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Micromixing devices often utilize complex architectures to mix miscible liquid streams and

can  be complex and expensive to fabricate. Here, we developed, built, experimentally tested,

and  computationally analyzed a serpentine micromixer that can be fabricated using simple

tools and supplies available in non-microdevice dedicated laboratories. Fluorescence imag-

ing  was used to quantify its mixing effectiveness experimentally. A Computational Fluid

Dynamics (CFD) software package (COMSOL) was used to model the micromixing process.

The  predictions were in excellent agreement with the experimental data. The serpentine

micromixer can achieve significant levels of mixing efficiency. CFD predictions for a straight

microfluidic channel of the same length as the serpentine favorably compared with previous

theoretical predictions, indicating that the serpentine’s mixing efficiency was vastly supe-

rior.  Finally, CFD predictions were conducted for different and possibly improved designs

of  the basic serpentine. In all cases, the mixing efficiency was primarily associated with

the number of 90o elbows in the device rather than the straight sections’ length, with the

first serpentine bend playing a significant role. Future design improvements should focus

on  incorporating as many elbows as possible in the device to maximize mixing efficiency
n
and reduce the device size.

© 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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double-sided adhesive flexible films and a cutter plotter

eusz et al., 2005; Treise et al., 2005). This technique involves

materials, following the desired pattern, from thin-film

 cutting blade controlled by cutter plotters used originally

design and advertisement purposes (Islam et al., 2015). The

 be accomplished using basic CAD tools for Xurography, and

ction of the design takes a few minutes.

view shows that micromixers can be complex and expensive

e. In this work, we propose using a micromixer that can be

d inexpensively built, making microfluidic mixers straight-

 their fabrication, economical, and readily available in most
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nd dedicated and costly fabrication equipment. We devel-
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Fig. 1 – Schematic and actual images of the serpentine micromixing device used in this work: (A) Diagrammatic
representation of the device showing top glass slide with inlet and outlet ports, middle microfluidic channel cut into of
polyester tape, and bottom glass slide; (B) Assembled device prior to the insertion of inlet and outlet tubes; (C) Actual image
of assembled device with red and green food coloring dyes flowing through the inlet tubes to visualize the flow pattern; (D)
3D CFD model of the channel in the device constructed in COMSOL; and (E) 2D geometric view of the channel showing the
cross-sections where experimental concentration data were  collected (Bend 2, Bend 4, and Bend 6) and where simulation
results were  collected (Junction (J), Bend 1, Bend 2, Bend 3, Bend 4, Bend 5 and Bend 6). (For interpretation of the references
to colour on o
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hysics models applied to build the model in COM-

 creeping flow and diffusional transport of diluted
The boundary conditions at all solid surfaces were

 no-slip condition (Patsis et al., 2012; Tretheway and
, 2002). The inlet streams were modeled to contain
er and a 1 mM aqueous solution of FITC. Accordingly,

 concentrations at Inlet 1 and Inlet 2 were set as C
nd C = 1 mM,  respectively. The two feed flow rates

lets were identical, and the resulting total flow rate
the channel, Q, was computationally set at either 0.1
r 10 �L/min, as in the experiments. The properties
uids used in the simulations were those of water at
., the fluids were Newtonian, and their density and

 were set to 1000 kg/m3 and 1 mPa s, respectively.
sion coefficient for the FITC solute in water, DAB, was

 to be 0.64 × 10−9 m2/s (Galambos and Forster, 1998).
shing and setting up the system, COMSOL utilized a
ment method to conduct the simulations.
ition to the CFD-simulations conducted for the same
nd operating conditions used in the experiments
1-�m depth channel and two flow rates, i.e., Q =
in and Q = 10 �L/min), additional simulations were

d to determine the sensitivity of the mixing process
d as mixing efficiency) to an even higher flow rate (Q

min) and different channel geometries, i.e., for chan-
s equal to 25 �m,  50 �m,  100 �m,  200 �m,  and 400 �m,
rent inlet geometries for which experiments were not
d.

umerical  simulations  and  analytical  predictions
xing  process  in  a  straight  channel

al CFD simulations were carried out to quantify the
e 90◦ elbows in the serpentine design on the mixing
This was achieved by comparing the CFD-predicted
fficiency of the serpentine channel with that of a
raight channel having the same length as the overall

 the serpentine channel (112 mm)  and with the same
d depth. By comparing the numerically predicted

fficiency along the serpentine microdevice with that
 straight channel, it was possible to quantify each
ntribution to the evolution of the mixing process in
ntine channel.
iminary test of the correctness of COMSOL numeri-
ctions was conducted by comparing the numerically

 mixing efficiency at the end of the above-mentioned
channel with the predictions from a previously
nalytical expression (Lam et al., 2005), which had

ained for the case of a fluid moving under a laminar
 a rectangular channel containing a tracer subjected
ular diffusion across the channel, but ignoring the
ontributions of axial diffusion and Tyler-Aris disper-

 analytical expression is (Lam et al., 2005):
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at the non-dimensional tracer concentration at any
the channel is a function of both x and z, where x is
inate in the direction of the channel width while z is
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annel inlet.

esults

xperimental  and  computational  results  for  the
tional  FITC  concentration  profiles  along  the

ws experimental images of the channel at the bend
 described in Fig. 1E, labeled here as Bend 2, Bend 4,

 6, at flow rates of 0.1 �L/min and 10 �L/min, respec-
this figure, the FITC dye can be observed as a bright
hile the distilled water occupies the dark region. The
background is shown with green dotted lines delin-
e device from the background. The red line indicates
tion of flow. It is worth noticing that the bright regions
ricted to the channels at both flow rates, indicating
g of the solution through the adhesive tape. As can
ed visually in Fig. 2, the fluorescent zone’s size across
ted cross-section perpendicular to the flow progres-
reased as one moved further away from the channel
s was the result of the diffusion and mixing processes
e across the channel width.
ntitative determination of the progression of the
tional mixing process along the channel was con-
s described above to obtain the tracer concentration
tion of the position x along the cross-sections at each
ee different cross-sections along the channel at each
ee selected bend locations shown where experimen-
rements were made (Fig. 1E). The experimental FITC

ation profiles as a function of width coordinate x for
 bend locations and flow rates equal to 0.1 �L/min
L/min, respectively, are reported in Fig. 3. Although
n in this figure, at the inlet of the serpentine chan-

FITC occupied one half of the channel (0 �m < x <
 where the FITC concentration was 1 mM,  while the
lf (350 �m < x < 700 �m)  contained no dye, i.e., the
C concentration in the channel was a step function

ping down from 1 mM to 0 mM at x = 350 �m.  Fig. 3
at the experimental concentration profiles become
vely flatter as one moves along the channel since the
ates in the cross-sectional direction from the high-
ation region to the low concentration region. This is
t of the mass transfer process caused by molecular

 and the additional mixing effects introduced by the
ation resulting from the sharp 90◦ elbows in the ser-
By comparing the experimental FITC concentration
t the two different flow rates in Fig. 3, one can also

the concentration profiles obtained at the lower flow
L/min) are flatter than those at, the higher flow rate

in) at the same bend location, which can be expected
 residence time of the fluid in the micromixer is much

 the former case and, as a result, the diffusion process
r over a longer period of time.

ITC concentration profiles were also computation-
icted using COMSOL at the same bend locations
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Fig. 2 – Fluorescence images showing the progressive migration of the FITC dye in the channel at the three positions long
the serpentine (Bend 2, Bend 4 and Bend 6, as marked in Fig. 1E), at different flow rates. For each channel, the dotted green
lines delimit the effective area of the channel marking the channel boundaries. The direction of flow is indicated by the red
line in the image: (A) Bend 2, 0.1 �L/min; (B) Bend 4, 0.1 �L/min; (C) Bend 6, 0.1 �L/min; (D) Bend 2, 10 �L/min; (E) Bend 4, 10
�L/min; (F) Bend 6, 10 �L/min. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3 – Experimental concentration profiles obtained from fluorescent images at Bend 2, Bend 4, and Bend 6 for flow rates
equal to 0.1 �L/min and 10 �L/min, respectively, and corresponding concentration profiles obtained from COMSOL
simulatio
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nts that would result in a slightly improved mixing
nce. These results also imply that mixing appears
etter in the experimental system than in the sim-

 However, overall, there is a significant agreement
the experimental results and the numerical predic-
ll locations and at both flow rates, which supports
imental method’s validity and the correctness of the
l approach used here. This agreement also validates
utational approach and provides evidence that the

tional method can be effectively used to simulate
ss, possibly even in operational regions and design

ot covered in the experimentation.
volution of the concentration profiles obtained with
SOL simulations is presented in Fig. 4, in which the
centration at Inlet 1 (0 mM;  DI water) is represented
rk blue color, and the concentration at Inlet 2 (1 mM)
nted in dark red. One can see that the concentration

 the lower flow rate system turned green (indicat-
he FITC concentration approached the 0.5 mM value)
re  closely to the device inlet compared to the higher

 case. The middle band was green while it was still red
near the walls, indicating a significant concentration
across the channel even at the system’s outlet.

xperimental  and  computational  results  for  the
fficiency  of  the  serpentine  micromixer

rimental and computational concentration profiles
itionally used to calculate the mixing efficiency, �,
rpentine device using Eq. (2). To ensure that the com-

al results did not vary with the mesh size used in the
ns, a mesh-independence study was first conducted.

ing efficiency at the various bends were numeri-
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predicted mixing efficiency was highly dependent
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resence further increased the device’s mixing effi-
end 3 and higher) by Slowing down  the flow rate,

 increasing the residence time and the time available
g and diffusion to take place, significantly improved

fficiency, as one can see by comparing the two panels
 and Table 1. For the 10 �L/min case, a 67.4% mixing

 was achieved by the end of the serpentine channel,
0.1 �L/min, a 96.0% mixing efficiency was achieved.
ther quantify the effects of the 90◦ elbows, the mixing
es for the serpentine design were compared against
g efficiencies obtained in a straight channel with no

ut with the same overall length, cross-section, and
 the serpentine. This was first accomplished com-
ally using the COMSOL simulations for the straight

 The results are also shown in Fig. 5B and Table 1.
rates equal to 0.1 �L/min and 10 �L/min, the mix-
ency at the end of the straight channel was 63.6%
%, respectively, which is significantly lower than
s obtained from the serpentine channel (95.9% and

spectively). This demonstrates that the 90◦ elbows in
ntine design are the critical feature responsible for
g the straight channel’s mixing efficiency. To further
he COMSOL predictions for the straight channel, the
fficiency in this channel was determined using the
l predictions for the concentration based on Eq. (4).
ation was numerically solved using MATLAB for dif-
ints along the channel’s width (x) and at the different
tions along the straight channel (z). The correspond-

ts for � are also shown in Fig. 5B and Table 1. One can
 in general, the COMSOL computational results and
tical predictions are in significant agreement even

ase.
 can also be used to provide a qualitative understand-

 impact of the initial T-junction to initially contact the
the device inlet on the mixing process. The straight
results show an appreciable initial increase in the
fficiency compared to the remaining portion of the

 Although the mixing efficiency cannot be expected
ear function of the distance traveled by the fluid, this

mp could be attributed to the T-junction. However,
aring this increase with the much more  significant
in the mixing efficiency at Bend 1 in the serpentine
ne can conclude that the first elbow plays a critical

oducing a rapid increase in the mixing efficiency, pos-
 amplifying the initial contribution of the T-junction
.
the integrity of the micromixing device could be
ly compromised by an excessive pressure building up

 operation in the device assembly, the pressure drop
 serpentine channel, i.e., the difference between the

ssure and the pressure at any specific length along
nel at the desired flow rate, was computationally pre-
f particular relevance here is the maximum pressure
een the inlet and the outlet since the inlet’s resulting

 absolute pressure could affect the device’s integrity.
ows the calculated pressure drop at the two different
s studied as a function for the different bend num-

 along the channel length. At the lower flow rate, the
 pressure drop was minimal (∼30 Pa), and even for

/min, the corresponding figure was on the order of 3
 modest increases in the pressure inside the channel
pected to have no impact on the device’s mechan-

rity. This conclusion was experimentally validated
te experiments in our laboratory, not related to the
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Fig. 4 – COMSOL simulations showing the FITC concentration profiles in a channel having the same geometry as the
experimental system for two different flow rates, (A) Q = 0.1 �L/min and (B) Q = 10 �L/min. Color scale varies between 1 mM
(dark red) and 0 mM (dark blue). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5 – (A) Mixing efficiency at different bends in the serpentine micromixing device at a flow rate of 10 �L/min using
different mesh configurations; (B) Mixing efficiency at different bends in the serpentine micromixing device and in a
straight channel of identical length and depth at flow rates of 0.1 �L/min and 10 �L/min, respectively; (C) Pressure drop at
different bends in the serpentine micromixing device and in a straight channel of identical length and depth at flow rates of
0.1 �L/min and 10 �L/min, respectively.
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Table 1 – Comparison between the CFD-predicted simulation values and the experimental results for the mixing
efficiency, � at Bend 6 for the serpentine device (81 �m depth) and between the CFD-predicted simulation values and the
analytical solutions for the mixing efficiency, � for the straight channel (same length and depth as serpentine device).

Flow rate Reynolds
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�  (experi-
mental;
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�

(simulation;
serpentine)

�  (simulation;
straight
channel)

�  (analytical;
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ork, in which a microdevice somewhat similar to
ntine device used here was subjected to increasing

 drops up to 116 kPa (1.14 atm) without compromising
rity of the device (results not shown). These results
e with the experimental results of other investigators

 reported that the tensive force per area required to
te the adhesive tape used here (Arcare® 90,445) when

o glass was about 700 kPa and that the microdevices
 tested were stable for weeks even under physiolog-
r force conditions (Kratz et al., 2019). In summary, it
ncluded that the integrity of the micromixing device
t be compromised by excessive pressure drop during
.

C also presents the corresponding pressure drops
e straight channel. A comparison of the two sys-
files shows that the serpentine channel’s pressure

 only marginally higher than in the straight chan-
lying that the 90◦ elbows in the serpentine design
ed only modestly to increasing the pressure drop.
sults in Fig. 5 can be used to calculate the mixing

defined as the ratio of the pressure drop to achieve a
xing efficiency to the mixing efficiency expressed in
ge (%) (Ortega-Casanova and Lai, 2018):

P

 %)
(5)

 that the units for mc are Pa/%. For the 0.1 �L/min
= 0.015; Sc = 1562) mc varied between 0.13 Pa/% at

 = 75%) to 0.31 Pa/% at Bend 6 (� = 96%), whereas for
L/min case (Re = 1.5; Sc = 1562) mc varied between

 at Bend 2 (� = 40%) to 45.4 Pa/% at Bend 6 (� = 67.4%).
lues are typically larger than those achieved with very
micromixing designs but are on the same order of
e as those obtained with less complex structures.
ple, Ortega-Casanova and Lai (2018) obtained very
lues, ranging from 0.05 Pa/% (Re = 0.1; � = 95%) to 0.15
= 0.29; � = 85%), using their complex multiple-input
er. However, other investigators obtained higher mc
1−20 Pa/%) using other types of micromixers (Chung
, 2007; Hsiao et al., 2014; Khosravi Parsa et al., 2014;
asanova, 2016, 2017a, 2017b; Sadegh Cheri et al., 2013;

 Ortega-Casanova, 2016). A detailed comparison of
s for different configurations is presented elsewhere
asanova and Lai, 2018).
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studies have focused on flow rates that are on the
bout 1 mL/min (Sivashankar et al., 2016) and not on

ious dept
diagram 
66.1% 21.5% 25.7%

rates (on the order of �L/min) that are typical for most
dic devices whose volumes are in �L (including ours,
s a volume of 6.35 �L). Therefore, in this work, we

 low-volume microfluidic device, and we  examined
ibution of each elbow of the serpentine channel to
g efficiency.

the experimental measurements validated the COM-
ictions, further analysis of the impact of other design
ating parameters could be reliably conducted using
milar computational approach. Although the effect
g several parameters on mixing efficiency could in

 be studied, here we examined primarily the impact
el depth since there have been very few studies

 the effect of this variable on mixing effectiveness
er et al., 2011; Chen et al., 2016). In addition, con-
n profiles are difficult to obtain experimentally using
pe tracer analysis as the channel depth is increased,
ing computational predictions even more  valuable.

e, in this work, COMSOL simulations were carried out
dditional channel depths (in addition to the 81 �m-
nnel), i.e., 25 �m,  50 �m,  100 �m,  200 �m,  and 400 �m
ow rates equal to 0.1 �L/min, 10 �L/min, and, addi-
100 �L/min (also for the 81 �m-deep channel). The

 mixing efficiencies of the serpentine micromixer for
ferent channel depths and flow rates are shown in
ese results indicate that increasing the channel depth

 a negligible impact on mixing efficiency if the chan-
 is in the range 25−81 �m,  or slightly above (100 �m).

, the CFD simulations predict a significant increase
g efficiency when the channel depth is increased to
nd 400 �m.  This increase is explained in some detail
is worth noticing that for a channel depth of 50 �m,
olds number is equal to 0.01, 1, and 10, when Q = 0.1

 = 10 �L/min, and Q = 100 �L/min, respectively, while
els with depths equal to 25 �m,  50 �m,  81 �m,100

�m and 400 �m at 10 �L/min the Reynolds numbers
, 1.5, 2, 3.6, and 5.9 respectively. The Schmidt number
) for the fluid is 1562.
ther understand the effect of the channel’s depth,
COMSOL simulations were carried out to determine

 in channels of different depths. Fig. 7 shows the
-predicted streamlines in the channel for different
f the channel, namely, (A) 400 �m,  (B) 200 �m,  (C) 150
(D) 100 �m.  Vector diagrams on cross-sectional areas
tely following the T-junction and after the first four
re shown in the inserts. The vector diagrams provide
display of the quality of mixing at cross-sections of
n the microfluidic device. The slice plots show the
fficiency before the 90◦ elbow. The degree of mixing

 at this and other cross-sections along the channel
tified using the mixing efficiency � as defined above.

ws the mixing efficiency for various designs with var-

hs at flow rate Q = 10 �L/min. Furthermore, the vector
made us specifically interested in the initial elbows.
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Fig. 6 – Mixing efficiency obtained using COMSOL simulations for different depths of the channel (25, 50, 81, 100, 200 and
400 �m)  at flow rates of 0.1 �L/min, 10 �L/min, and 100 �L/min.

Fig. 7 – COMSOL simulations showing the streamlines in the channel cross-sectional areas immediately following the
T-junction and after the first four elbows for different channel depths. Vector diagrams at selected cross-sections are shown
in the insert: (A) 400 �m,  (B) 200 �m,  (C) 150 �m,  and (D) 100 �m.  Red arrow indicate the direction of the flow in the channel.
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Fig. 8 – Mixing efficiency obtained using COMSOL simulations for different depths of the channel (25, 50, 81, 100, 200 and
400 �m)  at a flow rate of 10 �L/min; (A) For three different vertical pitches (5 mm,  7.5 mm and 10 mm);  (B) For three different
horizontal pitches (5 mm,  7.5 mm and 10 mm);  (C) For two different inlet shapes (T-junction and Y-junction).
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Fig. 9 – Mixing efficiency obtained using COMSOL simulations for different vertical pitches, horizontal pitches, and inlet
design for different depths of the channel (25, 50, 81, 100, 200 and 400 �m)  at a flow rate of 10 �L/min.

Fig. 10 – Results obtained using COMSOL simulations for different vertical pitches, horizontal pitches, and inlet designs for
the 81 �m-deep channel at a flow rate of 10 �L/min: (A) Mixing efficiency as a function of the fluidic path length. (B)
Pressure drop as a function of the fluidic path length.
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Fig. 11 – CFD-predicted normalized mixing efficiency of each individual bend for a channel with a T-inlet and a horizontal
and vertical pitch of 7.5 mm,  for different channel depths (25, 50, 81, 100, 200 and 400 �m)  and flow rates equal to 0.1
�L/min (Panel A), 10 �L/min (Panel B) and 100 �L/min (Panel C). The mixing efficiency shown here was normalized, as
describe
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