dfs(T )) + T̄ s,tr
d +maxj∈Id Tdj and

the StringNet is achieved in finite time. �
Remark 1: Theorems 2–5 show that the StringNet formation

by the defenders will be achieved around the attackers in finite
time. We also provide upper bounds on the time of convergence
of the proposed control laws when no conflicts with physical
obstacles or other agents occur. However, finding the time that
the defenders would take to avoid collisions with obstacles and
with other defenders during seeking and enclosing phase is not
trivial. Finding the initial conditions, under which the defenders
will succeed in herding the attackers under the proposed strategy
in an arbitrary obstacle environment, is ongoing work.

D. Herding Phase

In Theorem 6, we prove the safety and convergence of the
StringNet formation to S during the herding phase.
Theorem 6: After StringNet Gsn is formed, the defenders

on Gsn herd all the attackers enclosed inside Gsn to the safe
area S (ρsa > ρ̄sn), i.e., ‖rai − rsa‖ < ρsa for all Ai inside
Gsn while avoiding the obstacles under the control action (25)
starting at feasible initial conditions (see Definition 3).
Proof: Since the desired formation Fh

d moves as a rigid
formation, we only consider the virtual agent at rdf with size

4Same as in Definition 3 but with the set M0 defined as per (20) during the
enclosing phase.
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Fig. 6. Snapshots of the paths of the agents during StringNet Herding. (a) Gathering phase. (b) Seeking phase. (c) Enclosing phase. (d) Herding phase.

Fig. 7. Control inputs and critical distance ratios during StringNet Herding. (a) Inputs. (b) Critical distance ratios.

ρsn + ρd whose dynamics are

˙̃rdfh = vdf , v̇df = Ω
ū
h1
df

(uh1

df )− CD ‖vdf‖vdf (47)

where r̃dfh = rdf − rsa and uh1

df = −k1(rdf − rsa) +∑
k∈Io σ

δf,k
df up(x

δf,k
df ). Using similar arguments as in

Theorem 2, we can ensure the safety of Fh
d if R

δf,k,∞
df >

ρsn + ρd + R̄δo
d + S̄ during the herding phase. In the absence

of any obstacle’s local potential field (σδf,k
df = 0), we have

uh1

df = −k1r̃dfh . We define a candidate Lyapunov function

V h
d =

⎧⎨
⎩

k1‖r̃dfh‖2

2 +
‖vdf ‖2

2 , if
∥∥r̃dfh

∥∥ <
ū
h1
df

k1

ūh1

df

∥∥r̃dfh

∥∥+
‖vdf ‖2

2 − (ū
h1
df )2

2k1
, otherwise

.

(48)
The function V h

d is 0 at r̃dfh = vdf = 0, is positive definite,
continuous, and its time derivative along the trajectories of (47)
is: V̇ h

d = −CD‖vdf‖3. V̇ h
d is negative semidefinite and we have

from the dynamics (47) that the largest invariant subset in
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Fig. 8. Snapshots of the paths of the agents during StringNet Herding (attackers do not stay close). (a) Gathering and seeking phase. (b) Enclosing and herding
phase.

Fig. 9. City environment in Gazebo Simulator.

Q = {r̃dfh ,vdf ∈ R2|V̇h = 0} is the origin r̃dfh = vdf = 0.
Using Lasalle’s invariance principle ( [36, Th. 4.4]), the trajec-
tories of the system (47) converge to r̃dfh = vdf = 0, i.e., the
center rdf converges to rsa and so does the desired formation
Fh

d . From Theorem 3, the defenders track these desired trajec-
tories under (25) in finite time and, hence, herd the attackers to
S. �

V. SIMULATION RESULTS

In this section, we provide simulations of defenders
herding an adversarial swarm of attackers to S. The
safety of the defenders is assessed by critical distance ra-

tios:Δo
d = maxj∈Id,k∈Io

Ro,m
d

R
δj,k
dj

, Δa
d = maxi∈Ia,j∈Id

Ra,m
d

Rai
dj

, and

Δd
d = maxj �=j′∈Id

Rd,m
d

Rdj

dj′
, where the superscript m denotes the

minimum safety distance between the corresponding agents.
Critical distance ratios for the attackers Δo

a and Δa
a are defined

similar to Δo
d and Δd

d, respectively. These critical ratios should
be less than 1 for no collisions.

A. MATLAB Simulations

1) Herding: We consider six attackers moving in a line-
shaped formation, attacking the protected area. Based on the
initial positions of the attackers, the defenders assume that the
connectivity region of the attackers has radius ρac = 36˜m.

We choose five defenders to herd the six attackers. Some
key parameters used in the simulations are: ρa = ρd = 0.5,
CD = 0.2, v̄a = 6m/s (ūa = 7.2m/s2), v̄d = 10.25m/s (ūd =
21.02m/s2), α2 = 0.9, and ρsn = 48m.
For the given initial positions of the defenders and the attack-

ers, we solve the MIQP and MILP iteratively, as described in
Algorithm 1, to obtain the desired open formation F g

d and the
corresponding defender-goal assignments. Fig. 6(a) shows paths
for all possible defender-goal pairs (light gray). We compute the
assignment as (D1, ξ

g
1), (D2, ξ

g
2), (D3, ξ

g
5), (D4, ξ

g
3), (D5, ξ

g
4)

and the corresponding assignment cost to be 171.75 within the
computation time of 2.6824 s using MATLAB on a computer
with 16-GB RAM. The chosen paths of the defenders to gather
at F g

d and the attackers’ paths during this phase are shown in
Fig. 6(a) (blue and red, respectively).
Fig. 6(b)–(d) shows the snapshots of the paths taken by the

defenders and the attackers after the seeking, enclosing, and
herding phases are completed. As we can observe from the plots
in Fig. 6, the defenders are able to gather at the desired formation
F g

d before the attackers. The defenders then are able to seek and
enclose the attackers by forming the StringNet formation around
them [see Fig. 6(c)]despite the attackers trying to move away.
Fig. 6(d) shows that the defenders are able to herd all enclosed
attackers to the safe area. The norms of the inputs of all the
agents and critical distance ratios are shown in Fig. 7(a) and (b).
The colored bars at the bottom in Fig. 7(a) and (b) show the
time duration of each phase, where the cyan, black, magenta,
and green color correspond to gathering, seeking, enclosing,
and herding phase, respectively. As observed in Fig. 7(a), norms
of all the inputs are bounded. From Fig. 7(b), we observe that
all the distance ratios are smaller than 1 ensuring no collision
happened during the entire duration.
2) HerdingWhen Some Attackers Leave the Connectivity Re-

gion: In this section, we provide a simulation for the case when
some of the attackers do not stay inside the connectivity region.
The snapshots of paths traveled by the agent are shown in Fig. 8.
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Fig. 10. Snapshots of the paths of the agents during StringNet Herding (Gazebo simulation). (a) Gathering and seeking phase. (b) Enclosing and herding phase.

As it is observed in Fig. 8(b), two of the attackers are outside the
connectivity region and are not enclosed by the defenders inside
the StringNet. The attackers outside the StringNet disconnect
themselves from the rest of the attackers and are able to reach
the protected area [see Fig. 8(b)]. Clearly, the current approach
fails to herd all the attackers when the attackers do not stay
together. To handle this kind of situations, the defenders can
choose larger radius for the StringNet formation, but there is
limit on how large this radius can be because the barrier can
only be maintained when the defenders are within R̄sb from
each other. Another solution is to split the defenders into smaller
teams and task them to capture the smaller teams of the attackers
whenever the attackers do not stay together and split into smaller
teams. In our ongoing work, we are extending the proposed
“StringNet Herding” approach to herd multiple teams of the
attackers to safe area by dynamically assigning the defenders to
the teams of attackers based on the diameter of the attackers’
teams. For visualization, the video of the simulations can be
found at https://tinyurl.com/y4xzumbj.

B. Gazebo Simulations

In this section, we provide simulation results for the proposed
approach implemented on quadrotor vehicles simulated in the
physics-based Gazebo simulator, RotorS [38]. We consider the
city environment, as shown in Fig. 9, with several tall buildings
as the primary obstacles. Since the quadrotors are flying at
a certain altitude, the smaller houses are not considered as
obstacles. Gazebo environment provides noisy measurements
for each of the quadrotors. The quadrotors track the trajectories
generated by our algorithm using the on-board controller [39].
Snapshots of the trajectories followed by the quadrotors in
Gazebo simulation are shown in Fig. 10. As observed, the
defender quadrotors are able to gather in the path of the attackers,
enclose the attackers, and then herd them to the safe area located
outside the city. The Gazebo simulation video can be found at
https://tinyurl.com/y4xzumbj.

VI. CONCLUSION

In this article, we proposed a herding method called
“StringNet Herding” for defending a protected area from an
adversarial swarm. A closed formation of strings (StringNet)
was formed by the defenders around the attackers in 2-D space,
restricting the attackers’ motion to the interior of the StringNet.
The StringNet was then moved to a safe area while avoiding the
convex polygonal obstacles in the space. Using a combination
of near time-optimal, open-loop controllers for planning the
formation of the defenders, alongwith state-feedback finite-time
controllers for tracking thedesired formation, the defenderswere
able to herd an attacking swarm that starts sufficiently far from
the protected area.
Future work includes investigation of the proposed approach

on hardware systems and its extension to the 3-D case. The
current work would also be extended to include more intelligent
behaviors by the attackers, for example, attacking as multiple
smaller flocks or splitting in smaller teams instead of maintain-
ing cohesiveness as a flock.
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