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Abstract

Regular and slow earthquakes result from unstable frictional slip and are described by a potentially
chaotic dynamics'™. Assessing the predictability of regular earthquakes is a challenge because
observations generally cover a short time compared to the long time needed to generate successive
ruptures of a same fault. This limitation does not apply to slow earthquakes, which have much
shorter recurrence times®. We therefore assess the predictability of slow slip events (SSEs) on the

Cascadia subduction imaged using geodetic times series between 2007 and 2017°. These SSEs
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show scaling laws and a systematic segmentation similar to regular earthquakes’. Using the
embedding theory®® and extreme value theory'®, we demonstrate a low-dimensional (<5) chaotic
behavior. We calculate properties of the underlying strange attractor and find that the system has
a predictability horizon of the order of 2 to 55 days. While longer-term deterministic prediction
seems intrinsically impossible, short-term prediction of SSEs is shown to be possible, for example
using the instantaneous dimension of the strange attractor which systematically peaks to high
values at the onset of large slow slip events. Regular earthquakes might similarly be predictable

but with a short predictable horizon which we infer to be of the order of their durations.

Main Text

Laboratory experiments have shown that it is possible to forecast the time to failure of both slow

and fast ruptures!!"’?

, raising hopes that natural earthquakes might similarly be predictable.
However, a fully deterministic failure prediction for natural earthquakes is still yet to come'*: we
currently do not know if natural earthquakes result from deterministic chaos, and, if so, what would
be their predictability horizon. Detecting chaotic behavior in geophysical time series is a difficult
task, mainly because of the short and noisy data generally available!>. While historical
observations have been used to argue for chaos'®, characterizing the chaotic behavior of regular
earthquakes has been a challenge because of the short history of documented earthquakes on a
same fault segment. A possible chaotic behavior has been inferred in the case of foreshocks'” and
Low Frequency Earthquakes (LFEs)'8, a class of small and slow earthquakes detectable with
seismology. Here, we focus on Slow Slip Events (SSEs), which are mostly aseismic recurring

events with recurrence time much shorter than that of typical earthquakes (months/years instead

of decades/centuries). They have been documented with geodetic techniques in various tectonic
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contexts, in particular along major subduction megathrusts®, where they can reach moment
magnitudes comparable to that of large earthquakes (Mw>7). SSEs are strikingly similar to regular
earthquakes: they evolve into large pulse-like ruptures'® and follow similar scaling laws, exhibiting
systematic segmentation’-?°, These characteristics and the possibility to image them using geodetic
time series make them a most suitable system to study the dynamics of frictional sliding at the
natural scale. We focus on the Cascadia subduction, where multiple SSEs ruptured repeatedly 13
major segments between 2007 and 20177 (Fig. 1). Our goal is to characterize if the slip time series

reveal a deterministic dynamics or are the result of a stochastic process.

We calculate the slip potency rate time series for all the 13 segments (P,(t),s = 1, ..., 13, Fig. 2,
Fig. S1, and Section Slip potency rate in the Methods) as the 1-day interval time derivative of the
low-pass filtered slip potency. This is the scalar observable that we use to assess the dynamics of
the system. We choose this variable because sliding velocity is considered to be the main
observable variable governing the evolution of friction in laboratory experiments®!. The slip
potency rate shows episodic bursts with the most extreme events occurring quite regularly (Fig. 2
and S1). We refer to the space spanned by the subset of variables needed to explain this system as
the phase space, and to the trajectories in this phase space as the attractor of the system, being
aware that we are dealing with only a region of the whole phase space, representative of the slow

slipping phenomenon.

A dynamical system is commonly characterized by its dimension, a geometrical property of the
underlying attractor which quantifies the number of degrees of freedom (dof) needed to explain
the observed dynamics?2. For the stick-slip behavior considered here, the EVT (Section Extreme
Value Theory in the Methods) indicates a low average attractor dimension 3.1 < D < 3.5 (green

dots in Fig. 3). Similar low values (correlation dimension v < 5) are obtained when using ET
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(Section Embedding Theory in the Methods). However, the Signal-to-Noise Ratio (SNR) is high
enough only for segments located in the northern section of the megathrust (segments #1 and #2).
This is evident when surrogate data® are used to test the significance of the observed low
dimensionality of the system (Fig. 3, Section Surrogate Data in the Methods and Fig. S2 in the

Supplementary Material).

According to the EVT, the dynamics revealed by the filtered data requires at least 4 variables
(because D is between 3 and 4). Interacting fault segments are commonly represented using a
spring-slider system. The variables of a spring-slider system representing stick-slip friction in the
laboratory, which would be similar to a system representing a single segment, must involve slip,
slip rate and at least one additional ‘state’ variable to allow fault healing. Note that, even in the
case of such a controlled system, the underlying physics and the number of state variables needed

to explain laboratory friction remain matters of debate®*.

In absence of coupling with other spring-slider systems, the expected number of dof is thus two
plus the number of state variables, and the dimension should be between dof-1 and dof. For a non-
inertial single spring-slider, adding a second state variable is a viable way to enact chaotic
behavior, and a Kaplan-Yorke dimension of 2.119 + 0.001 has been derived®. SSEs are generally
thought to result from coupling between fault slip and fluid flow?~°. A single fault segment
obeying rate- and state-friction with slip coupled to fluid flow can be represented by a spring-slider
system with 5 dofs, i.e. its dynamics can be described by 5 variables: loading shear stress, slip rate,
one state variable, porosity, and pore pressure®. To describe SSEs we can assume a quasi-static
behavior, and the number of variables then drops to 4, a value consistent with the number of dof

recovered from our analysis.
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In a system formed of interacting fault segments, the loading term would depend on the variables
associated with neighboring fault segments, which would then need to be introduced in the state
vector describing the system’s evolution. In the case of a 1-dimensional along-strike segmentation,
as observed in Cascadia, we would expect a dimension as high as 12, with the extra 8 dof carried
in by the two adjacent segments. Interactions with neighboring segments is probably critical at the
onset and arrest of SSEs. The dimension D, being an average in the phase space, does not capture
the information about transient instabilities, though. Recent advances in EVT applied to dynamical
systems theory have proven that it is possible to characterize these transient instabilities via two
instantaneous properties®’: the instantaneous dimension (d) and the instantaneous extremal index
(6). These quantities refer to the state of the system in a given location of the phase space. Their
distribution and temporal evolution is shown in Fig. S3 of the Supplementary Material. The
instantaneous dimension, d, indicates the number of variables needed to explain the dynamics of
the system in a specific phase space location. We expect to find high values of d when a metastable
state is approached. This is apparent from Fig. 4a, where a Poincaré section of the attractor is
plotted with d color coded. The maximum retrieved instantaneous dimension is in the range
[11,18] for the segments with high SNR. Considering the tentative segmentation here adopted and
the low SNR, we consider this result in good agreement with the maximum expected dimension
of 12 as in a 1-dimensional spring-and-slider chain. Note that the number of dof, and hence the
dimension of the strange attractor, would be expected to be larger in case of interactions between

non-adjacent segments, or in case of along-dip segmentation.

From the instantaneous extremal index (@) (Fig. 4b) we can estimate a range of values for the
metric entropy?®, which characterizes how fast on average close-by trajectories in the phase space

diverge, and we can thus estimate the predictability time t* of the system (see Extreme Value
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Theory in the Methods). We find t* ranging from 2.2 to 55 days for the 13 segments (Table S1).
We exclude the possibility that the apparently chaotic dynamics is a result of the filtering (Section
Surrogate Data in the Methods). We conclude that SSEs on the northernmost segments of the
Cascadia subduction zone result from deterministic chaos. Our analysis implies that it should be
possible to forecast the onset of large SSE ahead of time. This could in principle be achieved based
on an explicit deterministic representation of the system dynamics or using some machine learning
algorithm that would implicitly simulate the system dynamics. It is notable that the increase of d
seems to constitute a reliable precursor of the large SSEs (segments #1 and #2, Fig. 2 and Fig. S1
in the Supplementary Material). The causal filter adopted here introduces a group delay larger than
the predictability horizon time, meaning that this approach cannot be used for real-time
forecasting. Operational forecasting based on this approach would require an alternative noise
reduction, or more accurate data in order to avoid the filtering step or reduce the window size of

the filter.

In conclusion, SSEs can be described as a deterministic, albeit chaotic, system rather than as a
stochastic process. The deduced predictability horizon is of the order of days/weeks, equivalent to
a fraction of the typical duration of large SSEs in our dataset. If the dynamics derived from the
filtered time series is representative of the true underlying dynamics, long-term prediction of SSEs
(i.e., over a time horizon much longer than their duration) seems intrinsically impossible. This
implies that for long-term predictions a stochastic approach remains the best tool at our disposal,
while short-term predictions should be feasible in a deterministic sense. As SSEs might be
regarded as earthquakes in slow motion’, regular earthquakes might be similarly chaotic and
predictable. Assuming a similar system dynamics, we infer a predictable horizon of the order of

the typical duration of large earthquakes, i.e. tens to hundreds of seconds.
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Fig. 1: Left panel: Modified from ref. 7. Blue contour line: SSEs region. Color palette: Number
of times a specific segment has ruptured in the time interval [2007.0, 2017.632] following the
available SSEs catalog®. Dashed black lines indicate the segmentation from ref. 6, here adopted.
Black continuous line shows the coast for reference. Green lines are isodepths in km. Right
panel: Slip potency (P(t)) for four selected segments. The calculation is performed over the
entire area belonging to the segment and colored in the left panel. Magenta dots: Slip potency
for segments #1, #4, #7, and #12. Black dots: Causal low-pass filtered slip potency. The causal

filter introduces a 115 days time delay. For visual purpose, the filtered time series is shifted back
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to the starting date 2007.0 (see Section Sleip potency rate in the Supplementary Material for

more details).
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Fig. 2: a) Causally filtered slip potency (black dots) for segment #1 (same as in Fig. 1). Red
dashed lines indicate the epochs for which the instantaneous dimension d is larger than its 95-th
quantile up to that epoch and for which the slip potency is smaller than its 50-th quantile up to
that epoch. b) Slip potency rate (black dots) for segment #1, calculated as the derivative of the
causally filtered slip potency (panel a) using a 1 day interval time step, plus the long-term slip
potency rate. Red dashed lines as in panel a).
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Fig. 3: The average attractor dimension D has been estimated as the average of the instantaneous
dimension d. The surrogate data have been obtained randomizing the phases of the Fourier
transformed slip potency and maintaining correlation between patches (see Section Surrogate
Data in the Supplementary Material). The p-value is estimated after calculating D for every
surrogate and comparing the data derived D with the distribution of the surrogate data derived
Diurrogate. Only segments #1 and #2 show an average dimension significantly (»<0.001) lower
than the one derived from the surrogate data independently from the choice of the filter, of the
norm to calculate distances, and of the quantile threshold to determine the exceedances (see
Section Extreme Value Theory in the Supplementary Material and Fig. S2).
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Methods
Slip potency rate

Given a subfault (n) of a given segment (s = 1, ..., 13), we apply an equiripple low-pass filter to

rough

the slip history (ug, - (t)) from ref. 6 in order to obtain a smoothed slip history (ug,(t)). The
passband frequency is 1/21 days™?, the stopband is 1/35 days™!, the passband ripple is 1 dB,
and the stopband attenuation is 60 dB. These filter specifications are used to create both a causal
and a non-causal filter. In particular, we use the Matlab® built-in function filter and the
function FiltFiltM (https://www.mathworks.com/matlabcentral/fileexchange/32261-filterm).
We then multiply the slip history by the area of each subfault (Ag,), getting the slip potency for

each subfault:

psn(t) = AsnUsn () M1)

The total slip potency for the s-th segment is calculated as the slip potency integral over the entire
slipping area. In a discretized case where there are Ng subfaults belonging to the s-th segment, the

total slip potency is calculated as:

Ns (M2)
P(t) = z Agn Usn ()
n=1

We also construct slip potency rate curves for each subfault:

Dsn(t) = Agn (UOSTL + usn(t)) (M3)
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and the total slip potency rate for each segment:

Ns (M4)
Ps(t) = Z Asn (UOSTI + Uy, (t))
n=1

where vy, is the long-term reference loading velocity for a given patch belonging to a specific

segment as derived from ref. 6.

Non-causal filters cannot be adopted for real time applications because they use information from
future epochs. On the contrary, causal filters use only past and present information, but they
introduce a time delay in the filtered signal. The filter here adopted introduces the same time delay
of 115 days for every frequency. This information is relevant when discussing about the
predictability horizon of the system (see Main Text). The causally filtered slip potency for the 13
segments is shown in Fig. 1b for a selection of 4 segments, and in Fig. S1 for all of them. For
graphical purposes, the filtered time series have been shifted back in time in order to be in phase

with the original time series.

The choice of the variable to use for the dynamics reconstruction is important because it can bias
the correlation dimension estimation. In particular, the correlation dimension can be lowered when
using a variable strongly correlated only with a few variables of the system®. Having in mind the
rate-and-state formalism for friction®!, we hypothesize that the slip rate, and thus the slip potency
rate, is not only more strongly coupled than the slip potency to the other variables of the system,
but it is also coupled with more variables (e.g., the state variables). We find smaller values for the
correlation dimension of the attractor v when using the slip potency as observable (Figs. S4 and
S5 and Section Embedding Theory in the Methods for their interpretation), confirming our

intuition that slip potency rate is a more suitable observable.
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The effect of low-pass filters on dynamical systems' dimension estimation has been extensively
studied. The filter here adopted is a finite-order nonrecursive filter. It has been proven theoretically
that this class of filters should not modify quantities estimated via ET, but this might be not true
for practical cases where finite time series are available®’. For both causally and noncausally
filtered time series, we retrieved similar average dimensions, lower than those determined on non-
filtered time series (see Fig. S6 for a comparison of causal and non-causal filter effects via EVT
for the segment #1). In particular, for the segments with large SNR we notice that the application
of a low-pass filter (both causal and non-causal) reduces the dimensionality of the system from

values > 6 to values < 4.

Filters applied to pure noise can potentially produce the spurious identification of finite correlation
dimension’!. For this reason, we have conducted the experiment with surrogate data also on filtered

random time series (see Section Surrogate Data in the Methods).

Embedding Theory (ET)

We apply two methodologies based on ET to determine the correlation dimension of the strange

attractor. The correlation dimension is defined as’*:

... Log(C(r,T)) (M5)
v = lim lim ————
r—0T—- LOg(T)

where C(r,T) is the correlation integral, r is a variable threshold distance, T is the time series

length, and we use the base-10 logarithm Log.
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The construction of the correlation integral typically involves two parameters: the delay time ()
and the embedding dimension (m). Given a scalar time series x(t), for example P, (t), its values
are used to construct an m-dimensional vector delaying in time the time series of an amount 7 for

m — 1 times:

F(t,T,m) = [x(t),x(t = 1), ..., x(t — (m — 1)7) ] (M6)

We can now define the correlation integral as®*:

, I, (M7)

CoTw) = = Z z H(r — ||F(t; + t,, 7, m) — F(t, 7, m)|])

t,=wt;=1

where we introduce a cutoff parameter w > 1 to improve the convergence of the classical
algorithm (w = 1) toward its limit T — oo, and H is the Heaviside function. Values of w~7_,,,
are recommended, where 7., 1s the autocorrelation time for the specific scalar time series under

exam?’. We calculate T, using the batch means method>*.

Basically, the algorithm counts how many m-dimensional vectors are closer than r at different
times. If m > 2v + 1, then F is an embedding function of the strange attractor®, and we expect the
correlation dimension to be independent of m. Figs. S4 and S5 show the v vs Log(r) curves for
different m. The selected delay times 7 are chosen in order to emphasize the scaling region. For
every segment, we have tested values of T = 2i + 1 days, with i from 1 to 6, and m = 4j, with j
from 1 to 5. In the case of a stochastic signal, we might expect that a scaling relationship between
C(r) and r does not hold, and larger values of v are calculated when increasing m, i.e. v does not

saturate. Nonetheless, autocorrelated noise in short time series can fool the described algorithm?3.



219  For this reason, surrogate data are typically introduced, but instead of evaluating the plateau for v,
220  which is quite subjective, we prefer to apply the methodology from EVT for this calculation. Given
221 the time delays retrieved from ET (see Fig. S4), one accurate slip rate data per week might be

222 sufficient to reconstruct an embedding for SSEs.

223 The second methodology derived from ET needs only the definition of the delay time in order to
224  determine the minimum embedding dimension®>. The algorithm still uses the embedding function
225  F, but it exploits the nearest neighbors counting in the reconstructed phase space to detect false

226  neighbors when changing the embedding dimension m.

227  The following two quantities are defined:

Fomy = L T'Z’:'” |F(t,7,m +1) = Fpemy(t,T.m + 1)) (M8)
M=o & |F(t, 7, m) = Fremy(t, T, m)||
T—-mt (M9)

E*(m) =

T —mt Z ||x(t +mMT) = Xn(emy (€ + mr)”
t=1

228

229  where 1 < n(t,m) <T —mrt is an integer such that F, (¢, T,m) is the nearest neighbor of

230  F(t,t,m). From these two quantities, the ratio at two subsequent embedding dimensions is
231 calculated:

E(m+1) (M10)

Ei(m) = E(m)
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E*(m+1) (M11)
E*(m)

E,(m) =
The quantity E; is relevant because if the studied time series is the result of a dynamic process, i.e.
it comes from an attractor, then E; (m) saturates®. In other words, we reach a value 7 such that
E; stops changing increasing m above M. The minimum embedding dimension will then be m +
1. The second quantity, E,, is introduced to check for randomness in the data. In theory, for
stochastic time series E; should never saturate, but in practical cases it can be unclear if E; is
slowly increasing with increasing m or not. If the time series of interest is the result of a stochastic
process, we expect future data points to be independent from the previous ones. This means that
E,(m) = 1 for each m. If the studied time series is instead the result of a deterministic process,
E, is not constant, and there must exist some m values such that E,(im) # 1. We plot E; and E,

in Figs. S4 and S5 for the analysis on slip potency rate and slip potency time series, respectively.

We show in Fig. S6 the results on both causally filtered (i.e., present values are depending only on
the past and the present, such that the statistic E, can be used) and non-filtered time series for the
example of segment #1. A minimum embedding dimension m = 10 is detected from filtered data,
implying a correlation dimension v < (m — 1)/2 < 4.5, while for non-filtered data E, remains
almost constant at unitary values. This result is consistent with the results from EVT, for which a

0 close to 1 is calculated for non-filtered time series (e.g., Fig. S6).

Extreme Value Theory (EVT)
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We use recent results of EVT in order to overcome some of the issues encountered when using ET
algorithms. In particular, we would like: 1) a method to rigorously calculate a particular statistic
(for example, the attractor's dimension), and, consequently, test if the calculated quantity is the
result of a random process or not; and 2) a method to calculate also instantaneous properties of the
attractor. The main idea behind the usage of EVT for the characterization of a dynamical system

is to connect the statistics of extreme events to the Poincaré recurrence theorem?7-°.

Let us consider a generic point { on a strange attractor. Ultimately, the instantaneous dimension is
a quantity which measures the density of neighbors in the phase space around {. In order to
calculate this density, we can ask ourselves the following question: what is the probability to visit
again a region of the phase space close to (i.e., in an arbitrary small radius € from) {? If we had
access to all the possible states of the system (z), we could calculate the distances from the actual
state under study, 6(z, {). Then we would like to construct a random variable related to §(z, {)
and use the second theorem of EVT?’ to be able to gain information about the density of neighbors
around {. In fact, the second theorem of EVT states that, given a random variable Z with non
vanishing probability distribution, we can set a threshold value g such that, for g sufficiently large,

values of Z that exceed q (or exceedances) follow a Generalized Pareto Distribution (GPD).

For real case scenarios, we might have only one scalar time series, and here we consider the
univariate case. Similarly to what is done to characterize atmospheric flows?’, we assume that our
observed scalar time series (i.e., the slip potency rate) approximates possible states of the system.
The only requirement to apply this methodology is the observed time series to be sampled from an
underlying ergodic system. A possible improvement would be to consider a multivariate case with
slip potency rates and/or slip potencies from adjacent segments, but we defer this complication to

future investigations. For our case of interest, to generate the pool of all possible z we consider the
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slip potency rates of all subfaults belonging to the segment under exam (equation M3). We then
select ¢ to be equal to the slip potency rate at a certain epoch t, and calculate the distance from all
other possible states that we have recorded at different times. Recent studies*®*® have shown that
if we construct the random variable given by the negative log-distances, Z = —1n(6 (z,¢ )), we

can use the GPD shape parameter (o) to calculate the instantaneous dimension as:

1
() = o) (MI2)

This assumes that the exceedances follow a GPD. We visually inspected the Q-Q plots of the
exceedances vs a GPD, and discrepancies between the observed quantiles and those predicted by
a GPD are noticed in the high quantile of the distribution. This probably reflects the fact that not
many extreme events have been observed, and a longer slip history may provide better results.
Repeating this calculation for different values of { extracted from the pool of values z, we can then
estimate the attractor dimension simply averaging over d: D = (d({)). This is a very powerful
result for two reasons. We can calculate the attractor dimension 1) without the need of an
embedding, and 2) simply setting one parameter: a threshold g on the negative log-distances. Here
we have used g = 0.98 percentile and g = 0.99 percentile of the negative log-distance, and we
have tested both L-1 and L-2 norm distances. The results are overall similar (green dots in Fig.
S2). We can now apply the method of surrogate data to each segment, and compare the
reconstructed attractor dimensions with the one calculated from real data. We refer to Section
Surrogate Data in the Supplementary Material for more details about the surrogate data method.
We notice that using a threshold g = 0.99 reduces the average dimension to values <3. The

threshold quantile g does not affect the conclusion that a chaotic deterministic dynamics can be
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successfully detected only for the northernmost segments. It affects though the interpretation of
the total number of degrees of freedom (dof) needed to explain the system. Longer time series will
help to resolve this ambiguity since the value of ¢ = 0.99 may be too high for the amount of

available data.

Another quantity of interest that can be derived is the instantaneous extremal index of the system
6(¢) (Fig. 4b). The instantaneous extremal index can be defined as the inverse of the persistence
in the phase space, where the persistence tells us how long the trajectory sticks in the proximity of
a certain point in the phase space. In other words, while d is related to the density of points in a
certain neighborhood of the phase space, i.e. how many times a certain region of the phase space
is visited, the persistence time indicates for how long the system stays in a region in the
neighborhood of a given state. If a state { is a fixed point, we expect an infinite persistence, i.e.
null 6. On the other hand, if we are studying a stochastic process we expect the persistence to tend
to 0, 1.e. unitary . In other words, we expect that at a certain epoch t the system will be in a state
¢, and then at a subsequent epoch t + At to be in a region of the phase space far from the one
occupied at time t. Looking at the extremal index from this angle gives us the intuition that it can

be related to the predictability of the system.

The extremal index (©), a parameter in the range [0,1], measures the degree of clustering of
extremes in a stationary process (P;(t) in our case), and can be defined as the reciprocal of the
mean cluster size®. A relationship between ® and the metric entropy H of a system has been

recently demonstrated?®:

0~1—eH (M13)
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The relationship between O and 6 is not as straightforward as the one between D and d, but we
must have 0 € [0,,in, Omax]- We can thus deduce a range of values for H. Given the values of 6
that we have found (Fig. S3 of the Supplementary Material) and the fact that the metric entropy is
equal to the sum of all the positive Lyapunov exponents, we deduce that there is at least one

positive Lyapunov exponent in our system.

We calculate 8 via a maximum likelihood estimator*’. When we look at the calculated 8 (see Fig.
S3 for non-causal filter, and S5 for causal and non-causal filter relative to segment #1), we see that
both causally and non-causally filtered data show values far from 1. This already indicates that, no
matter the causality or not of the filter, the system at the selected frequencies shows predictability
features. We observe a different situation when performing the analysis on non-filtered data (Fig.
S6). The values of 8 are now very close to 1, implying a predictability horizon shorter than the
sampling time. This is consistent with the fact that in such non-filtered slip potency rate time series

the high-frequency noise dominates, which is a random process.

Surrogate Data

The concept behind surrogate data techniques is rooted in statistical hypothesis testing. The
method requires to state a null hypothesis, and, using the words of ref. 23, "The idea is to test the
original time series against the null hypothesis by checking whether the discriminating statistic
computed for the original time series differs significantly from the statistics computed for each of
the surrogate sets." The necessity to use surrogate data derives from the intrinsic finiteness of the

available data: it is always possible to generate the observations with a particular random process.
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The null hypothesis that we test consists in assuming that the data can be described via a linear
stochastic model. Surrogate data should be generated before any filtering*' thus we first generate
the surrogate data from the original slip potency time series, then filter both the actual and
surrogate data, and finally calculate the slip potency rate. Since we are using slip potency rates on
multiple subfaults, when shuffling the signal phases we want to preserve not only the
autocorrelation of each slip potency rate time series, but also the cross correlations between
subfaults, and we thus use a generalization of the phase-randomized Fourier transform algorithm*?.
Despite the fact that filtering should not compromise the actual chaotic nature of the system*, the
estimate of D might depend on the applied filter, and we consequently test the method on both
causally and non-causally filtered time series. With both filters we witness a reduction of the

attractor dimension with respect to non-filtered data.

If we perform the same analysis on the unfiltered time series we find extremal index values close
to 1, with predictability horizons smaller than the data sampling rate, indicating a random system
(Fig. S6 for an example relative to segment #1). This shows that the noise is dominating, masking
the SSEs dynamical structure. We further test the effects of the filter on the predictability of the
time series generating (pseudo-)random time series and applying the same filter to them. The
number of generated random time series is equal to the number of subfaults in segment #1, which
is the segment with the largest number of subfaults. We then generate surrogate data and calculate
the average dimension on both the filtered random time series and the surrogate data. The result
shows that we would not be able to reject the null hypothesis according to which the time series

were generated by a random process (Fig. S7).



