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Abstract 14 

Regular and slow earthquakes result from unstable frictional slip and are described by a potentially 15 

chaotic dynamics1-4. Assessing the predictability of regular earthquakes is a challenge because 16 

observations generally cover a short time compared to the long time needed to generate successive 17 

ruptures of a same fault. This limitation does not apply to slow earthquakes, which have much 18 

shorter recurrence times5. We therefore assess the predictability of slow slip events (SSEs) on the 19 

Cascadia subduction imaged using geodetic times series between 2007 and 20176. These SSEs 20 
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show scaling laws and a systematic segmentation similar to regular earthquakes7. Using the 21 

embedding theory8,9 and extreme value theory10, we demonstrate a low-dimensional (<5) chaotic 22 

behavior. We calculate properties of the underlying strange attractor and find that the system has 23 

a predictability horizon of the order of 2 to 55 days. While longer-term deterministic prediction 24 

seems intrinsically impossible, short-term prediction of SSEs is shown to be possible, for example 25 

using the instantaneous dimension of the strange attractor which systematically peaks to high 26 

values at the onset of large slow slip events. Regular earthquakes might similarly be predictable 27 

but with a short predictable horizon which we infer to be of the order of their durations. 28 

 29 

Main Text 30 

Laboratory experiments have shown that it is possible to forecast the time to failure of both slow 31 

and fast ruptures11-13, raising hopes that natural earthquakes might similarly be predictable. 32 

However, a fully deterministic failure prediction for natural earthquakes is still yet to come14: we 33 

currently do not know if natural earthquakes result from deterministic chaos, and, if so, what would 34 

be their predictability horizon. Detecting chaotic behavior in geophysical time series is a difficult 35 

task, mainly because of the short and noisy data generally available15. While historical 36 

observations have been used to argue for chaos16, characterizing the chaotic behavior of regular 37 

earthquakes has been a challenge because of the short history of documented earthquakes on a 38 

same fault segment. A possible chaotic behavior has been inferred in the case of foreshocks17 and 39 

Low Frequency Earthquakes (LFEs)18, a class of small and slow earthquakes detectable with 40 

seismology. Here, we focus on Slow Slip Events (SSEs), which are mostly aseismic recurring 41 

events with recurrence time much shorter than that of typical earthquakes (months/years instead 42 

of decades/centuries). They have been documented with geodetic techniques in various tectonic 43 



contexts, in particular along major subduction megathrusts5, where they can reach moment 44 

magnitudes comparable to that of large earthquakes (Mw>7). SSEs are strikingly similar to regular 45 

earthquakes: they evolve into large pulse-like ruptures19 and follow similar scaling laws, exhibiting 46 

systematic segmentation7,20. These characteristics and the possibility to image them using geodetic 47 

time series make them a most suitable system to study the dynamics of frictional sliding at the 48 

natural scale. We focus on the Cascadia subduction, where multiple SSEs ruptured repeatedly 13 49 

major segments between 2007 and 20177 (Fig. 1). Our goal is to characterize if the slip time series 50 

reveal a deterministic dynamics or are the result of a stochastic process. 51 

We calculate the slip potency rate time series for all the 13 segments (𝑃̇𝑠(𝑡), 𝑠 = 1, … , 13, Fig. 2, 52 

Fig. S1, and Section Slip potency rate in the Methods) as the 1-day interval time derivative of the 53 

low-pass filtered slip potency. This is the scalar observable that we use to assess the dynamics of 54 

the system. We choose this variable because sliding velocity is considered to be the main 55 

observable variable governing the evolution of friction in laboratory experiments21. The slip 56 

potency rate shows episodic bursts with the most extreme events occurring quite regularly (Fig. 2 57 

and S1). We refer to the space spanned by the subset of variables needed to explain this system as 58 

the phase space, and to the trajectories in this phase space as the attractor of the system, being 59 

aware that we are dealing with only a region of the whole phase space, representative of the slow 60 

slipping phenomenon.  61 

A dynamical system is commonly characterized by its dimension, a geometrical property of the 62 

underlying attractor which quantifies the number of degrees of freedom (dof) needed to explain 63 

the observed dynamics22. For the stick-slip behavior considered here, the EVT (Section Extreme 64 

Value Theory in the Methods) indicates a low average attractor dimension 3.1 < D < 3.5 (green 65 

dots in Fig. 3). Similar low values (correlation dimension 𝜈 ≲ 5) are obtained when using ET 66 



(Section Embedding Theory in the Methods). However, the Signal-to-Noise Ratio (SNR) is high 67 

enough only for segments located in the northern section of the megathrust (segments #1 and #2). 68 

This is evident when surrogate data23 are used to test the significance of the observed low 69 

dimensionality of the system (Fig. 3, Section Surrogate Data in the Methods and Fig. S2 in the 70 

Supplementary Material). 71 

According to the EVT, the dynamics revealed by the filtered data requires at least 4 variables 72 

(because D is between 3 and 4). Interacting fault segments are commonly represented using a 73 

spring-slider system. The variables of a spring-slider system representing stick-slip friction in the 74 

laboratory, which would be similar to a system representing a single segment, must involve slip, 75 

slip rate and at least one additional ‘state’ variable to allow fault healing. Note that, even in the 76 

case of such a controlled system, the underlying physics and the number of state variables needed 77 

to explain laboratory friction remain matters of debate24.  78 

In absence of coupling with other spring-slider systems, the expected number of dof is thus two 79 

plus the number of state variables, and the dimension should be between dof-1 and dof. For a non-80 

inertial single spring-slider, adding a second state variable is a viable way to enact chaotic 81 

behavior, and a Kaplan-Yorke dimension of 2.119 ± 0.001 has been derived2. SSEs are generally 82 

thought to result from coupling between fault slip and fluid flow25,26. A single fault segment 83 

obeying rate- and state-friction with slip coupled to fluid flow can be represented by a spring-slider 84 

system with 5 dofs, i.e. its dynamics can be described by 5 variables: loading shear stress, slip rate, 85 

one state variable, porosity, and pore pressure25. To describe SSEs we can assume a quasi-static 86 

behavior, and the number of variables then drops to 4, a value consistent with the number of dof 87 

recovered from our analysis. 88 



In a system formed of interacting fault segments, the loading term would depend on the variables 89 

associated with neighboring fault segments, which would then need to be introduced in the state 90 

vector describing the system’s evolution. In the case of a 1-dimensional along-strike segmentation, 91 

as observed in Cascadia, we would expect a dimension as high as 12, with the extra 8 dof carried 92 

in by the two adjacent segments. Interactions with neighboring segments is probably critical at the 93 

onset and arrest of SSEs. The dimension 𝐷, being an average in the phase space, does not capture 94 

the information about transient instabilities, though. Recent advances in EVT applied to dynamical 95 

systems theory have proven that it is possible to characterize these transient instabilities via two 96 

instantaneous properties27: the instantaneous dimension (𝑑) and the instantaneous extremal index 97 

(𝜃). These quantities refer to the state of the system in a given location of the phase space. Their 98 

distribution and temporal evolution is shown in Fig. S3 of the Supplementary Material. The 99 

instantaneous dimension, 𝑑, indicates the number of variables needed to explain the dynamics of 100 

the system in a specific phase space location. We expect to find high values of d when a metastable 101 

state is approached. This is apparent from Fig. 4a, where a Poincaré section of the attractor is 102 

plotted with 𝑑 color coded. The maximum retrieved instantaneous dimension is in the range 103 

[11,18] for the segments with high SNR. Considering the tentative segmentation here adopted and 104 

the low SNR, we consider this result in good agreement with the maximum expected dimension 105 

of 12 as in a 1-dimensional spring-and-slider chain. Note that the number of dof, and hence the 106 

dimension of the strange attractor, would be expected to be larger in case of interactions between 107 

non-adjacent segments, or in case of along-dip segmentation. 108 

From the instantaneous extremal index (𝜃) (Fig. 4b) we can estimate a range of values for the 109 

metric entropy28, which characterizes how fast on average close-by trajectories in the phase space 110 

diverge, and we can thus estimate the predictability time 𝑡∗ of the system (see Extreme Value 111 



Theory in the Methods). We find 𝑡∗ ranging from 2.2 to 55 days for the 13 segments (Table S1). 112 

We exclude the possibility that the apparently chaotic dynamics is a result of the filtering (Section 113 

Surrogate Data in the Methods). We conclude that SSEs on the northernmost segments of the 114 

Cascadia subduction zone result from deterministic chaos. Our analysis implies that it should be 115 

possible to forecast the onset of large SSE ahead of time. This could in principle be achieved based 116 

on an explicit deterministic representation of the system dynamics or using some machine learning 117 

algorithm that would implicitly simulate the system dynamics. It is notable that the increase of d 118 

seems to constitute a reliable precursor of the large SSEs (segments #1 and #2, Fig. 2 and Fig. S1 119 

in the Supplementary Material). The causal filter adopted here introduces a group delay larger than 120 

the predictability horizon time, meaning that this approach cannot be used for real-time 121 

forecasting. Operational forecasting based on this approach would require an alternative noise 122 

reduction, or more accurate data in order to avoid the filtering step or reduce the window size of 123 

the filter. 124 

In conclusion, SSEs can be described as a deterministic, albeit chaotic, system rather than as a 125 

stochastic process. The deduced predictability horizon is of the order of days/weeks, equivalent to 126 

a fraction of the typical duration of large SSEs in our dataset. If the dynamics derived from the 127 

filtered time series is representative of the true underlying dynamics, long-term prediction of SSEs 128 

(i.e., over a time horizon much longer than their duration) seems intrinsically impossible. This 129 

implies that for long-term predictions a stochastic approach remains the best tool at our disposal, 130 

while short-term predictions should be feasible in a deterministic sense. As SSEs might be 131 

regarded as earthquakes in slow motion9, regular earthquakes might be similarly chaotic and 132 

predictable. Assuming a similar system dynamics, we infer a predictable horizon of the order of 133 

the typical duration of large earthquakes, i.e. tens to hundreds of seconds. 134 
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Figures 140 

 

 

 

Fig. 1: Left panel: Modified from ref. 7. Blue contour line: SSEs region. Color palette: Number 

of times a specific segment has ruptured in the time interval [2007.0, 2017.632] following the 

available SSEs catalog6. Dashed black lines indicate the segmentation from ref. 6, here adopted. 

Black continuous line shows the coast for reference. Green lines are isodepths in km. Right 

panel: Slip potency (𝑃(𝑡)) for four selected segments. The calculation is performed over the 

entire area belonging to the segment and colored in the left panel. Magenta dots: Slip potency 

for segments #1, #4, #7, and #12. Black dots: Causal low-pass filtered slip potency. The causal 

filter introduces a 115 days time delay. For visual purpose, the filtered time series is shifted back 



to the starting date 2007.0 (see Section Sleip potency rate in the Supplementary Material for 

more details). 
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Fig. 2: a) Causally filtered slip potency (black dots) for segment #1 (same as in Fig. 1). Red 

dashed lines indicate the epochs for which the instantaneous dimension d is larger than its 95-th 

quantile up to that epoch and for which the slip potency is smaller than its 50-th quantile up to 

that epoch. b) Slip potency rate (black dots) for segment #1, calculated as the derivative of the 

causally filtered slip potency (panel a) using a 1 day interval time step, plus the long-term slip 

potency rate. Red dashed lines as in panel a). 
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Fig. 3: The average attractor dimension D has been estimated as the average of the instantaneous 

dimension d. The surrogate data have been obtained randomizing the phases of the Fourier 

transformed slip potency and maintaining correlation between patches (see Section Surrogate 

Data in the Supplementary Material). The p-value is estimated after calculating D for every 

surrogate and comparing the data derived D with the distribution of the surrogate data derived 

Dsurrogate. Only segments #1 and #2 show an average dimension significantly (p<0.001) lower 

than the one derived from the surrogate data independently from the choice of the filter, of the 

norm to calculate distances, and of the quantile threshold to determine the exceedances (see 

Section Extreme Value Theory in the Supplementary Material and Fig. S2).  

 145 



 146 

 

Fig. 4: We use the slip potency (𝑃(𝑡)) and the slip potency rate (𝑃̇(𝑡)) as variables to reconstruct 

a Poincaré section of the attractor. The color palette indicates the instantaneous dimension d and 

the instantaneous extremal index θ in the top and bottom panels, respectively.  
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Methods 149 

Slip potency rate 150 

Given a subfault (𝑛) of a given segment (𝑠 = 1, … , 13), we apply an equiripple low-pass filter to 151 

the slip history (𝑢𝑠𝑛
𝑟𝑜𝑢𝑔ℎ

(𝑡)) from ref. 6 in order to obtain a smoothed slip history (𝑢𝑠𝑛(𝑡)). The 152 

passband frequency is 1 21⁄  days−1, the stopband is 1 35⁄  days−1, the passband ripple is 1 dB, 153 

and the stopband attenuation is 60 dB. These filter specifications are used to create both a causal 154 

and a non-causal filter. In particular, we use the Matlab® built-in function filter and the 155 

function FiltFiltM (https://www.mathworks.com/matlabcentral/fileexchange/32261-filterm). 156 

We then multiply the slip history by the area of each subfault (𝐴𝑠𝑛), getting the slip potency for 157 

each subfault:  158 

𝑝𝑠𝑛(𝑡) =  𝐴𝑠𝑛𝑢𝑠𝑛(𝑡) (M1) 

 159 

The total slip potency for the 𝑠-th segment is calculated as the slip potency integral over the entire 160 

slipping area. In a discretized case where there are 𝑁𝑠 subfaults belonging to the 𝑠-th segment, the 161 

total slip potency is calculated as: 162 

𝑃𝑠(𝑡) =  ∑ 𝐴𝑠𝑛

𝑁𝑠

𝑛=1

𝑢𝑠𝑛(𝑡) 

 

(M2) 

We also construct slip potency rate curves for each subfault:  163 

𝑝̇𝑠𝑛(𝑡) =  𝐴𝑠𝑛(𝑣0𝑠𝑛 + 𝑢̇𝑠𝑛(𝑡)) 

 

(M3) 



and the total slip potency rate for each segment:  164 

𝑃̇𝑠(𝑡) =  ∑ 𝐴𝑠𝑛

𝑁𝑠

𝑛=1

(𝑣0𝑠𝑛 + 𝑢̇𝑠𝑛(𝑡)) 

 

(M4) 

where 𝑣0𝑠𝑛 is the long-term reference loading velocity for a given patch belonging to a specific 165 

segment as derived from ref. 6. 166 

Non-causal filters cannot be adopted for real time applications because they use information from 167 

future epochs. On the contrary, causal filters use only past and present information, but they 168 

introduce a time delay in the filtered signal. The filter here adopted introduces the same time delay 169 

of 115 days for every frequency. This information is relevant when discussing about the 170 

predictability horizon of the system (see Main Text). The causally filtered slip potency for the 13 171 

segments is shown in Fig. 1b for a selection of 4 segments, and in Fig. S1 for all of them. For 172 

graphical purposes, the filtered time series have been shifted back in time in order to be in phase 173 

with the original time series. 174 

The choice of the variable to use for the dynamics reconstruction is important because it can bias 175 

the correlation dimension estimation. In particular, the correlation dimension can be lowered when 176 

using a variable strongly correlated only with a few variables of the system29. Having in mind the 177 

rate-and-state formalism for friction21, we hypothesize that the slip rate, and thus the slip potency 178 

rate, is not only more strongly coupled than the slip potency to the other variables of the system, 179 

but it is also coupled with more variables (e.g., the state variables). We find smaller values for the 180 

correlation dimension of the attractor 𝜈 when using the slip potency as observable (Figs. S4 and 181 

S5 and Section Embedding Theory in the Methods for their interpretation), confirming our 182 

intuition that slip potency rate is a more suitable observable. 183 



The effect of low-pass filters on dynamical systems' dimension estimation has been extensively 184 

studied. The filter here adopted is a finite-order nonrecursive filter. It has been proven theoretically 185 

that this class of filters should not modify quantities estimated via ET, but this might be not true 186 

for practical cases where finite time series are available30. For both causally and noncausally 187 

filtered time series, we retrieved similar average dimensions, lower than those determined on non-188 

filtered time series (see Fig. S6 for a comparison of causal and non-causal filter effects via EVT 189 

for the segment #1). In particular, for the segments with large SNR we notice that the application 190 

of a low-pass filter (both causal and non-causal) reduces the dimensionality of the system from 191 

values > 6 to values < 4. 192 

Filters applied to pure noise can potentially produce the spurious identification of finite correlation 193 

dimension31. For this reason, we have conducted the experiment with surrogate data also on filtered 194 

random time series (see Section Surrogate Data in the Methods). 195 

 196 

Embedding Theory (ET) 197 

We apply two methodologies based on ET to determine the correlation dimension of the strange 198 

attractor. The correlation dimension is defined as32:  199 

𝜈 = lim
𝑟→0

lim
𝑇→∞

Log(𝐶(𝑟, 𝑇))

Log(𝑟)
 

 

(M5) 

where 𝐶(𝑟, 𝑇) is the correlation integral, 𝑟 is a variable threshold distance, T is the time series 200 

length, and we use the base-10 logarithm Log. 201 



The construction of the correlation integral typically involves two parameters: the delay time (𝜏) 202 

and the embedding dimension (𝑚). Given a scalar time series 𝑥(𝑡), for example 𝑃̇𝑎(𝑡), its values 203 

are used to construct an 𝑚-dimensional vector delaying in time the time series of an amount 𝜏 for 204 

𝑚 − 1 times:  205 

𝑭(𝑡, 𝜏, 𝑚) = [𝑥(𝑡), 𝑥(𝑡 − 𝜏), … , 𝑥(𝑡 − (𝑚 − 1)𝜏) ] 

 

(M6) 

We can now define the correlation integral as33:  206 

𝐶(𝑟, 𝑇, 𝑤) =  
2

𝑇2
∑ ∑ H(𝑟 − ‖𝑭(𝑡1 + 𝑡2, 𝜏, 𝑚) − 𝑭(𝑡1, 𝜏, 𝑚)‖)

𝑇−𝑡2

𝑡1=1

𝑇

𝑡2=𝑤

 

 

(M7) 

where we introduce a cutoff parameter 𝑤 > 1 to improve the convergence of the classical 207 

algorithm (𝑤 = 1) toward its limit 𝑇 → ∞, and H is the Heaviside function. Values of 𝑤~𝜏𝑐𝑜𝑟𝑟 208 

are recommended, where 𝜏𝑐𝑜𝑟𝑟 is the autocorrelation time for the specific scalar time series under 209 

exam29. We calculate 𝜏𝑐𝑜𝑟𝑟 using the batch means method34. 210 

Basically, the algorithm counts how many 𝑚-dimensional vectors are closer than 𝑟 at different 211 

times. If 𝑚 ≥ 2𝜈 + 1, then 𝑭 is an embedding function of the strange attractor8, and we expect the 212 

correlation dimension to be independent of 𝑚. Figs. S4 and S5 show the 𝜈 vs Log(𝑟) curves for 213 

different 𝑚. The selected delay times 𝜏 are chosen in order to emphasize the scaling region. For 214 

every segment, we have tested values of 𝜏 = 2𝑖 + 1 days, with 𝑖 from 1 to 6, and 𝑚 = 4𝑗, with 𝑗 215 

from 1 to 5. In the case of a stochastic signal, we might expect that a scaling relationship between 216 

𝐶(𝑟) and 𝑟 does not hold, and larger values of 𝜈 are calculated when increasing 𝑚, i.e. 𝜈 does not 217 

saturate. Nonetheless, autocorrelated noise in short time series can fool the described algorithm23. 218 



For this reason, surrogate data are typically introduced, but instead of evaluating the plateau for 𝜈, 219 

which is quite subjective, we prefer to apply the methodology from EVT for this calculation. Given 220 

the time delays retrieved from ET (see Fig. S4), one accurate slip rate data per week might be 221 

sufficient to reconstruct an embedding for SSEs. 222 

The second methodology derived from ET needs only the definition of the delay time in order to 223 

determine the minimum embedding dimension35. The algorithm still uses the embedding function 224 

𝑭, but it exploits the nearest neighbors counting in the reconstructed phase space to detect false 225 

neighbors when changing the embedding dimension 𝑚. 226 

The following two quantities are defined:  227 

𝐸(𝑚) =  
1

𝑇 − 𝑚𝜏
∑

‖𝑭(𝑡, 𝜏, 𝑚 + 1) − 𝑭𝑛(𝑡,𝑚)(𝑡, 𝜏, 𝑚 + 1)‖

‖𝑭(𝑡, 𝜏, 𝑚) − 𝑭𝑛(𝑡,𝑚)(𝑡, 𝜏, 𝑚)‖

𝑇−𝑚𝜏

𝑡=1

 

 

(M8) 

𝐸∗(𝑚) =  
1

𝑇 − 𝑚𝜏
∑ ‖𝑥(𝑡 + 𝑚𝜏) − 𝑥𝑛(𝑡,𝑚)(𝑡 + 𝑚𝜏)‖

𝑇−𝑚𝜏

𝑡=1

 
(M9) 

 228 

where 1 ≤ 𝑛(𝑡, 𝑚) ≤ 𝑇 − 𝑚𝜏 is an integer such that 𝑭𝑛(𝑡,𝑚)(𝑡, 𝜏, 𝑚) is the nearest neighbor of 229 

𝑭(𝑡, 𝜏, 𝑚). From these two quantities, the ratio at two subsequent embedding dimensions is 230 

calculated:  231 

𝐸1(𝑚) =  
𝐸(𝑚 + 1)

𝐸(𝑚)
 

 

(M10) 



𝐸2(𝑚) =  
𝐸∗(𝑚 + 1)

𝐸∗(𝑚)
 

 

(M11) 

The quantity 𝐸1 is relevant because if the studied time series is the result of a dynamic process, i.e. 232 

it comes from an attractor, then 𝐸1(𝑚) saturates35. In other words, we reach a value 𝑚̂ such that 233 

𝐸1 stops changing increasing 𝑚 above 𝑚̂. The minimum embedding dimension will then be 𝑚̂ +234 

1. The second quantity, 𝐸2, is introduced to check for randomness in the data. In theory, for 235 

stochastic time series 𝐸1 should never saturate, but in practical cases it can be unclear if 𝐸1 is 236 

slowly increasing with increasing 𝑚 or not. If the time series of interest is the result of a stochastic 237 

process, we expect future data points to be independent from the previous ones. This means that 238 

𝐸2(𝑚) = 1 for each 𝑚. If the studied time series is instead the result of a deterministic process, 239 

𝐸2 is not constant, and there must exist some 𝑚 values such that 𝐸2(𝑚) ≠ 1. We plot 𝐸1 and 𝐸2 240 

in Figs. S4 and S5 for the analysis on slip potency rate and slip potency time series, respectively. 241 

We show in Fig. S6 the results on both causally filtered (i.e., present values are depending only on 242 

the past and the present, such that the statistic 𝐸2 can be used) and non-filtered time series for the 243 

example of segment #1. A minimum embedding dimension 𝑚 ≃ 10 is detected from filtered data, 244 

implying a correlation dimension 𝜈 ≤ (𝑚 − 1) 2 ≲ 4.5⁄ , while for non-filtered data 𝐸2 remains 245 

almost constant at unitary values. This result is consistent with the results from EVT, for which a 246 

𝜃 close to 1 is calculated for non-filtered time series (e.g., Fig. S6). 247 

 248 

Extreme Value Theory (EVT) 249 



We use recent results of EVT in order to overcome some of the issues encountered when using ET 250 

algorithms. In particular, we would like: 1) a method to rigorously calculate a particular statistic 251 

(for example, the attractor's dimension), and, consequently, test if the calculated quantity is the 252 

result of a random process or not; and 2) a method to calculate also instantaneous properties of the 253 

attractor. The main idea behind the usage of EVT for the characterization of a dynamical system 254 

is to connect the statistics of extreme events to the Poincaré recurrence theorem27,36. 255 

Let us consider a generic point 𝜁 on a strange attractor. Ultimately, the instantaneous dimension is 256 

a quantity which measures the density of neighbors in the phase space around 𝜁. In order to 257 

calculate this density, we can ask ourselves the following question: what is the probability to visit 258 

again a region of the phase space close to (i.e., in an arbitrary small radius 𝜀 from) 𝜁? If we had 259 

access to all the possible states of the system (𝑧), we could calculate the distances from the actual 260 

state under study, 𝛿(𝑧, 𝜁). Then we would like to construct a random variable related to 𝛿(𝑧, 𝜁) 261 

and use the second theorem of EVT37 to be able to gain information about the density of neighbors 262 

around 𝜁. In fact, the second theorem of EVT states that, given a random variable 𝑍 with non 263 

vanishing probability distribution, we can set a threshold value 𝑞 such that, for 𝑞 sufficiently large, 264 

values of 𝑍 that exceed 𝑞 (or exceedances) follow a Generalized Pareto Distribution (GPD). 265 

For real case scenarios, we might have only one scalar time series, and here we consider the 266 

univariate case. Similarly to what is done to characterize atmospheric flows27, we assume that our 267 

observed scalar time series (i.e., the slip potency rate) approximates possible states of the system. 268 

The only requirement to apply this methodology is the observed time series to be sampled from an 269 

underlying ergodic system. A possible improvement would be to consider a multivariate case with 270 

slip potency rates and/or slip potencies from adjacent segments, but we defer this complication to 271 

future investigations. For our case of interest, to generate the pool of all possible 𝑧 we consider the 272 



slip potency rates of all subfaults belonging to the segment under exam (equation M3). We then 273 

select 𝜁 to be equal to the slip potency rate at a certain epoch 𝑡, and calculate the distance from all 274 

other possible states that we have recorded at different times. Recent studies36,38 have shown that 275 

if we construct the random variable given by the negative log-distances, 𝑍 =  −ln(𝛿(𝑧, 𝜁)), we 276 

can use the GPD shape parameter (𝜎) to calculate the instantaneous dimension as:  277 

𝑑(𝜁) =  
1

𝜎(𝜁)
 

 

(M12) 

This assumes that the exceedances follow a GPD. We visually inspected the Q-Q plots of the 278 

exceedances vs a GPD, and discrepancies between the observed quantiles and those predicted by 279 

a GPD are noticed in the high quantile of the distribution. This probably reflects the fact that not 280 

many extreme events have been observed, and a longer slip history may provide better results. 281 

Repeating this calculation for different values of 𝜁 extracted from the pool of values 𝑧, we can then 282 

estimate the attractor dimension simply averaging over 𝑑: 𝐷 =  〈𝑑(𝜁)〉. This is a very powerful 283 

result for two reasons. We can calculate the attractor dimension 1) without the need of an 284 

embedding, and 2) simply setting one parameter: a threshold 𝑞 on the negative log-distances. Here 285 

we have used 𝑞 = 0.98 percentile and 𝑞 = 0.99 percentile of the negative log-distance, and we 286 

have tested both L-1 and L-2 norm distances. The results are overall similar (green dots in Fig. 287 

S2). We can now apply the method of surrogate data to each segment, and compare the 288 

reconstructed attractor dimensions with the one calculated from real data. We refer to Section 289 

Surrogate Data in the Supplementary Material for more details about the surrogate data method. 290 

We notice that using a threshold 𝑞 = 0.99 reduces the average dimension to values <3.  The 291 

threshold quantile 𝑞 does not affect the conclusion that a chaotic deterministic dynamics can be 292 



successfully detected only for the northernmost segments. It affects though the interpretation of 293 

the total number of degrees of freedom (dof) needed to explain the system. Longer time series will 294 

help to resolve this ambiguity since the value of 𝑞 = 0.99 may be too high for the amount of 295 

available data. 296 

Another quantity of interest that can be derived is the instantaneous extremal index of the system 297 

𝜃(𝜁) (Fig. 4b). The instantaneous extremal index can be defined as the inverse of the persistence 298 

in the phase space, where the persistence tells us how long the trajectory sticks in the proximity of 299 

a certain point in the phase space. In other words, while 𝑑 is related to the density of points in a 300 

certain neighborhood of the phase space, i.e. how many times a certain region of the phase space 301 

is visited, the persistence time indicates for how long the system stays in a region in the 302 

neighborhood of a given state. If a state 𝜁 is a fixed point, we expect an infinite persistence, i.e. 303 

null 𝜃. On the other hand, if we are studying a stochastic process we expect the persistence to tend 304 

to 0, i.e. unitary 𝜃. In other words, we expect that at a certain epoch 𝑡 the system will be in a state 305 

𝜁, and then at a subsequent epoch 𝑡 + Δ𝑡 to be in a region of the phase space far from the one 306 

occupied at time 𝑡. Looking at the extremal index from this angle gives us the intuition that it can 307 

be related to the predictability of the system. 308 

The extremal index (Θ), a parameter in the range [0,1], measures the degree of clustering of 309 

extremes in a stationary process (𝑃̇𝑠(𝑡) in our case), and can be defined as the reciprocal of the 310 

mean cluster size39. A relationship between Θ and the metric entropy 𝐻 of a system has been 311 

recently demonstrated28:  312 

Θ ~1 − 𝑒−𝐻 

 

(M13) 



The relationship between Θ and 𝜃 is not as straightforward as the one between 𝐷 and 𝑑, but we 313 

must have Θ ∈ [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥]. We can thus deduce a range of values for 𝐻. Given the values of 𝜃 314 

that we have found (Fig. S3 of the Supplementary Material) and the fact that the metric entropy is 315 

equal to the sum of all the positive Lyapunov exponents, we deduce that there is at least one 316 

positive Lyapunov exponent in our system. 317 

We calculate 𝜃 via a maximum likelihood estimator40. When we look at the calculated 𝜃 (see Fig. 318 

S3 for non-causal filter, and S5 for causal and non-causal filter relative to segment #1), we see that 319 

both causally and non-causally filtered data show values far from 1. This already indicates that, no 320 

matter the causality or not of the filter, the system at the selected frequencies shows predictability 321 

features. We observe a different situation when performing the analysis on non-filtered data (Fig. 322 

S6). The values of 𝜃 are now very close to 1, implying a predictability horizon shorter than the 323 

sampling time. This is consistent with the fact that in such non-filtered slip potency rate time series 324 

the high-frequency noise dominates, which is a random process. 325 

 326 

Surrogate Data 327 

The concept behind surrogate data techniques is rooted in statistical hypothesis testing. The 328 

method requires to state a null hypothesis, and, using the words of ref. 23, "The idea is to test the 329 

original time series against the null hypothesis by checking whether the discriminating statistic 330 

computed for the original time series differs significantly from the statistics computed for each of 331 

the surrogate sets." The necessity to use surrogate data derives from the intrinsic finiteness of the 332 

available data: it is always possible to generate the observations with a particular random process. 333 



The null hypothesis that we test consists in assuming that the data can be described via a linear 334 

stochastic model. Surrogate data should be generated before any filtering41 thus we first generate 335 

the surrogate data from the original slip potency time series, then filter both the actual and 336 

surrogate data, and finally calculate the slip potency rate. Since we are using slip potency rates on 337 

multiple subfaults, when shuffling the signal phases we want to preserve not only the 338 

autocorrelation of each slip potency rate time series, but also the cross correlations between 339 

subfaults, and we thus use a generalization of the phase-randomized Fourier transform algorithm42. 340 

Despite the fact that filtering should not compromise the actual chaotic nature of the system43, the 341 

estimate of 𝐷 might depend on the applied filter, and we consequently test the method on both 342 

causally and non-causally filtered time series. With both filters we witness a reduction of the 343 

attractor dimension with respect to non-filtered data. 344 

If we perform the same analysis on the unfiltered time series we find extremal index values close 345 

to 1, with predictability horizons smaller than the data sampling rate, indicating a random system 346 

(Fig. S6 for an example relative to segment #1). This shows that the noise is dominating, masking 347 

the SSEs dynamical structure. We further test the effects of the filter on the predictability of the 348 

time series generating (pseudo-)random time series and applying the same filter to them. The 349 

number of generated random time series is equal to the number of subfaults in segment #1, which 350 

is the segment with the largest number of subfaults. We then generate surrogate data and calculate 351 

the average dimension on both the filtered random time series and the surrogate data. The result 352 

shows that we would not be able to reject the null hypothesis according to which the time series 353 

were generated by a random process (Fig. S7). 354 


