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Abstract: Flat surfaces captured by 3D point clouds are often used for localization, mapping,
and modeling. Dense point cloud processing has high computation and memory costs making
low-dimensional representations of flat surfaces such as polygons desirable. We present Polylidar3D,
a non-convex polygon extraction algorithm which takes as input unorganized 3D point clouds
(e.g., LIDAR data), organized point clouds (e.g., range images), or user-provided meshes. Non-convex
polygons represent flat surfaces in an environment with interior cutouts representing obstacles
or holes. The Polylidar3D front-end transforms input data into a half-edge triangular mesh.
This representation provides a common level of abstraction for subsequent back-end processing.
The Polylidar3D back-end is composed of four core algorithms: mesh smoothing, dominant plane
normal estimation, planar segment extraction, and finally polygon extraction. Polylidar3D is shown
to be quite fast, making use of CPU multi-threading and GPU acceleration when available. We
demonstrate Polylidar3D’s versatility and speed with real-world datasets including aerial LIDAR
point clouds for rooftop mapping, autonomous driving LiDAR point clouds for road surface detection,
and RGBD cameras for indoor floor/wall detection. We also evaluate Polylidar3D on a challenging
planar segmentation benchmark dataset. Results consistently show excellent speed and accuracy.
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1. Introduction

Flat surfaces are pervasive in engineered structures and also occur in natural terrain. For example,
structures such as walls, floors, rooftops, and roadways are often flat or “flat-like”. Similarly, home
and office furnishings are typically composed of multiple flat surfaces. Sensors such as LIDAR and
RGBD cameras generate dense 3D point clouds of these predominately flat surface environments.
This observation has been exploited for tasks in localization and mapping [1], digital preservation
with Photogrammetry and laser scanning [2—4], and point cloud registration [5]. Planar segmentation
techniques are often used to group points together belonging to a flat surface [6-8]. However points
clouds are dense incurring a high computational cost when used directly in higher level tasks. Planar
point clouds can be converted to lower dimensional representations such as polygons. Polygons
reduce map size, accelerate matching for localization [9], and support model reconstruction and object
detection [10].

Planar points clouds may be converted to convex polygons [11]. Convex polygons are simple and
efficient to generate but often do not represent the true shape of a point set. Non-convex polygons may
be generated using techniques such as a-shapes but operate strictly on 2D data, requiring the projection
of each 3D planar point cloud and expensive triangulation [12,13]. Pixel-level boundary following of
organized point clouds can be used to extract non-convex polygons but often only captures the exterior
shell of the polygon [9]. These methods are not able to capture interior holes in a polygon representing
the shape of obstacles on flat surfaces. Finally, speed is an important consideration for many of the
applications mentioned previously. Parallel algorithms written for multi-core CPUs and GPUs should
be used to reduce latency.
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We present Polylidar3D, a non-convex polygon extraction algorithm which takes as input either
unorganized 3D point clouds (e.g., airborne LiDAR point clouds), organized point clouds (e.g., range
images), or user provided meshes. The non-convex polygons extracted represent flat surfaces in an
environment, while interior holes represent obstacles on these surfaces. Figure 1 provides an overview
of Polylidar3D’s data input, front-end, back-end, and output. Currently only one planar direction can be
extracted from unorganized 3D point clouds while all other 3D data inputs do not have this limitation.
The front-end transforms input data into a half-edge triangular mesh. This representation provides
a common level of abstraction offering increased efficiency for back-end operations. The back-end
is composed of four core algorithms: mesh smoothing, dominant plane normal estimation, planar
segment extraction, and polygon extraction. Polylidar3D outputs planar triangular segments, sets of
flat connected triangles, and their polygonal representations. Polylidar3D is extremely fast, typically
executing in a few milliseconds. It makes use of CPU multi-threading and GPU acceleration when
available. Polylidar3D is a substantial extension to Polylidar, the authors’ 2D algorithm that transforms
2D point sets into polygons [14]. Our previous Polylidar algorithm only operated on 2D point sets and
offered no parallelism. The primary contributions of this paper are:

e  An efficient and versatile open source [15] framework for concave (multi)polygon extraction for
3D data. Input can be unorganized/organized 3D point clouds or user-provided meshes.

e A fast open source [16] dominant plane normal estimation procedure using a Gaussian
Accumulator that can also be used as a stand-alone algorithm.

e  Multiple diverse open source experiments showing qualitative and quantitative benchmark results
from data sources including LiDAR and RGBD cameras [17-19].

e Improved half-edge triangulation efficiency for organized point clouds; CPU multi-threaded and
GPU accelerated mesh smoothing [16].

e  Planar segmentation and polygon extraction performed in tandem using task-based parallelism
to reduce latency for time-critical applications.

Front-end Back-end Output
Data Input Planes &
Mesh Creation Core Algorithms Polygons

b Unorganized - = 2D Delaunay Polygon
S 2D Point Set 4 < Triangulation Extraction
" Unorganized - * 2.5D Delaunay Planar
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o Orggnized > Right Cut Dominant Plane
‘ﬁ 3D Point Cloud Triangulation Normal Estimation
/£
User Provided - Half Edge - Mesh Smoothing
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Figure 1. Overview of Polylidar3D. Input data can be 2D point sets, unorganized/organized 3D
point clouds, or user-provided meshes. Polylidar3D’s front-end transforms input data to a half-edge
triangulation structure. The back-end is responsible for mesh smoothing, dominant plane normal
estimation, planar segmentation, and polygon extraction. Polylidar3D outputs both planes (sets of
spatially connected triangles) and corresponding polygonal representations. An example output of
color-coded extracted planes from organized point clouds is shown (top right). An example of extracted
polygons from a user-provided mesh is shown (bottom right). The green line represents the concave
hull; orange lines show interior holes representing obstacles.
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Below, Sections 2 and 3 provide background and mathematical preliminaries, respectively.
Section 4 describes Polylidar3D’s front-end methods for mesh creation. Section 5 outlines optional
mesh smoothing while Section 6 introduces our dominant plane normal estimation algorithm. Section 7
describes plane and polygon extraction with parallelization techniques. Section 8 proposes optional
post-processing methods to refine and simplify the polygons. Section 9 provides qualitative results as
well as quantitative benchmarks. Sections 10 and 11 provide discussion and conclusion, respectively.

2. Background

This section summarizes baseline methods on which Polylidar3D is constructed. Plane segmentation
and polygon extraction background is followed by a description of 3D data denoising techniques such
as mesh smoothing and plane normal estimation with Gaussian accumulators.

2.1. Planar Segmentation

Planar segmentation processes an input 3D point cloud and segments it into groups of points
representing flat surfaces. These point groups are often informally called “planes” but differ from the
geometric definition. A geometric plane is defined by a unit normal 7 € R3 and a single point on the
plane p € R3. Flat surface representation as a point set is advantageous because:

1.  Point sets are naturally bounded (i.e., have finite extent). Bounded surfaces better correspond
with most real-world flat surfaces.

2. Holes inside a plane may be represented implicitly by the absence of points. This representation
can also indicate obstacles embedded in a flat surface.

3. Best-fit geometric planes can also be computed after segmentation using least-squares, principal
component analysis (PCA), or RANSAC based methods [20].

4. Merging similar planes can be rapidly performed by combining their points sets.

Planar segmentation can be performed with region growing methods. Algorithms can exploit the
spatial structure of an organized point cloud for which data is arranged into rows/columns like an
image (e.g., range images). Region growing algorithms extract connected components in point clouds
with neighborhood information (e.g., pixel neighbors or k nearest neighbors). A seed is chosen and
assigned a unique label, then its neighbors are iteratively analyzed and assigned the seed’s label if their
characteristics are sufficiently similar to the seed’s [20]. Characteristics such as normal orientation,
color, or Euclidean distance from each other may be used. A unique label assigned to each point
denotes a grouping in a planar surface.

Holz et al. [12] outlines planar segmentation by employing approximate polygonal meshing from
organized point clouds. Mesh construction exploits the organized structure of a range image. Point
normals are computed from the mesh and smoothed using bilateral filtering techniques which preserve
edges. Region growing is performed sequentially until all possible points have been examined. Points
are merged based on differences in normal angles and Euclidean distances. Reported benchmarks
show that a 320 x 240 range image can be segmented in approximately 125 ms. Feng et al. [6] proposes
the use of agglomerative hierarchical clustering (AHC) on organized point clouds to perform fast
planar segmentation. The algorithm first creates a graph by uniformly dividing the points in image
space. Initial node size (e.g., 4 x 4 pixel group) is user-configurable and allows a trade-off between
execution speed and the detail of extracted planes. Nodes belonging to the same plane are merged
through AHC until plane fitting error exceeds a user-defined threshold. A final refinement is done
though pixel-wise region growing with possible plane merging. The algorithm is extremely fast; a
640 x 480 image with an initial node size of 10 x 10 can be segmented in ~30 ms.

Schaefer et al. [8] details a probabilistic plane extraction (PPE) algorithm to detect planes in
organized 3D laser range scans. The algorithm utilizes AHC with individual laser reflection in the
scene to define an initial candidate plane set. Each plane is then iteratively merged with adjacent
planes that maximize the measurement likelihood of the scan. Measurement likelihood is computed
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using a Gaussian probability density function modelling ray length. The algorithm is implemented
in MATLAB with GPU acceleration but has execution times exceeding one hour for a 500 x 500 scan.
Trevor et al. [21] similarly operates on organized point clouds and exploits neighbor information for
merging. Surface normals are estimated for every point using methods in [12]. Points are merged if
their normals and orthogonal distances are below a threshold which creates locally planar segments
later refined through plane fitting and filtering out segments that exceed curvature constraints.

Salas-Moreno et al. [22] outlines a fast GPU accelerated planar segmentation method for use in
simultaneous localization and mapping (SLAM) from range images. A range image is first converted
into surfels (surface elements) describing a point position and orientation. A surfel similarity bit
mask is created and marked 1 if neighbor surfels to the left and above are similar in normals and
plane distance, 0 otherwise. This bit mask is used to perform region growing where similar and
contiguous pixels are merged to the same plane. The algorithm executes in real-time and can perform
planar extraction with SLAM in 66 ms. Oesau et al. [23] presents a parallel plane extraction method
specifically designed for unorganized point clouds. First, points are organized using an octree from
which multiple seed points are uniformly selected. Region growing occurs in parallel for each seed
point with points inside the same cell in the octree used for plane fitting. Region growing is periodically
interrupted to perform regularization of the planar shapes detected. Regularization is carried out by
merging planes captured on the same flat surface by refitting through PCA. The implementation is
GPU accelerated and can segment point clouds with 1.1 million points in approximately three seconds.

Polylidar3D segments points clouds through region growing but operates on triangles instead of
the points themselves. Region growing is regularized and parallelized by first identifying dominant
plane normals in the mesh. Triangles having similar normals to a dominant plane are grouped. Each
group (in parallel) then performs region growing accounting for normal orientation, Euclidean distance,
and point to plane distance. Note this method relies upon the data to be properly denoised.

2.2. Polygonal Shape Extraction

Representing planar surfaces as point sets has the disadvantage of high memory and computational
overhead. Dense planar point sets have redundant information about the underlying surface they
represent. Polygonal representations of point sets removes redundant information. We consider
convex polygons, non-convex polygons, and non-convex polygons with holes per Figure 2.

K (.‘s"g;
' },
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(a) 2D Point Set (b) Convex (c) Non-convex (d) Non-convex with holes

Figure 2. Example polygons that can be generated from plane segmented point clouds. (a) 2D point set
representation of a floor diagram with interior offices; (b) Convex polygon; (c) non-convex polygon; (d)
and non-convex polygon with holes. The exterior hull (green) and interior holes (orange) are indicated.

Biswas et al. [11] represents flat surfaces as convex polygons extracted from range images.
First, points are randomly sampled in the image with nearby pixel neighbors used for fast RANSAC
plane fitting. This returns numerous sparse point subsets which may be coplanar. The convex hull is
computed for each of these subsets generating many convex polygons in the scene. Polygons belonging
to the same surface are then merged with GPU accelerated correspondence matching. The sparse
random sampling of the point cloud and efficient generation of convex hulls allows the algorithm to
run in real-time (less than 2 ms). However, convex hulls ignore boundary concavities, overestimate
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the area of the enclosed point set, and do no not account for holes per Figure 2b. Poppinga et al. [24]
outlines a method to convert plane segmented range images into convex polygons. Each plane segment
is decomposed into a set of convex polygons. Each polygon is progressively built through scan-lines;
a new polygon is generated when convexity constraints are not met. This allows a concave plane
to be represented by multiple convex polygons. Lee et al. [9] generates non-convex polygons from
range images. The range image is first planar-segmented using an eight-way flood fill algorithm.
This involves region growing which accounts for the normal vector to each point. Each of the planar
segments is then converted to a non-convex polygon. Exterior boundary pixels of a plane segment are
sampled and neighboring samples connected to create a non-convex polygon. However interior holes
in the plane segments are not explicitly captured as shown in Figure 2c. Trevor et al. [21] performs a
similar polygon extraction procedure through boundary tracing of the exterior hull.

Non-convex polygons with holes may be generated through a variety of methods, many under
the name of concave hulls [13,25,26]. Many of these methods strictly operate on 2D data, requiring
the 3D planar point cloud segments be projected to the best fit geometric plane to produce 2D point
sets. Holz et al. [12] proposes this technique and the use of a-shapes to extract such polygons [13]. We
developed a faster open source polygon extraction algorithm, Polylidar, which extracts non-convex
polygons with holes from 2D point sets [14]. The point set is converted to a 2D mesh through Delaunay
triangulation, and triangles are subsequently filtered by edge length creating the “shape” of the point
set. This filtered mesh is then converted to a polygon through boundary following while accounting
for holes. Benchmarks demonstrate that our algorithm is a minimum of four times faster than
leading methods [27]. This paper extends Polylidar to operate directly on 3D data, performing planar
segmentation and polygon extraction in parallel. This integration allows Polylidar3D to skip expensive
Delaunay triangulation previously required for organized point clouds as shown in Section 4.2. Planar
segments represented as non-convex polygons with holes gives the following advantages:

Significantly reduced memory requirements, on the order of square root (perimeter vs. area).
Faster computation of geometric values of interest, e.g., centroid, area, perimeter.
Ability to dilate, erode, and simplify polygons through computational geometry routines.

Ll N

Holes inside a polygon account for gaps or obstacles on flat surfaces.

2.3. 3D Data Denoising

This section discusses two methods to smooth a triangular mesh. The Laplacian filter performs
weighted averaging of nearby vertex neighbors to reduce noise [28]. Vertices are updated according to

A N
Vo =0i 35 ) wj- (0 =) 1)
=

N
w; = |[o; = vj| |7 WZZ%ZU]‘ @)
]:

where v,, v;, v, and N denote the output (smoothed) vertex, input vertex, neighboring vertex, and
total number of neighbors, respectively. Weighting for each neighbor vertex w; is the inverse of its
Euclidean distance and is normalized with W. Parameter A adjusts smoothing [0-1], though multiple
iterations may be performed to increase smoothing. The Laplacian filter is not edge-preserving.
Zheng et al. [29] proposes a bilateral filtering technique on triangular meshes that is analogous
to images. Filtering occurs in two stages: normal smoothing and vertex updating. The first stage
performs local iterative normal filtering to smooth normals but preserves edges as given by:
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where n,, n;, c;, nj, cj, and N denote smoothed triangle normal, input normal, centroid, neighbor
normal, neighbor centroid, and number of neighbors, respectively. Triangle weights W, and W;
exponentially decay based upon deviation from the triangle position and normal and parameters o,
and . Sharp edges can be preserved. Holz et al. [12] performs a similar normal filtering technique
but includes an optional intensity term for colored point clouds. A second stage updates vertices using
a method proposed by Sun et al. [30] which executes weighted averaging of neighboring vertices using
the newly smoothed normals. Note that smoothing may not be possible if a triangular mesh is so noisy
that neighboring triangles have significantly different normals.

Both Laplacian and bilateral filtering rely upon neighboring triangles for smoothing. The neighbors
are often limited to their 1-ring neighbors defined by vertex or edge neighbors. In Section 2.3 we provide
accelerated implementations of these algorithms for use with organized point clouds. The organized
structure allows an implicit triangular mesh to be defined (i.e., no data structures is needed to store the
graph) with the ability to use arbitrary kernel sizes to expand the neighorhood graph, a necessary feature
with dense noisy point clouds.

2.4. Dominant Plane Normal Estimation

The Gaussian accumulator (spherical histogram) is a widely used method for detecting planes [31].
It discretizes the surface of the unit sphere (52) into individual cells, creating “bins” or “buckets” of
a histogram. A “vote” for a possible plane, often in the form of unit normal and origin offset, are
accumulated into this histogram. Peak detection strategies on the histogram can then find dominant
plane normals. Many discretization strategies of S2 exist with tradeoffs in speed, memory requirements,
and subsequent peak detection.

The UV Sphere discretization strategy (Figure 3a,b) decomposes S2 into a 2D array by polar
coordinates 6 and ¢. Each dimension is discretized in equal steps creating a fixed number of cells, ny x
ng. A unit normal to be integrated, 71; € R3, is converted to polar coordinates 6; € [0,360], ¢; € [0,180]
to identify its corresponding histogram cell in the 2D array. Finding the 2D array index requires a
simple operation, e.g., 0,4, = 0;/360° - ny. However UV Sphere cells have different shapes and
area with very small cells at the poles resulting in three issues: unequal weighting (voting) during
accumulation, singularities at the poles, and non-equivariant kernels for peak detection. Figure 3e
shows an example UV sphere histogram that fails to detect a plane at the top (North) pole.

Borrmann et al. [31] and Limberger et al. [32] recommend adjusting azimuth step size based
upon elevation angle leading to more uniform cell area. This creates a ‘Ball” Sphere with strips with a
varying number of cells for each elevation angle stored as a list of lists (Figure 3c,d). Cell areas are
similar but have different shapes; a substantially larger cap is placed at the poles. Limberger et al. [32]
attempts to handle the singularity near the poles after peak detection through a vote weighting scheme.
However any discretization strategy by polar coordinates will not have equivariant kernels during
peak detection caused by anisotropic cells [33].
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(a) UV Sphere, Equator (b) UV Sphere, Pole (c) Ball Sphere, Equator (d) Ball Sphere, Pole
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Figure 3. Examples of integrating normals from two identically “noisy” planes (red arrows, Gaussian
distributed) into a UV Sphere (a,b) and Ball Sphere (c,d). Note the anisotropic property of sphere cells
caused by unequal area and shape; (e) The UV Sphere histogram is unable to detect the peak at the pole;
(f) The Ball sphere is able to detect both peaks, but the north pole cell is significantly larger leading to
an incorrectly higher value than the equator cell.

Toony et al. [34] proposes unit sphere tessellation into 1996 equilateral triangle cells. This approach
gives near uniform cells in area and shape, resolving previous issues with unequal weighting, pole
singularities, and non-equivariant kernels. The process of integrating a unit normal into the histogram
is no longer an indexing scheme. They propose to use a K-D tree to spatially index each cell using its
triangle normal. A nearest neighbor search must be conducted for every unit normal integrated into
the histogram. Peak detection is not performed, instead the sorted histogram distribution is analyzed
to predict the shape of the object being integrated (e.g., circle, plane, or torus).

In Polylidar3D we tessellate the unit sphere with triangles by recursively subdividing the primary
faces of an icosahedron. The recursion level dictates the approximation of the unit sphere. Our search
strategy does not rely upon K-D trees but instead uses a global index from space filling curves followed
by local neighborhood search. We unfold the icosahedron into a 2D image in a particular way that
guarantees equivariant kernels as outlined in [33]. Standard 2D image peak detection is performed
with nearby peaks clustered using AHC.

3. Preliminaries

A 3D point p is defined in a Cartesian reference frame by orthogonal bases &y, &,, and &.:
p=xé.+yeé, +zé = [xy,z ()

An unorganized 3D point cloud is an arbitrarily ordered array of points denoted P = {py, p;,
«o.,Pn—1} with an index i € [0,n — 1]. An organized 3D point cloud is structured with 2D indices
ue€ [0,M—1], v € [1,N — 1] such that pup = [¥u,0, Yu,0, Zuo]. Neighboring 2D indices (u,v) and
(u +1,v + 1) represent 3D proximity relationships between p;, , and p, 1,41 when they lie on the
same surface [6]. These 2D indices create an image space with M and N denoting the rows and columns.
Note that the 2D indices can be collapsed to a 1D stacked array by i = 1 - N + v. A triangular mesh 7
with k triangles is defined by
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T: {tO/ ti/"'/tk—]} (8)

where each t; is a triangle with vertices defined by three point indices {iy, iy, i3} € [0,n — 1] referencing
points in P. A half-edge triangulation further decomposes each triangle into three individual
half-edges. Specifically each edge in the mesh is split into two oriented half-edges, often called twin
or opposite edges [35]. Each half-edge is represented by a unique id he; in triangle t; = floor(he;/3).
An ordered array HE is created to find corresponding twin edges. Specifically the twin edge of he; can
be found at index i in HE. If no twin exists, i.e., the edge is on a border, then —1 is returned.

The Open Geospatial Consortium (OGC) standard [36] defines a linear ring as a consecutive
list of points that is both closed and simple. This mandates the linear ring to have non-intersecting
line segments that join to form a closed path. A valid polygon must have a single exterior linear ring
representing the hull of the polygon and a set of linear rings (possibly empty) representing holes inside
the polygon.

4. Mesh Creation

Polylidar3D requires a half-edge triangulated mesh to perform plane and polygon extraction.
Mesh generation for unorganized and organized 3D points clouds is described below, followed by
details on converting a user-provided triangular mesh to half-edge form.

4.1. Unorganized 3D Point Clouds

We convert an unorganized 3D point cloud P into a 3D triangular mesh through 2.5D Delaunay
triangulation [37]. P is projected to the xy plane, creating a corresponding 2D point set that is
subsequently triangulated. Half-edge triangulation is provided by the Delaunator library with robust
geometric predicates [38,39]. Although triangulation is performed in 2D, both 2D and 3D point sets have
1:1 correspondence, allowing dual construction of the 3D mesh. Figure 4 demonstrates this technique
applied to a synthetic rooftop scene with noisy point clouds from an overhead sensor. The rooftop is
captured at a slight angle providing points of one side of a building wall. Only planar segments roughly
aligned with xy plane can be extracted with this technique, i.e., only the rooftop can be extracted,
no walls. This type of conversion is most suitable for 3D points clouds generated from a top down
viewpoint, such as airborne LiDAR point clouds as shown in Section 9.2.1. In this situation the plane
normal to be extracted is already aligned with the xy plane.

(a) Unorganized 3D Point Cloud (b) 2D and 3D Mesh

Figure 4. Example conversion of an unorganized 3D point cloud to a 3D triangular mesh. (a) Synthetic
point cloud of a rooftop scene generated from an overhead laser scanner. A single wall is captured
because the scanner is slightly angled; (b) The point cloud is projected to the xy plane and triangulated,
generating the dual 3D mesh. Only planes aligned with the xy plane can be captured.

Plane normals may not be aligned with the inertial xy plane, e.g., 3D laser scanner rigidly mounted
on an automobile. The point cloud, generated in the sensor frame, must then be rotated such that
desired plane to be extracted is aligned with xy plane. This requires a priori knowledge of the plane
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normal and rigid body transformation necessary to align the sensor frame point cloud as demonstrated
in Section 9.2.2 where the ground plane (road) is extracted from point clouds generated by a spinning
LiDAR sensor mounted on a car.

4.2. Organized 3D Point Clouds

Half-edge triangulation of an M x N organized point cloud can be quickly computed using spatial
relationships from the image space. The triangulation is computed using neighboring image indices
to define triangle vertex connections. This is in contrast to Delaunay triangulation which operates
on the points themselves and maximizes the minimum angle of all the angles for each triangle in the
triangulation [37]. Our procedure is similar to Holz et al. [12] except our method creates an explicit
half-edge triangulation and only uses right-cut triangles. Our half-edge triangulation allows efficient
triangle region growing which is a requirement for real-time polygon extraction. Holz et al. [12]
performs adaptive meshing, switching between right and left cut triangles, to better handle missing
data at the expense of increased computational demand. Figure 5 demonstrates an example conversion
of a7 x 7 organized point cloud to a half-edge mesh using our procedure. The procedure creates the
triangle set 7, half-edge array &, and a triangle map 7y as documented below.

NN NN

NN N NN DN NN

- NEERRNN AR N NN

AN N NN

NN NN NN

NN ot St NN
(a) Implicit Mesh, Trc (b) Triangle indexing scheme (c) Final Mesh, T

Figure 5. Example conversion of a 7 x 7 Organized Point Cloud (OPC) to a half-edge triangular mesh.
Points are represented by circles; red indicates an invalid value (e.g., 0 depth measurement). (a) Implicit
mesh of OPC with right cut triangles, Trc. A unique global id GID =2 (u- (N — 1) 4+ v) + k is shown
inside each triangle; (b) Indexing scheme to define GIDs for triangles in Trc; (c) Final mesh 7 with
triangles created if and only if all vertices are valid. Unique indices into 7" are marked. 7yuqp maps
between GIDs in Tgc to 7.

First, any invalid data in the point cloud is set to an NaN floating point value. This keeps the point
cloud organized and prompts removal of invalid triangles in the mesh. An implicit fully-connected
right-cut mesh triangulates all points, including invalid points marked red in Figure 5a and denoted
Trc. Each 2 x 2 grid in the OPC creates two triangles, which we denote first and second as shown
in Figure 5b. Each triangle in Trc is indexed by ¢, , y where k € {0, 1} represents the first or second
triangle, respectively. A unique globalid GID =2- (u- (N — 1) 4+ v) + k is shown inside each triangle
in Figure 5a. This GID represents the triangle order within 7rc. The final mesh returned 7 is shown
in Figure 5¢c with construction outlined in Algorithm 1. The data structure 7,y defines a mapping of
global ids in Trc to their index positions in 7 (if they exist, else —1) which is used later in half-edge
extraction. Algorithm 1 begins by iterating over all 2 x 2 point grids and constructs the first and second
triangle for each. These respective triangles are only added to 7" if all three points are valid. Triangle
point indices are added counter-clockwise with the three half-edges implicitly defined by the ordered
traversal of point indices, e.g., the first triangle’s half-edges are [PI3 — P12, PI2 — PI1, PI1 — PI3].
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Algorithm 1: Extract Triangles from OPC.
Input :Organized Point Cloud: P
Rows: M, Columns: N
Output: Triangle Set: T
Triangle Map: Tiap

1 N=N-1,M=M-1
2 T =0
3 SV = —1/% Sentinel Value indicating invalid triangle */
s Toap = [SV,SV,...,SV] /% |Tyapl =2- M’ - N’ x/
5 Ny =0
6 foru <+ 0toM' —1 do
7 | forv+ OtoN' —1 do
8 Firstgip =2 (u-N'+0), Secondgp =2 (u-N'+0) +1
9 pl, p2, p3, p4 = GetPointIndices(u, v)
/* First Triangle */
10 if NotNan(p1, p2, p3, P):
11 T=T+{p3,p2pl}
12 Tmap|Firstgip] = nyi
13 Npri = Ny + 1
/* Second Triangle */
14 if NotNan(p1, p3, p4, P):
15 T=T+{pl,p4 p3}
16 Tmap|Secondgip] = ny;
17 Myrj = Npyi + 1
18 end
19 end

20 return 7, Toap

The half-edge array HE is constructed using the previously calculated 7,y and is shown in
Algorithm 2. The algorithm begins at Line 3 by setting all half-edges in HE to the default sentinel
value of —1 indicating no shared edge. Line 4 and 5 then begin iterating through every 2 x 2 grid
in the OPC inspecting the first and second triangles in 7rc. Line 6 and 7 retrieve the index of these
triangles in 7" using Tyuqp if they exist. If these triangles exist then their neighboring triangles may be
assigned in Lines 9 and 18, respectively. For example in Line 13 if the right triangle neighbor exists
then its first edge corresponding to a half-edge id of 3 - Right;, will be linked to the first half-edge of
the first triangle.
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Algorithm 2: Extract Half-Edges from OPC.
Input :Triangle Map: Tiqp
Rows: M, Columns: N
Output:Half-Edge Set: HE

1 N=N-1,M=M-1

2 SV = —1 /% Sentinel value indicating no shared edge x/
3 HE =[SV,SV,...,SV] /x |HE|=3-|T]| */
s foru <+ O0toM' —1 do

5 forv < 0toN'—1 do

6 Firstigy = Tap[2 - (u - N' 4 0)]

7 Secondigy = Tmap[2- (u- N'+v) +1]

8 Topgip, Rightgrp, Bottomgip, Leftgip = GetNeighborsGID(u,v)
9 if First;y, |=SV:

10 Topiax = Tmap[Topcip]

11 Rights, = 771111;; [Rl’gl’ltcjp]

12 if Right;z, 1= SV:

13 ‘ HE[FiT’Stidx . 3] = Rightidx -3

14 if Topidx =SV

15 ‘ HE[Firstigy -3+ 1] = Topigy -3+ 1

16 if Second;, = SV:

17 | HE[Firstigy -3+ 2] = Second;gy -3+ 2

18 if Second;, I=SV:

19 Bottomjgy = Tinap|Bottomgp]

20 Leftidx = Tmap[LeftGID}

21 if Leftig, I=SV:

22 ‘ HE[Second;, - 3] = Leftigy -3

23 if Bottom;y, = SV:

24 ‘ HE[Second;yy - 3+ 1] = Bottom;g, -3+ 1

25 if First;y, = SV:

26 ‘ HE[Second;yy - 3+ 2] = First;g, -3+ 2

27 end

28 end

29 return T, Toap

4.3. User Provided Meshes

We define a user-provided triangle mesh as a triangle set 7 with a corresponding 3D point cloud
‘P. These meshes can be generated from 3D data using a variety of methods [40-42]. The front-end of
Polylidar3D creates the half-edge set HE of this mesh to determine shared edges in similar manner
to [43]. This entails first constructing half-edge hashmaps where the key is each half-edge’s ordered
point indices and value its half-edge ID. Opposite half-edges for any half-edge can then be found by
reversing the order of its point indices and performing a hashmap lookup. If a shared half-edge is
found then its half-edge ID is mapped into HE.

Certain forms of non-manifold meshes must be explicitly handled. We focus on a subclass of
meshes that are not two-manifold. First we define two key properties of a two-manifold mesh:

1.  Every vertex connects to a single edge-connected set of triangles.
2. Every edge is shared by one or two triangles.

Figure 6 shows examples of non-manifold meshes where condition (1) is violated. Polylidar3D
handles violations of (1) using methods from our previous work [14]. The missing triangles (shown as
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white) are explicitly captured as holes inside a polygon for Figure 6a—c, while the mesh is split into
two polygons for (Figure 6d). Figure 7 shows cases of non-manifold meshes that violate condition (2).
No mesh generated per Sections 4.1 and 4.2 will violate (2) because triangulation occurs in 2D space so
all edges share at most two triangles. However a user-provided 3D mesh may not satisfy condition (2).

The half-edge array HE used for neighbor expansion during planar segment extraction in
Section 7.1 only maps twin half-edges, making condition (2) mesh violations problematic. Three
options can handle cases when more than two shared edges exist:

1.  Store only the first pair of edges found and ignore any others.
Select the pair of edges that are most similar. Similarity between edges is defined by comparing
angular distance of their owning triangle normals.

3. Ignore all of them by labelling all as boundary edges.

(@) (b) (c) (d)

Figure 6. Example non-manifold meshes that exhibit condition (1) violations. Red vertices specifically
show examples where the vertex triangle set is not fully edge-connected. (a—c) will extract any missing
triangles as holes from the blue triangular segment; (d) The missing triangles in this mesh also cause
condition (1) violations but will not be captured as holes. They cause the green and blue portion of
the mesh to not be edge-connected for region growing in Section 7.1. They will be extracted as two
separate segments with no holes in their respective interiors

Option one is advantageous in speed and will generally have minimal consequences in the event
an incorrect half-edge pairing is chosen, e.g., a green and orange triangle edge are linked in Figure 7.
If green and orange triangle normals are sufficiently different then planar segment extraction will
not connect them. However there is no guarantee that this may occur and may fail as in (Figure 7c).
Option two attempts to remove the issue entirely by connecting only the pair of edges that are most
similar (edges shared by green triangles). This technique will work for (Figure 7a,b) but will fail once
again on (Figure 7c). Finally option three is the safest, it links none of the shared edges and treats them
as border edges (edges sharing no neighbor). This keeps the critical invariant that no condition (2)
violation will exist in an extracted planar mesh. However superfluous border edges will exist which
can be handled downstream. Currently only option (1) is implemented in Polylidar3D [15] with future
plans to allow the user to choose between any of the three proposed solutions.

S— =
- ==
(a) Three shared edges (b) Five shared edges (c) Three shared edges

Figure 7. Examples of non-manifold meshes where an edge is shared by more than two triangles.
This common edge is shared by green and orange triangles. The green triangles form a two-manifold
mesh with the blue triangles while the orange triangle(s) do not. The orange triangles in (a,b) have
sufficiently different normals such the green triangles half-edges can be easily linked. However all
triangles in (c) have nearly equal normals making this impossible.
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5. Mesh Smoothing

Mesh smoothing for user-provided triangular meshes is performed using Intel Open3D smoothing
procedures [43]. The sections below describe our implementation of Laplacian and bilateral filtering
for the organized point cloud meshes created in Section 4.2. Our implementation is open source and
provides single-threaded CPU, multi-threaded CPU, and GPU accelerated routines [44].

5.1. Laplacian Filter

We implement the standard Laplacian filter for organized point clouds with the benefit that
no explicit triangular mesh is required, only the point cloud itself. The filtering, as described in
Equation (1), results in smoothed vertices of the mesh, i.e, the point cloud is denoised. Vertex
neighborhood information is defined implicitly by the image space indices of the organized point
cloud. The neighborhood size is configured by adjusting the kernel size of the filter, e.g, a kernel size
of three implies eight vertex neighbors. Filtering this way offers the following benefits:

1. Neighboring vertices do not need to be found through lookup over 7, H&, or an adjacency list.
Neighborhood size can be increased by adjusting filter kernel-size. Increasing the kernel size is
critical for extremely dense and noisy point clouds.

3.  Parallelization is trivial, similar to image filters, with all necessary neighborhood data for a vertex
located close in memory.

The amount of filtering is controlled by A, the kernel size, and the number of iterations. As kernel
size and number of iterations increase the computational demand of the filter also increases. Mesh
borders in image space have no defined neighbors on the exterior thus are not filtered. This gives a
negative drawback of a noisy border but a positive benefit of reducing the mesh shrinkage inherit to
Laplacian filtering. One may think of the fixed border as “pinning” the mesh to prevent overshrinkage.

5.2. Bilateral Filter

We implement the bilateral mesh filtering algorithm presented by Zheng et al. [29] but for
organized point clouds. Smoothing occurs on the implicit fully-connected organized mesh 7rc,
described in Section 4.2. Recall the mesh spatial structure is defined through image indices (1, v) with a
final index k € {0,1} representing the first or second triangle in a 2 x 2 quad (see Figure 5b). Bilateral
filtering per Equation (3) requires data structures for each triangle’s centroid and normal, which we
denote as C and N. These are constructed in parallel (if multi-core CPU is available) and laid out in
contiguous memory with the same indexing scheme as 7rc, i.e., the centroid of triangle t, , x is ¢;, ; k-
If any of the vertices of a triangle in 7rc are NaN then the associated centroid and normal will also
be NaN.

The algorithm partitions triangle smoothing in image space coordinates, smoothing both the
first and second triangles as one unit of work. Each triangle’s normal is updated using centroid and
normal information from neighboring triangles. The neighbors of a triangle are determined by a
user-configurable kernel size as shown in Figure 8. Note that defining neighbors in this way mixes
both n-ring and (1 + 1)-ring triangle neighbors. However the exponential decay of the bilateral filter in
Equations (4) and (5) ensures that only triangles of similar properties (close in position and orientation)
will be integrated into the smoothed normal. Neighbors are not integrated if they have NaN values for
their centroid/normal. The end result is smoothed normals for 7rc; however, what is actually desired
are smoothed normals for 7 per Figure 5c. This is quickly achieved by using 7ip to identify the valid
normals for 7. Zheng et al. [29] follows up with vertex updating, but we do not perform this step.
Vertex updating is an expensive operation which provides minimal benefit for triangle region growing
downstream. Only the smoothed normals are needed in Polylidar3D.
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Figure 8. Visualization of a triangle’s neighborhood during bilateral filtering of an organized point
cloud. Each 2 x 2 point group forms two triangles creating a mesh. Each triangle’s neighbors are
defined by the kernel size. For example a kernel size of five includes all blue and red triangles.

The advantage of implementing bilateral smoothing in this manner is that all information is laid
out in contiguous memory to increase cache locality. These are important characteristic for CPU and
especially GPU performance. However nontrivial excess work is performed if most of the point cloud
is invalid, e.g, invalid depth measurements in a range image. The entire procedure is controlled by ¢Z,
052, kernel size, and number of iterations.

6. Dominant Plane Normal Estimation

We present a new method for constructing and using a Gaussian Accumulator to identify
dominant plane normals in a scene. We call this method the Fast Gaussian Accumulator (FastGA). The
input to this method is a list of k unit normals N = {7y, ..., i1 } which have been sampled from a
scene. Use of denoised data is advantageous but not required. Sections 6.1 and 6.2 discuss constructing
the Gaussian Accumulator and performing peak detection, respectively.

6.1. Gaussian Accumulator

The following subsections describe the process to approximate a sphere using an icosahedron,
construct the Gaussian Accumulator, and our method to integrate information into the accumulator.

6.1.1. Refined Icosahedron

A geodesic polyhedron is first constructed by using an icosahedron as the base model
approximation of a unit sphere. The icosahedron is composed of 12 vertices and 20 faces and can be
seen on the far left in Figure 9. This polyhedron is refined by recursively dividing each face into four
equilateral triangles and then projecting the new vertices onto the surface of a sphere. The number of
iterations or levels of recursion is user configurable with higher levels better approximating a sphere.
The Class I geodesic polyhedron is defined with the Schlifli symbol {3, 5+ }; o with frequency doubling
at each level [45]. Figure 9 shows refinement up to level four while Table 1 displays the change in
number of vertices, triangles, and approximate angular separation between each triangle. We denote
each triangle as the cell or bucket of the histogram of S2. The number of cells, 1, and their properties
described below are fixed once a refinement level is chosen.

20000

Figure 9. Approximation of the unit sphere with an icosahedron. The level 0 icosahedron is shown on
the left with increasing refinements to the right. Triangle cells become buckets of a histogram on S2.
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Table 1. Levels of Refinement for an Icosahedron.

Level # Vertices # Triangles Separation

0 12 20 41.8°
1 42 80 18.0°
2 162 320 6.9°
3 642 1280 3.1°
4 2562 5120 1.5°

6.1.2. Gaussian Accumulator Properties

A space-filling curve (SFC) maps a multi-dimensional space into a one-dimensional space,
e.g., R> — R. Hilbert curves are a widely used SFC because they preserve locality well during
transformation [46]. This means that points close in 1-D space are close in N-D, though the converse is
not guaranteed to be true. In practice a SFC is approximated using discrete integers. The S2 Geometry
library [47] provides a SFC routine that transforms any real-valued unit normal #; € R to a 64 bit
unsigned integer. The method works by projecting the unit sphere to a cube, creating 2D — 1D Hilbert
curves for each of the six faces, and finally stitching them together to make one unbroken linear chain.
Each cell in the refined icosahedron has a surface normal 7§ that can be mapped to a unique ID denoted
s2id using this procedure. This generates a one-dimensional thread that passes through every cell such
that each cell is visited exactly once as seen in Figure 10.

Figure 10. Space filling curve (SFC) of a level 4 icosahedron generated using the S2 Geometry Library.
Each cell’s surface normal is mapped to an integer creating a linear ordering for a curve. The curve is
colored according to this mapping and traverses each cell.

The final Gaussian Accumulator (GA) is then an ordered array of Cells = [c;,...,c,—1]. Each
cell contains its surface normal 7, unique s2id;, and an accumulating integer count;. The cell array is
sorted by s2id, creating the invariant that cells close together in the array are close in physical space.
A neighborhood data structure Nbrs; ; is constructed as an N x 12 matrix in which the ith row contains
the 12 neighboring cell indices of the ith cell in the Cells array. Neighboring triangles are defined as
those in the 1-ring vertex adjacency. A maximum of 60 triangles at any level of refinement have only
11 neighbors; all others have 12. For these cells the 12th neighbor index is given a sentinel value of —1
to indicate no neighbor is present.

6.1.3. Integrating the Gaussian Accumulator With Search

Integrating a list of k unit normals N = {f, ..., f;_1} into the Gaussian Accumulator is done
through a search that finds the corresponding cell whose surface normal is closest to an input normal
f1; then incrementing the cell’s count; member. Instead of a K-D tree search we propose combining a
sorted integer search with a local neighborhood search. Though similar, there are nontrivial differences
and optimizations that make our method faster. The main components of the search are as follows:
map #; to an integer s2id, perform sorted integer interpolation search to reduce search bounds, perform
branchless binary search within these bounds in the Cells array, then perform local neighborhood
search to find the correct cell. Algorithm 3 outlines this search routine and is explained below.
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Algorithm 3: Find Cell Index.
Input :Unit Normal: 71; € R3
Cells Array: Cells
Neighbor Matrix: Nbrs
Output:Cell Index: ks € [0, |Cells|]
1 s2id = GetS2ID(7;)
2 [kmin, kmax] = SearchWindow (s2id)

/* get closest neighbor by s2id x/
3 k' = BranchlessBinarySearch(s2id, Cells, ky,in, kmax)
4 kbest =K
5 distpess = ||ﬁ]C</ - ﬁz“

/* local neighbor search by actual distance */

(=2}

forj <+ 0to12 do
7 knbr = Nbrsk//j
8 if k,p, is —1:

9 ‘ continue
e p

10 dist = ||nknbr ;|

1 if dist < distpeg:

12 Kpest = knpy

13 distyes; = dist

14 end

15 return ky,;

There exist several methods for sorted integer search such as interpolation and binary search.
Interpolation search works by predicting the index of a value in sorted array by interpolating
between the first and last value of the sorted array (thus computing a slope). The process continues
iteratively, each time reducing the search window and recomputing a new line for improved prediction.
Interpolation search is best used for linear data but still often underperforms in comparison to binary
search in practice due to its use of repeated computationally expensive calculations of slope [48].

Figure 11a shows a graph of cells in the Gaussian Accumulator where the x-axis is the s2id and
the y-axis is the corresponding index into the sorted Cells array. We use least squares regression to
fit a line to the data shown in Figure 11a, in contrast to only using the first and last values typical of
interpolation search. Figure 11a shows this regressed line (green) accurately fits the data overall. In a
zoomed plot (Figure 11b), model error, the difference between actual and predicted cell array index, is
shown as the red line with values on the right vertical axis. Since the model/data domain and range
are ordered and finite we can compute the negative and positive error bounds which is fixed once GA
refinement level is chosen. This is significant because one can reliably predict the correct index position
of a cell with small known error bounds. This means that one does not need to perform a full binary
search through the array of histogram cells but only a small subset of it. For example, refinement
level four with 5120 histogram cells has maximal error bounds of —16 and +16 from any predicted
position, thereby reducing the search from 5120 to 32 cells. This technique brings the benefits of linear
interpolation search without excess computational overhead because the model can be computed at
compile time.
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Figure 11. Linear prediction model for a level four Gaussian Accumulator (GA). The 5120 GA cells
are sorted in an array (Cells) by their corresponding spatial index s2id; (a) Plot relating cell s2id and
index position in the Cells array with a regressed line (green) to the data; (b) Zoomed-in view showing
model error (red line) indicating difference between predicted and actual index for each s2id.

This predicted index and maximal bounds are used to create a binary search window in the Cells
array, shown at Line 2 in Algorithm 3. A branchless binary search is used which is faster than standard
binary search for arrays of small sizes that fit into CPU L1/L2 caches [49]. All the search windows
at realistic levels of refinement are sufficiently small to meet this criterion. The output of branchless
binary search is an index k’ into Cells with s2id closest to the mapped s2id of #1; (Line 3). There is no
guarantee this cell’s surface normal 71y, is closest to 71; than neighboring cells though it is guaranteed
to be close. Therefore a local neighbor search is performed where all 12 neighboring cells’ surface
normals are compared to 71;. The cell index with closest surface normal is then returned.

6.2. Peak Detection

The histogram of the Gaussian Accumulator is normalized between the range [0-255]. Figure 12a
shows an example mesh of a basement where the dominant planes are the floor and walls. Figure 12b
shows a colored visualization of the GA after integrating triangle normals of this mesh. Higher values
are bright yellow; lower values are dark purple. Peaks representing the basement floor and walls
are clearly visible near the top and side of the sphere, respectively. Note that more peaks exist on
unseen sides of the sphere. We use the technique described by Cohen et al. [33] to unwrap the refined
icosahedron into a 2D image as shown in Figure 12c. The center image shows unwrapping of the
icosahedron to create five charts. The vertices of these five charts map to hard-coded correspondences
of pixels in the right image. This requires every vertex take the average value of its neighboring
triangles. Finally a one-pixel padding is performed on the edges of each chart by copying neighbors
of adjoining charts. This creates duplicate pixel values on the bottom and left of the image as well
as between charts. The end result is a 2D image guaranteed to provide equivariant convolution for
kernels. The unwrapped image of the example GA is shown in the Figure 12d.

We use a standard 2D peak detector algorithm to find local peaks in the image. A peak is in
the center of a 3 x 3 pixel group if it is the maximum in the group and its value is higher than a
user-configurable v,,;,,. Once a peak is detected in the 2D image it is converted to its corresponding
surface normal on the GA. Duplicate peaks may be detected near chart borders because of copy
padding discussed above, or two peaks may be close together. In either case it is desirable to collapse
them into a single peak. Agglomerative hierarchical clustering (AHC) is used to merge these peaks and
take their weighted average. AHC will only merge peaks whose Euclidean distance is less than d .
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Figure 12. (a) Example basement scene mesh; (b) Mesh triangle normals are integrated into the Gaussian
Accumulator and colorized showing peaks for the floor and walls; (c) Overview of unwrapping a refined
icosahedron into a 2D image. Five overlapping charts are stitched together to create a grid. Padding
between charts is accomplished by copying adjoining chart neighbors using the unwrapping process
and its illustration from [33]; (d) Unwrapped Gaussian Accumulator creating a 2D image used for peak
detection. White boxes indicate detected peaks. Duplicate peaks are merged (1 & 5) with agglomerative
hierarchical clustering.

Application To Polylidar3D

Polylidar3D uses the Fast Gaussian Accumulator (FastGA) to estimate dominant plane normals.
Triangle normals from the half-edge triangular mesh are input to FastGA. Not all triangle normals are
needed to achieve acceptable results, so a user-configurable percent sampling parameter sample).; is
used to reduce computational demand. After peak detection the / unique dominant plane normals
are returned as a list V¥ = {ﬁg, ceey ﬁfl,l} for plane and polygon extraction. Note that alternative
strategies of generating input normals such as fast RANSAC plane fitting with weighted voting may
also be used [32].

7. Planar Segmentation and Polygon Extraction

The following sections build upon our previous work in polygon extraction from 2D triangular
meshes. Section 7.1 describes planar segmentation while Section 7.2 outlines polygon extraction.

7.1. Planar Segmentation

The main input for planar segmentation is the half-edge triangular mesh, composed of P, T, N,
HE, and the set of I dominant plane normals N%. Polylidar3D performs parallelized and regularized
triangle mesh region growing via partitioning with dominant plane normals. Triangles having similar
normals to a dominant plane are grouped for region growing. Different groups are grown in parallel.
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This process is controlled through user-provided parameters including maximum triangle edge length
Linax, minimum angular similarity ang,,;,, maximum point to plane distance ptpsx, minimum number
of triangles tri,,;,,, and minimum number of vertices in a hole verticesf’n"il,f . These parameters limit the
maximum distance between points for spatial connectivity, ensure common normal orientation in
planar segments, force planar constraints, and remove spurious/small planes and holes. Note that
anguin is computed from the dot product between a triangle normal and its closest dominant plane
normal; a value of 1.0 requires exact alignment while a value of 0.96 allows a ~ 14° difference.

We first create triangle group array G to store group labels for each of the k triangles in 7.
Algorithm 4 outlines this procedure and begins with iterating through all triangles (Line 4). G is
composed of 8-bit unsigned integers [0-255] with 255 being a reserved sentinel value indicating a
triangle does not belong to any planar segment. The following steps filter unused triangles and cluster
triangles by normal orientation. The first geometric predicate (Line 5) removes triangles whose edge
length exceeds a user-specified value. Lines 9-15 iterate though all dominant plane normals finding
the one most similar to the triangle’s surface normal ;. Line 16 performs a check to ensure the triangle
normal is within an angular tolerance of its nearest dominant plane normal. If a triangle is assigned the
group 255 it will not participate in subsequent region growing. Using 8-bit integers limits the maximum
number of dominant plane normals extracted to 254. This procedure is iteration-independent and
is parallelized by OpenMP [50]. Figure 13a,b show an example input mesh and color-coded group
assignments, respectively. In this example the floor (blue) and the wall (red) are the two dominant
plane normals to be extracted. Note that the seat of the chair is assigned the same group label as the
floor, and that superfluous triangles are also assigned in the top left of Figure 13b.

Algorithm 4: Group Assignment.
Input :Triangle Set: 7, Point Cloud: P, Triangle Normals: A/
Dominate Plane Normals: N9, Max Length: I,4x, Min Angular Similarity: ang,,;,
Output: Triangle Group Set: G
1 SentinelValue =255

2 k=|T]|
3 1= |N9
/* Loop through every triangle */
4 fort < Otok do
5 | edge_length = GetMaximumTriangleEdgeLength(t, T, P)
6 if edge_length> Lyt
7 G[t] = SentinelValue
8 continue
9 max_similarity =-1.0
/* Loop through every dominant plane normal */
10 forj < Otol do
1 similarity = fi; - ﬁ}i
12 if similarity > maz_similarity:
. glt] - |
14 max_similarity = similarity
15 end
16 if maz_similarity < ang,:
17 ‘ G[t] = SentinelValue
18 end

19 return G




Sensors 2020, 20, 4819 20 of 40

Region growing is decomposed using task-based parallelism, where I dominant plane normals
create [ separate tasks of regions growing. These tasks are executed in parallel by a threadpool and
can themselves spawn additional dynamic tasks [51]. Each independent task performs a serial region
growing procedure that is similar to our previous work on 2D meshes [14] and was inspired by [10].
Algorithm 5 outlines this procedure for a single group g. The routine begins by creating empty sets to
store planar triangular segments and their corresponding polygonal representations, denoted 7¢ and
PLE. An iterative plane extraction procedure begins with a seed triangle ¢ verified to belong to group g
(Line 5). Subroutine ExtractPlanarSegment uses the seed triangle to create edge-connected triangular
subsets from 7" which have the same group label in G and meet user-provided planarity constraints
(Line 7). If a user-specified minimum number of triangles is met then this set, 7;g , is added to T3.
A dynamic task is then created to perform polygon extraction for this segment (Line 10). This procedure
call is non-blocking; the region growing task continues to extract any remaining spatially connected
planar segments before terminating. This means planar segmentation and polygon extraction may
occur in parallel if multi-core is enabled.

Algorithm 5: Region Growing Task.
Input :Triangle Set: 7, Point Cloud: P, Half Edge Set: #&, Triangle Group Set: G
Dominate Plane Normal: ¢, Dominate Plane Label: g
Point To Plane: ptp., Min Triangles: tri,,;,,, Min Hole Vertices: vertices
Output:Planar Segment Set: 738, Polygon Set: P LS
1 T38=0
2 PLE=D
3 k=|T]|
/* Loop through every triangle x/
4 fort < Otok do
5 | ifGt # g
6 ‘ continue
7 ’Eg = ExtractPlanarSegment(t, 7, P, HE, G, nd, PtPmax)
8
9

hole
min

if I7;g| > Higint
TE=T8+T#
10 PLE = PLE + SpawnTask(PolygonExtraction, ’7;‘5', vertices!?'¢)

min

11 end
12 WaitForTasks
13 return T&,PLE

(a) Mesh (b) Group Assignment (c) Planar Segments (d) Extracted Polygons

Figure 13. (a) An example mesh to demonstrate planar segmentation and polygon extraction using
two dominant plane normals, represented by the floor and wall; (b) Every triangle is inspected for
filtering and clustered through group assignment. Blue and red triangles meet triangle edge length
constraints and are within an angular tolerance of the floor and wall surface normals, respectively;
(c) Region growing is performed in parallel for the blue and red triangles. The top chair surface and
floor are distinct planar segments; (d) Polygonal representations for each planar segment are shown.
The green line represents the concave hull; the orange line depicts any interior holes. Note that small
segments and small interior holes are filtered.
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Figure 13c shows three planar segments extracted that represent the floor, chair seat, and wall. The
floor and chair surfaces have similar surface normals but are not spatially connected so independent
planar segments and corresponding polygons are created. The small bump on the floor did not meet
the planarity constraints (configured with ptp;,qx) thus is not included in the floor planar segment.
This hole in the mesh will be extracted as an explicit interior hole of a polygon. The wall surface
belongs to a separate group and is extracted in parallel with the floor and chair.

7.2. Polygon Extraction

Polygon extraction is performed on each planar mesh segment 7;g . Each polygon is defined by
a single linear ring of points representing the concave hull/shell and a (possibly empty) set of linear
rings representing interior holes. The same boundary following method we proposed in our previous
work [14] is used with small modifications because triangular meshes are no longer 2D. Polygons
are defined in a 2D subspace and are provided explicit guarantees through their definition per [36].
For example the edges in linear rings must not cross in this 2D space. For this reason boundary following
in polygon extraction is carried out in the 2D projection of 7;3 on its geometric plane. Note that only the
boundary edges of 7;g need to be projected. Figure 14 shows the projection of ’Eg to its geometric plane
and extraction of its polygonal representation. The three main components of polygon extraction are:

1. Data Structure Initialization
2.  Extract Exterior Hull/Shell
3.  Extract Interior Holes

The data structure initialization identifies all boundary half-edges inside 7;g which are highlighted
in purple in Figure 14b and denoted BE. Additionally a mapping between point indices and these
boundary half-edges are created denoted PtE. Finally any point on the exterior on the shell is found
denoted piyy. The outer exterior shell is then extracting beginning with piy,. Boundary following
is performed by progressively building a linear ring by following each points outgoing half-edge(s)
using PtE. Special routines handle scenarios when a hole is connected to the exterior hull. After the
hull is extracted any interior holes remaining are extracted with the same special routines to handle
rare scenarios when holes are connected.
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Figure 14. (a) Example extracted planar triangular segment ’Eg . Note the four holes in the mesh; (b)
Projection of a triangle segment to a geometric plane. Only border edges (purple) are actually needed
for projection; (c) A polygon is extracted from border edges with a concave hull (green) and multiple
interior holes (orange).

The only modification to our previous work occurs in projecting the boundary edges. This is
needed in finding piy, and for the special routines in handling multiple outgoing edges during boundary
following. Note that the final polygons returned are represented as point indices in P. The underlying
3D structure of the polygon is retained, i.e., it will follow a noisy surface per Figure 13d. The polygon
can also be projected to the surface’s geometric plane as described in Section 8 for post-processing.



Sensors 2020, 20, 4819 22 of 40

Given noisy and dense planar mesh segments, border edges may cross during projection to
the geometric plane. When this occurs an invalid polygon will be generated, most often a small
self-intersection. This issue does not occur with unorganized point clouds because they are projected
to the x-y plane where triangulation has already taken place; this guarantees edges do not cross.
However planar segments from user-provided meshes and organized point clouds may be projected
to arbitrary geometric planes. Additionally the tolerance in “flatness” of the planar triangular segment
is user-configurable. This issue, if it occurs, is managed in polygon post-processing as described in
Section 8. Although rare, if this condition must be handled before post-processing one might instead
project all vertices of 7;g to the geometric plane and perform polygon extraction on the 2D point set as
shown in our previous work [14].

7.3. Algorithm Parallelization

Planar segmentation and polygon extraction use both data and task-based parallelism. We use
OpenMP for data parallelism which is carried out in “hot” loops that are iteration independent, e.g.,
triangle group assignment in Algorithm 4 as well as computing triangle normals. We use the MARL
library to handle task scheduling and synchronization primitives [52]. Note that region growing
of a single dominant plane normal is still a serial process as is the polygon extraction process of a
single planar triangular segment. Therefore if only one dominant plane normal exists than task-based
parallelism will provide minimal speed up. However group assignment is still fully parallelized.
Benefits of parallelism are further explored in Section 9.4 experiments where speedup is calculated as
number of threads and number of dominant plane normals vary.

8. Post Processing

The polygons returned by Polylidar3D can be further processed to improve visualization and
filter superfluous polygons and/or holes. All operations are implemented on the 2D projection of the
polygon on its geometric plane. The following sequential operations are executed:

Polygon is simplified with parameter a meters
Polygon is buffered outward by parameter f,,s meters
Polygon is buffered inward by parameter f,,cc meters
Polygon is removed if its area is less than 7y meters

G N

Interior holes are removed if area is less than é meters

The simplification algorithm is used to remove redundant vertices and “smooth” the polygon [53].
The a parameter indicates the maximum distance between any point in the new polygon from
the original. This reduction of superfluous vertices also decreases the computational demand for
subsequent buffering. The buffering process is defined as the Minkowski difference of the polygon
with a circle of radius equal to a buffer distance § [54]. A positive buffer will expand a polygon and
may fill in holes, while a negative buffer enlarges holes and recedes the concave hull. A positive buffer
will fix any small self-intersections that may have occurred during the projection. Small polygons
and/or interior holes are then filtered by area. Currently all of these steps are single threaded and
handled in Python using the geometry processing library Shapely which binds to the C++ GEOS
library [55]. An example of the first three steps of this process are shown in Figure 15.
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Figure 15. An example of polygon post processing. The shaded blue polygon is the original polygon
extracted (see Figure 14c). All dashed lines indicate a new polygon generated from a step of post
processing. (a) The polygon is simplified; (b) The polygon is applied a positive buffer. Two small holes
have been “filled” in; (c) The polygon is applied a negative buffer; only two holes remain.

9. Results

We present several examples of our methods applied to real-world and synthetic 3D data.
Section 9.1 provides execution time benchmarks evaluating the speed of our proposed Fast Gaussian
Accumulator. Section 9.2 shows examples of Polylidar3D applied to unorganized 3D points including
airborne LiDAR point clouds and point clouds generated on a moving vehicle. Section 9.3 shows
Polylidar3D applied to organized point clouds including RGBD cameras as well as a challenging
synthetic benchmark set. Finally Section 9.4 presents Polylidar3D applied to 3D meshes and explores
how polygon extraction scales with additional CPU cores.

All experiments/benchmarks use the same consumer desktop computer. The CPU is an AMD
Ryzen 3900X 12 Core CPU with a frequency at 4.2 GHz equipped with 32 GB of RAM. Note that all
results obtained with CPU parallelization are annotated with number of threads used; the default is
four. An NVIDIA GeForce RTX 2070 Super is used for GPU acceleration.

9.1. Dominant Plane Normal Estimation

This section evaluates the Fast Gaussian Accumulator (FastGA) proposed for dominant plane
normal estimation. We specifically analyze CPU execution time needed to integrate a set of k unit
normals into the accumulator with k varied over the tests. Per Section 6.1.2 we use sorted integer
search coupled with local neighborhood search instead of K-D trees [34]. To allow comparison, we
created an alternative K-D tree Gaussian Accumulator implementation that uses nanoflann, a high
performance C++ K-D tree library [56]. A leaf size of eight is used which offers the best results for
our test cases. Results were generated on two test sets with hundreds of runs to provide statistically
significant results [57]. All benchmark code is open source [16].

A GA with refinement level four (5120 triangle cells) was used for all tests. The first test generated
100,000 randomly distributed surface normals on the unit sphere and integrated them into the GA.
The second test integrated all 60,620 triangle normals from the basement mesh previously shown in
Figure 12a. Recall that the GA is fixed once refinement level is chosen, so building the K-D tree index is
not part of execution timing. Results of integrating all k normals for each test set are shown in Table 2.
FastGA is more than two times faster than using a K-D tree, though the K-D tree implementation is
also fast and could be used as an alternative method if desired. We can conclude that exploiting the
known fixed structure of triangular cells on S2 (using space filling curves and sorted integer search)
outperforms a general purpose K-D tree method.
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Table 2. Execution Time Comparisons for Synthetic and Real World Datasets

Algorithm Mean (ms)  Std (ms)
a Synthetic: 100,000 Random Normals

K-D tree 20.0 0.1

FastGA (ours) 9.1 0.1
b Real World: 60,620 Normals

K-D tree 9.7 0.2

FastGA (ours) 44 0.1

Peak detection is currently implemented in Python using the scikit-image image processing
library [58]. Agglomerative hierarchical clustering (AHC) of any detected peaks is implemented in
Python with the scipy library [59]. The unwrapped 2D image of the icosahedron does not depend on
the number of integrated normals but only the refinement level of the GA. Generated images are rather
small (e.g., 90 x 34 pixels for a level four GA) resulting in very fast peak detection and clustering, e.g.,
it takes approximately 1 ms to detect peaks and perform AHC on a level four refined GA. FastGA
results from additional datasets are shown below.

9.2. Unorganized 3D Point Clouds

Sections 9.2.1 and 9.2.2 describe results from Polylidar3D applied to airborne LiDAR point
clouds and point clouds generated on a moving vehicle, respectively. Both datasets offer real-world
unorganized 3D point cloud evaluation of Polylidar3D.

9.2.1. Rooftop Detection

This section presents qualitative results of Polylidar3D extracting flat rooftops in cities from
airborne LiDAR point clouds of buildings. These unorganized point clouds are captured from an
overhead viewpoint but are typically angled based on sensor location; wall surfaces can therefore be
visible. Point cloud xy components are in a planar projected coordinate system while the z component
represents elevation. Therefore points of a flat rooftop surface are already aligned with the xy plane
making them suitable for 2.5D Delaunay triangulation to create a half-edge triangular mesh. The mesh
is smoothed with Laplacian and bilateral filtering using Open3D [43]. Flat surfaces are then extracted
as polygons and any non-flat obstacles on them become holes. Figure 16 shows the extracted polygons
of buildings in Witten, Germany. Satellite imagery is overlaid with colorized point clouds. Each flat
surface is extracted as a polygon with holes. All parameters used for this dataset are shown in Table 3.

Table 3. Polylidar3D Parameters for Rooftop Detection.

Algorithm Parameters

Laplacian Filter A = 1.0, iterations = 2

Bilateral Filter 07 =0.1,0, =0.1, iterations = 2

Plane/Poly Extr.  triy,;, =200, ang,, = 0.94, ljax = 0.9, Uerticesﬁfil,’f =8, ptpmax = 0.20
Poly. Filtering a = 0.1, Bueg = 0.1, Bpos =0.00, v =16,6 = 0.5

Figure 16a shows a single building with two flat surfaces identifiable from the overlaid blue and
purple points representing higher and lower elevation respectively. Polylidar3D successfully separates
both of these flat surfaces as two polygons. Rooftop obstacles such as air vents and A/C units are
captured as holes. Figure 16b,c images show additional examples of obstacle detection and surface
separation, respectively. The large building on the left in (Figure 16d) hosts a structure on top of its
own flat rooftop (bright yellow points). This small structure is distinguished, and its own smaller
flat rooftop is also extracted. The building in (Figure 16e) also has a small rooftop structure captured
as a hole in the larger building’s rooftop surface, but this structures rooftop is too small to meet the
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minimum area constraint used during polygon filtering. Note that Polylidar3D failed to extract several
small obstacles in (Figure 16d) for the building on the right. Such obstacles are too small to be extracted
after mesh smoothing.

(b)

(d)

Figure 16. Polygon extraction of rooftops from unorganized 3D point clouds generated by airborne

LiDAR. Each figure (a—e) shows the satellite image overlaid with the extracted polygons (green)
representing flat surfaces with interior holes (orange) representing obstacles. A colorized point cloud is
also overlaid ranging from dark purple to bright yellow denoting a normalized low to high elevation.
LiDAR data and satellite images are provided from [60,61] respectively, which are from ref. [62].

9.2.2. Ground and Obstacle Detection

The KITTI Vision Benchmark Suite provides raw datasets of Velodyne LiDAR point clouds, color
video, and calibration data captured from a car while driving in Karlsruhe, Germany [63]. Calibration
data gives fixed transformations between vehicle body frame, Velodyne LiDAR frame, and camera
frame. Raw point cloud is projected into the video image, and points outside the image are removed.
Next, the point cloud is reduced to half its original size by skipping every odd point index. The filtered
point cloud is then transformed to the vehicle body frame. A single beam/point is deemed an outlier
and removed if its left and right neighboring beams are part of a common flat surface and the point
strongly deviates from this surface. The filtered point cloud is then sent to the Polylidar3D front-end for
2.5D Delaunay triangulation. Flat connected surfaces on the mesh are extracted as polygons, capturing
any obstacles as interior holes. Polygons are filtered and simplified using methods in Section 8.
Filtered polygons are then transformed back to the camera frame and projected into the color image for
visualization (e.g., top of Figure 17a). A second image is generated of the 3D point cloud and polygons
from a bird’s eye viewpoint (e.g., bottom of Figure 17a). This process is repeated for every frame of 24
distinct “drives” (continuous video/LiDAR sequences) provided by KITTI. Visual qualitative results
and execution timings are presented in Sections 9.2.3 and 9.2.4 respectively. All code is open source [17]
and the videos of the generated polygons in their entirety can be found here [64].
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(© (d)
Figure 17. Polygon extraction from KITTI unorganized 3D point cloud data acquired on a moving
vehicle [63]. Four scenes (a—d) are shown, each with two subimages. The top subimage shows polygons
projected into the color image while the bottom image shows 3D point cloud and surface polygon(s)
from a bird’s eye view. Obstacles on the ground such as the light and signal in (a) are extracted as
(orange) holes.

9.2.3. Qualitative Results

Roads are not truly flat; they often have elevation changes such as a raised center line for drainage.
For this reason we do not use the point-to-plane distance parameter in Polylidar3D to allow flexibility
in capturing semi-flat ground surfaces in street environments. Table 4 shows the set of parameters
used for plane/polygon extraction and filtering with KITTIL. Parameter tri,,;, filters out small planes,
angin provides the tolerance for flatness, /4y sets the max distance between points, and verticeszfil,;2
filters small holes. The post-processing step of polygon filtering further removes spurious holes and
polygons while simplifying polygons for visualization. Note that Polylidar3D is neither designed
nor trained specifically to find road surfaces; it is designed to extract flat surfaces as polygons and
capture obstacles as holes. The results below thus must not be misconstrued as author intent to apply
Polylidar3D for standalone road detection.

Table 4. Polylidar3D Parameters for KITTI.

Algorithm Parameters

Plane/Poly Extr.  tri,;, = 3500, ang,i, = 0.97, ljyax = 1.25, verticesﬁff; =6
Poly. Filtering a =02, Breg = 0.3, Bpos =0.02, v =30,5=0.5

Figure 17a shows Polylidar3D extracting the road and connected pedestrian walkway as one flat
connected surface (green line). A light post and traffic signal are captured as holes because they are in
the polygon interior. The cyclist and white vehicle are not captured as holes because they are exterior to
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the concave hull of the polygon. At greater distances vertical beam spacing becomes greater than /;;;,x
preventing additional planar surface from being included in the polygon. Figure 17b shows a scene
where a cyclist is explicitly captured as a hole. Figure 17c displays the street and a slightly elevated
pedestrian walkway being extracted as one polygon. Surfaces are connected at the smooth wheel chair
access transition. This occurs because without a point to plane distance constraint “flat” surfaces with
similar normals and a smooth spatial connection will be extracted together. However failures can
occur when sensor noise inadvertently dominates a small height change between two surfaces. This is
seen in Figure 17d when the road and part of the adjoining railroad tracks are extracted together.

9.2.4. Execution Timings

Polylidar3D processed 6608 frames from 24 recorded “drives” from the raw KITTI dataset. Mean
execution timings for each processing step are presented in Table 5. The average size of the point cloud
processed by Polylidar3D was 9316 points. No mesh smoothing is performed; the LiDAR is precise
and has significant vertical spacing between beams such that the mesh is already sufficiently smooth.
Only plane and polygon extraction are run in parallel with a maximum of four threads. The most
demanding step is the post processing of polygons through filtering and simplification.

Table 5. Mean Execution Timings (ms) of Polylidar3D on KITTIL

Point Outlier Removal = Mesh Creation Plane/Poly Ext. Polygon Filtering Total
5.1 4.1 0.7 6.8 16.7

9.3. Organized 3D Point Clouds

Sections 9.3.1 and 9.3.2 show Polylidar3D applied to RGBD imagery captured and a benchmark
planar segmentation dataset, respectively. Both datasets are stored as organized 3D point clouds.

9.3.1. RGBD Cameras

We used an Intel RealSense D435i to capture depth and RGB frames in two home environment
scenes. The D435i uses stereo infrared cameras to generate a depth map. Depth noise grows
quadratically with distance, and empirical evidence indicates as much as four centimeter RMS error
at a two meter distance [65]. The Intel RealSense SDK provides denoising post-processing filters
including decimation (downsampling), spatial bilateral smoothing, temporal filtering, and depth
thresholding [66]. Parameters used for each of these filters are shown in Table 6, and Polylidar3D
parameters used for captured RGBD data are shown in Table 7. Each sensor is sampled at 424 x 240
resolution in a well-lit indoor environment shielded from direct sunlight. Raw data is recorded to
assure all qualitative and quantitative results can be reproduced [18].

Table 6. Intel RealSense SDK Post-processing Filter Parameters.

Algorithm  Parameters

Decimation magnitude =2

Temporal « =0.3, § = 60.0, persistence = 2

Spatial « =0.35, 0 = 8.0, magnitude = 2, hole fill = 1
Threshold max distance =2.5m
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Table 7. Polylidar3D Parameters for RealSense RGBD.

Algorithm Parameters

Laplacian Filter A = 1.0, kernel size = 3, iterations = 2

Bilateral Filter 07 =0.1, 0; = 0.15, kernel size = 3, iterations = 2
FastGA level =3, v,,;;,, = 50, dpeak = 0.28, samplepes = 12%

Plane/Poly Extr.  tri,,;;, = 500, ang,,i, = 0.96, Ljax = 0.05, ptpmax = 0.1, verticesfnoil; =10
Poly. Filtering a = 0.02, Bueg = 0.02, Bpos =0.005, ¥y =0.1,5 =0.1

The first scene is composed of 2246 frames (74 s) with the camera traversing from one side of a
basement to the other. While walking the camera is pointed in many directions including the floor,
ceiling, and walls. Multiple dominant planar surfaces are captured at the same time. Small surfaces are
explicitly removed by filtering planes and polygons that do not meet minimum number of triangles
and area constraints. Figure 18a shows several image pairs for this scene. The left image is the RGB
video with overlaid 3D polygon projections; the right image is the associated filtered and colorized
depth map. Image (1) shows three planar segments with a common surface normal being extracted
from the ceiling. Image (2) shows three planar segments with different normals being extracted. Image
(3) shows the floor being extracted with a hole representing a bucket obstacle. The last bottom image
shows Polylidar3D incorrectly capturing items on a shelf as polygons which erroneously appear as
“planar” surfaces. This occurs because the small gaps between the items on the shelf become smoothed
and appear planar after RealSense post-processing of the depth image.

.J@'\‘\y\'n“‘

4

(a) Basement (b) Main Floor
Figure 18. Real-time polygon extraction from an RGBD camera. Four scenes are shown from the
basement (a) and main floor (b) datasets. Color and depth frames are shown side by side for each scene.
Polygons are projected onto the color image. Green denotes the exterior hull, and orange denotes any
interior holes in the polygon.

The second scene is composed of 2735 frames (91 s) with the camera moving on the main floor
through dining area, kitchen, and living room. The camera is pointed in many directions and with
many dominant planar surfaces extracted as polygons. Figure 18b shows several still images captured.
The first and second images show Polylidar3D capturing three planar segments on walls and a ceiling.
A lamp and an art stand break up extracted planar segments with the polygons forming around them.
For the third image, Polylidar3D does not distinguish the wall from the chalkboard because the depth
difference is too small after the RealSense post-processing filters are applied. The fourth image shows
Polylidar3D extracting curtains and a lower portion of a wall as one flat surface which surrounds
the fruit basket. The floor is not captured because its resulting polygon did not mean minimum area
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constraints. The adjacent wall to the left did not meet planarity constraints with the window forming a
separate segment which in itself was too small and filtered.

Table 8 summarizes mean execution timings for each step of Polylidar3D over all frames of
each respective RGBD scene. Polygon filtering is most computationally demanding and includes
polygon buffering and simplification routines. Image and mesh filtering (RealSense SDK and our
mesh filtering) are extremely fast because they take advantage of the organized point cloud data
structure. Dominant plane normal estimation with FastGA is quick and effective. Planar segmentation
and polygon extraction are both completed in less than 2ms. Note that GPU acceleration is used for
Laplacian and bilateral filtering, and four threads are used for plane/polygon extraction. All other
steps are single-threaded.

Table 8. Mean execution timings (ms) of Polylidar3D with RGBD data collected from indoor settings.

Scene RS Filters Mesh Laplacian Bilateral FastGA Plane/Poly Ext. Poly. Filt. Total

Basement 24 0.4 0.4 0.5 1.2 1.7 4.8 11.4
Main Floor 24 0.4 0.4 0.5 1.3 1.6 5.1 11.7

9.3.2. SynPEB Benchmark

We also evaluated Polylidar3D on SynPEB, a challenging benchmark dataset used to evaluate
plane segmentation algorithms, created by the authors of PPE [8]. This synthetic dataset is generated
from a room populated with various polyhedra resulting with an average of 42.6 planes. LiDAR
scans are simulated with different levels of normally distributed radial and tangential noise producing
organized point clouds. There are four levels of tangential noise in the dataset with 0.5 mdeg, 1 mdeg,
2 mdeg, and 4 mdeg standard deviation. Data is partitioned into a training set to tune algorithms
parameters and a test set for evaluation. The combination of high-noise data and numerous small,
connected, but distinct planes results in challenges for plane segmentation as shown in Figure 19.
The illustrated example uses the highest noise level (4 mdeg tangential standard deviation) from the
benchmark set.

(a) SynPEB Organized Point Cloud (b) Generated Mesh (c) Mesh Smoothing

(d) Polylidar3D Generated Planes (e) Polylidar3D Generated Polygons

Figure 19. Example SynPEB scene with the highest noise level. Point cloud, generated mesh, and
mesh smoothed through Laplacian and bilateral filtering are shown in (a—c), respectively. Planes and
polygons generated by Polylidar3D are shown in (d,e). Red, green, and yellow blocks in (d) represent
missed, spurious, and oversegmented planes.
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We used the training set to tune our methods parameters including mesh smoothing (Laplacian
and bilateral filter), dominant plane normal estimation (FastGA), and plane/polygon extraction. We
found that the most important parameter was the number of iterations of Laplacian smoothing needed.
We trained a linear regression model to predict the most suitable number of iterations given an estimate
of point cloud noise. All parameters used for test set reproduction are shown in Table 9. Note that the
significant number of noisy distinct planes, up to 72, required a higher than expected refinement level
for FastGA and an increased focus on smoothing.

Table 9. Polylidar3D parameters for the SynPEB benchmark test set.

Algorithm Parameters

Laplacian Filter =~ A = 1.0, kernel size = 5, iterations = varies (predicted)
Bilateral Filter 07 =0.1, 0, =0.1, kernel size = 3, iterations = 2
FastGA level =5, vy, = 2, dpegk = 0.1, samplepct = 12%

Plane/Poly Extr.  tri,,;, = 1000, angi, = 0.95, liyax = 0.1, ptpmax = 0.07, verticesﬁfil,f =10

Table 10 shows benchmark test results of Polylidar3D against other plane segmentation methods.
The test set is limited to Imdeg of tangential noise with results of other methods including timings
provided by Schaefer et al. [8]. Note that execution times cannot be directly compared but will give
an idea of real-time capability. Polylidar3D produces both a point set and polygonal representation
of identified planes, however this benchmark must be evaluated by the point set. A “plane” is
considered correctly identified if its point set overlaps with the ground truth plane with the standard
80% threshold described in Hoover et al. [67]. Key metrics are f representing the percent of
ground truth planes identified, k indicating percent of the point cloud correctly identified, and RMSE
quantifying accuracy of each plane fit. Variables n,, n,, n,;, and ns represent the absolute numbers
of oversegmented, undersegmented, missing, and spurious planes, respectively, compared to the
ground-truth segmentation. See [8,67] for detailed definitions of these metrics. An f metric of 47.3%
indicates that Polylidar3D did not capture most of the planes in the benchmark, however the k metric
of 78.3% indicates our algorithm did well in capturing the large dominant planes comprising most of
the point cloud. Additionally there are fewer spurious, over segmented, and under segmented planes
generated by Polylidar3D than with other methods. The RMSE value is also the lowest, indicating
the predicated planes have a good fit. Plane segmentation is accomplished in significantly less time,
especially in comparison to the front runner PPE. PPE’s f and k metrics indicate it does an excellent
job of capturing the numerous small planes in the scene, but it fails more often in capturing the large
dominant planes. Polylidar3D also uniquely generates concave polygons which provide a condensed
representation of identified planes.

Table 10. SynPEB Benchmark Results.

Method f[%] k[%] RMSE[mm] n, ng, npy ng time

PEAC [6] 29.1 604 28.6 07 10 267 74 33ms
MSAC [68] 7.3 35.6 34.3 03 10 363 109 11s

PPE [8] 736 779 14.5 15 11 71 165 16hr
Polylidar3D (proposed) 473 783 7.2 01 03 228 49 34ms

Table 11 shows mean execution timings for each Polylidar3D method applied to SynPEB. Each
organized point cloud is 500X500 but can be efficiently downsampled by striding over rows and
columns. This reduces computational complexity at the cost of reduced accuracy. Note that GPU
acceleration is used for both Laplacian and bilateral filtering, while plane/polygon extraction is
parallelized up to four CPU cores; all other algorithm steps are single threaded.
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Table 11. Mean Execution Timings (ms) and Accuracy of Polylidar3D on SynPEB.

Point Cloud Mesh Creation Laplacian Bilateral FastGA Plane/Poly Ext. Total f[%]

500 x 500 9.3 1.1 3.0 6.6 14.9 339 473
250 x 250 2.0 0.5 0.7 2.5 4.1 9.8 44.6

9.3.3. Organized Point Cloud Mesh Smoothing

This section provides execution timing analysis of our accelerated mesh smoothing algorithms
on organized point clouds (OPC) per Section 5. Laplacian and bilateral filtering are tested on two
organized point clouds; one from a random scene in SynPEB and another random frame from our
RGBD dataset. Execution timing is most influenced by point cloud size which varies substantially for
these two examples. For example the SynPEB OPC has 499 x 499 x 2 = 498,002 triangles whereas
the RGBD frame has at most 50,218 triangles. For each filter we report CPU single-threaded, CPU
multi-threaded, and GPU accelerated timings. Only four threads are used in multi-threaded runs,
and a kernel size of three is used in all runs. We compare our filters with Open3D’s general purpose
triangle mesh Laplacian filter [43]. Note that Open3D uses a general filter and does not take into
account the organized structure of the mesh and must therefore create an adjacency list for each vertex
to deterimine neighbors. Additional overhead occurs by returning a new triangle mesh whereas our
Laplacian implementation returns only the smoothed vertices. Open3D does not have a bilateral filter
implementation nor is its Laplacian filter CPU parallelized or GPU accelerated. The smoothed meshes
produced by Open3D and ours are nearly the same except for a noisy one pixel border on the boundary
of our mesh.

Table 12 shows the results of our Laplacian filter for one and five iterations with results separated
by a semicolon. Our CPU single-threaded performance is faster than Open3D. This is mostly explained
by not needing to compute a vertex adjacency list. Our CPU multi-threaded results nearly reach
the ideal 4X speedup in most scenarios. GPU acceleration is quite fast but has substantial overhead
on the first iteration of smoothing. This is because the OPC in CPU memory must be transferred to
GPU memory which is an expensive operation. This penalty is only paid once no matter how many
iterations of smoothing occur.

Table 12. Execution timing (ms) for one and five iterations of Laplacian filtering.

Ours Open3D
CPU-S CPU-M GPU CPU-S

SynPEB, 500 x 500 7.0;35.0 2.0;9.2 0.8;09 205.9;240.6
RGBD, 120 x 212 07,35 02,09 01,02 14.3;17.5

Data & Size

Table 13 shows execution timing results of our bilateral filter for one and five iterations with
results separated by a semicolon. This filter is substantially slower than the Laplacian filter primarily
because both triangle normals and their centroids must be computed before this filter can run (included
in timing). Additionally each of these data structures is nearly twice as large in memory as the input
OPC (~2 triangles per vertex). The weighting of neighbors in Equations (4) and (5) relies on an
exponential function which is significantly slower than the floating point multiplication and division
required for Laplacian filter per Equation (2). Finally significantly more neighbors and data are used
in Equation (3) to produce a smoothed normal. A maximum of 16 triangle neighbors (accessing both
their normals and centroids) are used for the bilateral filter whereas the Laplacian uses a max of eight
vertex neighbors. The memory transfer from CPU to GPU is significantly higher as well because 4X as
much memory is needed.
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Table 13. Execution timing (ms) for one and five iterations of bilateral filtering.

Data & Size CPU-S CPU-M GPU

SynPEB, 500 x 500 73.0;354.0 19.4;909 3.2;44
RGBD, 120 x 212 7.2;35.0 1.9;9.2 0.5;0.5

9.4. User-Defined Meshes

We apply Polylidar3D on two meshes of an indoor home environment. Both meshes were generated
by gathering color and depth frames from an Intel RealSense D435i camera and integrating them into a
triangular mesh using methods from Zhou et al. [42] implemented in Open3D [43]. The method works
by integrating the frames into a voxel grid and then performing marching cubes on the grid to create a
triangular mesh. An important parameter in this process is the voxel size which if small makes a denser
mesh that may also integrate noise from the sensor. The first mesh is of a basement and has a 5 cm voxel
size leading to a smoother approximation. Note this spacing is significantly higher than the noise of the
sensor. The second mesh is of the main floor and is much larger and denser with 1 cm voxel spacing
leading to significantly more noise from the RGBD camera. Only the main floor mesh is post-processed
with Laplacian filtering using Open3D. The basement mesh is composed of 60,620 triangles while the
main floor mesh has 3,618,750 triangles. The parameters for Polylidar3D for both meshes are shown in
Tables 14 and 15. The most significant difference in parameter sets is that the basement is configured to
capture small surfaces (lower t#iy,;;, and y) in comparison to the main floor.

Table 14. Polylidar3D Parameters for the Basement Mesh.

Algorithm Parameters

FastGA level = 4, vy = 15, dpeq = 0.1, sampleper = 12%
Plane/Poly Extr.  triy;, = 80, anguin = 0.95, lyax = 0.1, ptppax = 0.08, Uertices%ﬁ =6
Poly. Filtering a = 0.01, Bueg = 0.025, Bpos = 0.0, v = 0.07, 6 = 0.05

Table 15. Polylidar3D Parameters for the Main Floor Mesh.

Algorithm Parameters

FastGA level =4, v,,;,, = 15, dpegk = 0.1, samplepct = 12%
Plane/Poly Extr.  triy, = 1000, angim = 0.95, lyax = 0.1, ptpmax = 0.08, verticesl¢ = 6
Poly. Filtering a = 0.02, Breg = 0.05, Bpos = 0.02, ¥ =0.25,6 =0.1

Figure 20a,b show the polygons output from Polylidar3D on the basement mesh. The floor and
all walls are appropriately captured as well as any obstacles on their flat surfaces. The top surface of
the chair, table top, and monitor have also been captured. However there are several small planar
segments on an occluded wall in (Figure 20b) which may not be desirable for capture. In this same
image a collection of stacked boxes are not truly flat and the polygon line segment goes “behind”
the mesh surface. Figure 20c,d show polygons output for the dense first floor mesh. The floor and
most walls have been successfully captured. However some walls have too much noise thus do not
meet planarity constraints, e.g., the far wall in (Figure 20c). The ground floor is not extracted as one
continuous polygon instead separating at the edge of the mesh in (Figure 20d). This occurs because the
floor areas have differences in height (in the mesh, not in reality); the point-to-plane distance constraint
is exceeded between these two surfaces causing two extractions. This can be remedied by increasing
ptPmax by lem but is left here to highlight the issue.
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Figure 20. Polygon extraction from meshes of an indoor home environment. (a,b) show results on a

basement mesh which has a smoother approximation and less noise; (c,d) show results on a significantly
larger, denser, and nosier mesh of the main floor.

Parallelization Analysis

This section explores how Polylidar3D scales with additional CPU threads. We specifically focus
on plane/polygon extraction in Polylidar3D’s back-end. Both meshes are used in these steps and we
limit the dominant plane normals to the top four in the scene, i.e., only floors and walls are extracted.
Figure 21 shows the parallelization speedup and execution timing of plane/polygon extraction as up
to eight threads are provided. The color of the line indicates how many dominant plane normals are
requested for extraction, i.e., blue indicates only the floor while orange indicates both the floor and
one wall. The more dominant plane normals requested the more CPU cycles are needed.

Figure 21a shows the speedup and execution timings of the sparse basement mesh. The parallel
speedup does not go any higher than 2.4 with one dominant plane normal (blue-solid) and reaches
approximately 4.0 with four dominant planes (red-solid). The execution timings (dashed lines) clearly
show the diminishing returns as more threads are provided and plateaus around 0.5 ms at 4 threads.
Figure 21b shows a similar trend for the much larger and more dense main floor mesh. The trends are
clear that greater speedup is possible as more unique dominant planes normals are requested because
this work gets partitioned to independent tasks. However there is a limit to this parallelism as not all
procedures within the tasks are themselves parallelized. This is a clear example of Amdahl’s law in
effect which explains a theoretical limit to speedup as a function of the percent of a program that is
actually parallelizable [69]. In essence the theoretical speedup is always limited by the serial tasks,
which in our case becomes (roughly) the combined execution time of planar segmentation of the single
largest dominant plane normal and the polygon extraction of its largest planar segment. New threads
do not reduce the time to complete these tasks because their algorithms are serial.
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Figure 21. Results of parallel speedup and execution timing of plane/polygon extraction with up to
eight threads. Both basement (a) and main floor meshes (b) are analyzed. Solid lines indicate parallel
speedup and link to the left y-axis while the dashed lines indicate execution time and link to the right
y-axis. The color indicates number of dominant plane (DP) normals extracted.

10. Discussion

Results show Polylidar3D successfully extracts flat surfaces as polygons with interior holes
from unorganized/organized point clouds and user-provided meshes. One of Polylidar3D’s primary
strengths is its polygon extraction speed. The key to this speed is the fast construction of half-edge
triangular meshes used directly in polygon extraction. No secondary re-triangulation is necessary after
planar segmentation. Our Fast Gaussian Accumulator was benchmarked against competing K-D tree
methods and shown to be two times faster and effective at identifying dominant plane normals. Data
and task-based parallelism is also exploited to efficiently allocate work to available CPU cores.

Results also illustrate limitations. First, rooftop and ground extraction in Section 9.2 shows that
only one plane normal can be extracted from unorganized 3D points clouds. As described in our
methods the front-end currently performs 2.5D Delaunay triangulation which requires 3D — 2D
projection. This projection is most suitable when the sensing viewpoint and flat surface of interest are
aligned, as is for airborne LiDAR point clouds. However this is not a hard requirement as shown with
ground detection from the KITTI dataset. We chose 2.5D Delaunay triangulation for its speed, however
other methods may be used such as the ball pivot algorithm [41] or Poisson surface reconstruction [40].
These methods created 3D meshes which could then be processed by Polylidar3D.

Polylidar3D planar segmentation expects a mesh to be reasonably smoothed. The amount of
smoothing depends on user-specified parameters for surface extraction and the noise of the input
data. If only large distinct flat surfaces are required then minimal smoothing is necessary. We define
distinct surfaces as plane normals that are well-separated on the Gaussian Accumulator (e.g., 90°). This
smoothing aids in GA peak detection and appropriately groups triangles during planar segmentation.

The Fast Gaussian Accumulator can only detect plane normals; it currently has no concept of
origin offset. This means that if there are two flat surfaces separated far from each other in a scene,
with similar (but not the same) surface normals, it is possible they will appear near each other on the
GA and be merged. Noise in the mesh affects how close these two peaks can be on the GA and still
be detected as distinct peaks. As the mesh is further smoothed (with edge-preservation filters) the
noise is reduced and the peaks become more defined. This is exactly what had to be done to detect the
numerous noisy planes in the SynPEB benchmark. Also, group assignment in Algorithm 4 will assign
common triangles to these detected peaks if they meet a user defined angular threshold ang,,;,, from
a detected peak. This means any detected peaks should be greater than 2 - arcos(ang,,;, ) from each
other to guarantee no overlap. Note also that ang,,;, can be increased as the mesh is smoothed.

Only dominant planes, flat surfaces that account for most of the 3D data, can be reliably captured
from organized point clouds and user-provided meshes. We see numerous qualitative examples of this
from RGBD sensor data, the SynPEB benchmark, and user-provided meshes. Polylidar3D is only able
to extract 47.3% of the average 42.6 planes in the SynPEB test scenes. However the percent of point
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cloud metric k at 78% shows Polylidar3D doing an excellent job of capturing large dominant planes.
Scenes in this benchmark are the antithesis for what Polylidar3D was designed for (dozens of small
noisy planes), yet we show Polylidar3D still performs well in important metrics such as minimizing the
number of over/under-segmented planes, spurious predictions, and execution time. We believe these
metrics taken as a whole demonstrate Polylidar3D’s efficiency and reliability for polygon extraction of
dominant planar surfaces.

10.1. Point Cloud Characteristics and Parameter Selection

Each of the experimental result sections use different sensors resulting in dissimilar point cloud
characteristics such as density, spatial distribution, noise, and accuracy to the ground truth surface.
These characteristics have been studied both for Airborne Laser Scanning (ALS) technology [70,71],
Velodyne LiDAR [72] and Intel RGBD [65] sensors. The airborne LiDAR point clouds used in
Section 9.2.1 were captured in swathes with a Nominal Point Spacing (NPS) of 30 cm creating a
semi-random distribution with less than 2.5 cm RMSE [60]. Section 9.2.2 uses single scan Velodyne
HDL-64E point clouds that are dense in azimuth/rotation but sparsely distributed in elevation due
to beam spacing with a reported depth accuracy of less than 2 cm [63]. Finally RGBD sensor data
analyzed in Section 9.3.1 contains dense and uniformly distributed point clouds but with noise growing
quadratically with distance [66].

The Polylidar3D parameters in Tables 3, 4, and 7 were chosen to give the best qualitative results
for each sensor and then applied to all data in their respective section. Most of the parameters are
straightforward and can be interpreted and justified when taking into consideration point cloud
characteristics. First, the parameters for Laplacian and Bilateral filtering are influenced by the noise
and density of the point cloud. No smoothing was required on the KITTI dataset (Velodyne sensor)
because the sensor had minimal noise with large point spacing leading to long skinny triangles for
a smooth mesh. The airborne LiDAR point clouds of rooftops were much denser leading to smaller
noisy triangles requiring two iterations of Laplacian and bilateral filtering. The raw RGBD depth
image is extremely dense and noisy requiring the use of Intel’s own post-processing image filters with
parameters described in [73]. However the generated point clouds were still noisy needing additional
smoothing using three iterations of both Laplacian and bilateral filtering.

Our Fast Gaussian Accumulator (FastGA) algorithm has several parameters which are influenced
both by point cloud characteristics as well as real-time computational needs. First the sampley;
parameter will downsample triangle normals in the mesh as input to FastGA to reduce computation
time. The authors found that a 12% down-sample was more than sufficient to extract dominant planes
in all scenes in the experiments. GA refinement level should be set to 3 or 4 depending on the noise of
the point cloud and accuracy required for extracted dominant plane normals. A lower refinement level
has a coarser tessellation of the sphere but is better for noisy data because noise is “smoothed” into
larger histogram cells. Peak detection parameter v,,;, is scaled between 0-255; the authors found a
value between 15-50 to be best. If only large dominant planes are needed then a high value may be
used but must be lowered to detect smaller planar segments.

Plane and polygon extraction algorithm parameters are influenced by density, point spacing, and
noise in the point cloud. The parameter [, should be set to the maximum triangle edge length in
the mesh expected for a flat surface which is in turn influenced by the point spacing. For example,
KITTI dataset points are well-separated requiring ;4 to be set higher than one meter while the dense
RGBD point clouds require only 5 cm. The parameter ang,,;;, depends on mesh smoothness and the
user’s tolerance for deviation from perfect flatness. The authors found a value between 0.94-0.99 to be
ideal which corresponds to a 20°-10° allowance in angle deviation. The parameter ptp;, forces all
segmented points to be within a certain distance from a segment’s geometric plane which is influenced
by point cloud noise. Small planar segments will be quickly removed if the number of triangles is
below the parameter triy,;,. Additionally, small interior holes in polygons will be removed if their
number of vertices are below the parameter verrticesﬁfil,f. Both these parameters are influenced by
point cloud density and the user’s tolerance for superfluous planes and/or holes in polygons.
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Polygon post-processing parameter values are chosen more from scene context than from
underlying point cloud properties. For example parameters oy and § remove polygons and holes
based on minimum area constraints and are not influenced by the point cloud. If a user desires
to extract only large surfaces (e.g., walls and floors) they can set y to be high to filter small planar
patches such as a chair seat. Buffering and simplification parameters («, Breg, ﬁpos) are used to remove
redundant vertices and extraneous details for visualization and subsequent processing.

10.2. Algorithmic Complexity

The time complexity of Polylidar3D varies depending upon the data input. Unorganized 2D and
3D point clouds have a total time complexity of O(nlogn) where n is the number of points. This is
limited by the 2D and 2.5D Delaunay triangulation in the front-end which can only be completed in
O(nlogn) time [37]. However the time complexity for organized 3D point clouds and user provided
meshes is O(n). The mesh creation procedure for organized point clouds exploits the image structure
to quickly determine pixel neighbors and creates a mesh in O(n) time. This time complexity is the
same for user-provided meshes which uses O(1) insert/access hashmaps to determine half-edge
relationships. Mesh smoothing on organized point clouds is O(n) by once again exploiting the image
structure to determine neighboring triangles for smoothing. Dominant plane normal estimation using
FastGA is likewise completed in O(n) time. The s2id generation (using Hilbert curves) is independent
of the number of points n being integrated into the sphere. The search process for the histogram cell is
likewise independent of n and only influenced by the refinement level of the GA which is known at
compile time. Region growing for planar segmentation is also completed in O(n) by having quick
O(1) access to neighboring triangles using half-edges array 7. Polygon extraction itself is completed
in O(n) time [14]. Any plane and polygon extraction parallelism reduces time by a constant factor
which does not affect the overall time complexity of these algorithms.

10.3. Future Work

There are three significant techniques that will improve Polylidar3D’s robustness in future work:
polygon merging, time integration, and integrating intensity /color data. Many planar segmentation
algorithms perform “plane” merging of extracted segments (point sets) which are deemed similar
by Euclidean distance and plane-fit error tolerance [6,11,21,23]. This is most often used to combine
oversegmented predictions of a common surface. Polylidar3D can be extended to perform the same
action with polygons. Detailed meta-data about each polygon can be stored to aid in the merging
process including geometric plane normal, centroid, axis-aligned bounding box, and even the convex
hull if necessary. This information will aid the pairwise matching between polygons in a scene before
a possibly expensive polygon merger. There are several methods to perform a non-convex polygon
merge including morphological operations such as dilation and erosion.

Polylidar3D processes each point cloud distinctly. Time integration incorporates data from
multiple data frames in a sequence by filtering and refining extracted polygons based on previous
results. In a static scene with fixed sensor viewpoint time integration can reduce the variance of
polygons produced over time. All linear rings of the polygon (both hull and holes) can be explicitly
tracked using meta-data previously discussed and removed if certain thresholds are not met. With a
dynamic scene or moving sensor time integration would require significant extension to Polylidar3D
to incorporate additional data such as sensor (vehicle) motion estimates and even semantic scene
information. Additional work investigating the use of Bayesian filtering will be done.

Data such as intensity and/or color of the point cloud can be used to further determine similarity
between neighbors in the point cloud during region growing. Such data has been shown to improve
results for point cloud registration [5] and mesh smoothing [12]. Additionally, deep neural network
may perform semantic segmentation on RGBD images to quickly output class labels for each pixel in
the image [74]. This information can then be fused into Polylidar3D to better inform partitioning of
work and similarity between neighboring triangles.
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11. Conclusions

This paper introduced Polylidar3D, a non-convex polygon extraction method capturing flat
surfaces from a variety of 3D data sources. Front-end methods transform unorganized point clouds,
organized point clouds, and 3D triangular meshes to a common half-edge triangular mesh format.
Back-end core algorithms perform mesh smoothing, dominant plane normal estimation, planar
segmentation, and polygon extraction. A novel Gaussian accumulator, FastGA, was demonstrated
robust and quick at detecting dominant plane normals in a 3D scene. These dominant plane normals
are used to parallelize planar segmentation and polygon extraction. Polylidar3D is evaluated in five
separate experiments with airborne LiDAR point clouds, automotive LiDAR point clouds, RGBD
videos, synthetic LIDAR benchmark data, and meshes of indoor environments. Qualitative and
quantitative results demonstrate Polylidar3D’s speed and versatility. All of Polylidar3D is open source
and available to be freely used and improved upon by the community [15,16,44].
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
LiDAR  Light Detection and Ranging

RGBD Red, Green, Blue, Depth (Image)

orcC Organized Point Cloud

AHC Agglomerative Hierarchical Clustering
OGC Open Geospatial Consortium

GA Gaussian Accumulator

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

GPGPU  General Purpose GPU

SDK Software Development Kit
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