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Multiagent Planning and Control for Swarm Herding
in 2-D Obstacle Environments Under Bounded Inputs

Vishnu S. Chipade

Abstract—This article presents a method for herding a swarm
of adversarial agents toward a safe area in a 2-D obstacle environ-
ment. The team of defending agents (defenders) aims to block the
path of a swarm of risk-averse, adversarial agents (attackers) and
guide it to a safe area while navigating in an obstacle-populated
environment. To achieve this, a closed formation (StringNet) of
defenders is formed around the adversarial swarm. A combination
of open-loop, near time-optimal controllers (that result in form-
ing the defenders’ formation), and state-feedback controllers with
finite-time convergence guarantees under bounded inputs (that
guide the formation around attackers and toward the safe area)
synthesize the herding strategy. For demonstration purpose, we
consider that the attacking swarm moves under a flocking model,
which however is unknown to the defenders. Collision-free tra-
jectory generation for the defenders, as well as their convergence
to the desired formations, is proved formally, and simulations are
provided to demonstrate the efficacy of the proposed approach. An
implementation of the proposed approach on quadrotor vehicles
simulated in the Gazebo simulator is also provided.

Index Terms—Autonomous agents, cooperative robots, motion
and path planning, multirobots systems.

I. INTRODUCTION
A. Motivation

HEORY and technology of robotic swarms have seen
T rapid growth recently. Swarms of ground, marine, or aerial
robots are being deployed to accomplish search and rescue
missions [1], [2], monitoring and mapping in agricultural [3]
and marine [4] environments, and cooperative transportation [5],
[6]. For more applications of robotic swarms, refer to the review
paper [7].

Nevertheless, ubiquity and rapid advancements of swarm
technology pose significant threat to safety-critical infrastruc-
ture, such as government facilities, airports, and military bases.
The presence of adversarial swarms nearby such entities, with
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the aim of causing physical damage or collecting critical in-
formation, can lead to catastrophic consequences. This necessi-
tates solutions for the protection of safety-critical infrastructure
against such attacks, particularly in crowded urban areas.

Counteracting an adversarial swarm by means of physical
interception, as studied in [8]-[10], at low altitudes in an urban
environment may not be desirable due to human presence. Under
the assumption of risk-averse and self-interested adversarial
agents (attackers) that tend to move away from the defending
agents (defenders) and from other dynamic objects, herding can
be used as an indirect way of guiding the attackers to some safe
area.

B. Related Work

Herding has been studied earlier in the literature, see for
instance [11]-[15]. The approach in [11] uses an n-wavefront
algorithm to herd a flock of birds away from an airport, where
the birds on the boundary of the flock are influenced based on
the locations of the airport and a safe area. The framework is
extended to include stability and performance guarantees for a
bird flock under a directed star communication graph [12] and
experiments [13].

The herding method in [14] utilizes a circular-arc formation
of herders to influence the nonlinear dynamics of the herd
based on a potential-field approach, and designs a point-offset
controller to guide the herd close to a specified location. In [15],
biologically inspired strategies are developed for confining a
group of agents; the authors develop strategies based on the
“wall” and “encirclement” methods that dolphins use to capture a
school of fish. In addition, they compute regions from which this
confinement is possible, but the results are limited to constant-
velocity motion. A similar approach called herding by caging
is adopted in [16], where a cage of high potential is formed
around the attackers. A rapidly exploring random tree (RRT)
approach is used to find a motion plan for the robots; however, the
cage is assumed to have already been formed around the agents,
whereas the caging of the agents thereafter is only ensured with
constant velocity motion under additional assumptions on the
distances between the agents. Forming such a cage could be
more challenging in case of self-interested, risk-averse attackers
under nonconstant velocity motion.

In [17] and [18], the authors discuss herding using a
switched-system approach; the herder (defender) chases targets
(evaders/attackers) sequentially by switching among them so
that certain dwell-time conditions are satisfied to guarantee
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stability of the resulting trajectories. However, the assumption
that only one of the targets is influenced by the herder at any
time might be limiting and nonpractical in real applications.
Deptula et al. [19] use approximate dynamic programming to
obtain suboptimal control policies for the herder to chase a
target agent to a goal location. A game-theoretic formulation
is used in [20] to address the herding problem by constructing
a virtual barrier similar to Pierson and Schwager [14], but the
computational complexity because of the discretization of the
state and control-action space limits its applicability.

Most of the previously discussed studies do not consider
obstacles in the environment. Some approaches on pursuit-
evasion [21] and shepherding [22] do consider obstacles in the
environment, however they use single integrator motion models
for the agents that limit their applicability to real systems. In
our prior work [23], we developed a vector-field-based strategy
for herding a single attacker to a safe area while avoiding static
rectangular obstacles in the environment. Obstacle avoidance
is ensured using vector fields defined around superellipses that
contain the obstacles; in fact, superellipse offers a better over-
approximation of a rectangle compared to circle or ellipse.

Furthermore, all aforementioned approaches assume some
form of potential field to model the repulsive motion of the
attackers with respect to the defenders, and develop herding
strategies for the defenders based on this potential field. Hence,
if the attacker’s strategy is not known, such approaches may fail
to create proper barriers around the attackers. More recently,
in [24], we considered herding strategies for defending a safety-
critical area (protected area) from a swarm of attackers in a
2-D environment. We proposed a method termed as “StringNet
Herding,” in which a closed formation of strings (StringNet) is
formed by the defenders to surround the swarm of attackers.
It is assumed that the string between two defenders serves as
a barrier through which the attackers cannot escape (e.g., a
physical straight-line barrier). The StringNet is then controlled
to herd the swarm of attackers to a safe area. We provided
state-feedback, finite-time control laws for defenders moving
under double integrator dynamics with drag term (damped dou-
ble integrator) to, first, form the StringNet around the attackers,
and then, herd the enclosed attackers to the safe area while
maintaining the StringNet formation. In contrast to the potential
field based herding methods, the “StringNet Herding” approach
only assumes that the attackers aim to avoid collisions with
the defenders, yet the particular form of the repulsive field or
their collision avoidance strategy does not need to be known
a priori. To demonstrate the proposed approach, we adopt a
flocking behavior for the attackers, which however is not known
to the defenders.

C. Overview of the Proposed Approach

The main contribution of this article is advancing the
“StringNet Herding” strategy in each of its phases: Gathering,
seeking, enclosing, and herding. Recall that the defenders must
form the StringNet around the attackers before the attackers
reach the protected area.
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Fig. 1. Overview of the herding approach.

1) Gathering Phase: In this phase, compared to the confer-
ence version, we design a near time-optimal' motion plan for
the defenders. Inspired by the work in [25], we compute near
time-optimal, collision-free trajectories for the defenders toward
desired open-formation positions in the expected (i.e., the short-
est) path of the attackers to the protected area. To this end, we
use path-velocity decomposition [25]: first, we design shortest
paths from the current positions of the defenders to the desired
positions that lie on the desired formation. The shortest paths are
obtained using a special representation of the environment called
C'-tangent graph [26] (inspired from tangent graph [27]). Then,
we compute velocity profiles that minimize the time to traverse
the shortest paths under bounded acceleration [26]. The desired
formation positions and the corresponding shortest paths, along
with the near time-optimal velocity profiles, are then assigned
to the defenders by solving a mixed integer quadratic program
(MIQP), which minimizes the total travel time and total length
of path intersections. Collision avoidance on the chosen paths
and under the given near time-optimal velocity profiles for the
defenders is accomplished by initial-time scheduling, similar
to the approach in [28], using a mixed integer linear program
(MILP). The desired formation is chosen by iteratively solving
the MIQP so that it is as far as possible from the protected area,
and the defenders are able to gather at the desired formation
before the attackers can reach there.

2) Seeking Phase: After the defenders have converged to
their desired formation, they start moving closer to the attacking
swarm (i.e., as we say, they seek the attackers) while maintaining
the desired formation.

3) Enclosing and Herding: Once the distance of the for-
mation center to the center-of-mass of the attacking swarm is
below a certain threshold, the defenders enclose the attackers
by completing the StringNet formation, and herd the attacking
swarm to the safe area.

In each phase, we assume that the agents have a known,
circular footprint, similar to our work [24], and we explicitly
consider the problem of interagent collision avoidance, in con-
trast to earlier work, for instance [14], [16]. The block diagram
in Fig. 1 summarizes the approach.

D. Summary of Our Contributions

Compared to the prior literature and our earlier work in the
conference paper [24], the novelties and the main contributions
of this article are as follows.

li.e., the actual travel time 7 satisfies 7% < 7 < (14 &)™ where 7* is the
optimal travel time and € << 1 is a small, positive constant.
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1) We develop near time-optimal controllers to guide the
defenders to an optimal desired open formation (in order
to later form the StringNet) while avoiding collisions. The
contributions compared to the conference version are as
follows.

1) The formulation of an MIQP to assign desired forma-
tion positions to the defenders, so that the total travel
time and the total length of the path intersections on
the corresponding trajectories are minimized.

2) An iterative scheme that uses the MIQP formulation
to find an optimal desired formation for the defenders
to gather in the expected path of the attackers.

2) We develop state-feedback, finite-time convergent,
bounded control laws for the defenders moving under
damped double integrator dynamics such that their forma-
tion seeks, encloses, and herds the attackers to the safe area
while avoiding the convex polygonal obstacles. Compared
to prior work, we provide explicit guarantees on the time
of convergence under the proposed bounded controllers.

E. Organization

The rest of this article is structured as follows. Section II
discusses problem setup and preliminaries. The “StringNet
Herding” method is discussed in Section III. A formal safety
and convergence analysis is provided in Section IV, followed
by MATLAB simulations in Section V-A. The results on imple-
mentation of the proposed approach on quadrotor vehicles using
physics-based Gazebo simulator are provided in Section V-B.
Finally, Section VI concludes this article.

II. PROBLEM SETUP AND PRELIMINARIES
A. Notation

We use r, v, and u to denote position, velocity, and input
acceleration vector, respectively. We use £ and 1 to denote
desired position and velocity vector, respectively. We use both
p and o to denote radius. The variables ai, ac ,dj , and df used
as subscripts of the aforementioned variables correspond to the
ith attacker, attackers’ center of mass (ACoM), jth defender,
and the defenders’ desired formation, respectively. Similarly,
subscripts pa, sa, ok, and ct denote the protected area, safe area,
the kth obstacle, and the C'—tangent graph, respectively. We
use subscript d to denote common variables that correspond to
all the defenders. Similarly, subscripts a and o denote common
variables corresponding to all the attackers and all the obstacles,
respectively. We use sn and sb as subscripts to denote StringNet
and string barrier, respectively. Any variable with superscript
g, s, e, and h correspond to gathering, seeking, enclosing, and
herding phase, respectively. We denote by ¢, , and 6 ¢, virtual
d-agents (defined later) on the obstacle Oy, corresponding to
the jth defender and the defenders’ formation, respectively.
Similarly, d;. and 6;, denote the J-agents corresponding to
the jth defender on the connectivity region of the attackers and
the protected area, respectively. The bar notation (- ) used on a
variable denotes some form of upper limit of the corresponding
variable. Similarly, underbar notation ( - ) denotes some form of
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Fig. 2. Problem formulation.

upper limit of the corresponding variable. The tilde notation ( - )
used on a vector variable denotes quantity associated with some
form of error. || - || denotes the Euclidean norm of its argument.
| - | denotes absolute value of a scalar argument.

B. Problem Setup

We consider N, attackers denoted as A;, 1€, =
{1,2,...,N,}, and Ny defenders denoted as D;, j € I =
{1,2,..., N4}, operating in an environment YW C R? with a
protected area P C W defined as P = {r € R? | ||r — rp|| <
ppa}. and a safe area S defined as S = {r € R? | ||r — ry| <
Psa}> Where (T'pa, ppa) and (rs, psa) are the centers and radii of the
protected and safe area, respectively. The agents .4; and D; are
modeled as discs of radii p, > 0 and pg > 0, forall© € I, and
j € Ig,respectively, and move under double integrator dynamics
with a quadratic drag term (damped double integrator)

Toi = Vai,  Vai = Uai — Cp [|[Vail| Vai (D
Tgj = Vg, Vg =ug —Cp ||vgjl v (2)
[uaill < ta, [Jugl < g 3)

where C'p > 0 is the known, constant drag coefficient, r,; =
[Zai Yai]" and rgq; = [z4j yqj]” are the position vectors of A;
and D;, respectively; Va; = [Uz,, vy,,]” and vy = [vg,, vy, )"
are the velocity vectors, respectively, and W, = [ug,, Uy,,]"
Ugj = [Uz,, Uy, ]T are the accelerations, which serve also as the
control inputs, respectively, all resolved in a global inertial frame
Fyi (i, j) (see Fig. 2). The accelerations u,; and ug; are bounded
by u, and u4 as given in (3) such that @, < 4. The dynamics
in (1) and (2) takes into account the air drag experienced by
the agents modeled as a quadratic function of the velocity. Note
also that the damped double integrator model inherently poses a
speed bound on each agent under a limited acceleration control,
ie., ||[Vail| < 0 = \/% and |[vg;|| < vq = \/Cﬂil‘g, and does
not require an explicit constraint on the velocity of the agents

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 31,2021 at 19:16:31 UTC from |IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

while designing bounded controllers, as in earlier literature. We
also consider the following.

Assumption 1: There is a navigation system that senses the
position r,; and velocity v,; of the attacker A; that lies inside
a circular sensing zone Z4 = {r € R?| |[r — rp,|| < g4} forall
1 € I,,where pg > 0is theradius of the defenders’ sensing zone.
The navigation system communicates the sensed information to
the defenders D;, for all j € I4. Every attacker .A; has a local
sensing zone Z,; = {r € R? | |r — ru|| < 0a:}» where g4; >
0 is the radius of the attacker A;’s sensing zone (see Fig. 2).

This navigation system can include sensors, such as radars,
lidars, and cameras, which are spatially distributed around the
protected area and provide measurements of positions and ve-
locities of the attackers and the defenders.

We consider N, static, convex polygonal obstacles denoted as
Op,kel,={1,2,...,N,}, (grey colored polygons in Fig. 2),
described as the convex hull of their vertices

O, = Conv ({rék, oo (]X([k }) “)

where Conv(Q) is the convex hull of the points given in the
set Q, vl = [2%, y/,]T are the positions of the vertices for all
Ce{l,2,..., M}, My is the total number of vertices of Oy,
k € I,. The boundary of O is denoted by 0Oy, Inspired from
Hegde and Panagou [29] and Esquivel and Chiang [30], the
boundaries 0Oy, are inflated by a size of p; (> py) to account
for safety and agent size. The inflated obstacles are denoted by
O, and are given as (see Fig. 2): Oy = O @ B(ps), where
€D denotes the Minkowski sum of the sets and B(p5) denotes
a ball of radius p, centered at the origin. The boundary 00O, of
the inflated obstacle Oy, is a C! curve for all ps > 0.

The attackers aim to reach the protected area P. They are
assumed to stay within a connectivity region of radius pg,.
(< psn) centered at the ACoM, see Fig. 2, where pg, is the
radius of the maximum circular footprint of a formation that
can pass through the obstacle-free space in the environment.
The defenders aim to herd the attackers to the safe area S before
they reach P. Formally, we consider the following.

Problem 1 (Herding): Design control actions ug; Vj € Ig,
such that: the defenders form a “StringNet” formation around
the flock of attackers in finite time, and the StringNet formation
herds the flock of attackers to the safe area S while avoiding the
obstacles O.

C. Preliminaries

We define sig®(x) = x||x||*"!. The Euclidean distance be-
tween agent ¢ and j is denoted as R} = ||r, —r,||. A blending
function o7 : [0, 00) — [0, 1] [29], characterized by a user de-
fined doublet (R, R}) with 0 < R? < RY, is defined in (5) as a
function of the distance I?]

1, RI <R

SioALR), R<RI<R
0, R <R}

o] (R}) =

where the coefficients A7 3, A7 ,, A] |, and A}, are chosen as
in [24] so that o7 in (5) is a C! function. The blending function
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ol (R?) is used to keep certain terms in the controller of agent
© active only in a local neighborhood around the agent/object .
The user-defined parameter R/ specifies the maximum distance
below which the blending function is nonzero and, hence, the
controller term multiplied to it is active only within the distance
R? from object 5. The parameter R? < RJ is chosen to allow
smooth transition from value 0 outside the circle of radius R}
to value 1 inside the circle of radius R} centered at the object
7. The argument R of the blending function would be omitted
whenever clear from the context. A saturation function 2 :
R? — R? is defined as

Q. (g) w)g gl (6)

where @ > 0 is the saturation limit. We define potential function
as follows.

Definition 1 (Potential Function [31]): The potential W/
is a continuously differentiable, nonnegative function of the
distance RJ between agents ¢ and 3, such that: W7(R}) — oo
as R} — R?™ and R/ — R}*°, and W/ attains its unique
minimum when agents 2 and 7 are located at a desired distance
RJ. Here, R, R?>, and R} are positive numbers such that
(R < R} < R}™).

We choose a potential function W7 : 77 — [0,

= min([lg],

00) as

wlR] — W2 R) — wo
W/(R)) =1 : : 7
J(R) n( R—w "whi-w) 7
where Z) = (R)™, R™), wo = R)™,wy = =% > 0,and

wq = wy R, with R{ € 77 being the desired distance between
agent 2 and agent J. Note that as R/ — R?™ or R} — R}*™, the
value of the potential W/ — oo. We choose this form because it
serves two purposes: first, to generate collision avoidance control
for the defenders, and second, to demonstrate flocking motion
of the attackers (discussed later) because W7 (R?) has a unique
minimum. The derivative of W/ is defined as

QW,LJ _ —(U)Q — w1w0)K1

8R{ - (’LU() — R{)(wlR{ — w2)K2
where K; = (w12 — 1)(R))? — (2Qwiwa — 2wo) R} + wy? —
wo? and Ky = (w12 + 1)(R))? — (2wyws + 2wo) R + we? +

2
wo~.

A control action used by agent 2 to avoid collision with agent
7 based on the potential function W/ is defined as

N oy, it Rl € 7.
uy(x]) = — ¢/ (v, —v,) — pi = 7 -y, f R} <R}
L R > R}
(®)
where the joint state vector x{ = [r],v],r],vI]", ¢/ and /ﬂ

are positive control gains, v is a very large number; R}, R?"”
77 such that 2 8R7 =—v, %VI[Q | g3 = v and R Rz’”;
7 = RV, RI").

We consider a flocking motion model for the attackers for
demonstration purposes. In our previous work [24], we devel-
oped a bounded controller that yields flocking behavior for the
attackers in the presence of rectangular obstacles. For collision
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Fig. 3. Desired positions of the defenders.

avoidance with the obstacles during flocking, an attacker con-
siders a virtual 3-agent® on the superelliptic boundaries around a
rectangular obstacle, and uses a potential function based control,
similar to that in (8), corresponding to the -agent. The S-agent
strategy can be extended for avoiding convex polygonal obsta-
cles Oy, with C! boundaries 9O, (see Fig. 2), refer to Chipade
and Panagou [24] and references therein for more details on the
flocking controller. Next, we describe “StringNet Herding.”

III. STRINGNET HERDING

To herd the flock of attackers to the safe area S, we build
upon the “StringNet Herding” method proposed in our earlier
work [24]. StringNet is a closed net of connections, called
strings, formed by the defenders, as shown in Fig. 3. The strings
can be thought of as physical mechanisms through which the
attackers cannot pass once the defenders become connected
through the strings; for example, these could be extendable
physical strings or bars connecting the defenders. A closely
related practical implementation of a similar concept can be
found in [32], where a large rope encircled on a pulley attached
to a controlled motor is used to build a bridge. This string barrier
(connection) between two defenders can have a maximum length
of Ry, > 0 and is assumed to be a straight line.

The underlying graph for the “StringNet” is defined as fol-
lows.

Definition 2 (StringNet): The StringNet Gy, = (Vsn, Esn) 18
a cycle graph consisting of: the defenders as the vertices, Vg, =
{D1,Ds,...,Dn,}, and a set of edges, &, = {(D;,Dj) €
Visn X Vsn|D; PR Dj }, where the operator <25 denotes a
string connection between the defenders.

2B-agent is a virtual agent located at the projection point of an attacker’s
position on the boundary around the obstacle. The [3-agent moves along the
boundary and its velocity is equal to the projection of the attacker’s velocity on
the unit tangent vector to the boundary at the current location of the -agent.

The StringNet Herding consists of four phases: Gathering,
seeking, enclosing: StringNet formation, and herding. These
phases are discussed as follows.

A. Gathering

The defenders may be initially scattered throughout the
workspace. Once the attackers are sensed in the sensing zone Z,
the defenders are tasked to herd them away from the protected
area P toward the safe area S. The gathering is initiated when at
least one of the attackers detected in Z,4 enters a circular region of
radius 0 (< 04) (see Fig. 2). All the attackers that are detected
inside the annular region between the circles of radius of and
0q centered at rp, are to be herded by the defenders.

It is important for the defenders to form the StringNet around
the attackers before the attackers reach the protected area. In the
gathering phase, the aim of the defenders is to converge to an
open formation .%7 on the expected path of the attackers (i.e.,
the shortest path of the attackers to the protected area) before the
attackers reach there. The open formation . is characterized by
the positions &/ VI € I, as shown in Fig. 3. Once the defenders
arrive at these positions, the defenders get connected by strings
in the following sense: the defender at £ gets connected to the
defender at £/, , for all l = {1,2,...Ny — 1} (see Fig. 3, blue
formation). The open formation is formed such that the normal to
the line joining &9 and &%, (which we refer to as the orientation
vector of the formation .%7]) faces the attackers on their expected
path, see for example the blue formation in Fig. 3. The design
of .7 and the corresponding positions &] VI € I, is discussed
later in the section.

In order for the defenders to converge to the formation .7
as early as possible, we design a near time-optimal motion
plan. Given initial positions for the N, defenders, and desired
goal positions on the formation %7, the objective is to find
defender-goal pairings and corresponding near time-optimal,
collision-free trajectories, which the defenders follow to reach
their assigned goals. The solution to this problem consists of the
following steps.

1) Finding near time-optimal trajectories for all the pairs of
the defenders’ initial positions and the desired positions
on .Zj.

2) Finding optimal pairings among the defenders and the
desired positions on .7, to minimize total travel time and
total length of the portions of the chosen trajectories that
have a possible collision.

3) Modifying the derived trajectories to avoid collisions.

The near time-optimal trajectory between two given points is
obtained by path-velocity decomposition [25], which consists of
finding the shortest path and a near time-optimal velocity profile
along the shortest path.

Additionally, we want to find the location of a desired forma-
tion that is as far as possible from the protected area, at which the
defenders are able to gather before the attackers reach there. This
problem becomes computationally intractable as the number of
defenders increases.
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To reduce the computational requirements, we generate short-
est paths between a priori known grid points offline. We dis-
cretize the obstacle free space Wi, into a grid of square size
Aw. We then define a C!-tangent graph G = { Ve, Ex} [26]
using the grid points and the obstacles. The C!-tangent graph is
inspired from the idea of tangent graph [27]. The C'-tangent
graph consists of C! paths between any two nodes. For an
obstacle environment with convex polygonal obstacles Oy, the
construction of the C'-tangent graph involves finding common
tangents of each pair of boundaries O, and tangents to these
boundaries from all the grid points. The points at which these
tangents touch the boundaries 9O}, and the grid points serve as
the nodes on Gy, and the tangents serve as the edges on G... More
details on C!-tangent can be found in [26]. The shortest paths
joining these nodes and the near time-optimal velocity profiles
over these paths are also obtained assuming terminal speeds to
be zero® and considering the dynamics in (2) and (3) (refer to
Chipade and Panagou [26]).

The case of multiple defenders traveling along their near-
optimal trajectories may give rise to collisions. Since the de-
fenders have finite size, finding trajectory intersections involves
checking the intersections of the tubes that would be traversed by
the defenders. Any collision between two defenders following
given velocity profiles can only happen on the intersecting
segments of the tubes over the respective paths. Finding inter-
secting segments of given two shortest paths involves checking
intersections of all the tubes corresponding to the straight-line
and circular segments on the two paths. The intersection can be
foundin O(Np, Np, ) time, where Np, and Np, are the number
of segments on any two paths P, and P,. We have the following
lemma about the tube intersections.

Lemma 1 (Lemma 3 in [26]): Let Py be the shortest path
between the points ri; and ri,, and P, be the shortest path
between the points ro; and ra obtained using C!-tangent graph.
Then, P, and P> intersect at most once.

To find the trajectory intersections, we discretize the intersect-
ing segments of the two paths, and perform a pairwise check
on these discrete locations for a possible collision between
the two agents moving with specified velocity profiles. This
yields the collision time interval for the two agents under the
specified velocity profiles and the corresponding lengths of the
intersecting segments.

In summary, for the C!-tangent graph G based on the dis-
cretized grid, we offline compute the shortest paths between all
pairs of the nodes, velocity profiles on these paths, and trajec-
tory intersections for each pair of trajectories. The worst-case
memory requirement for all the aforementioned data for an
environment with IV, obstacles and N2 grid points is O(N?),
where N = 4(N2 — N, + N2N,).

3The final speed is required to be zero for the defenders to get connected via
strings. The initial speed being zero is not a conservative assumption because if
a defender has nonzero speed, one can apply acceleration opposite to its velocity
to make the speed zero and assume the initial position for that defender to be
the position at which this speed will become zero.

IEEE TRANSACTIONS ON ROBOTICS

Fig. 4.  Grid for motion planning in gathering phase.

We find an approximate shortest path between any two points
by connecting them to the closest node on the offline computed
C!-tangent graph G (see Fig. 4).

In the next sections, we discuss how the defenders are assigned
to the goal locations on a given formation .%; and how the
desired formation .7, 5 is chosen.

1) Defender-Goal Pairing Assignment: For a given forma-
tion .Z], we find the near time-optimal trajectories for all
possible defender-goal pairs and intersections of all the pairs
of the obtained time-optimal trajectories from the offline stored
data.

We formulate an MIQP to find the defender-goal assignment
that minimizes the total time of travel for all the defenders and the
total length of the intersecting segments of the intersecting tra-
jectories. This is to ensure that minimum alterations are required
in the assigned trajectories for collision avoidance (discussed
later).

Let = be the decision variable whose value is 1 if the
trajectory between the initial position of defender D;, r4;(0),
and the goal &7 is chosen in the defender-goal assignment, i.e.,
&7 is assigned to D;, and 0 otherwise for all j,1 € I,. Let ﬁ?:;ll
be the length of the path along the trajectory between rg; (0) and
&7 that has possible collision with the trajectory between r 4 (0)
and & (see Fig. 4). Let 7;‘;1 denote the total time required by D
to travel the near time-optimal trajectory corresponding to &7
without considering collision avoidance with other defenders.
The MIQP is formulated as

T I— -
Minimize E 725. Ei+ E L‘;;l EiEm

J.l€lq 7,3, L,UELq
Subjectto Y Z; =1 Vjely
lely (9)
Z Ejl =1 Viely
j€lq

Ejlan’l’ € {071} Vjal7j7l l/ S Id
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where the cost is the total time of travel for all the defenders
and the total length of the intersecting segments of the intersect-
ing trajectories. The first constraint ensures that each defender
is only assigned to a single desired position and the second
constraint ensures that each desired position is only assigned
to a single defender. This MIQP can be solved using, for in-
stance, the off-the-shelf MIP solver GUROBI [33]. The solution

— —_
=k — (3

=i = v, N, ) to thi
— —117=—127 "+ 5 SN (Ng—1)) =N, N, S O IS
MIQP gives the defender-goal assignment. We define a bijective

mapping a: Iy — I

frank S
BT REeT PR

a(j) = arg max =,
lGId

(10)

such that the desired position fg(j) is assigned to D;.

2) Collision Avoidance by Start-Time Scheduling: Defend-
ers may collide with other defenders on their assigned tra-
jectories. To avoid this case, we adopt the MILP formulation
developed in [28], which performs initial-time scheduling so
that the agents start their motion at different initial times, and
move on the given paths with specified velocity profiles to avoid
collisions. In [34], it is established that the given time-optimal
trajectories of multiple robots without considering collision
avoidance remain time-optimal under initial time-scheduling if
Lemma 1 holds. In our case, the trajectories would still remain
near time-optimal after initial-time scheduling.

3) Desired Open Formation: So far, we discussed how to
obtain a near time-optimal motion plan for the defenders to
gather at the given desired formation .%]. Next, we discuss how
to choose .77 to ensure that the attackers are enclosed inside
a StringNet formation (discussed later) provided it is possible,
i.e., the attackers have not reached the protected area P, and can
be herded to a safe area thereafter.

For a given center r4y and orientation ¢, consider a semicir-

cular formation .% ;¢ formed by the points &;*
&°(var, @) = rap + p6(97) (n

for all [ € I;, where 0(¢]) =

g _ ™, m(=1)

where ¢ = ¢+ 5 + N1
T

[cos(géf ), sin(¢] )} is the unit vector of orientation ¢; with

respect to the z-axis. We choose the desired positions for the
defenders 5? , | € I, as the points on the grid that are closest to
the points &;° given by (11)

(12)

& (rap, @) —rql|

where VI C V. contains the nodes that are not on the
obstacle boundaries (see Fig. 4). The radius pgf satisfies

A .
&) =1/ (vap, ¢) = mingepiee

Pigr/2 — 2 cos( 1) > V/2Aw to ensure that there is a unique
grid point that is the closest to £7°. Similarly, we select the closest
grid points ¥ 4;(0) to the initial positions of the defenders r;(0)
and select the desired open formation as discussed below.

We first calculate the shortest path for the ACoM, r,. =
Nia Zivzal Iy, to the protected area. Let this path be P, and its
length be T',... The path P, is associated with mappings &2,.. :
[0,Tse] = R? and V4. : [0,T4c] — [0, 27]. Here, Zuc(Vae)

gives the Cartesian coordinates, and 9, (V) gives the direction

Algorithm 1: Desired Open Formation.
Input: 4(0), r,(0) = {rs1(0),rs2(0), ..., ran,(0)},
Tpa, 0= {Okvf S Io}, gct
: Find ACOM: 4(0) = Y Ne, Zail0),
: P .=shortestPath(O, Gy, r4.(0), Ipa)s

: Thead(Yac) = 2 = T(£4(0), € (vac)):

: vk .=bisectionSearch(Tjeqq(Yac) — ATY, ppas Lac)s
Tap = Pac(Vae); &= Vac(Vie) — 7

:return £9().), raf, ®

AN B WD~

of the tangent to the path at the location reached after traveling
I, distance along the path from the initial position. On this path,
we use bisection method to find the point r 4 around which .77
should be designed such that the minimum time to gather, i.e., the
minimum time for the defenders to reach their desired positions
on .ZJ from £4(0) = {f4;(0) Vj € I;}, is smaller by at least
AT (> 0) than the time for the ACoM to reach this point. Here,
ATY is a user-defined time to account for the time required by
the defenders to travel from the actual initial position rq;(0) to
the closest grid point 4;(0) and the time to get connected by
strings once arrived at the desired formation. Algorithm 1 gives
a detailed iterative scheme to find the desired positions on the
open formation ..

In Algorithm 1, T (£4(0),&Y(Yac)) is the minimum time,
obtained by solving the MIQP (9) and the MILP [28],
for the defenders to reach the formation .#j defined by
&7 (Vac) = {flg(ggc(Vac)vﬁaC(7aC) —m))|l € Ia}: The func-
tion shortestPath(O, G, rqc(0), rpe) finds the shortest path
between r,.(0) and r,, on the C!-tangent graph G, defined
for the environment with obstacles O. The term d2e gives
the minimum time the attackers require to travel ‘the dis-
tance 7y,. when they travel at the maximum possible speed
Uq. Tiead(Vac) is the time lead or advantage the defenders
have over the attackers during the gathering phase. The func-
tion bisectionSearch(Tiead (Yac) — AT, ppas Lac) returns i, €
[0, T — ppa) such that Tieaa (vs.) = ATY.

The initial position rq;(0) is connected to the closest grid
point ¥4 (0) by the largest circular arc that is tangential to the
shortest path obtained between f4;(0) and its goal position £f(j)
(see Fig. 4). This gives us an approximate shortest path between
rq;(0) and £f(j). The near time-optimal velocity profile for the
circular arc is added to that obtained for the grid points 4 (0)
and (S,f(j).

If there exists more than one shortest paths for the attackers
to reach the protected area, then Algorithm 1 is run for all such
paths, and the gathering formation on these paths for which the
defenders require the shortest time to gather is chosen as the
final gathering formation.

Using the near time-optimal velocity profiles on the chosen
paths, all the defenders reach their desired positions on .7}
within finite time 7. Upon accomplishment of the gathering
phase, the defenders execute the seeking phase. Next, we de-
scribe the seeking phase.
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B. Seeking

In practice, the attackers may deviate from their optimal
trajectories computed during the gathering phase, i.e., be out-
side the circle ||r — rpq|| = |lraf(T) — rpa| for r € R2. This
requires defenders to move close to the attackers in order to
enclose them. Recall that the defenders have already converged
to the open formation .%7. Then, during the seeking phase their
goal isto move as a de31red open, rigid formation .% ] centered at
rqr. The formation of the defenders seeks to: (i) get closer to the
attacking swarm (i.e., [[r4r(t) — Tacll < Egyy, for all ¢ > T,
where Ej, . is a user-deﬁned parameter, 1,7, > T is some finite
time at which the seeking phase would be completed) and (ii)
maintain the orientation ¢ of the formation .7 toward the at-
tacking swarm (see Fig. 3). We first generate desired trajectories
for each defender assuming rigid-body motion of the desired
formation, and then design finite-time convergent controllers to
track the desired trajectories.

To generate desired trajectories that can be tracked by the
defenders, we first consider that the center rgr is governed
by the same damped double integrator dynamics by which the
defenders’ motion is governed

13)

where v is the velocity of the formation .%# ;. To achieve the
aforementioned objective (i), we design the control input

Taf = Var,  Var = Uar — Cp [[varl| var

)
uy = (fl (Zke[ de up(xd; ) — k1(rar — Tac)) (14)
+9u;f (Cp lIvarllvar = k2(var = Vac))
where ki,ko >0 are control gains, xgjf; k—

[ Vg5, Vs, ) s where rs, , and v, , are the position
and velocity of the virtual Jd-agent on the obstacle Oy
corresponding to the defenders’ formation .7 7, respectively. The
summation term in (14) is for avoiding collision with obstacles.
The avoidance control for obstacle Oy, is activated only when

the §-agent is within a distance of Rgf from the formation center
using the blending function JZJ{”“ characterized by (EZJ‘:, RZ)‘Q)

where Egj“c < Rg;. Two separate saturation functions Qﬂ;} and
Qﬂfj?, with saturation limits a;} and a;}, respectively, are used
for the terms that correspond to the potentials and velocities,

respectively, to ensure that the desired formation moves with

o e agltug?
a bounded velocity, i.e., [|[va|| < 03 £/ W since each
defender’s velocity is also bounded. We add the quadratic

term Cp||vgr|ves to the controller (14) to compensate for
the drag term in the dynamics (13) whenever the controller
is unsaturated to facilitate the convergence analysis of the
resulting trajectories. In order for the desired formation to track
the attackers, it has to move at least as fast as the attackers. To
ensure this, we consider the following.

Assumption 2: The maximum acceleration of the desired for-
mation is larger than the maximum acceleration of the attackers,
ie., Ug < U’ a T ’Sjc

The des1red positions £ on .#; are chosen to be regularly
spaced on a semicircle of radius pg, centered at r gy

& = £ (ray, ¢7) = vag + piy0(97) (15)
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where ¢f = ¢+ 5 + T]r\(, —: ¢ € [0,27] is the orientation of
Z5,asshowninFig. 3. The semicircular shape is chosen because
it ensures largest area in the interior and the largest distance
between the end positions &7 and £}, for the formation .%; and
requires the defenders to travel minimal distance to complete
the closed regular polygonal formation around the attackers
(discussed later in Section III-C). To achieve the objective (ii)
of the seeking phase, the desired positions &}, [ € I, on the
formation ﬁ s, in addition to moving with the velocity of the
center of .% ], have a rotational motion around the center rq.

This motlon is governed by

s e
& =mnj =va + ?Zf(j)o(qﬁl + 5)

i} = Var + piy ($0(07 + 3) — 6*(6))
6= kg0 —0) ~ky(d—0)
(?"“—_yd;) is the angle between the line joining
the center r,., and rqy. The third equation in (16) aims to align

the orientation of the formation .%#; toward the attackers by
considering proportional-derivative-type feedback controller in

(16)

where § = tan™

which k;f, kf > 0 are control gains.

To maintain the desired formation, the defenders need to track
their desired trajectories. To ensure timely convergence, inspired
by Bhat and Bernstein [35], a finite-time convergent controller
for Dj Vj € Iqg, to track (&5, nj(j)) is designed as

udj = ’I’]j(J) + Qﬂy (llzjl) + Qﬂzz (ufg) (17)
where 3!, @' > 0 are saturation limits and
uy = —kosig™ (pgj) + u°°'
uy = —kosig™ (va; — my;)) + Cp [vaill va
1 . 2 .
Pdj = Tyj _£:(J) T R S (v — M) (18)
ug?l = 27 et Gdj uP(Xd] ) JF Zke[ Od_] up(xdj‘"k)

6.7 P
+Jd up(xd] )+ Ud up(xdj )
where a1, s € (0,1); ko > 0; @3, and Ifi = I;\{j}. In (18),

uif‘ is the control term for collision avoidance and the terms in

the expression of uCOl correspond to collision avoidance from the

other defenders, the obstacles, the connectivity region around the
attackers, and the protected area, respectively. The superscripts
%k, %.c and % refer to the virtual -agents corresponding
to D; on the obstacle Oy, attackers’ connectivity region and
ogj’ k,
O’j;'c, and afl]’f * are blending functions for D; corresponding to
Dy, Oy, attackers’ connectivity region, and the protected area,
respectlvely, characterized by (Rd,R ), (R‘S ,R‘s ), (R‘s ,R‘S ),

and (Ed ,Rd”),respectlvely, forall j, 7' € I4;k € I,. Again, the
quadratic term Cp ||vg;||v4; is added to compensate the drag in
dynamics (2) when the controller is unsaturated. The radius pg,
of the formation .% satisfies the following assumption.
Assumption 3: The radius pj; is such that the control terms
corresponding to the collision avoidance from other defenders
and the connectivity region are not active for any defender

(gggj’ =0 forall j,j' € Iy), ie., pi/2 — 2cos(x7=) > R]

the protected area, respectively (see Figs. 2 and 3). adj
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and p3 > pac + R’ +S. Here, S = log(i) is the distance an
attacker, moving with maximum speed under (1), would travel
before it comes to rest despite having applied maximum accel-
eration in opposite direction to its velocity. The safety parameter
for the formation is then chosen as Efb’;”“’m > pyr +pat+ RZD +
Sy, where Sy is an additional safety distance that needs to be
taken into account due to the damped double integrator dynamics
and is defined formally later in Theorem 2.

Assumption 3 ensures that once the trajectory of D; Vj €
14, converges to (&), nj(j)), the input becomes ug; = 715 +
Cpllmg; lmy ;) and the tracking errors rg; — &7(;) and vg; —
172( ;) stay zero thereafter.

Once the defenders get close to the attackers with their orien-
tation toward the attackers, i.e., ||[rg — rocl| < By and ¢ —
0| < E,, the seeking phase is accomplished and the enclosing
phase is initiated. Here, g, > pqc and E5 > 0 are user-
defined parameters. Next, we discuss the enclosing phase.

C. Enclosing: StringNet Formation

In this phase, we want to ensure that the defenders converge
to a StringNet formation (i.e., a closed formation of strings)
around the attackers. The defenders should also ensure that they
do not enter the connectivity region around the ACoM to avoid
collisions with the attackers, and that they do not collide with
each other.

To trap the attackers inside StringNet, a desired regular poly-
gon formation %] is designed around the connectivity region
of the attackers centered at ACoM, as shown in Fig. 3. Regular
polygonal formation is chosen for the defenders as it provides
the largest area in the interior of the StringNet formation formed
by a given number of defenders. The desired positions £; on the
formation % (green circles in Fig. 3) are chosen on the circle
with radius psn centered at r,. and move with the velocity of
ACoM

€ =1 = Vae, Where & =rac+pen(0f)  (19)
where ¢f = ¢ + 77(%;1) and Vg = T'qc, 1.€., the formation .7
moves with the speed of ACoM, so that the defenders are reactive
to the motion of the attackers. Let us denote the StringNet
associated with the formation .% by G,,. The defenders start
tracking their desired positions around the attackers using the
controller

ug = Qe (ufl;.) + Qe (ug;) (20)

where @' and u? are the control saturation limits for the
enclosing phase and

ug = —ki(rg — &) +uf

d ( 21
udjz, —kQ(Vdj - ’l’]a(j)) +Cb ”Vde Vdj- @b

The StringNet is considered to have been formed when the de-
fenders tracking the position &7 and &, satisfy [[rq,, —&7|| <
ba and v,y —&y,|l < ba, where 51 =a~'(1) and gy, =
a~!(N,4) where a is given in (10). Here, by > 0 is the minimum
radius of the ball around the desired trajectory within which the

Ry, < Ry, — 20y

_ & — &5l =
165l = R = Ra =2 6 — &l

(@) PG (Ry) < P

Fig.5. Geometry for minimum number of defenders. (a) pSre*™ (R, ) < ..
(b) P (Rly,) = P,

defender’s trajectory will converge in the absence of the knowl-
edge about the attackers’ control acceleration. The parameter b,
is formally defined in Section IV in Theorem 5. The radius pg,
should satisfy pac + bg + RS + S < psp < psn — ba to ensure
that the StringNet has at least a circular area of radius p,. free
inside it.

During the StringNet formation phase and moving it to the
safe area, we want to ensure that: the defenders do not col-
lide with the attackers, and minimum number of defenders are
used such that the connectivity region of the attackers is com-
pletely contained inside the StringNet. Let R, be the distance
between the defenders on the StringNet. Let pSr'™(R,,) =
V/ (Pac + ba)? + (0.5R4;)? be the radius of the circumscribed
circle of the regular polygon formed by the defenders with side
length equal to 2. Note that the inscribed circle of this regular
polygon has radius p,. + by (see Fig. 5), i.e., the attackers can be
completely contained inside this polygon. However, the value of
plireum (B ) cannot be larger than p,,, = ps,, — by due to limited
free space between the obstacles. To ensure minimum number
of defenders to achieve the StringNet, we need to place the
defenders as far as possible. We choose Ry, while satisfying
phreum(R ) < pl,, as follows:

Rsb a/
2,/ (P)?
(22)

where Rsb = Ry, — 2by is the maximum possible safe distance
at which the constraint on the length of the string barrier is not
violated. With this choice of Ry, we choose ps,, = pSr™(R,y).
The two cases in (22) are visualized in Fig. 5. Since the defenders
are placed as far as possible, this results into minimum number
of defenders required to herd the given number of attackers with
connectivity region of radius p,. and this number is: NJ* =

[m] , where [A] gives the smallest integer greater
PR (Rsp)

than A.

1) Discussion on the Number of Defenders Needed for At-
tackers’ Encirclement: Since the attackers want to avoid de-
fenders, they need to start moving away from the defenders well
before they are at R4™ = S + p, + pa < Ry, distance away
from the defenders for their safety under the given damped

R b= ]fpcm:um( sb) < psn
b =

(pac +bq)?, otherwise
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Algorithm 2: Overall Approach.
Find the desired open formation %] defined by &9;

=

2 Gather at &Y under the near tlme—optlmal,
collision-free motion plan

3 while ||rdf - raCH > Efrans& |¢ - 9| >E Tot do

4 L Seek the attacking swarm;

s while (v — &) | > bavi € 1) &REY > R

do
6 L Enclose the attacking swarm;

7 Herd the enclosed attackers to S.

double integrator dynamics. Consider the worst case, when the
attackers only intend to start moving away from the defenders
when they are Eg’m distance away and hope to escape and hit
the protected area otherwise. In the absence of actual barrier
between two defenders, such as in [16], the defenders will have
to be at most 2R%™ away from each other in order to create a
closed virtual barrier around the attackers, assuming the worst
case. In this case, the number of the defenders required to enclose
the attackers with overall circular footprint of p,. and herd them
to the safe area would be N} = 7(tan~! (%))’1, which
is much larger than NJ*, which is needed in our approach, for
large values of pg..

D. Herding: Moving the StringNet to Safe Area

Once the defenders form the StringNet Gy, around the at-
tackers, they track a desired, rigid, closed formation %, that
herds the enclosed attackers to the safe area while aV01d1ng the
static obstacles. Similar to the seeking phase, the dynamics of
the center rqs of the desired formation .7 are governed by (13),
where the control action is

ugr = 2m (k1 (o = Toa) + Xne, of "0y (x34™))

(23)

where 122]% is a control design parameter such that ﬂZJ} < Ug,

which ensures that during the herding phase, the defenders’

desired formation does not move faster than the attackers can

move. The desired positions &) of the defenders on Fh are

chosen to be on a circle of radius p,, centered at r4; and are

governed by

& =l =tq = vy

' =V

E? =Trgqf + psn()(qs?)v where ¢l

(24)
¢+ 7r(2l 1)

The control action for D; Vj € Iy, to track (£} i) nf}( ;) during
the herding phase is designed as
_ ~h hy ha
Ugj = M) + ﬂﬂfjl (udj ) + Qﬁ(’f (udj) (25)
where uZ and u” 4; Are same as udj and u > obtained after
replacing the superscript s by h in (18), respectlvely
The overall approach is summarized in Algorithm 2.
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IV. SAFETY AND CONVERGENCE ANALYSIS

In this section, we formally prove the safety of the defenders
and their convergence to their respective desired trajectories so
that they achieve their goals in each phase.

A. Gathering Phase

By construction, the trajectories obtained by solving the
MIQP (9) and the MILP in [28] are safe and near time-optimal,
i.e., defenders reach their respective goal locations within a finite
time 7 on these trajectories without colliding with each other.

B. Seeking Phase

In this section, we prove the safety and the convergence of the
defenders during the seeking phase. The analysis for the seeking
phase is divided into three theorems; Theorem 2 proves the safety
of the defenders moving under the tracking controller (17).
Theorem 3 proves the finite-time convergence of the tracking
controller to the desired trajectories, and Theorem 4 proves that
the desired trajectories of the defenders converge to the desired
neighborhood of the attackers’ swarm within a finite time.

The defenders should be able to move faster than their desired
positions in order to track these desired positions. For this, we
make the following assumption.

Assumption 4: First, the defenders can move faster than
their desired positions change in time during the seeking

phase, ie., @g > n°+ ! +u)?, where 0 —udf—i-udf—i—

par(\ (9)% +(9)*) is
l € I;, where ¢ and ¢ are the maximum values of |¢)| and
|q§\ during the seeking phase, and second, saturation limit on
the terms corresponding to position and collision avoidance
feedback is larger than that for the velocity feedback terms, i.e.,
uyt > uy.

Next, prove the safety of the defenders.

Theorem 2: Let Assumption 4 hold. Then, under the control
law (17), each defender D;, j € 14, remains always at least a

7, for all

safety distance Rg’m
I\ {5}

Proof: We want to show that at any time, the distance between
two defenders remains greater than a specified safety distance
R;l’m. Consider the relative dynamics between two defenders
Dj and Dj/

apart from every other defender D/, j' €

& =ty
&, =ug; — ugy — Cp ||va;l| vaj + Cp ||vay || vayr

- I.'dj’ =€y

= Ane + Q,ﬁ31 (uzjl) + Qﬁjg (u(sijg) — Qfljl (ufi;l)
_Qﬂ? (ufj?, - CD(HVd_]” Vdj - Hvd]/H vdj’)

(26)
where AR =055 — T = 20% Sin(%)
Al s 124/ s s s (o j +¢2 !
(90(¢5 1) + $*6( 2,1+ %)), where 2 = %

Only the component of the relative dynamics along the line

joining D; and Dy affects the distance between them. Define
[ I l

Ey = (Vdj — Vdj/) e,« = Ud] - /Udjl,

unit vector parallel to e, vla‘l]

A A .
where e, = H%H is the

and vgj, are the components of
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the velocities vg; and v, respectively. For RZ Rd] 7,
v’
vector —%
oRY
toward Dj. v is chosen to be a very large number such that it is
at least ( ) times greater than the rest of the terms in u; 4j » Where

0 < e << 1. This gives us (€2, 1 (uy)) - & = (1 —¢€)uy and

- has magnitude v and is directed away from D; and

(0 (03) & = (1~ iy for all B < B4 This
yields
éb = 205 + AP - &, —ko (sig™ (vay) —sig™ (vay)) - &,

> 2(ug') — 2pdf (¢)2 (¢) + K
(27)

and K is the minimum value of the last

term in the expression of e“ The gains kf and k:;5 are chosen

pdf \/ (¢) +(¢) < 1
- T .

where @' = (1 — e)u)}!

such that T =
d
Ifel, > 0at RZ; = Eggf Y, then RZ; would stay equal or larger
than E%’ If el < 0, we have vl‘ij — vl‘lj < 0 implying K > 0

resulting into

&b > 2(u5) — 205\ (§)2 + ()1 = 2(1 — T) ().

Using comparison lemma [36] and performing integration on

(28), one can establish that Rf_g > Egg’ ¥ — S, when eﬂ again

\
€y
D) where

(28)

becomes larger than O within the time

In the worst-case head-to-head motion
[

Iy _ (b
S’d(e,,) W—)

between the defenders, ey, = —27,. In this case, we have S; =
Sa(—2v4) = W For the safety distance R%"™ (>

2pgq) between the defenders, we choose Ed;’ > 84+ RA™
such that Rg? > Rg’m for all times, ensuring safety of the
defenders. |

Analysis similar to that in Theorem 2 can be performed for
the collision avoidance from the §-agents on the static obstacles
and on the connectivity region of the attackers; and parameters
of the corresponding blending functions are chosen to include
the additional safety distance of Sg. Next, we define feasible
initial conditions.

Definition 3 (Feasible initial conditions): Any initial con-
dition that does not belong to the set Mo = {rg;, vy € R?
Vj € Iy|vg; = 0,ug4; = 0 as per (17)}, or any initial condition
from which the defenders’ trajectories approach My; the latter
depends on the desired states of the defenders. A formal con-
struction of this set is left open for future research.

For these feasible initial conditions, the finite-time trajectory
tracking by the defenders is proven as follows.

Theorem 3: Under Assumption 4 and feasible initial condi-
tions (see Definition 3), all defenders D;, j € I, track their
desired trajectories (& j( )2 Magi) ) in finite time under the bounded

control action given in (17) while avoiding collisions, if oy =
Qo

2—ag”

Pioof: Safety for the defenders (in terms of no collisions

between the defenders with each other, the static obstacles,
and the connectivity region of the attackers) under the control

action (17) has been proved in Theorem 2. For proving conver-
gence and tracking of the desired trajectories, define the errors

Ty =rq — &) and Vg; = vq; — ;). When the defenders
are no longer in conflict with other defenders or obstacles (i.e.,
o = oyt =0y = oy =0 Vjj € ik L), the or

rors satisfy

fa =

Vi
- _ 29)
Vaj = Qo (uij-) + Q2 (uif) o vallva
where  ugy; = —kosig™ (T4 + msng’O‘2 (Vg4)) and
uy; = —kosig™ (V) + Cpllvaj|[va-
Since vy and [|n; ;|| are bounded, we can choose ko =
% such that [luj?|| < a7, i.e., the control term corre-

sponding to the velocity feedback is unsaturated for all times.
Let x4 = [Fl;, vi;]" and define 15, = {X4 € R*|||pgi| <
(%)%} Since [|v4;| is bounded, the set Hj;
nonempty. Let X ;0 = [rdJOdejo] be the 1n1t1al state. Consider
the following two cases.

Case (i), Xqjo € Hy;: Inside the set Hj;, we have [[aj;|| <
u'. The error dynamics inside H; is

is compact and

Ty = Ve,  Vaj = —kosig® (Py) — kosig®* (V). (30)

From the dynamics in (30), we have pg =
—pajllpaj [|* 7 [[Va;l|' =2, which implies that the set #£j;
is forward invariant. Define a candidate Lyapunov function V}
as

S 42 - 3
Vi (Taj, Vi) = ||de|| + 1V Pa + = Va2
2
31
where oy = ;’:—gl and a3~ = 3 — ay. The time derivative of V}

along the trajectories of (29) is

lpgll 7 HVdJH% — a1(ko¥g;Pa; [ Va5 g
o Ipai T + 95 e Va2 Py )

~ 2 ~ ~ - —aT
—a2ko(|[Va; " + Vipaj [V |2 Ipay 1)

Vd (Tajs Vaj) =

where o =1 — a1, ay =1 — ag, and af = 1+ as. We can
show that for any A > 0, we have
V(2 0k avg) = 22 Vi(Fg, Vo) (35
Vi (32702805, M) = A2V (Faj, V)

Similar to the analysis in [35], for 0 < ¢ <1, g2 > 1,
and using the homogeneity property in (33) we can

that V; (Taj, vaj) < —c(Vj (Taj, Vaj)) T2 % where
¢ = —maxg, en, Vi(Tay, Vaj) where Hy = {xqj €
R*|V#(Tgqj,vaj) = 1}. From  [37, Th. 4.2], we can
conclude that the equilibrium rg = vy = 0 is finite-time
stable. The time of convergence Tjj’” (Xqj0) satisfies
s, tr [~ 1 ~ ~ 17%
de (Xajo) < @(Vj(rdjo,vdjo)) Sren
Case (ii), Xgjo ¢ ’Hjj: Outside the set ’HS]-, we have

P _ p ]
Vg = —u
7 N py

term 1

show

IL‘dj = {’dj; kosiga2 (Odj) .
———

term 2

(34)
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The time derivative Vds along the trajectories of (34) is

Vi = ”deH 2 Vg2 —q1ud1 pajl
—qzko 2k qzﬂff%,ﬁ V512

_Q1‘~’Zl;pd7‘ (%’;lv—;ﬁ + ko [V |72

< - ||pdju% 19411° — i P (33)

—Q2ko ||VdJH + ud! [Vl
2—
+a ( i 92+ o [Pl 1941°7)

;1\ L
vl < (55) 7).

This implies that the origin rg; = v4; = 0 is an asymptotically
stable equilibrium. Asymptotic convergence of the trajectories
of (34) implies that the error states py; and vg; will reach
inside the set 73, in finite time. Since the time derivative Vs is
only negative and no convergence rate is established, Lyapunov
function based argument cannot be used to find upper bound on
the time of convergence of the trajectories to the set #7,. We
consider a switched system S,, to provide an upper bound on
the time of convergence of the system trajectories to the set ;.
The switched system S, has two vector fields: fi: right-hand
side (RHS) of (34) and f5: RHS of (34) without term 1. Assume
that the term 1 in (34) is inactive at t = 0, which yields

<0

Tgj = Vaj, Vi = —kosig®? (V). (36)

The distance travelled 74; and the speed 0q; = ||V4;]| satisfy

= _kO( d_]) 2. (37)

Ydj = Vdj
We can integrate the system in (37) to find the time 7y and
distance 7 at which the speed v4; becomes zero as

(Bajo)? 2

~ 'F)j l1-ag
TO('UdjO) — Qae) ~ ko(2—az) *

s (38)

Fo(0gjo) =
Att = Ty(0g50), let the term 1 in (34) be turned ON, i.e., vector
field fi is active. Since 0q; = 0 att = Ty(¥g50), We observe that
the position and velocity vectors are parallel and point along

the radial direction Tq;(To(0g50)) = T4;(0) + ’Yo(vdgo)m
for all ¢ > Ty(¥gj0). The distance travelled 4 and the speed
Ugj are then governed by

(39)

Yaj = Taj, a5 = U — ko(Dg5)*2 = mo(Taj — Vay)

h -k gt \ 22 do.. — T\ 35 Us
where mo = — ()ag(k—o) 2 and Uy, = (W) 2. Using com-
parison lemma [36] on (39), we can show that the

moAt N

(£) = 222 + T, (AL — €220 < 45(1)
(1) = Tay (1 — €m01) < 545 (1)

(40)

where At =t — Tp(0450). We know that after travelling
distance 4g4;(t) along T4;(Ty(0450)) toward the origin, the
position vector Tg;(t) becomes Tg;i(t) = (|| (To(Tajo))|l —
i ()T (To(Dajo)). Since Vg4;(t) points in the direction of

IEEE TRANSACTIONS ON ROBOTICS

t4;(To(0g50)), we have

1P (D) = (1 (To(450)) || = Faj ()~ 5=agy (Fas(D)' 2
< 12 (To o))l = 7y (Drppay (Bas(8)
= pa;(1)-

(41)

Let T}f be the time such that: (5 )al = paj (T)}), i.e., the time
at Wthh the trajectories of the sw1tched system Sw would have
already entered the set #7;. We claim that this time T is an
upper bound to the actual time of convergence, T;j, of the traj ec-
tories of (34) to the set ’Hflj. This is true because turning off term
1in (34) actually slows down the convergence of the trajectories
toward the origin as term 1 always points toward the origin under
Assumption 4, i.e., more acceleration toward the origin making
convergence of the trajectories faster. Once inside the set Hp;
the trajectories converge to the origin in finite time, as described
in the analysis of Case (i). In conclusion, starting at T'g;0, V4j0,
the trajectories of the error dynamics (29) converge to origin in
finite time T(E”(f{djo) < T(E”(f{djo) where T(Z?”(idjo)

~ ~ O//

(Vi (Faj0,%a50)) "2

78,t1 [ ~ c(a )
Ty (Xgjo)= ex)

- ~ Ve) 2oL~
T;}(deo) + %,lf deo ¢ ’Hlsi]

if idjO € /Hlsij @2)

[/ = S -«
where V] = Maxs, cHs, Vi(Taj, Va;) and oy = 3= T2

We also note that a similar upper bound on the time of
convergence can be provided by considering the initial velocity
to be pointing away from the origin in the radially outward
direction with the same speed as the speed at the initial time. Let

this time be TS " In the interest of space, we do not provide

derivation of TjjtT’H, but the idea is to integrate the system (34)

to find this time. Then, the minimum of Tjj’” and T;j’tr"l is the
upper bound on the time of convergence of the error X4 to the
origin |

Next, we prove the convergence of the desired formation
during the seeking phase to the desired neighborhood of the
attackers’ formation.

Theorem 4: 1f Assumption 3 holds, then under the dynamics
in (13), (16) and control action (14), the center rqy of the
formation .% reaches within the distance of E. . from rg,
ie., |[rgr — rocll < Ej,qns. and the orientation ¢ reaches within
the distance of EZ, from 0 in finite time, i.e., [¢p — 0| < E
while not colliding with the obstacles.

Proof: Under Assumption 3, safety of the formation .7 can
be established by doing analysis similar to that in Theorem 2.
Define the errors f‘dfs =Tgf —Tac and \N/'dfs = V4f — Vac- When
the formation .%# 2 1sno longer in conflict with the obstacles, (i.e.,

rot’

Ugff ¥ = (), the errors satisfy
f'dfs == {Idfs
Vare = Qg2 (Wg7) = Qg (kifape) = Cp [Var | Vay = Vae
43)
where ﬁfl; = —koVgrs + Cpl|Varl|Var, Vac is the acceleration

of ACoM that is unknown to the defenders and acts as a perturba-
tion in (43), and || V.|| < @,. We will use perturbation analysis
to prove the result. The nominal error dynamics without the
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perturbation v, reads
f‘dfs = \7de
Vape = R (83) = sy (ifre) = Co vl vay.
(44)
Under Assumption 2, following Theorem 3 with a3 = as =1,
we can show that the origin ryps = vgps = 0 is an asymptoti-
cally stable equilibrium of (44).

Since ||vgr|| and ||v,c|| are bounded, we can choose ko =
CD(T);f)
[Cr=n)
responding to the velocity feedback is unsaturated for all
times. Let us define the set ’de = {Taps, Vars € R?|||[Vagps]| <

—So

such that [|ajz|| < uj, ie., the control term cor-

Vg + Ug &amp; ||t df £}. Consider the largest ball of
radius 7%, B‘;f, that lies completely inside Hp, and is de-

fined as B, = {f‘df‘s,frdf‘s € R?|||xqp: | < fs}, where X4 =
[(f‘dfs)Tﬂ

);( _ 0, I, f‘dfs B 0
o —kily —kola| | Ve Vac

where I, and 0, are the two-by-two identity and zero matrices,
respectively, the disturbance term g is bounded as [|g|| < .
The nominal system xdfs = Ade? is exponentially stable for
ko, k1 > 0. As per [36, Th. 4.6], exponential stability of the
nominal linear time-invariant system guarantees existence of a
positive definite matrix P, that satisfies the Lyapunov equa-
tion, ATP; 4+ P4A = —Qy, for any given positive definite
matrix Qg. Then, the Lyapunov function defined as: Vg =
(Xaps)TPyXqp- satisfies the conditions as required in [36,
Lemma 9.2] with constants ¢y, ca, c3, c4 given in terms of the
eigenvalues of Py and Qg as: ¢1 = Amin(Pa), c2 = Amax(Pa),
¢3 = Amin(Qa), and ¢4 = 2Amax (Pg). As per [36, Lemma 9.2],

ifllgll < ua < 24/co

(Var)T]T. Inside B, the errors follow:

=A%y + 8 (45)

7 forallt > 0,allxq= € Bj, forsome

positive constant ¢y < 1, then for all ||Xq= (to)]] < /C1 75 the
solution Xgy=(t) of the perturbed system in (45) satisﬁes the

following:
- c 1—cp)c:
) [%ags (£)]] < /22 exp(—L5mdes (¢ —
to))||Xars (to)|] Vo <t <to+ T3
Hidfé( )” < bdf = Cg‘lﬁc_; Vt>t0+T

for some finite time 775, < T3 (Xqp+ (o)), where

s

bs
o @]

Tip (ap (t0)) = to — 28 o a). @

We choose Eif,ng > bgr+pac + psn, Which guarantees that the

center rqs reaches within a distance of £, from rq..

Similarly, the orientation ¢ satisfies ¢ = —k¢(¢ 0) —
k;f(qb —6). We have that ¢ = # and ¢ = § are exponentially
stable equilibrium of (IV-B). Following the similar analysis as
for rqe, we can show that |¢ — 6] becomes and stays smaller
than £, in finite time. ]

C. Enclosing Phase: StringNet Formation

Next, we prove the safe accomplishment of the StringNet
formation during the enclosing phase in Theorem 5.

Theorem 5: The StringNet G, centered at r,. is formed
around the attackers in finite time under the state-feedback,
bounded control actions given in (17) (seeking phase) and (20)
(enclosing phase) while avoiding collisions, for all feasible
initial conditions.*

Proof: 1) Seeking Phase: Assumption 3 ensures that the
desired positions &;;) are such that when the defender D; is
at &), for all j € I, the blending functions ag azg
0‘3; are zero. As shown in Theorem 3, the defenders track their
desired trajectories forming the desired rigid formation . ] in
finite time 7}’ = maxjep, T;;"(fcd]o) The dynamics (13) and
(16), as shown in Theorem 4, ensure ||rqr — rqcl| < Ef,,, and
|¢ — 0] < E$, in finite time Tdf triggering the enclosing phase
in finite time.

2) Enclosing phase: The safety of the defenders during the
enclosing phase can be established using the similar arguments
asinTheorem2.Letrgje = rg; — £ae(j),\7dje =Vgj — nj(j),and
Xgje = [(Taje)”, (Vaje)T]". The dynamics governing the errors
Tgje and v ;e are same as in (43). Following similar arguments as
in the proof of Theorem 4, we can show that ||Xgj-(¢)|| < bg; =

a 52 Ya fort > Tg;. This implies that D; reaches bg; close

c3

and

to its desned trajectory in finite time and stays bounded within
bg; thereafter. Denote by = max;cy, bg;. All the defenders reach
within b, distance of their desired locations in the StringNet in
finite time 7" > 7 + Ty (Xap+ (T)) + T5" + maxjer, Ty and
the StringNet is achieved in finite time. |

Remark 1: Theorems 2—5 show that the StringNet formation
by the defenders will be achieved around the attackers in finite
time. We also provide upper bounds on the time of convergence
of the proposed control laws when no conflicts with physical
obstacles or other agents occur. However, finding the time that
the defenders would take to avoid collisions with obstacles and
with other defenders during seeking and enclosing phase is not
trivial. Finding the initial conditions, under which the defenders
will succeed in herding the attackers under the proposed strategy
in an arbitrary obstacle environment, is ongoing work.

D. Herding Phase

In Theorem 6, we prove the safety and convergence of the
StringNet formation to S during the herding phase.

Theorem 6: After StringNet G, is formed, the defenders
on G, herd all the attackers enclosed inside Gy, to the safe
area S (psq > Psn)s 1., ||Tai — Tsal| < psa for all A; inside
Gsn while avoiding the obstacles under the control action (25)
starting at feasible initial conditions (see Definition 3).

Proof: Since the desired formation 9(? moves as a rigid
formation, we only consider the virtual agent at rgr with size

4Same as in Definition 3 but with the set M defined as per (20) during the
enclosing phase.
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Fig. 6. Snapshots of the paths of the agents during StringNet Herding. (a) Gathering phase. (b) Seeking phase. (c) Enclosing phase. (d) Herding phase.
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Fig. 7. Control inputs and critical distance ratios during StringNet Herding. (a) Inputs. (b) Critical distance ratios.

Psn + pa Whose dynamics are

Tgpn = Var,  Var =, as (ui) = Cp [varl vy (47)
where Ty =rg —Trs, and ugj} = —ki(ras — rsa) +
> kel agf”‘up(xgﬁ"). Using similar arguments as in

Theorem 2, we can ensure the safety of .#} if Rsf RS
Psn + pa + Rd + S during the herding phase. In the absence

of any obstacle’s local potential field (02]{”“ = (), we have

h ~ . .
u,; = —kiTgn. We define a candidate Lyapunov function
~ 2 _h
o [|Z g | [val® TR Uof
Vvh — 2 + if Hrdf"H < T
T (g | el iherwi
Ugs ’ Tgpn|| + =5 — — 55—, otherwise

(48)
The function th is 0 at rgen = vgr = 0, is positive definite,
continuous, and its time derivative along the trajectories of (47)
is: VI = —Cpl|vas|®. V' is negative semidefinite and we have
from the dynamics (47) that the largest invariant subset in
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City environment in Gazebo Simulator.

Q= {f‘dfh,vdf € R2|Vh = 0} is the origin f'dfh =vg = 0.
Using Lasalle’s invariance principle ( [36, Th. 4.4]), the trajec-
tories of the system (47) converge to ¥yn = vgr = 0, i.e., the
center rqp converges to ry, and so does the desired formation
F 5‘. From Theorem 3, the defenders track these desired trajec-
tories under (25) in finite time and, hence, herd the attackers to
S. [ |

V. SIMULATION RESULTS

In this section, we provide simulations of defenders
herding an adversarial swarm of attackers to S. The
safety of the defenders 1s assessed by critical distance ra-

a,m

tios: A = maxjer, ker, ¢ = maxe; and

Sk aJ€lq Tpai Ra; )

dj
RG™
Ad = Max;£jel, Rdj , where the superscript m denotes the

minimum safety dlstance between the corresponding agents.
Critical distance ratios for the attackers A% and A% are defined
similar to A§ and A? respectively. These critical ratios should
be less than 1 for no collisions.

A. MATLAB Simulations

1) Herding: We consider six attackers moving in a line-
shaped formation, attacking the protected area. Based on the
initial positions of the attackers, the defenders assume that the
connectivity region of the attackers has radius p,. = 36 m.

-800 -600 -400 -200 0 200 400 600 800

Snapshots of the paths of the agents during StringNet Herding (attackers do not stay close). (a) Gathering and seeking phase. (b) Enclosing and herding

We choose five defenders to herd the six attackers. Some
key parameters used in the simulations are: p, = pg = 0.5,
Cp = 0.2, 1, = 6m/s (G, = 7.2m/s%), 14 = 10.25m/s (g =
21.02m/s%), ap = 0.9, and pg,, = 48m.

For the given initial positions of the defenders and the attack-
ers, we solve the MIQP and MILP iteratively, as described in
Algorithm 1, to obtain the desired open formation .%] and the
corresponding defender-goal assignments. Fig. 6(a) shows paths
for all possible defender-goal pairs (light gray). We compute the
assignment as (Dlv 551]% (DQ, 5527)7 (D3v Eg)’ (D4v 5%)7 (D5, ‘Eﬁ)
and the corresponding assignment cost to be 171.75 within the
computation time of 2.6824 s using MATLAB on a computer
with 16-GB RAM. The chosen paths of the defenders to gather
at .Z] and the attackers’ paths during this phase are shown in
Fig. 6(a) (blue and red, respectively).

Fig. 6(b)—(d) shows the snapshots of the paths taken by the
defenders and the attackers after the seeking, enclosing, and
herding phases are completed. As we can observe from the plots
in Fig. 6, the defenders are able to gather at the desired formation
7§ before the attackers. The defenders then are able to seek and
enclose the attackers by forming the StringNet formation around
them [see Fig. 6(c)]despite the attackers trying to move away.
Fig. 6(d) shows that the defenders are able to herd all enclosed
attackers to the safe area. The norms of the inputs of all the
agents and critical distance ratios are shown in Fig. 7(a) and (b).
The colored bars at the bottom in Fig. 7(a) and (b) show the
time duration of each phase, where the cyan, black, magenta,
and green color correspond to gathering, seeking, enclosing,
and herding phase, respectively. As observed in Fig. 7(a), norms
of all the inputs are bounded. From Fig. 7(b), we observe that
all the distance ratios are smaller than 1 ensuring no collision
happened during the entire duration.

2) Herding When Some Attackers Leave the Connectivity Re-
gion: In this section, we provide a simulation for the case when
some of the attackers do not stay inside the connectivity region.
The snapshots of paths traveled by the agent are shown in Fig. 8.
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As itis observed in Fig. 8(b), two of the attackers are outside the
connectivity region and are not enclosed by the defenders inside
the StringNet. The attackers outside the StringNet disconnect
themselves from the rest of the attackers and are able to reach
the protected area [see Fig. 8(b)]. Clearly, the current approach
fails to herd all the attackers when the attackers do not stay
together. To handle this kind of situations, the defenders can
choose larger radius for the StringNet formation, but there is
limit on how large this radius can be because the barrier can
only be maintained when the defenders are within R, from
each other. Another solution is to split the defenders into smaller
teams and task them to capture the smaller teams of the attackers
whenever the attackers do not stay together and split into smaller
teams. In our ongoing work, we are extending the proposed
“StringNet Herding” approach to herd multiple teams of the
attackers to safe area by dynamically assigning the defenders to
the teams of attackers based on the diameter of the attackers’
teams. For visualization, the video of the simulations can be
found at https://tinyurl.com/y4xzumbj.

B. Gazebo Simulations

In this section, we provide simulation results for the proposed
approach implemented on quadrotor vehicles simulated in the
physics-based Gazebo simulator, RotorS [38]. We consider the
city environment, as shown in Fig. 9, with several tall buildings
as the primary obstacles. Since the quadrotors are flying at
a certain altitude, the smaller houses are not considered as
obstacles. Gazebo environment provides noisy measurements
for each of the quadrotors. The quadrotors track the trajectories
generated by our algorithm using the on-board controller [39].
Snapshots of the trajectories followed by the quadrotors in
Gazebo simulation are shown in Fig. 10. As observed, the
defender quadrotors are able to gather in the path of the attackers,
enclose the attackers, and then herd them to the safe area located
outside the city. The Gazebo simulation video can be found at
https://tinyurl.com/y4xzumbj.
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Snapshots of the paths of the agents during StringNet Herding (Gazebo simulation). (a) Gathering and seeking phase. (b) Enclosing and herding phase.

VI. CONCLUSION

In this article, we proposed a herding method called
“StringNet Herding” for defending a protected area from an
adversarial swarm. A closed formation of strings (StringNet)
was formed by the defenders around the attackers in 2-D space,
restricting the attackers’ motion to the interior of the StringNet.
The StringNet was then moved to a safe area while avoiding the
convex polygonal obstacles in the space. Using a combination
of near time-optimal, open-loop controllers for planning the
formation of the defenders, along with state-feedback finite-time
controllers for tracking the desired formation, the defenders were
able to herd an attacking swarm that starts sufficiently far from
the protected area.

Future work includes investigation of the proposed approach
on hardware systems and its extension to the 3-D case. The
current work would also be extended to include more intelligent
behaviors by the attackers, for example, attacking as multiple
smaller flocks or splitting in smaller teams instead of maintain-
ing cohesiveness as a flock.
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